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Chapter

1  

MmMathema

1 Mathematical Tools

1.1 Differential Calculus

1.1.1 Derivatives and Differentiation

Let y=f(x) be a real, single-valued function of the real variable x throughout a neighborhood of the point x. The (first, first-order) derivative of (first-order) differential coefficient of f(x) with respect to x at the point x is the limit
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The function dy/dx (= f(‘x)) is a measure of the rate of change of y with respect to x at each point x where the limit (1) exists. On a graph of y=f(x), f’(x) corresponds to the slope of the tangent.

1.1.2 Partial Derivatives

Let y=f(x1, x2, …, xn) be a real single-valued function of the real variables x1, x2, …, xn in a neighborhood of the point (x1, x2, …, xn). The (first-order) partial derivative of f(x1,x2,…, xn) with respect to x1 at the point (x1, x2, …, xn) is the limit
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The function ∂y/∂x1 is a measure of the rate of change of y with respect to x1 for fixed values of the remaining independent variables at each point (x1, x2, …, xn) where the limit (1.1.2) exists. The partial derivatives ∂y/∂x2, ∂y/∂x3, and ∂y/∂xn are defined in an analogous manner. Each partial derivative ∂y/∂xk can be found by differentiation of f(x1, x2, …, xn) with respect to xk while the remainding n-1 variables are regarded as constant parameters.

1.1.3 Differentiation Rules

Differentiation rules for power, exponential, logarithm, trigonometric, hyperbolic, etc. functions can be found in text books.

1.1.3.1 Basic rules


[image: image3.wmf]dx

du

du

df

dx

du

du

df

dx

du

du

df

x

u

x

u

x

u

f

dx

d

m

m

m

+

+

+

=

...

))

(

),...,

(

),

(

(

2

2

1

1

2

1



[image: image4.wmf][

]

2

2

2

2

2

2

2

)

(

dx

u

d

du

df

dx

du

du

f

d

x

u

f

dx

d

+

÷

ø

ö

ç

è

æ

=


1.1.3.2 Sums, products, quotients, logarithmic differentiation

1.1.3.3 Inverse function

If y=y(x) has the unique inverse function x=x(y), and dx/dy(0
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1.1.3.4 Implicit functions

If y=y(x) is given implicitly in terms of a suitably differentiable relation F(x,y)=0, where dyF (=Fy) ( 0,
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1.1.3.5 Function given in terms of a parameter

Given x=x(t),


[image: image7.wmf])

(

/

)

(

/

/

)

(

0

/

)

(

t

x

t

y

dx

dy

dt

dy

t

y

dt

dx

x

t

y

y

&

&

&

&

=

º

¹

º

=


1.1.3.6 Same rules for partial differentiation using
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1.2 Integrals and Integration

1.2.1 Definite Integrals (Riemann Integrals)

A real function f(x) bounded on the bounded closed interval [a,b] is integrable over (a,b) in the sense of Riemann if and only if (iff) the sum 
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tends to a unique finite limit I for every sequence of partitions a = x0 < ξ1 < x1 < ξ2 < x2 <…<  ξm < xm = b as max |xi - xi-1 | ( 0. In this case
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is the definite integral of f(x) over (a,b) in the sense of Riemann (Riemann integral). f(x) is called the integrand; a and b are the limits of integration.

1.2.1.1 Integration by parts

If u(x) and v(x) are differentiable for a≤x≤b, and if the integrals exist
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1.2.1.2 Change of variable

If u=u(x) and its inverse function x=x(u) are single valued and continuously differentiable for a≤x≤b, and if the integrals exist, 
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1.2.1.3 Differentiation with respect to a parameter
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If f(x,λ), u(λ), and v(λ) are continuously differentiable with respect to λ,

provided, that the integral exist and in the case of improper integrals, converge uniformly in a neighborhood of the point λ.

The second case can often be reduced to the first by a suitable change of variable. Note also
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1.2.2 Indefinite Integrals

A given single-valued function f(x) has an indefinite integral F(x) in [a,b] if and only if there exists a function F(x) such that F’(x)=f(x) in [a,b]. In this case F(x) is uniquely defined in [a,b] except for an arbitrary constant C (constant of integration); one writes
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Note that F(x)-F(a) is uniquely defined for a≤x≤b.

1.2.3 Fundamental Theorem of the Integral Calculus

If f(x) is single valued, bounded, and integrable on [a,b] and there exists a function F(x) such that F’(x)=f(x) for a≤x≤b, then
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In particular, if f(x) is continuous in [a,b],
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Special case:
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1.3 Fourier Series and Fourier Integrals

1.3.1 Fourier Series
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1.3.2 Properties of Fourier Transforms
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Let

and assume that the Fourier transforms in question exists.
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(b) Continuity Theorem. 
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Analogous theorems apply to Fourier cosine and sine transforms.

(c) Borel’s Convolution Theorem. 
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(d) Parseval’s Theorem. 
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(e) Modulation Theorem. 

[image: image31.wmf][

]

[

]

[

]

[

]

[

]

{

}

[

]

[

]

[

]

[

]

{

}

[

]

)

(

)

(

)

(

)

(

)

sin(

)

(

)

(

)

(

)

(

)

(

)

cos(

)

(

)

(

)

(

)

(

0

0

2

1

0

0

2

1

0

0

0

2

1

0

0

2

1

0

0

0

0

n

n

n

n

w

w

w

w

w

n

n

n

n

w

w

w

w

w

n

n

w

w

w

+

-

-

º

+

-

-

º

+

+

-

º

+

+

-

º

-

=

-

º

c

c

i

i

t

t

f

c

c

i

i

t

t

f

c

i

e

t

f

i

i

t

i

F

F

F

F

F

F

F

F

F

F

F

F

F


(d)[image: image32.wmf][

]

[

]

....

,

2

,

1

)

(

)

2

(

)

(

)

(

=

=

r

t

f

i

t

f

r

r

F

F

n

p

 Differentiation Theorem
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provided that f(r)(t) exists for all t, and that all derivatives of lesser order vanish as |t| → infinity.

1.4 Vector Algebra

1.4.1 Vector Addition and Multiplication of Vectors by (Real) Scalars
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Vectors, for example, a, b, are shown in boldface type 

1.4.2 Scalar Product (Dot Product, Inner Product)
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The scalar product, inner product a•b [alternative notation (ab)] of two Euclidean vectors a and b is the scalar ab=|a||b|cosγ, where γ is the angle between vectors a and b.

1.4.3 Vector (Cross) Product

The vector (cross) product axb (alternative notation [ab]) of two vectors a and b is the vector of magnitude |a||b|sin(γ), where γ is the angle between vectors a and b. The direction of the vector is perpendicular to both a and b and such that the axial motion of a right hand sided screw turning a into b is in the direction of axb.

1.5 Matrix Identities and Operations

1.5.1 Matrix  
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A matrix is an ordered, rectangular array of entries, usually numbers. Consider matrix A:

which has m rows and n columns, i.e., A is an mxn matrix. A matrix which is nx1 is called a column matrix or a column vector; a matrix which is 1xn is called a row matrix or a row vector; and a matrix which is nxn is called a square matrix. For compactness, Eq (1.5.1) is often expressed as A=(aij). The entry aij of A is the entry from the ith row in the jth column. The entries of a vector are often called components or elements.

1.5.2 Scalar Multiplication

If α is a scalar,
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1.5.3 Addition

The matrix A can be added to matrix b iff both A and B are of the same dimension:

A+B=B+A=(aij + bij)

1.5.4 Products of Matrices

The mxn matrix A can be multiplied on the right by a matrix B which is of dimension nxp for any positive integer p:
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where the i,jth entry in the mxp product matrix AB is the sum indicated in the parenthesis of Eq.(1.5.3). Note: AB does not equal BA, in general; and the number of columns in A must be equal the number of rows in B for (1.5.3) to be well defined.

1.5.5 Associative Law
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Given that AB and BC are well-defined matrix multiplications, it can be shown that
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If A is an nxn matrix, the product of A times itself is denoted by A2. In general
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1.5.6 Distributive Law

1.5.7 Major Diagonal

The major diagonal of an nxn matrix is that which connects the upper left-hand corner to the lower right-hand corner

1.5.8 Identity Matrix

An nxn identity matrix, denoted by I, is one which has 1’s on the major diagonal and zeros elsewhere. For any mxn matrix A, AI=A.
1.5.9 Transpose

Given an mxn matrix A of real numbers, the transpose A’ (or AT) is an nxm matrix, the i,jth entry of which equals to the j,ith entry of A. It follows that (A’)’=A, and it can be shown that (AB)’=B’A’.

1.5.10 Symmetric matrix

An nxn matrix A is said to be symmetric if A=A’.

1.5.11 Linear Combination

If a1, a2,…, an are a set of vectors and α 1, α 2,…, α n are a set of scalars, the vector  b=α 1a1+α 2a2+ α nan  is a linear combination of a1, a2,…, an.

1.5.12 Basis

A set of linearly independent nx1 vectors with real entries constitutes a basis for an n-dimensional space. Any vector in the n-dimensional space can be formed by a linear combination of the n linearly independent basis of vectors

1.5.13 Rank

Let A be an mxn matrix of real numbers. The row rank of A equals the number of linearly independent rows. The column rank of A equals to the number linearly independent columns. It can be shown that the row rank always equals the column rank, and the rank of A equals both the row and the column ranks.

1.5.14 Augmented Matrices

Consider an mxn matrix A and an mxp matrix B. If an mx(n+p) matrix is formed by placing the columns of B to the right of the columns of A, the resulting matrix is called an augmented matrix and is denoted by (A,B) or [A|B].

1.5.15 Existence of Linear Equation Solutions

Consider the matrix equation Ax=b where A is mxn, x is nx1, and b is mx1. The entries in A and b are assumed to be real numbers. The condition for solvability for x is that the rank of A and the rank of the augmented matrix (A,b) be the same.

If the rank of A does not equal the rank of (A,b), it is sometimes useful to obtain an x which minimizes (Ax-b)’(Ax-b). Show that any vector value x* of x which minimizes  (Ax-b)’(Ax-b) must satisfy A’A x*=A’b.

1.5.16 Partitioned Matrices

A partitioned matrix is one in which one or more of the entries is itself a matrix. The matrix entries of such a partitioned matrix are called sub-matrices.

Consider partitioned matrices of the form
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and 
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where A and B are partitioned by horizontal and vertical lines. If the sub-matrices Aij and Bjk are such that products AijBjk are well defined for all i, j, and k, the product AB is
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where Cij =Ai1B1j+Ai2B2j+…+AipBpj.

1.5.17 Diagonal and Generalized Diagonal Matrices

An nxn matrix A is a diagonal matrix if all aij equal zero when i(j.

An nxn matrix A is a generalized diagonal matrix if its major diagonal entries are also major diagonal entries of partitioned square sub-matrices and if all entries not included in the square diagonal sub-matrices are zero. Such a matrix is denoted by

A=diag(A1, A2,…,Ak)

where sub-matrices A1, A2,…,Ak are square matrices, not necessarily of equal dimension, which appear on the major diagonal.

1.5.18 Determinants and Singular Matrices

Consider an nxn matrix A=(aij). The determinant of A, denoted by |A|, is a scalar which can be computed in many ways. 
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where
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in which Mij is the (n-1)x(n-1) sub-matrix of A obtained by deleting the ith row and the jth column. The determinant of Mij is called the ijth minor of A, and the scalar cij is called the cofactor of aij. Just as |A| is linearly related to the determinant of the (n-1)x(n-1) matrix Mij, so also is |Mij| linearly related to the determinants of (n-2)x(n-2) matrices. In the limit, the determinants of 1x1 matrices, scalars, are required to compute |A|; the determinant of a scalar equals the scalar itself.

Given two nxn matrices A and B, |AB|=|A||B|.

If A=diag(A1, A2,…,Ak) is a generalized diagonal matrix, |A|=|A1||A2|…|Ak|.

An nxn matrix A is singular if |A|=0, otherwise A is non-singular. If rank A is n, |A|(0; but if rank A is less than n, |A|=0.

1.5.19 Inverse

Iff A is non-singular does there exist a unique inverse matrix denoted by A-1 with the property that AA-1=A-1A=I, an nxn identity matrix.

Given an nxn matrix A and an nx1 matrix b with scalar entities, a unique nx1 solution x=A-1b of Ax=b exists if A-1 exists. Computational methods of evaluating A-1 are given in various works (see e.g., Matlab).

If A-1 and D-1 exist, (A’)-1=(A-1)’ and (AD)-1=D-1A-1.

Consider the partitioned matrix
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where A and D are assumed to be non-singular. The invers P-1 of P can be expressed as

with E=D-CA-1B.

The inverse A-1 of A=diag(A1, A2,…,Ak) is A-1=diag(A1-1, A2-1,…,Ak-1).

1.5.20 Outer product

(Inner product: If x and y are nx1 vectors, the product x’y is a scalar and is called the inner product of x and y.)

If x is an nx1 vector and y is an mx1 vectors, the product xy’ is an nxm matrix and called the outer product.

1.5.20 Other definitions

Let A be an nxn matrix. The trace of A is the sum of the major-diagonal elements of A:

trace A = Σkakk
If x is a vector with at least one non-zero entry, x is a non-trivial vector.

If x and y are non-trivial nx1 vectors and x’y=0, x and y are mutually orthogonal.
Two nx1 vectors x and y are orthonormal, if they are orthogonal and x’x=y’y=1.

Given two nx1 vectors x and y with real entries, the vector projection of x on y is (x’y/y’y)y.
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1.6 Boolean Algebras

A Boolean algebra is a class S of objects A, B, C,… admitting two binary operations, denoted as (logical) addition and multiplication, with the following properties

For all A, B, C in S
1. S contains A+B and AB ( closure,

2. A+B=B+A,   AB=BA ( commutative laws,

3. A+(B+C)=(A+B)+C,   A(BC)=(AB)C  ( associative laws,

4. A(B+C)=AB+AC,  A+BC=(A+B)(A+C),  ( distributive laws

5. A+A=AA=A ( idempotency

6. A+B=B iff AB=A ( consistency

7. S contains elements I and 0 such that, for every A in S
      A+0=A,   A0=0,   AI=A,   A+I=I

8. For every element A, S contains an element Ā (complement of A, also written Ã or I-A) such that

A+Ā =I

A Ā =0
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In every Boolean algebra

If A+B=B, one can write AB as B-A (complement of A with respect to B). Two or more objects A, B, C,… of a Boolean algebra are disjoint iff every product involving distinct elements of the set equals 0.

The symbols U (cup) and ∩ (cap) are frequently employed to denote logical addition and multiplication in any Boolean algebra, so that AUB stands for A+B and A∩B stands for AB.

1.7 Vector Analysis: Differential Operators

1.7.1 The operator (
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In terms of rectangular Cartesian coordinates in three dimension, the linear operator ( (del or nabla) is defined by

In a general n-dimensional space operator nabla (or the gradient operator) can be written as
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where ei is the unit vector in direction of the ith axis xi.

Examples are given from 3D. Nabla’s application to a scalar point function f(x) or vector function f(r) corresponds formally to a non-commutative multiplication operation with a vector having the rectangular Cartesian components (/(x, (/(y, (/(z; thus in terms of right-handed rectangular Cartesian coordinates x, y, z.
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1.7.2 The operator ∆

Operator ∆ is called the Laplace operator. In n-dimensional space it is defined as
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1.7.3 Vector derivatives of Matrices

Consider a row matrix q=[q1(x) q2(x)   …  qk(x)] in which each entry is a scalar function of n variables and is of class C1 (i.e., it can be differentiated once at least). The derivative of q with respect to x is an nxk matrix

[image: image55.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

qr

q

r

C

C

C

C

AB

...

.

.

..

1

1

11


Consider a column matrix f=[f1(x) f2(x)   …  fk(x)]’ in which every entry is a scalar function of n variables and is of class C1. By convention, the derivative ∂f/∂x of f with respect to x is a kxn matrix:
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Consider two kx1 column vectors f and g, the entries of which are of class C1 with respect to the nx1 vector x of real variables. The gradient of f’g with respect to x is given by
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Let x be an nx1 vector of real variables, and let A be an nxn matrix which is independent of the entries of x. Useful derivative identities are

[image: image58.wmf]
1.7.4 Taylor’s Series Expansion

If f(x) is a real valued function which is analytic at a point x=x0 of a real n-dimensional Euclidean domain, f(x) can be expanded in a Taylor’s series about the point x0:
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which is valid in some neighborhood of point x0. Operationally, both x and x0 are column vectors, and A is an nxn matrix:
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which is called the Hessian matrix of f.

1.7.5 Quadratic Form

The function f(x) is a quadratic form if

f(x)=x’Ax

where x is an nx1 vector of real variables, and A is an nxn symmetric matrix of real numbers.

A quadratic form f(x) over the set of reals is positive-definite if f(x) is greater than zero for all non-trivial x and f(0)=0; it is positive semi-definite if it has no negative values.

A symmetric matrix A of reals is positive-definite (semi-definite) if the corresponding f(x) is positive-definite (semi-definite).

1.7.6 Characteristic Roots or Eigenvalues

Given an nxn matrix A of scalars, the characteristic roots or eigenvalues of A are the roots of the nth-order characteristic equation
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where the cI’s are appropriate constants. Iff r is an eigenvalue of A does there exist a vector z such that

Az=rz

The vector z is called the characteristic vector or eigenvector.
1.7.7 Similarity, Matrices Similar to Diagonal Matrices

Two nxn matrices A and B are said to be similar if there exists a non-singular matrix P such that

B=P-1AP

If there exists a diagonal matrix D which is similar to a given matrix A, the diagonal elements of D are the eigenvalues of A. If the eigenvalues of A are distinct, A=PBP-1 where the ith column of P is an eigenvector that corresponds to the eigenvalues in the ith column of D. For any nxn symmetric matrix A of reals, there exists a set of n linearly independent eigenvectors which are mutually orthogonal; if these vectors are normalized to unity magnitude and are used as the columns of a transformation matrix P, then P’=P-1; and if the non-singular transformation x=Py is made, x’Ax=y’PAPy=y’Dy where D is a diagonal matrix of eigenvalues.

A real, symmetric matrix A is positive-definite iff it is similar to a diagonal matrix with positive real diagonal entries.

1.7.8 Pseudo-inverse

1. X is the generalized inverse of matrix A if AXA=A

2. X is the reflexive generalized inverse of matrix A if AXA=A and XAX=X
3. X is the normed generalized inverse of matrix A if (AX)*=AX where * denotes complex conjugation

4. X is the pseudo-inverse of matrix A (sometimes called the Moore-Penrose inverse) if 1.-2.-3. are fulfilled.

The pseudo-inverse matrix is unique

1.7.9 Singular Value Decomposition

For mxn matrix A with rank k the method of singular value decomposition provides three matrices, say U, S, and V where matrix S is kxk and is diagonal, matrix U is mxk and has orthonormal columns, and matrix V is nxk and has also orthonormal columns. The matrices have the following property: A=USV’

1.7.10 Function of a Matrix

A function of a matrix f(A) is defined by the Taylor’s expansion of f. In particular, given an nxn matrix A with real, constant entries, eAt is used to denote an nxn matrix exponential:

eAt = I + At +1/2! A2t2 + …

The matrix exponential is useful in the solution of sets of linear, first-order, differential equations. 

1.8 Linear Differential Equations

1.8.1 Homogeneous Linear Equations with Constant Coefficients
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The first-order differential equation

has the solution

[image: image63.wmf]1

,

...

...

.

.

.

.

...

1

1

2

1

1

1

¹

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

¶

¶

k

x

f

x

f

x

f

x

f

x

f

n

k

k

n

x

f


a0/a1 is often referred to as the time constant.
The second order equation

[image: image64.wmf]f

g

x

g

f

x

g

f

x

÷

ø

ö

ç

è

æ

¶

¶

+

÷

ø

ö

ç

è

æ

¶

¶

=

¶

¶

'

'

'


has the solution
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If a0, a1 and a2 are real, s1, and s2 become complex for a12 -4 a0a2 < 0; in this case Eq. (1.8.1) can be written as
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are respectively known as the damping constant and the natural (characteristic) circular frequency. The constants C1, C2, A, B, R, and ( are chosen so as to match given initial or boundary conditions.

To solve the rth order differential equation
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find the roots of the rth-degree algebraic equation
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obtained for example, on substitution of a trial solution est. If the roots s1, s2, … of the characteristic equation (1.8.3) are distinct, the given differential equation (1.8.2) has the general solution

[image: image69.wmf]0

...

...

1

1

0

2

3

2

1

=

+

+

=

=

=

z

a

z

a

dx

dz

a

dx

dz

z

dx

dy

z

y

z

r

r

r


If a root sk has a multiplicity mk, replace the corresponding term in Eq. (1.8.4) by
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The various terms of the solution (1.8.5) are known as normal modes of the given differential equation. The r constants must be chosen as to match given initial and boundary conditions.

An rth order differential equation of the form of (1.8.2) can be transformed into a set of r first order differential equations by making the substitutions
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1.8.2 System of Linear Differential Equations
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Consider the following set of differential equations:
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where A is an nxn matrix of real constants, B is an nxr matrix of real constants, x=x(t) is an nx1 (state) vector, m is an rx1 (control) vector, and x(t0) is specified. If there exists a diagonal matrix D which is similar to A, the vector state equation (1.8.6) may be solved more readily by introducing a new (state) vector y:
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where the property P-1AP=D is used to obtain

The solution for y that satisfies a specified y(t0) can be expressed in terms of a convolution integral:
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for t≥t0.

1.9 Dirac’s Delta function
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Limits (especially infinite series and indefinite integrals) appearing under an integral sign can often be represented in terms of the Dirac delta function δ(t) with the properties

where f(t) is bounded variation in every finite interval.

1.10 Optimization
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The concepts can be illustrated most directly by considering a continuous function of one variable, J=f(x), which is real valued and which is defined on the set Rx consisting of the closed interval [a0,af]. The extremum of such a function can occur only at 

stationary points (where the first derivative disappears, e.g., at saddle points, local maxima, and local minima) or at points at which the derivative is not completely defined. Assume now, the function f(x) is of class C1. For such functions, the end points a0 and af are relative extremum points; and the points which satisfy

are either relative extremum points or saddle points. Thus for an interior point xa of Rx to be a relative extremum point of a function class C1, it is necessary – but not sufficient – that xa be a stationary point.

Consider the Taylor’s series expansion of f(x):
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In writing this equation, f(x) is assumed to be a class C3 or greater (i.e., derivatives of f(x) up to and including the third are continuous in Rx). Suppose x=xa corresponds to a stationary point; then df(xa)/dx equals zero, and it follows that
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if ∆x is made sufficiently small. In that case that d2f(xa)/dx2 > 0 the right hand side is always positive, independent of the sign of ∆x; and it follows directly from the definitions that f(xa) is a local minimum.

On the other hand, if d2f(xa)/dx2 < 0 then the right hand side is always negative, independent of the sign of ∆x; and it follows directly from the definitions that f(xa) is a local maximum.

In the instance that d2f(xa)/dx2 = 0, we have 
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when ∆x is made sufficiently small. Assuming that d3f(xa)/dx3≠0, the sign of the right hand side changes with the sign of ∆x, no matter how small in absolute value ∆x is taken. Thus the point f(xa) is a saddle point. If it should occur that the third derivative is zero then the test must be extended to include higher derivatives of f(x) at around xa.

The question remaining is: When is a local maximum (minimum) the absolute maximum (minimum)? It must be answered: The only general way to determine the absolute maximum (minimum) is to make direct comparisons between the local maxima (minima). 

Considerations of this chapter can be easily extended to higher dimensions using the concept of the gradient of the function

1.10.1 Equality constraints and Lagrange multipliers

(The concepts developed in this section generalize to higher dimensions without difficulty.) Assume that we have a performance measure J, 
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The task is to extremize J subject to the following constraint:
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where c1 is a constant and where f0 and f1 are assumed to be of class C2 with respect to x1 and x2. A set of real values of x1 and x2 is assumed to exist for which the constraint (1.10.2) is satisfied. Constraints of the form of (1.10.2) indicate that parameters x1 and x2 are dependent, a common occurrence in many practical problems.

Prior to the presentation of the Lagrange-multiplier method consider first the straightforward approach which is sometimes used when (1.10.2) can be solved explicitly for x1 in terms of x2, say x1=g(x2). In this case, g(x2) is substituted for x1 and ordinary (unconstrained) optimization can be applied to tests for relative extrema of f0(g(x2),x2). In addition to the possibility of not being able to solve for x1 directly in terms of x2, the straightforward procedure is often more cumbersome in actual use than the Lagrange multiplier method.

As a first step in the derivation, the derivatives of (1.10.1-2) with respect to x1 are taken by applying the chain rule of differentiation, as follows:
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In order that J be a relative extremum at a given point, dJ/dx1 in Eq. (1.10.3) must be equal zero at that point. Thus, from Eq. (1.10.3), a necessary condition for a relative extremum is that

[image: image85.wmf]
A more useful necessary condition for relative extrema would be one that is independent of the term dx2/dx1. Such an equation is readily obtained by elimination of dx2/dx1 between (1.10.4-5). Assuming that the partial derivatives in (1.10.4-5) are non-zero, these equations can be manipulated to obtain
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Note that the two equations (1.10.3) and (1.10.6) are sufficient to determine the unknowns x1 and x2 which result in stationary points; and in truth, the analysis of this section could be terminated here but for the fact that the results are in awkward form and are not amenable to generalization at this stage.
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The required modification is obtained by rearranging (1.10.6) and by introducing a new variable h, a Lagrange multiplier, as follows:
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which equation is more conveniently expressed by two equations:

For notational simplicity, an augmented performance measure fa is introduced and is defined to be equal to f0(x1,x2)+h f1(x1,x2). The utility of this augmented performance measure is that Eqs. (1.10.8-9) can be compactly replaced by
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in which the Lagrange multiplier h is treated as being independent (as far as the partial differentiation is concerned) of x1 and x2. Thus (1.10.1) and (1.10.10) form a set of three equations which can be solved for those values of x1, x2, and h which correspond to stationary points (of the augmented performance measure).

In many practical problems, Eq. (1.10.10) admit to another interpretation of the Lagrange multiplier h. Consider, for example, any case where a maximum of f0(x1,x2) is desired, but where f1(x1,x2) represents a „cost” associated with the variables x1 and x2. Under these conditions, the augmented function f0(x1,x2)+h f1(x1,x2) – with cost efficient h assigned a negative value – may be viewed as a penalized performance measure. For any particular value of cost efficient h, the maximum fa(x1*(h),x2*(h)) of fa(x1,x2) corresponds to a solution of Eqs. (1.10.10). The values x1*(h) and x2*(h) of x1 and x2 respectively, yield the value f0[x1*(h),x2*(h)] of the original performance measure and the value f1(x1*(h),x2*(h)) of the cost function.

At this point an analytical test is still desired, that can be used to determine the nature of the stationary points that result from the foregoing analysis. This should be remembered when applied in analytical cases. In case of using local search methods or when searching for the global optimum a comparing step is also required and higher order analysis is may be unnecessary. 

1.10.1.1 General case of equality constraints

In this section, the necessary conditions of the previous method are extended to the general case of n selectable parameters and m equality constraints. It is assumed that both the constraint equations and the performance measure are of class C1, and that the constraint equations admit a set of real solutions. Only the resulting procedure is given.

A performance measure J is to be extremized with respect to selection of xI’s:
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where the xI’s of x={x1,x2,…xn} are restricted to satisfy m independent constraint equations, namely,
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where m is less than n and the ci’s are constants.

Solution of this problem, based on the use of Lagrange multipliers, proceeds as follows. First, an augmented function fa is formed,
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where hI’s are independent of the xI’s and are the Lagrange multipliers. Next, it is observed that stationary points of fa are required to satisfy
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for I=1, 2, …, n. In (1.10.12) and (1.10.14), there are n+m equations. The unknowns in these equations are the xI’s, of which there are n, and the hI’s, of which there are m. Thus the number of unknowns is also n+m. In general, Eqs. (1.10.12) and (1.10.14) may have several solutions. The equations are often quite involved, and numerical solution is often required.

1.10.1.2 Inequality constraints

The general case of inequality constraints is much more difficult to treat by use of the methods of this chapter than is the general case of equality constraints which is presented in the previous section. In many cases, gradient and other direct search techniques are preferable.

Consider the performance measure 
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subject to the following constraint:
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with the additional constraint that 
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where f0 and f1 are assumed to be of class C2 over the region Rx defined by Eqs (1.10.16-17).

This problem is subdivided into several problems. First, stationary points of f0(x1,x2) are determined in the ordinary way. Any of these points which fall outside the region Rx are immediately discarded.  All that remain are possible points of relative extrema within the boundaries of the allowable region of the x1, x2  plane. In general, the above procedure will not extract all of the relative extremum points which lie on the boundaries of the allowable x1, x2 region; to determine these extrema, the equations which apply at the boundaries must be examined, as follows. First, find the relative extrema associated with f0(a1,x2) and keep only those that satisfy f1(a1,x2)≤c1; second, find the relative extrema associated with f0(b1,x2) and keep only those that satisfy f1(b1,x2) ≤c1; third, find the relative extrema associated with f0(x1,x2)+hf1(x1,x2) (h is a Lagrange multiplier and the constraint (1.10.16) is taken in the equality sense) and keep only those that satisfy a1≤x1≤b1; and finally, find any relative extrema which may be associated with the intersection points determined by f1(a1,x2)=c1 and f1(b1,x2)=c1. In the above development it is tacitly assumed that no extrema exists at the infinite limits associated with x2. By comparing all of the relative extrema remaining after the above selection process, the absolute maximum and the absolute minimum can be determined.

A more formal way of solving the preceding optimization problem is by using slack variables. A slack variable is a real variable which is introduced to take up the slack in an inequality constraint, i.e., to convert an inequality constraint to an equality constraint. For example, let x3 be a slack variable, and suppose that x3, as well as x1 and x2, is constrained by the relationship

f1(x1,x2) + x32 = c1
The value of x32 literally takes up the slack in the inequality constraint. Whatever real value x3 assumes, f1(x1,x2) is guaranteed of being less than or equal to c1 as required by the original inequality constraint. Thus we can use an equality constraint instead of an inequality constraint. Similarly, let the slack variable x4 introduced as follows:

x42 – (b1-x1)(x1-a1) = 0

As long as x1 satisfies the original constraint (1.10.17), x4 is positive with result that x4 is real; but if x1 does not satisfy (1.10.17), x4 should be negative which does not yield a real value for x4. Thus we can use again an equality constraint instead of an inequality constraint. In summary, the solution of a problem with inequality constraints can be obtained through the solution of a set of ordinary optimization problems with equality constraints.

1.10.1.3 Inequality constraints and saddle point methods
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Assume that we have l vector-scalar pairs, (xI,yi), i=1,2,…,l, where xi(RN, yi(R, for every i. Let us consider the following optimization problem.  

This constrained optimization problem can be dealt with by introducing Lagrange multipliers αi≥0 and a performance function (a Lagrangian)
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The Lagrangian J has to be minimized with respect to the primal variables w and b, and maximized with respect to the dual variables αi (i.e., a saddle point has to be found). Let us try to get some intuition for this. If a constraint (1.10.18) is violated then yi((wxi)+b)-1<0, in this case J can be increased by increasing the corresponding αi. At the same time “room is gained” and w and b can be modified to decrease J. The larger the second term of (1.10.19) the more can be gained in the minimization part of the problem by considering this term alone. To prevent –αi(yi((wxi)+b)-1) from becoming arbitrarily large, the change in w and b will ensure that the constraint will eventually be satisfied (provided that the system of constraints is satisfiable at all). Similarly, that for constraints which are not precisely met as equalities, that is if yi((wxi)+b)-1>0, the corresponding αi should be 0: this is the value of αi that minimizes J. The latter is the statement of the Karush-Kuhn-Tucker (KKT) complementary conditions of optimization theory.

The condition that at the saddle point, the derivatives of J with respect to the primal variables must vanish,
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By substituting (1.10.21-22) into J, one eliminates the primal variables and arrives at the Wolfe dual of the optimization problem: find multiplier αi which
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1.11 Abstract Spaces

1.11.1 Metric Space
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A metric space consists of a non-empty set A and a distance measure or metric ρ which operates on the elements of A with the following results:

Condition 3 is known as the triangle inequality.

1.11.1.1 Cauchy sequence and Complete Metric Spaces

Consider a metric space A and a sequence a1, a2, … of elements from A. The sequence is called a Cauchy sequence if there exists an integer k(ε) for every ε>0 such that ρ(ai,aj)< ε for all i,j> k(ε).

A metric space is called a complete metric space if every Cauchy sequence in A converges to a limit which is also an element of A.

1.11.2 Normed Linear Space

A linear space A is called normed linear space if there is defined an operation which maps each element a(A into a real number ||a|| with the following properties:
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1.11.3 Banach space

Consider a normed linear space in which a metric ρ(a,b)=||a-b|| is defined in terms of the norm. If the corresponding metric space is complete the space is called Banach space.
1.11.3.1 The lp(n) Spaces

A valid norm on either Rn or Cn (n dimensional space of complex numbers) is
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where x is an element of either Rn or Cn, and the positive number p is bounded as indicated. The lp(n) spaces are Banach spaces. If p=2, for example, the resulting space is an n-dimensional Euclidean space En.

It can be shown that (1.11.25) defines a norm even if n((, provided that the components of x yield a bounded value of Σi=1(|xi|p. The associated Banach space is denoted by lp. 
Similarly, if p((, it can be shown that the norm (1.11.25) is yet valid and reduces to ||x||=maxi|xi|. The associated Banach space is denoted by l((n).

1.11.3.2 The Lp(ta,tb) Spaces

Consider the set of scalar-valued x(t)’s for which the following integration is well defined for a particular value of p:
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Each value of p in (1.11.26) is associated with a Banach space denoted by Lp(ta,tb).

If p is allowed to approach infinity in (1.11.26) and if the x(t)’s are restricted to those functions which are piecewise continuous between simple jump discontinuities, the norm (1.11.26) can be shown to be equivalent to
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1.11.4 Inner Product Space

A linear space A is called an inner product space if there is an associated rule which assigns a scalar <a,b> to every pair of elements a,b(A; the scalar <a,b> is called an inner product and must satisfy:

[image: image108.wmf]å

¥

=

=

1

)

(

)

(

n

n

n

c

f

x

x

j


1.11.5 Hilbert Space

If the norm of a given Banach space is appropriately derived from an inner product the Banach space is called a Hilbert space. Let H denote a Hilbert space and let x(H. The norm ||x|| is defined to be

||x||=<x,x>1/2
1.11.6 Reproducing Kernel Hilbert Spaces (RKHS)

A reproducing kernel Hilbert space H is defined as a Hilbert space of functions over some domain Ω(Rd with the property that, for each x( Ω, the evaluation functionals Fx defined as 

Fx(f)=f(x)        for every f(H

are linear, bounded functionals. It can be proved that to each RKHS  H  it corresponds a positive definite function K(x,y), which is called the reproducing kernel of H. The kernel of H has the following property:

f(x)=<f(y),K(y,x)>H        for every      f(H

where <.,.> denotes the inner product in H. Here we sketch a way to construct a RKHS. Mathematical proofs can be found in the theory of integral equations. In the following we assume that Ω=[0,1]d for simplicity. the main ideas will carry over to the case Ω=Rd, although with some modifications.

Let us assume that we find a sequence of positive number λn and linearly independent functions φn(x) such that they define a function K(x,y) in the following way
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where the series is well defined (for example it converges uniformly). The sign * denotes complex conjugation. In the following real valued functions will be assumed and the sign of complex conjugation will be neglected. A simple calculation shows that the function K defined in (1.11.27) is positive semi-definite. Let us now take as a Hilbert space the set of functions of the form
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in which the inner product is defined as:
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Assuming that all the evaluation functionals are bounded, it is now easy to check that such a Hilbert space is a RKHS with reproducing kernel given by K(x,y). In fact we have
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We conclude that it is possible to construct a RKHS whenever a function of K of the form (1.11.27) is available. The norm in the RKHS has the form

It is well known that the expression of the form of (1.11.27) is actually bound. In fact, it follows from Mercer’s theorem that any function K(x,y) which is the kernel of positive operator (i.e., <Kf,f> (0 for all f(L2) in L2(Ω) has an expansion of the form (1.11.27), in which φi and λi are respectively the orthogonal eigenfunctions and the positive eigenvalues of the operator corresponding to K. It is also known that the positivity of the operator associated to K is equivalent to the statement that the kernel is positive definite, that is the matrix Kij=K(xi,yj) is positive definite for all choices of distinct points xi. Notice that the kernel K could have an expansion of the form of (1.11.27) in which φn are not necessarily its eigenfunctions.

The case of Ω=Rd is similar, with the difference that the eigenvalues may assume any positive value, so that there will be a non-countable set of orthogonal eigenfunctions. 

1.11.6.1 Finite dimensional RKHS

When the set of basis function φi has a finite cardinality N, the construction of RKHS is always well defined, as long as the basis functions are linearly independent. Notice that the functions φi do not have to be orthogonal, and that they will not be eigenfunctions of K. In this case one can define the so called dual basis functions, (i as follows:
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where m-1 is the inverse matrix of M: Mij=<φi,φj> and the scalar product is taken in L2. It is easy to verify that, for any function space, the following identity holds:
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where the second part of the identity comes from the fact that the dual basis of the dual basis is the original basis. From here we conclude that, for any choices of positive λi, the set of functions spanned by the functions φi form a RKHS whose norm is
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Notice that while the elements of the (dual) basis are not orthogonal to each other, orthogonality relationships hold between the elements of the basis and the elements of the dual basis:
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As a consequence, it is possible to show that, defining the dual kernel as
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the following relationships hold
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1.12 Probability at a very introductory level

1.12.1 Prior Probability

Unconditional or prior probability of event A is denoted by P(A)

0( P(A)(1

Meaning: the chance that event A occurs (or that “proposition A is true”) in the absence of any other information 

Probability of a series of discrete events B1, …, Bk:      P(B1), …, P(Bk) , etc.

If Bi (i=1,..,k) are mutually exclusive then

P(B1(…(Bk) = P(B1)+…+P(Bk)

Sometimes we say X is a random variable with alphabet H and probability mass function p(x)=Pr(X=x), x(H. Equivalent notation: p(x)=pX(x)=P(x). In the following p(x) and p(y) refer to two different random variables, and are in fact different probability mass functions, pX(x) and pY(y) respectively.

In case of a continuous variable we talk about probability distribution function (pdf). In this case P(x)dx is the probability that the value of x is between x and x+dx

1.12.2 Conditional Probability

Posterior or conditional probability means that we have other information, and the prior probability is to be modified by the extra piece(s) of information.

P(A|B) denotes the probability of event A if event B is true.

The unconditional probability of event A and B, P(A,B)  can be written as

P(A,B) = P(A(B) = P(A|B)P(B)

1.12.3 Axioms of Probability

1. All probabilities are between 0 and 1

2. Surely occurrence of an events means probability 1, surely absence of and event means probability 0.

3. P(A(B) = P(A) + P(B) – P(A(B)   where P(A(B) denotes the probability that  events A and B both occur.

1.12.4 Bayes’ Rule

P(A,B) = P(A(B) = P(A|B)P(B)

P(A,B) = P(A(B) = P(B|A)P(A)

P(B|A) = P(A|B)P(B) / P(A)

P(B|A,E) = P(A|B,E)P(B,E) / P(A,E)

1.12.4.1 Normalization

P(B) + P((B) = 1

P(B|A) = P(A|B)P(B) / [P(A|B)P(B)+P(A|(B)P((B)]

P(B|A) = P(A|B)P(B) / [P(A|B)P(B)+P(A|(B)P((B)]

P(B|A) = α P(A|B)P(B) 

Thus having P(A|(B) we can avoid assessing P(A) and still obtain exact probabilities from Bayes’ rule

1.12.5 Bayesian learning

Bayesian learning views the problem of constructing hypotheses from data as a sub-problem of the more fundamental problem of making predictions. The idea is to use hypotheses as intermediaries between data and predictions. First, the probability of each hypothesis is estimated given the data. Predictions are then made from the hypotheses, using the posterior probabilities of the hypotheses to weight the predictions. As a simple example, consider the problem of predicting tomorrow’s weather. Suppose the available experts are divided into two camps: some propose model A, and some propose model B. The Bayesian method, rather than choosing between A and B, gives some weight to each based on their likelihood. The likelihood will depend on how much the known data support each of the two models.

Suppose that we have data D and hypotheses H1, H2,… , and that we are interested in making a prediction concerning an unknown quantity X. Furthermore, suppose that each Hi specifies a complete distribution for X. Then we have

P(X|D) = (i P(X|D,Hi)P(Hi|D) = (i P(X|Hi)P(Hi|D)

This equation describes full Bayesian learning, and may require a calculation of P(Hi|D) for all Hi. In most cases, this is intractable; it can be shown, however, that there is no better way to make predictions.

The most common approximation is to use a most probable hypothesis, that is, an Hi that maximizes P(Hi|D). This often called a maximum a posteriori or (MAP) hypothesis HMAP:

P(X|D) ( P(X|HMAP)

The problem is now to find HMAP. By applying Bayes’ rule, we can rewrite P(Hi|D) as follows:

P(Hi|D)=P(D|Hi)P(Hi)/P(D)

Notice that in comparing hypotheses, P(D) remains fixed. Hence, to find HMAP, we need only maximize the numerator of the fraction.

The first term, P(D|Hi), represents the probability that this particular data set would have been observed, given Hi as the underlying model of the world. The second term represents the prior probability assigned to the given mode. Arguments over the nature and significance of this prior probability distribution, and its relation to preference for simpler hypotheses (e.g., simpler models) have raged unchecked in the statistics and learning communities for decades.

1.12.5.1 Example on text retrieval

Take the example of document classification. Assume that all possible documents fall into exactly one of e(H) classes (h1,…, hk,…, he(H)). H is a random variable whose values are those classes, while D is a vector random variable whose values are vectors of feature values d=(d1,…, dj,…, dl), one vector for each document. (We assume that d has the same length l, for each document.) P(H=hk|D=d) is the conditional probability that a document belongs to class hk, given that we know it has feature vector d. Bayes’ rule specifies how this conditional probability can be computed from the conditional probabilities of seeing particular vectors of feature values for documents of each class, and the unconditional probability of seeing a document of each class:

P(H=hk|D=d) = P(H=hk) P(D=d|H=hk)/P(D=d)

where

P(D=d) = ( i=1e(H) P(D=d|H=hi) P(H=hi)

or in short form:

P(hk|d) = P(d|hk)P(hk) /P(d)

When we know the P(hk|d) exactly for a classification problem, classification can be done in an optimal way for a wide variety of performance measures. For instance, the expected number of classification errors can be minimized by assigning a document with feature vector d to the class hk for which P(hk|d) is highest (this corresponds to the MAP condition).

We of course do not know the P(hk|d) and must estimate them from the data, which is difficult to do directly. Bayes’ rule suggests instead estimating P(d|hk), P(hk), and P(d), and then combining those estimates to get an estimate of P(hk|d). However, even estimating the P(d|hk) poses problems, since there are usually an astronomical number of possible values for d=(d1,…,dj,…dl). A common strategy is to assume that the distribution of d conditional on hk can be decomposed in the following fashion for all hk:

P(d|hk) = (j=1l P(dj|hk)

The assumption here is that the occurrence of a particular value dj is statistically independent of the occurrence of any other dj’, given that we have document type hk. The advantage of making this assumption is that we typically can model the P(dj|hk) with relatively few parameters.

The ongoing surprise and disappointment is the following. A document is typically stored as a sequence of characters with characters representing the text of a written natural language expression. (More generally, a document may have various components (title, body, sections, etc.) which are, for the most part, pieces of text and all of those can be treated differently.) Information retrieval has developed a variety of methods (statistical, linguistic, knowledge based techniques, involving various amounts of machine and/or manual processing) for transforming the character string representing a document into a form more amenable to statistical classification. These methods are analogous to, if less complex than, the feature extraction methods used in speech recognition, image processing, and related disciplines. The finding is, that structurally simple representations produced without linguistic or domain knowledge have been as effective as any others (David D. Lewis).

1.12.5.2 Notes

It is important to note – and this is the subject of structural risk minimization – that the more we bias the priors towards simpler hypotheses, the more we will be immune to noise and overfitting. Of course, if priors are too biased, then we get underfitting, where the data is largely ignored. There is a careful trade-off to make here.

In some cases, a uniform prior is used. With a uniform prior we need only to choose an hk  that maximizes P(d|hk). This called a maximum-likelihood (ML) hypothesis.
1.13 Generalization and Regularization

Consider the problem when we are given “input” and “output” samples and we would like to determine the functional relation between those. Without further constraints, the problem is “ill-posed”: there is an infinite number of functions that will perfectly map our finite samples. 

The solution to this problem is called regularization. We add additional preferences to the types of functions we would like to see as the solution. The preferences should suit the problem in a deeper sense: the preferences should suit our goals concerning the result. For example, generalization, smoothness, error in fitting, noise sensitivity, etc. are examples that may influence our preferences. Preferences are given in the form of costs: a more preferred solution has a smaller cost.

There is an area of science, computational learning theory (CLT), which is at the intersection of AI and theoretical computer science. CLT has formulated principles that connect regularization and the concept of hypothesis of inductive learning. In this aspect, the concept of Ockham’s razor is the key: The most likely hypothesis is the simplest one that is consistent with all observations. The concept of Kolmogorov complexity or algorithmic complexity attempts to provide a formal definition for the notion of simplicity used in Ockham’s razor. To escape the problem that simplicity depends on the way in which information is represented, it is proposed that simplicity be measured by the length of the shortest program for a universal Turing machine that correctly reproduces the observed data. Although there are many possible universal Turing machines, and hence many possible “shortest” programs, these programs differ in length by at most a constant that is independent of the amount of data. 

The formulation in CLT translates the idea of Ockham’s razor to a working principle and translates the principle to the domain of function approximation. CLT generalizes 

· the concept of hypothesis,

· the concept of correctness, and

· the concept of generalization.

In terms of the CLT formulation, the most likely hypothesis is the one that generalizes the best and is consistent with all observations. Hypothesis in this context is related probably approximately correct (PAC) learning (see Section 3): A hypothesis is approximately correct if it gives rise to error, which is small
. A hypothesis has a measure, called sample complexity (see Section 3), which is inversely related to its generalizing capability. 

Regularization is inherently related to regression. The goal of regularization is to select one out of the many possibilities. The set of possible solutions is given by the constraints (costs or inequalities) provided by us and may limit the optimization from finding even a reasonable solution. That is, if regularization is too strong then the solution will approximate poorly. Looking from this end to regularization we have the complementary problem of regression. Regularization-regression provides a measure for the error for a given function. This measure, called the loss function, can be related to PAC learning.  Regularization also provides a measure in preference space that represents how well we are doing in terms of our preferences. In the context of regularization, we may roughly say that generalizing capability is ‘inversely’ related to the sample complexity of the class of functions (see Section 3) that we prefer. Then regularization concerns the minimization of a performance functional that combines the two measures

J[f] = (i=1m V(yi,f(xi)) + λ||f||2k
where λ is a parameter of regularization, V(.) is the loss function, m is the number of learning examples, and ||f||2k is the measure in the preference space. Letter k denotes that this measure can be, e.g., a norm of an RKHS.
1.14 Elements of Information Theory

1.14.1 Entropy, Relative entropy and mutual information

Entropy is a measure of uncertainty of a random variable. Let X be a discrete random variable with alphabet H and probability mass function p(x). The entropy H(X) of a discrete random variable X is defined by

H(X) = - (x(H p(x) log p(x)

We also write H(p) for the above quantity. The log is to the base 2 and entropy is expressed in bits. For example, the entropy of a fair coin toss is 1 bit. We will use the convention that 0 log 0 = 0, which is easily justified by continuity. Thus adding terms of zero probability does not change the entropy.

If the base of the logarithm is b, we will denote the entropy as Hb(X). If the base of the entropy is e, then the entropy is measured in nats.

Note: the entropy is a functional of the distribution of X.

We shall denote expectation by E. Thus given the mass function p(x), the expected value of the random variable g(X) is written

Ep[g(X)] = (x(H g(x) p(x)

Shorthand: Eg(X)

Thus H(X) = Ep [log 1/p(X)]

Lemma 1.14.1   H(X) ( 0

Lemma 1.14.2   Hb(X) = logba Ha(X)

Homework 1.14.1:

Let X=1 with probability p and

      X=0 with probability (1-p)

Then H(X) = -p log p – (1-p) log (1-p) =: H(p)

Plot H(p). Explain.

1.14.1.1 Joint entropy and conditional entropy

Definition: The joint entropy H(X,Y) of a pair of discrete random variables (X,Y) with a joint distribution p(x,y) is defined as

H(X,Y) = - (x(H (y(G p(x,y) log p(x,y)

where x and y are elements of alphabets H and G, respectively. H(X,Y) can also be expressed as

H(X,Y) = - Ep[log p(X,Y)]

We also define the conditional entropy of a random variable given another as the expected value of the entropies of the conditional distributions, averaged over the conditioning random variable.

Definition: Given p(x,y) for (X,Y), then the conditional entropy H(Y|X) is defined as

H(Y|X) = (x(H p(x) H(Y|X=x)



= - (x(H p(x) (y(G p(y|x) log p(y|x)



= - (x(H (y(G p(x,y) log p(y|x)



= Ep(x,y) log p(Y|X)

The naturalness of the definition of joint entropy and conditional entropy is exhibited by the fact that the entropy of a pair of random variables is the entropy of one plus the conditional entropy of the other. This can be seen by the following theorem

Theorem 1.14.1 = Homework 1.14.2

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)

Corollary

H(X,Y|Z) = H(X|Z) + H(Y|X,Z)

1.14.1.2 Relative entropy and mutual information

The entropy of a random variable is a measure of uncertainty of the random variable; it is a measure of the amount of information required on the average to describe the random variable. In this section, we introduce two related concepts: relative entropy and mutual information.

The relative entropy is a measure of the distance between two distributions. In statistics, it arises as an expected logarithm of the likelihood ratio. The relative entropy D(p||q) is a measure of the inefficiency of assuming that the distribution is q when the true distribution is p. For example, if we knew the true distribution of the random variable, then we could construct a code with average description length H(p)

(Example: Consider a random variable which has a uniform distribution over 32 outcomes. To identify an outcome, we need a label that takes on 32 different values. Thus 5-bit strings suffice as labels. The entropy of this random variable is

H(X) = - (i=132 p(i) log p(i) = - (i=132 1/32 log 1/32 = log 32 = 5 bits)

If, instead, we used the code for a distribution q, we would need H(p) + D(p||q) bits on the average to describe the random variable.

Definition The relative entropy or Kullback-Leibler distance between two probability mass functions p(x) and q(x) is defined as

D(p||q) = (x(H p(x) log p(x) /q(x)



= Ep[log p(X) / q(X)]

Convention (based on continuity arguments): 0log0/q = 0, p log p/0=(
We will show soon that relative entropy is always non-negative and is zero iff p=q. However, it is not a true distance between distributions since it is not symmetric and does not satisfy the triangle inequality. Nonetheless, it is often useful to think of relative entropy as a “distance” between distributions. In case of probability distributions this will be the functional that should be minimized by learning.

We now introduce mutual information, which is a measure of the amount of information that one random variable contains about another random variable. It is the reduction in the uncertainty of one random variable due to the knowledge of the other.
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Motivation:

Figure 1. Illustration for Mutual Information (to be used at a later stage)

(a) Left-hand side: Inputs are distributed evenly within a limited space of rhomboid-like shape. Any input corresponds to a point within the rhomboid. Inputs are given by their orthogonal projections to the two coordinate axes. Middle: Whitening moves, rotates, re-scales the coordinate system, removes second order correlations and provides signals of equal variance. Right-hand side: Separation minimizes information between the components.

(b) PCA(1) and PCA(2): Axes developed by principal component analysis. ICA(1) and ICA(2): Axes belonging to independent component analysis using oblique representation. x and xS are inputs. IC projections to ICA axes: a1 and a2. IC components (oblique projections): aICA(1) and aICA(2). 

Definition Consider two random variables X and Y with a joint probability mass function p(x,y) and marginal probability mass functions p(x) and p(y). The mutual information I(X;Y) is the relative entropy between the joint distribution and the product distribution p(x)p(y), i.e.,

I(X;Y) = (x(H (y(G p(x,y) log (p(x,y) / p(x) p(y))



= D(p(x,y)||p(x)p(y))



= Ep(x,y) log (p(X,Y) / P(X) P(Y))

1.14.1.3 Relationship between entropy and mutual information

We can rewrite the definition of mutual information I(X;Y) as

I(X;Y) = (x,y p(x,y) log (p(x,y) / p(x) p(y))



= (x,y p(x,y) log (p(x|y) / p(x))



= - (x,y p(x,y) log p(x) + (x,y p(x,y) log p(x|y)



= - (x p(x) log p(x) + (x,y p(x,y) log p(x|y)



= - (x p(x) log p(x) – (-(x,y p(x,y) log p(x|y))



= H(X) – H(X|Y)

Thus the mutual information I(X;Y) is the reduction in the uncertainty of X due to the knowledge of Y. By symmetry it follows that

I(X;Y) = H(Y) – H(Y|X)

Thus X says as much about Y as Y says about X.

Since H(X,Y) = H(X) + H(Y|X) we have

I(X;Y) = H(X) + H(Y) – H(X,Y)

Finally we note that

I(X;X) = H(X) – H(X|X) = H(X)

Thus the mutual information of a random variable with itself is the entropy of the random variable. This is the reason that entropy is sometimes referred to as self-information.

1.14.1.4 Chain rules for entropy, relative entropy and mutual information

We now show that the entropy of a collection of random variables is the sum of the conditional entropies

Theorem 1.14.2 = Homework 1.14.3 (Chain rule for entropy): Let X1, X2,…, Xn be drawn according to p(x1,…,xn), Then

H(X1,…,Xn) = (i=1n H(Xi|Xi-1,…,X1)

We know define the conditional mutual information as the reduction in the uncertainty of X due to the knowledge of Y when Z is given.

Definition: The conditional mutual information of random variables X and Y given Z is defined by

I(X;Y|Z) = H(X|Z) – H(X|Y,Z)



= Ep(x,y,z) log (p(X,Y|Z) / p(X|Z) p(Y|Z))

Mutual information also satisfies the chain rule

Theorem 1.14.3 = Homework 1.14.4 (Chain rule for information)

I(X1,…,Xn;Y) = (i=1n I(Xi;Y|Xi-1,…,X1)

We define a conditional version of the relative entropy

Definition: The conditional relative entropy D(p(y|x)||q(y|x)) is the average of the relative entropies between the conditional probability mass functions p(y|x) and q(y|x) averaged over the probability mass function p(x). More precisely,

D(p(y|x)||q(y|x)) =  (x p(x) (y p(y|x) log (p(y|x) / q(y|x))




= Ep(x,y) log (p(Y|X) / q(Y|X))

The notation for the conditional relative entropy is not explicit since it omits mentioning the distribution p(x) of the conditioning random variable. However, it is normally understood from the context.

The relative entropy between two joint distributions on a pair of random variables can be expanded as the sum of relative entropy and a conditional relative entropy.

Theorem 1.14.4 = Homework 1.14.5 (Chain rule for relative entropy)

D(p(x,y)||q(y,y)) = D(p(x)||q(x)) + D(p(y|x)||q(y|x))

1.14.1.5 Jensen’s inequality and its consequences

In this section we shall list some simple properties of the quantities defined earlier. We begin with the properties of convex functions.

Definition: A function f(x) is said to be convex over an interval (a,b) if for every x1, x2 ( (a,b) and 0(((1,

f((x1+(1-()x2) ( ( f(x1) + (1-() f(x2)

A function f is said to be strictly convex if equality holds only if (=0 or (=1.

Definition: A function f is concave if –f is convex.

A function is convex if it always lies below any chord. A function is concave if it always lies above any chord.

Theorem 1.14.5 If the function f has a second derivative which is non-negative (positive) everywhere, then the function is convex (strictly convex).

Proof: Use Taylor’s expansion

Continuous case:

EX = E[X] = (x p(x)x   ( EX = (xp(x)dx

The next inequality is one that underlies many of the basic results in information theory:

Theorem 1.14.6 (Jensen’s inequality): If f is a convex function and X is a random variable, then

Ef(X) ( f(EX)

Moreover, if f is strictly convex, then equality implies that X=EX with probability 1, i.e., X is a constant.

Proof: We prove this for discrete distributions by induction on the number of mass points. The proof of conditions for equality when f is strictly convex will be Homework 1.14.5

For a two mass point distribution, the inequality becomes

p1f(x1) + p2f(x2) ( f(p1x1 + p2x2)

which follows directly from the definition of convex functions. Suppose the theorem is true for distribution with k-1 mass points. then writing p’i=pi /(1-pk) for i=1,2,…,k-1, we have

(i=1k pif(xi) = pkf(xk) + (1-pk) (i=1k-1 p’i f(xi)



( pkf(xk) + (1-pk) f((i=1k-1 p’i xi)



( f(pkxk + (1-pk) (i=1k-1 p’i xi)) = f ((i=1k pixi) 

where the first inequality follows from the induction hypothesis and the second follows from the definition of convexity. The proof can be extended to continuous distributions by continuity arguments.

We now use these results to prove some of the properties of entropy and relative entropy. The following theorem is of fundamental importance.

Theorem 1.14.7 (Information inequality): Let p(x), q(x), x(H, be two probability mass functions. Then

D(p||q) ( 0

with equality iff p(x)=q(x) for all x.

Proof: Let A={x:p(x)>0} be the support set of p(x). Then

-D(p||q) = - (x(A p(x) log p(x) / q(x)



= (x(A p(x) log q(x) / p(x)



( log (x(A p(x) q(x) / p(x)



= log (x(A q(x) ( log (x(H q(x)



= log 1 = 0

Since log t is a strictly concave function of t, we have equality iff q(x)/p(x)=1 everywhere, i.e., iff p(x)=q(x). Hence we have D(p||q)=0 iff p(x)=q(x) for all x.

Corollary = Homework 1.14.6 (Non-negativity of mutual information): For any two random variables, X, Y, I(X;Y) ( 0, with equality iff X and Y are independent.

Corollary: D(p(y|x)||q(y|x)) ( 0, with equality iff p(y|x)=q(y|x) for all y and x with p(x)>0

Corollary: I(X;Y|Z) ( 0, with equality iff X and Y are conditionally independent given Z.

We now show that the uniform distribution over the range H is the maximum entropy distribution over this range. It follows that any random variable with this range has an entropy no greater than log|H| where |H| denotes the number of elements in the range of X.

Theorem 1.14.8 H(X)( |H| with equality iff X has a uniform distribution over H.
Proof: Let u(x)=1/|H| be the uniform probability mass function over H, and let p(x) be the probability mass function for X. Then

D(p||u) = ( p(x) log p(x) / u(x) = log |H| - H(X)

Hence by the non-negativity of relative entropy, 0( D(p||u).

Theorem 1.14.9 (Conditioning reduces entropy):

H(X|Y) ( H(X)

with equality iff X and Y are independent.

Proof: 0 (  I(X;Y) = H(X) - H(X|Y).

Intuitively, the theorem says that knowing another random variable Y can only reduce the uncertainty in X. Note that this is true only on the average. Specifically, H(X|Y=y) may be greater than or less than or equal to H(X), but on the average H(X|Y)=(Yp(y)H(X|Y=y)(H(X).

Theorem 1.14.10 = Homework 1.14.7 (Independence bound on entropy): Let X1,…, Xn be drawn according to p(x1,…,xn). Then

H(X1,…,Xn) ( (i=1n H(Xi)

with equality iff the Xi are independent.

1.14.1.6 The log sum inequality and its applications 

Theorem 1.14.11 = Homework 1.14.8 (Log sum inequality): For non-negative numbers, a1,…,an and b1,…,bn,

(i=1n ai log ai / bi ( ((i=1n ai) log ((i=1n ai / (i=1n bi)

with equality iff ai/bi = const.

By the log sum inequality

D(p||q) = ( p(x) log p(x) / q(x) ( (( p(x)) log (( p(x) /( q(x)) = 1 log 1/1 =0

Equality holds iff p(x)=q(x) for all x.

Theorem 1.14.12 = Homework 1.14.9 D(p||q) is convex in the pair (p,q), i.e., if (p1,q1) and (p2,q2) are two pairs of probability mass functions, then

D((p1 +(1-()p2 || (q1 +(1-()q2) ( ( D(p1 || q1) + (1-() D(p2 ||q2)

for all 0 ( ( ( 1.

Theorem 1.14.13 (Concavity of entropy): H(p) is a concave function of p.

Proof: H(p) = log |H| - D(p||u) where u is the uniform distribution on |H| outcomes. The concavity of H then follows directly from the convexity of D.

Theorem 1.14.14 = Homework 1.14.10 Let (X,Y) given by p(x,y)=p(x)p(y|x). The mutual information I(X;Y) is a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

1.14.1.7 Data processing inequality 

The data processing inequality can be used to show that NO clever manipulation of the data can improve the inferences that can be made from the data.

Definition: Random variables X,Y,Z are said to form a Markov chain in that order (denoted by X(Y(Z) if the conditional distribution of Z depends on Y and is conditionally independent of X. Specifically, X, Y and Z form a Markov chain X(Y(Z if the joint probability mass function can be written as

p(x,y,z) = p(x) p(y|x) p(z|y)

Some simple consequences are as follows:

· X(Y(Z iff X and Z are conditionally independent given Y. Markovity implies conditional independence because p(x,z|y)=p(x,y,z)/p(y)=p(x,y)p(z|y)/p(y)=p(x|y)p(z|y)

· Markov chains can be extended to Markov fields, which are n-dimensional random processes in which the interior and exterior are independent given the values on the boundary

· X(Y(Z implies that Z(Y(X.

· If Z=f(Y) then X(Y(Z

We can prove an important theorem demonstrating that no processing of Y, deterministic or random, can increase the information Y contains about X.

Theorem 1.14.15 (Data processing inequality): If X(Y(Z, then I(X;Y)(I(X;Z).

Proof: By the chain rule, we expand mutual information in two different ways.

I(X;Y,Z) = I(X;Z) + I(X;Y|Z)

= I(X;Y) + I(X;Z|Y)

Since X and Z are conditionally independent given Y, we have I(X;Z|Y)=0. However, I(X;Y|Z)(0.

We have equality iff I(X;Y|Z)=0, i.e., X(Z(Y forms a Markov chain. Similarly, one can prove that I(Y;Z)(I(X;Z)

Corollary: In particular, if Z=g(Y), we have I(X;Y)(I(X;g(Y))

Thus functions of the data Y can not increase the information about X.

Corollary: If  X(Y(Z, then I(X;Y|Z)(I(X;Y)

Proof: Like in Theorem 1.14.1.15 and use I(X;Z|Y)=0 by Markovity and that I(X;Z)(0.

Thus the dependence of X and Y is decreased (or remains unchanged) by the observation of a “downstream” random variable Z. This will be important for probabilistic inference.

Note that it is also possible that I(X;Y|Z)>I(X;Y) when X, Y and Z do not form a Markov chain. For example, let X and Y be independent fair binary random variables, and let Z=X+Y. Then I(X;Y)=0, but I(X;Y|Z)=H(X|Z)-H(X|Y,Z)=H(X|Z)=P(Z=1)H(X|Z=1)=0.5 bit

1.14.1.8 Sufficient statistics 

This section is a sidelight showing the power of the data processing inequality in clarifying an important idea in statistics. Suppose we have a family of probability mass functions {fθ(x)λ} indexed by θ, and let X be a sample from a distribution of this family. Let T(X) be any statistic (function of the sample) like the sample mean or the sample variance. Then θ(X(T(X), and by the data processing inequality, we have

I(θ;T(X)) ( I(θ;X)

for any distribution on θ. However, if equality holds, no information is lost.

A statistics T(X) is called sufficient for θ if it contains all the information in X about θ.

Definition: A function T(X) is said to be a sufficient statistics relative to the family {fθ(x)} if X is independent of θ given T(X), i.e., θ(T(X)(X forms a Markov chain.

This is the same as the condition for equality in the data processing inequality, 

I(θ;X)=I(θ;T(X))

for all distributions on θ. Hence sufficient statistics preserve mutual information and conversely.

Example. If X is normally distributed with mean θ and variance 1, i.e., if

fθ(x) = (2()-1/2 exp(-(x-θ)2)

and X1,…Xn are drawn independently according to this distribution, then a sufficient statistic for θ is <Xn>=1/n (i=1nXi. It can be verified that the conditional distribution of X1,…,Xn, conditioned on <Xn> and n does not depend on θ.

Definition: A statistic T(X) is a minimal sufficient statistic relative to {fθ(x)} if it is a function of every other sufficient statistic U. Interpreting this in terms of the data processing inequality, this implies that

θ(T(X)(U(X)(X

Hence a minimal sufficient statistic maximally compresses the information about θ in the sample. Other sufficient statistics may contain additional irrelevant information. For example, for a normal distribution with mean θ, the pair functions giving the mean of all odd samples and the mean of all even samples is a sufficient statistic, but not a minimal sufficient statistic.

1.14.1.9 Fano’s inequality 

Suppose we know a random variable Y and we wish to guess the value of a correlated random variable X. Fano’s inequality relates the probability of error in guessing the random variable X to its conditional entropy H(X|Y). Fano’s inequality is crucial for proving the converse of Shannon’s second theorem. We already know that we can estimate X from Y with zero probability of error iff H(X|Y)=0.

Fano’s inequality quantifies the idea that the estimation error is small if the conditional entropy H(X|Y) is small.

Suppose we wish to estimate a random variable X with distribution p(x). We observe a random variable Y which is related to X by the conditional distribution p(y|x). From Y, we calculate a function g(Y)=χ which is an estimate of X. We wish to bound the probability that χ≠X. We observe that X(Y(χ forms a Markov chain. Define the probability error

Pe=Pr{χ≠X}

Theorem 1.14.16 (Fano’s inequality):

H(Pe) + Pe log (|H|-1) ≥ H(X|Y)

Remark: Note that Pe=0 implies that H(X|Y)=0 as intuition suggests.

The inequality can be weakened to

1 + Pe log |H| ≥ H(X|Y)

that is to  Pe ≥ (H(X|Y)-1) / log |H|

Proof: Define an error random variable,

E=1 if χ≠X

E=0 otherwise

Then, using the chain rule for entropies to expand H(E,X|Y) in two different ways, we have

H(E,X|Y) = H(X|Y) + H(E|X,Y)



= H(E|Y) + H(X|E,Y)

Since conditioning reduces entropy, H(E|Y) ≤ H(E) = H(Pe). Now since E is a function of X and g(Y), the conditional entropy H(E|X,Y) is equal to 0. Also, since E is a binary valued random variable, H(E) = H(Pe). The remaining term, H(X|E,Y) can be bounded as follows:

H(X|E,Y) = Pr{E=0} H(X|Y,E=0) + Pr{E=1} H(X|Y,E=1)



≤ (1-Pe)*0 + Pe log (|H|-1)

since given E=0, X=g(Y), and given E=1, we can bound the conditional entropy from above by the log of the number of remaining outcomes (|H|-1 if g(Y)(H, else |H|). Combining these results, we obtain Fano’s inequality.

Remark: Suppose that there is no knowledge of Y. Thus X must be guessed without any information. Let X({1,2,…,m} and p1 ( p2 (…( pm. Then the best guess of X is χ=1 and the resulting probability of error is Pe=1-p1. Fano’s inequality becomes

H(Pe) + Pe log(m-1) ( H(X)

The probability mass function (p1,…,pm) = (1-Pe, Pe /m-1,…, Pe /m-1) achieves this bound with equality. Thus Fano’s inequality is sharp.

1.14.2 Entropy Rates of a Stochastic Process

1.14.2.1 Markov chains

A stochastic process is an indexed sequence of random variables. In general, there can be an arbitrary dependence among the random variables. The process is characterized by the joint probability mass functions Pr{(X1,…,Xn)=(x1,…,xn)}, (x1,…,xn)(H n for n=1,2,…

Definition:  A stochastic process is said to be stationary if the joint probability distribution of any subset of the sequence of random variables is invariant with respect to shifts in the time index for every shift.

Definition: A discrete stochastic process X1, X2, … is said to be a Markov chain or a Markov process if, for n=1, 2, …,

Pr(Xn+1=xn+1| Xn=xn, …, X1=x1) = Pr (Xn+1=xn+1| Xn=xn)

for all x1, x2, …, xn, xn+1 ( H.

In this case, the joint probability mass function of the random variables can be written as

p(x1,…,xn) = p(x1) p(x2|x1) … p(xn|xn-1)

Definition: The Markov chain is said to be time invariant if the conditional probability p(xi|xi-1) does not depend on i. If not stated otherwise we will assume time invariant Markov chains.

If {Xi} is a Markov chain then Xn  is called the state at time n. A time invariant Markov chain is characterized by its initial state and a probability transition matrix P=[Pij], i,j ({1, 2, …} where Pij=Pr{Xn+1=j|Xn=i}.

A distribution on the states such that the distribution at time n+1 is the same as the distribution at time n is called a stationary distribution.

1.14.2.2 Entropy rate

Definition: The entropy rate of a stochastic process {Xi} is defined by

H(H) = limn(( 1/n H(X1,…,Xn)

when the limit exists.

We can also define a related quantity for entropy rate:

H’(H) = limn((  H(Xn| Xn-1…,X1)

when the limit exists.

The two quantities H(H) and H’(H) correspond to two different notions of entropy rate. The first is the “per symbol” entropy of the n random variables, and the second is the conditional entropy of the last variable given the past. 

Theorem 1.14.17 For a stationary stochastic process, the limits for these two quantities exist and are equal.

Proof: For the conditional entropy use that conditioning reduces entropy. For the “per symbol” entropy use the chain rule and note that if an(a and bn=1/n(i=1nai, then bn(a.

For a stationary Markov chain, the entropy rate is given by

H(H) =H’(H) = limn((  H(Xn| Xn-1…,Xn) = lim H(Xn|Xn-1) = H(X2|X1)

where the conditional entropy is calculated using the given stationary distribution.

Theorem 1.14.18 Let {Xi} be a stationary Markov chain with stationary distribution μ and a transition matrix P. Then the entropy rate is

H(H) = (ij μi Pij log Pij
Proof: H(H) = H(X2|X1) = (i μi ((ij – Pij log Pij )

1.14.2.3 Hidden Markov models

Let X1, X2, … Xn, … be a stationary Markov chain, and let Yi = f(Xi) be a process, each term of which is a function of the corresponding state in the Markov chain. Matters are complicated by the fact that Y1, Y2,…, Yn,… is not necessarily a Markov chain.

Lemma 1.14.3 H(Yn|Yn-1,…,Y2,X1) ( H(G)

Proof: 

H(Yn|Yn-1,…,Y2,X1) = H(Yn|Yn-1,…,Y2,Y1,X1) 

= H(Yn|Yn-1,…,Y2, Y1, X1, X0, X –1, .., X-k)

= H(Yn|Yn-1,…,Y2, Y1, X1, X0, X –1, .., X-k, Y0,…, Y-k)

( H(Yn|Yn-1,…,Y2, Y1, Y0,…, Y-k)

= H(Yn+k+1|Yn+k,…,Y1)

Where we used that Y1 is a function of X1, the Markov property for the X variables, the fact that Yi is a function of Xi, that conditioning decreases entropy, and stationarity. The inequality is true for every k>0 so it is also true in the limit.  We  also  know that H(Yn|Yn-1,…,Y2,Y1) converges monotonically to H(G) from above. Thus

limn(( H(Yn|Yn-1,…,Y2,Y1) = H(G).

1.14.3 Differential Entropy

1.14.3.1 Definitions

Definition: Let X be a random variable with cumulative distribution function F(x)=Pr{X(x}. If F(x) is continuous, the random variable is said to be continuous. Let f(x)=F’(x) when the derivative is defined. If 

(-(+( f(x) =1, 

then f(x) is called the probability density function for X. The set where f(x)>0 is called the support set of X. 

Definition: The differential entropy h(X) of a continuous random variable X with density f(x) is defined as

h(X) = - (S f(x) log f(x) dx,

where S is the support set of the random variable. Sometimes h(X) is written as h(f).

Remark: We should always include the statement if it exists to every expression that involves an integral.

Example: Uniform distribution from 0 to a: h(X) = log a

Example: Normal distribution with standard deviation σ: 

h(X) = 0.5 log 2(eσ2 bits.

Relation to the discrete entropy: The probability pi that X((xi-1,xi) can be approximated as pi=f(xi)|xi-xi-1|. Assume that |xi-xi-1|=δ for every i. The entropy of the quantized version is

HQ = - ( -(( pi log pi 

= - ( -(( f(xi) δ log (f(xi)δ)

= - ( -(( δf(xi) log f(xi) -  ( -(( f(xi)δ log δ 

= - ( -(( δf(xi) log f(xi) – log δ

Theorem 1.14.19 If the density f(x) of the random variable X is Riemann integrable, then

HQ + log δ ( h(f)   as   δ(0

1.14.3.2 Joint and conditional differential entropy

Definition: The differential entropy of a set X1,…, Xn of random variables with density f(x1,..,xn) is defined as

h(X1,…,Xn) = -(S f(x1,…,xn) log f(x1,…,xn) dx1…dxn,

where S is the support set of the random variables.

Definition: If X, Y have a joint density function f(x,y), we can define the conditional differential entropy h(X|Y) as

h(X|Y) = -(S f(x,y) log f(x|y) dx dy

Since in general f(x|y)=f(x,y)/f(y) we can also write

h(X|Y) = h(X,Y) – h(Y)

but one must be careful if any of the differential entropies are infinite.

Definition: The relative entropy (or Kullback-Leibler distance) D(f||g) between two densities f and g is defined by

D(f||g) = ( f log f/g

Note that D(f||g) is finite only if the support set of f is contained in the support set of g. (Motivated by continuity we set 0 log 0/0 = 0.)

Definition: The mutual information I(X;Y) between two random variables with joint density f(x,y) is defined as

I(X;Y) = ( f(x,y) log (f(x,y) / f(x) f(y)) dx dy.

From the definition it follows that

I(X;Y) = h(X) – h(X|Y) = h(Y) – h(Y|X)

I(X;Y) = D(f(x,y) || f(x)f(y))

1.14.3.3 Properties of differential entropy, relative entropy and mutual information

Theorem 1.14.19

D(f||g) ( 0

with equality iff f=g almost everywhere (a.e.)

Proof: Let S be the support set of f. Then

-D(f||g) = (S f log g/f

      
( log (S f g/f

(Jensen’s inequality)



( log (S g  ( log 1 = 0

Corollary: I(X;Y) ( 0 with equality iff X and Y are independent

Corollary: h(X;Y) ( h(X) with equality iff X and Y are independent

Theorem 1.14.20: Chain rule for differential entropy

h(X1, X2, …, Xn) = (i=1n  h(Xi|X1,X2,…, Xi-1)

Proof: Follows directly from the definitions

Corollary: 

h(X1, X2, …, Xn) ( (i=1n  h(Xi)

with equality iff X1,…, Xn are independent

Proof: Follows directly from Theorem 1.14.20 and the corollary to Theorem 1.14.19.

Theorem 1.14.21: Translation invariance of entropy

h(X+c) = h(X)

Proof: Follows directly from the definition of differential entropy

Theorem 1.14.21: Scaling of variables

h(aX) = h(X) + log|a|

Proof: Let Y=aX. Then fY(y) = |a|-1 fX(y/a)  because f(y)dy=f(x)dx and

h(aX) = -( fY(y) log fY(y) dy

= -( |a|-1  fX(y/a) log (|a|-1 fY(y/a)( dy

= -( fX(x) log fX(x) + log |a|

= h(X) + log|a|

after a change of the variables in the integral.

Homework 1.14.12: Generalize multiplication for invertible non-linear functions

Similarly we can prove the following corollary for vector-valued random variables. Let X(Rn a vector valued random variable and A a linear transformation from Rn(Rn. Then we have the following

Corollary:

h(AX) = h(X) + log |det A|

where |det A| denotes the absolute value of the determinant of A.

2 INDEPENDENT COMPONENT ANALYSIS (ICA)

2.1 Problem Setting

Assume that there is an n dimensional zero mean vector s(t)=(s1(t),…sn(t))T whose components are mutually independent. The vector s(t) corresponds to n independent scalar valued source signals si(t). We can write the multivariate pdf of the vector as the product of the marginal independent distributions:

p(S) = (i=1n pi(si)

A data vector x(t)= (x1(t),…xn(t))T is observed at each time point t, such that

x(t) = As(t)

where A is an nxn real valued matrix. The mixing is assumed to be instantaneous so there is no time-delay between the source index i mixing into channel j. The components of the observed vector are no longer independent, the multivariate pdf will not satisfy the product equality. The mutual information I(x) of the observed vector is given by the Kullback-Leibler divergence D(.||.) of the multivariate density from the density written in product form:

I(x) = ( p(x) log (p(x) / (i=1n pi(xi)( dx

= D(p(x) ||  (i=1n pi(xi))

The mutual information is positive and is equal to zero only when the components xi are independent.

The goal of ICA is to find a linear transformation W of the dependent sensor signals x that makes the output as independent as possible:

u(t) = Wx(t) = WAs(t)

where u is an estimate of the sources. The sources are exactly recovered when W is the inverse of A up to permutation and scale change. (W represents the neural network)

P=RS=WA

where R is a permutation matrix and S is the scaling matrix. the two matrices define the performance matrix P so that if P is normalized and reordered a perfect sepration leads to the identity matrix.

(i) We assume that the sources si(t) are at each time instant mutually independent
(ii) At most one source is normally distributed
(iii) No sensor noise or only low additive noise signals are permitted
(iv) Matrix A is of full rank
Assumption (ii) is important because the un-mixing of two Gaussian sources is ill-posed when the sources are white random processes. Non-white random processes may be recovered with time-de-correlation methods if they have different “spectra”. Assumption (iii) is necessary for the considerations because the mutual information between outputs if only minimized for the low noise case. However, one can imagine that noise is an independent source itself and is as many sensor outputs are available as the number of sources the signal will be segregated from the mixtures.

2.2 Solving ICA

Let us start from the KL divergence:

I(u1, …,un) = h(u1) + … + h(un) - h(u1,…,un)

where h(ui) are the marginal entropies of the outputs and I(u1, …,un) is their mutual information.  We can expand this equation further by Theorem 1.14.21:

I(u) = (i=1n h(ui) - h(x) - log |det W| 



(2.1)

We approximate this expression by approximating the individual entropies. The truncated Gram-Charlier expansion of the individual entropies is as follows:

h(u) = 0.5log (2(e) – ((3(u))2/2*3! – 

· ((4(u))2/2*4! +5*((3(u))2(4(u)/8 +((4(u))3/16 + other terms

where (k(u) is the kth order moment of u.
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For “learning” we need the gradient of I(u) according to W. h(x) is independent of W and thus there will be two terms: (i) the negative gradient according to log|detW| and (ii) the gradient according to h(u). 
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The other terms – the derivatives of the h(u)’s – contain expectation values and moments and should be computed accordingly. We are after an on-line algorithm and replace the expected values and the moments by their instantaneous values. Using some algebra one has that 

where f(x)=(29/4)x3-(47/4)x5-(14/3)x7+(25/4)x9+(3/4)x11 (Amari et al.).

The form of 2.2 is valid for other functional forms too owing to the form of Eq. (2.1). The game in ICA is to find better function f for faster convergence. The more we know about the distribution the better function we can choose.

For example, if we know that the prior distribution of the sources is a super-Gaussian distribution with heavy tails and a peak centered around the mean then its approximate cumulative density function, a non-linear transformation, can be introduced, e.g., in the form of 

yi = g(ui) = tanh(ui)

Then the minimization of the mutual information concerns the variables yi i=1,2,…,n. 

Homework 2.1: It is important that the KL divergence is invariant under an invertible transformation. 

We can thus minimize the KL divergence according to the new variables

I(W,y) = (i=1n h(yi) - h(x) - log |det W|

h(y) = - ( p(y) log p(y) dy = E(log p(y))

and since p(y) = p(x) / |(y/(x| (this is a hint for Homework 1.14.12…) we have

h(y) = E(log|(y/(x|) – E(log p(x))

Only the first term can be optimized. Again we use the stochastic gradient approximation and remove the expectation operation. Then we have
(h(y)/(w = (/(w(log|(y/(x|) = ((y/(x)-1 (/(w ((y/(x)

If our non-linearity is the tangent hyperbolic function then we have (Homework)

 (w ( -(I(w,y)/(w = w-1 – 2yx

This tangent hyperbolic function in most applications is more stable than the Amari function. Now

2.3 Natural Gradient

[image: image123.wmf]d

K

)

1

(

)

,

(

xy

y

x

+

=

Beyond making assumptions on the pdf it is also possible to modify the learning equation that now looks as
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if  y=f(u)=tanh(u). Let us multiply the equation with WTW from the right. We have

This is called the natural gradient learning rule and it is much faster. The rule can be derived by showing that the space where the optimization takes place has a natural Riemann metric. The transformation WTW corresponds to the gradient in the (natural) Riemann metric.

2.4 Breaking the Learning Rule into Pieces

No derivation is given here. You are referred to the web page www.cis.hut.fi/projects/ica and the paper on that page: A. Hyvarinen and E. Oja: Independent Component Analysis: A Tutorial

The learning rule can be divided into two stages 

Notation: input x, output u, non-linear output g(u) for both stages.

[image: image125.wmf](

)

1

|

det

|

log

-

=

¶

¶

T

W

W

W

First Stage: Whitening Stage

This stage removes second order correlation.
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Second Stage: Separation Stage

This is the so-called bi-gradient learning rule of Wang and Karhunen.

Final notes: This is a flourishing field. Many of the researchers believe that neurobiological concepts are related to information maximization principles.

The next chapter closely follows the Introduction of the book edited by Smola, Bartlett and Schölkopf’s (Advances in Large Margin Classifiers) and the paper of Evgeniou, Pontil and Poggio (Regularization and Support Vector Machines), the work of Platt and the work of the Keerthi et al., (see the bookmarks for students on www.inf.elte.hu/~lorincz).

3 SUPPORT VECTOR MACHINE

3.1 Motivation: A Simple Classification Problem

Assume that we are given a set of training data

X := {x1, x2,…,xm} ( RN
together with the corresponding labels

Y := {y1, y2,…,ym} ( {-1,1}

The goal is to find some decision function g:RN ( {-1,1} that accurately predicts the labels of unseen data points (x,y). That is we seek a function g that minimizes the classification error, which is given by the probability that g(x)(y for the sample set as well as for unseen data.

The typical solution looks for a real valued prediction function f:RN(R whose output is “passed through” a hard non-linearity, a sign threshold function, to yield the final classification function g(x)=sgn(f(x)). Consider that f(x) is a linear function

g(x) = sgn(f(x))

f(x)=(x,w)+b

where w(RN and b(R. This formulation provides an N-1 dimensional linear surface (a hyperplane) as the decision boundary {x|f(x)=0} separating the the two classes with the two labels, +1 and –1.

The learning problem can be formulated as finding a set of parameters (w,b) such that sgn((w,xi)+b)=yi  for all i. However, such solution may not always exist.

3.2 Bayes Optimal Solution

Under the assumption, that the data X,Y was generated from a probability distribution p(x,y) on RN x {-1,1} and that p is known, the perfect (not necessarily linear) function minimizes the probability of misclassification

R(g) = ( RN x {-1,1} 1{g(x)(y} p(x,y) dxdy

This function satisfies

g(x) = sgn (p(x,1)-p(x,-1))

3.3.1 Gaussian clusters of the same covariance matrix
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Assume that the two classes are generated by two Gaussian clusters with the same covariance matrix ( centered at (1 and (2 respectively:

Since the boundaries completely determine the decision function we seek the points where p(x,1)=p(x,-1). In our special case these points determine (Homework) the following linear decision function

f(x) = (((1 - (2)T (-1 ) x – 1/2((1T(-1(1 - (2T(-1(2)

From our point of view the interesting cases are those when the probability p(x,y) is not known but we have “training data”.

3.3 The Perceptron

We are mostly interested in incremental algorithms when small changes are made to the weight vector in response to the training data. On the problem described in Section 3.1 the preceptron learning algorithm works as follows:

Initialization: (winitial, binitial) = (0,0)

wnew = wold + (/2 (yi-g(xi))xi
bnew = bold + (/2 (yi-g(xi))

Note, that the algorithm is Hebbian. Consider the concatenations v=(w,b) and z=(x,1). Then the learning rule is:

vnew = vold + (/2 (yi-g(xi))zi
where yiδi=yi(yi-g(xi)) is equal to two in case of misclassification and is zero otherwise.

Theorem 3.1: Convergence of the perceptron algorithm

Suppose that the problem is solvable, i.e., there exists c>0 and weight vector w* satisfying ||w*||=1 and b* such that

yi ((w*,xi)+b*) = yi (v*,zi) (c for all 1(i(m.

Then for all (>0 the decision surface maintained by the perceptron algorithm converges after no more than (b*2+1)(d2+1)/c2 “updates”, where d=maxi||xi||2.

Proof: Consider the angle between the jth  update (i.e., misclassified training pair that occurs, say, with the ith sample (xi,yi)) vj+1=(wj+1,bj+1) and vector v*=(w*,b*):

(vj+1,v*) = ([vj+ (δizi /2], v*)

            = (vj,v*) + (yi(zi,v*)    because yiδi=2

             ( (vj,v*) + (c 

 ( j(c

On the other hand, we can claim about the norm of vj+1 that

||vj+1||2 = ||vj + (yizi||2

           = ||vj||2 + 2(yi(zi,vj) + (2||zi||2
           ( ||vj||2 + (2||zi||2      
because yi(zi,vj)<0

           ( j (2 (d2+1)         



Combining the two observations and using the Cauchy-Schwartz inequality we have that 

(j (2 (d2+1))1/2 ( ||vj+1|| ( (vj+1,v*) / ((1+b*2))1/2 ( j(c/(1+b*2)1/2
and j ( (1+b*2)(1+d2)/c2 follows.

3.4 Margins

The quantity c plays a crucial role in the previous theorem, since it determines how well the two classes can be separated. Intuitively, for pattern x that is far from the decision boundary {x|f(x)=0} slight perturbation to x will not change its classification. This is easy to see by considering that f(x) is a continuous function of x. Similarly, the larger the margin the less a slight perturbation to the function f may affect the classification. It is thus important to find large margin hyperplanes. One might wish to read about structural risk minimization in more details than given here. In the following we shall find the maximum margin hyperplane for the problem of linear function. The equation of the hyperplane is undefined up to a constant factor and thus we have the freedom to constrain the weight vector. In Theorem 3.1 we constrained the weight vector w* to the unit sphere. 

We shall have a somewhat different consideration. The optimal hyperplane is orthogonal to the shortest line connecting the convex hulls of the two classes, and intersects it half-way between the two classes. We assume that the problem is separable. Then there exists a weight vector w and a threshold b such that yi((w,xi)+b)>0 (i=1,2,..m). Rescaling w and b such that the point(s) closest to the hyperplane satisfy |(w,xi)+b|=1, we obtain a canonical form (w,b) of the hyperplane, satisfying yi ((w,xi)+b)>1. Note, that in this case the minimum Euclidean distance between the two classes (i.e., twice the margin), measured perpendicularly to the hyperplane equals to 

(w,x1 -x2)/||w|| 

where x1 and x2 belong to the +1 and to the –1 classes, respectively and are minimal distance points (“support points”) of the hyperplane. That is these points satisfy the equations

(w,x1)+b = +1.

(w,x2)+b = -1

and thus the distance between the hulls is 2/||w||. It then follows that for all samples

yi((w,xi)+b)(1






(3.4.1)

If we wish to maximize the distance between the hyperplane and the convex hulls of the two classes then we should maximize 2/||w||. The maximum of 2/||w|| can be searched for in many ways. One way is to minimize ½||w||2 using the constraints of Eqs. (3.4.1). Important generalization of the optimization problem introduces “slack variables”. These variables modify Eqs (3.4.1) and can be written as

yi((w,xi)+b) ( 1-ξi






(3.4.2)

subject to the constraints ξi ( 0 for all i=1,2,…,m. Equations (3.4.2) means that we can treat problems where the two categories are not separable by a hyperplane. Now the minimization problem can be written as

J(w,ξ) = ½ ||w||2 + C (i=1m ξi




(3.4.3)

for all i=1,2,…,m. J is used to denote the “cost”, the negative of the performance measure introduced in the optimization section. We will utilize the word cost and performance measure for minimization and maximization problems, respectively. In both cases symbol J will be used. Constant C determines our willingness to accept exceptions (violators). 

We shall see that non-linear approximation is also possible and that allows complex surfaces to form. The question that arises is if complex surfaces should be formed, or rather, violators should be allowed. Consider the example of noise-free inputs belonging to a linearly separable system. Then the optimal solution will have no violators and the values of the slack variables should be zero. Consider the same inputs but now, assume that those are corrupted by noise. The optimal solution may be a general surface and not a hyperplane any more. This is because optimal decision surface is a function of the form of the hulls and the input dependence of the noise. Alas, one might have noise-free labeled inputs that are not linearly separable. The two ends of the categorization problem are

(i) single decision surface (e.g., a hyperplane) allowing violators, 

(ii) complex decision surfaces that can shatter the space (e.g., a large number of  spheres) and not allowing violators.

The extreme of solution (ii) is when our non-linear classifier surrounds the samples by infinitesimally small, labeled spheres and gives correct classification within the spheres but provides random outputs outside these spheres. This solution has no generalizing capability. Another example is when category +1 is a sphere, category –1 is everything else and the inputs are noise free. Choosing a linear classifier that allows non-zero margin is a mistake in this case. The general formulation of searching for the best solution is called structural risk minimization for obvious reasons. This should be more than one section by itself. Here, instead, we quote important results and refer to the literature. 

3.5 Basic Results on Structural Risk Minimization 

Learning means behaving better as a result of experience. The main question is how can one possibly know that one’s learning algorithm has produced a theory that will correctly predict the future? In terms of inductive learning, how do we know that the hypothesis h is close to the target function f if we do not know f? Here we call the attention to Section 3.1: Some properties of function f can be computed under certain circumstances even if (i) the function is not known and (ii) we utilize an RKHS.

The important principle towards answering the question is the following: any hypothesis that is seriously wrong will almost certainly be “found out” with high probability after a small number of examples, because it will make an incorrect prediction. Thus, any hypothesis that is consistent with a sufficiently large set of training examples is unlikely to be seriously wrong. The more is so the less the sample complexity of the hypothesis is. This last concept will be defined later in this section.

Let X denote the set of all possible examples

Let D be the distribution from which samples are drawn.

Let H be the set of possible hypotheses

Let m be the number of examples in the training set.

Make the following assumption: the training and test samples are drawn randomly from the same probability distribution.

Initially we assume that the true function f is a member of H. Now we can define the error of a hypothesis h with respect to the true function f given the distribution D over the examples as the probability that h is different from f on an example:

error(h) = P(h(x)(f(x)|x drawn from D)

A hypothesis h is called approximately correct if error(h)(ε, where ε is a small constant. The plan of attack is to show that after seeing m examples, with high probability, all consistent hypotheses will be approximately correct. One can think of an approximately correct hypothesis as being “close” to the true function in hypothesis space – it lies inside what is called the ε-ball around the true function f. The complement set of the ε-ball in H is Hbad. 

We can calculate the probability that a “seriously wrong” hypothesis hb( Hbad is consistent with the first m examples as follows, We know that error(hb)>ε. Thus the probability that it agrees with any given example is ((1-ε). The bound for m examples is

P(hb agrees with m examples) ((1-ε)m
For Hbad to contain a consistent hypothesis, at least one of the hypotheses in Hbad must be consistent. The probability of this occuring is bounded by the sum of the individual probabilities:

P(Hbad contains a consistent hypothesis) ( |Hbad|(1-ε)m ( |H|(1-ε)m
We would like to reduce the probability of this event below some small number  (:

|H|(1-ε)m ( (
We can achieve this if we allow the algorithm to see

m ( ε-1 (-log ( + log |H|)

examples. Thus if a learning algorithm returns a hypothesis that is consistent with many examples, then with probability at least 1-(, it has error at most ε. The number of required examples, as a function of ε and (, is called the sample complexity of the hypothesis space.

Definition: VC dimension of a set {sgn(f(x)), f(F}, of indicator functions is the maximum number h of vectors x1, x2,…,xh that can be separated into two classes in all 2h possible ways using functions of the set. If for any number, n, it is possible to find n points x1, x2,…,xn that can be separated in all 2n possible ways, we say that the VC-dimension of the set of functions is infinite.

In the categorization problem, we allow for miscategorized elements. To every miscategorized element, we assign some cost. The functional form of the cost can take different forms according to our intentions. One example is that the cost (or “loss”, or loss function) of a miscategorized pair (x,y) for f(F is equal to 

V(y,x,f) = V(y,f(x))= ½ (y-f(x))2
Another loss function is Vapnik’s ε-sensitive loss function:

Vε(y,f(x)) = |y-f(x)|ε := max{0, |y-f(x)|-ε}

Definition: The expected risk for data X,Y generated from a probability distribution p(x,y) is defined as

R(f) ( (X,Y V(y,f(x)) p(x,y) dxdy

Definition: The empirical risk for samples i=1,…,m is defined as

Remp(f,m) = 1/m (i=1m V(yi,f(xi))

Definition: Two-sided uniform convergence in probability is

lim m(( P( supf(F | R(f) – Remp(f;m) | >() = 0  

((>0

where P(a) denotes the probability of occurrence of a.
The remarkable property of the VC-dimension is that finiteness of the VC-dimension is a necessary and sufficient condition for two-sided uniform convergence independent of the underlying distribution p(x,y).

Theorem 3.5.1 (Vapnik and Chervonenkis, 1971) Let A( V(y,f(x)) (B, f(F, F be a set of bounded functions and h be the VC-dimension of V in F. Then, with probability at least 1-(, the following inequality holds simultaneously for all the elements of f(F.
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where e=exp(1). The quantity |R(f)–Remp(f,m)| is often called estimation error, and bound of the type given above are usually called VC bounds. The bound also holds for function f0(F that minimizes the empirical risk. Observe, that the theorem and the inequality are meaningful in practice only if the VC-dimension of the loss function V in F is finite and less than m.

3.6 Non-Linear SVM and Non-Linear Function Approximation

Equation f(x) = (x,w)+b = (n=1N wnxn +b

can be generalized to

f(x) = (n=1N(() wn (n(x) + b    



(3.6.1)


where functions {(n(.)}n=1N((), are linearly independent basis functions, wn and b are parameters to be estimated from the data. An equally important learning problem is the choice, or, equivalently the tuning of the basis functions. Related issues has been considered in the section on ICA, will be considered in the section on sparse representation, reconstruction networks, and finally in connection to representation of  uncertain knowledge in the form of trees. 

The set of numbers {(n(x)} n=1,…,N(() can be thought of as a mapping from space RN to a feature space  defined as

(: RN((
where ( denotes the feature space and (=((1,(2, …). 

The dimension of the feature space N(() can be finite or infinite. 

Equation

yi = g(x) = sgn(f(x))

can be modified to the approximation of functions by considering a general form for the loss function:

V(yi-f(xi))

where, of course, function f(x) could be the sign function when decision surfaces are to be determined. In this case a loss function that provides zero cost when its argument is equal to zero and infinite cost otherwise will give rise to the strict constraint yi=sgn(f(x)). Less sharp (e.g., continuous and differentiable) loss functions can be used to approximate the constraint within the framework of regularization. For example a smooth differentiable sigmoid (e.g., the hyperbolic tangent) function can be used to approximate the same problem. 

The minimization problem in the parameter space ((w,() can be generalized to a functional of f, H[f]. Thus, the general problem is to find the parameters that minimize the following expression for f(F:

J[f] = C (n=1m V(yi - f(xi)) + ½ H[f]



(3.6.2)

where J[.] is the cost of function f, m is equal to the number of training samples. This setting is called the regularization problem, where the functional preference is given by H[f]. For example, a loss function that consider (integrals of) has favorable derivatives. However, the same functional for is not robust against “outliers”; the importance of rare but very different samples may be overestimated. In case of SVMs the functional preference concerns maximal margins for decision surfaces. In other cases, one may prefer smooth functions. A particularly fruitful idea is to prefer functionals that define reproducing kernel Hilbert spaces (RKHS).

Theorem 3.6.1 (Mercer’s theorem) If k is a continuous symmetric kernel of a positive integral operator T, i.e., 

(Tf)(x) = (X k(x,x’)f(x’)dx’

with

(XxX k(x,x’)f(x)f(x’)dx dx’ ( 0

for all f(L2(X) (X being a compact subset of RN), it can be expanded in a uniformly convergent series (on XxX) in terms of T’s eigenfunctions (n and positive eigenvalues (n,

k(x,x’) = (n=1N(()  (n (n(x) (n(x’)

where N(() ( ( is the number of positive eigenvalues. An equivalent way to characterize Mercer kernels is that they give rise to positive matrices Kij:=k(xi,xj).

A straightforward way to construct a map ( is, for example,

((x)= (((1(1(x), ((2(2(x),…)

In this case the feature space is an l2 space. Alternatively, a Hilbert space Hk can also represent the feature space with Hk containing all linear combinations of the functions f(.) =k(x,.) (x(X). Because k(.,.) is symmetric, the (n(x) (n=1,2,…,N(()) (i.e., the T’s eigenfunctions) can be chosen to be orthogonal with respect to the dot product in L2, i.e., ((n,(m)L2 = δnm where δ denotes Kronecker’s delta symbol. From this we can construct another metric <.,.> such that

<((n(n(x), ((m(m(x)> = δnm

In this new metric the following relation holds:

<k(x,.),k(x’,.)> = k(x,x’)

which amounts to saying that k is a reproducing kernel for Hk. We assume that cost J[f] is a RKHS with kernel k, i.e., with functional preference Hk[f]. This is equivalent to assume that functions in Hk have a unique expansion of the form:

f(x) = (n=1N(() wn (n(x) + b
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We can think of the functional J[f] as a function of coefficients wn. In order to minimize J[f] we take its derivative with respect to wn and set it equal to zero, obtaining the following:

-C (i=1N[(] V’(yi-f(xi)) + wn /(n = 0

Let us now define the following set of unknowns:

ai ( C V’(yi-f(xi))

(but care is needed for non-differentiable function, e.g., for a step function). We can express now wn as a function of ai:

wn = (n (i=1m ai ( n(xi)

The solution of the variational problem has therefore the form:

f(x) = (n=1N(() wn (n(x) + b 

 = (n=1N(() (i=1m ai (n ( n(xi) ( n(x) = (i=1m ai k(x,xi)

This shows that independent of the form of V, the solution of the regularization functional J[.] is always a linear superposition of kernel functions, one for each data points. The loss function V affects the computation of the coefficients ai. In fact plugging the last equation back to the definition of the ai  we obtain the following set of equations for the coefficients ai:

ai = C V’(yi-(j=1m kijaj)

where kij=k(xi,xj). In case of V(x)=x2 we obtain the standard regularization theory solution

(j=1m (kij + δij /C) aj = yj
The main lesson from the study of kernel functions is that the use of kernels can turn any non-linear algorithm that only depends on dot products into an algorithm that is linear in feature space. Two notes are due here:

(i) The above property does not involve that we know how to find the feature space given the samples.

(ii) The above property underlines the importance of dot products (algorithms using filters(receptive fields(weight vectors).

We list some possible kernel functions.

Gaussian radial basis function: k(x-y)=exp(-||x-y||2)

Inverse multi-quadratic function: k(x-y)=(||x-y||2+c2)-1/2

Multi-quadratic function: k(x-y)=(||x-y||2+c2)1/2
Thin plate splines: k(x-y)=||x-y||2n+1



k(x-y)=||x-y||2n+1 log (||x-y||)

Multi layer perceptron (only for some values of θ): 




k(x-y)=tanh((x,y)-θ)

Polinomial of degree d: k(x-y)= (1+(x,y))d
B-splines:  k(x,y)=B2n+1(x-y)

The last kernel is one-dimensional. Multi-dimensional kernels can be built by tensor products of one-dimensional ones.

3.6.1 Friess’ Trick

Consider the minimization problem defined in equations (3.4.2) and (3.4.3) in a slightly modified form. Minimize

J(w,ξ) = ½ ||w||2 + C (i=1m ξi2




(3.6.3)

subject to the constraint

yi(<w,(n(xi)>+b) ( 1-ξi





(3.6.3)

where <.,.> is the dot product in feature space. The “slight” change is that the cost J depends on the square of the slack variables ξi instead of a linear dependence. Now, there is no need to include non-negativity constraints on ξi for all i=1,2,…,m for the following reason. Suppose that at the optimal solution ξi is negative for some i. Then, resetting ξi=0, we will still satisfy the constraint in (3.6.3) and will improve performance.

Let us define the following transformation:

[image: image130.wmf](

)

(

)

W

WW

I

x

u

W

T

T

)

g(

η

-

+

=

D

g


where zi=,((xi), ξ=(ξ1,ξ2,…,ξm), ei denotes the m dimensional vector in which the ith component is 1 and other components are zeros. In the new variables the problem behaves as a classification problem without slack variables (Homework).

3.7 Wolfe Duals

3.7.1 Support Vector Classification
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Assume that we have m vector-scalar pairs, (xI,yi), i=1,2,…,m, where xi(RN, yi(R, for every i. The SVM problem corresponds to the  following  minimization problem:

This is an important case, because of Friess’trick. It has been detailed in Section 1.10 that this constrained optimization problem can be dealt with by introducing Lagrange multipliers αi≥0 and a performance function (a Lagrangian)
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to be minimized by components of w and to be maximized by components of α. Here <.,.>k denotes the metric of the RKHS defined by functions (n(x), n=1,2,… This saddle point optimization has the same condition at the saddle point as other optimization methods; i.e., the derivatives of J with respect to the primal variables must vanish,
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By substituting the new conditions into J, one eliminates the primal variables and arrives at the Wolfe dual of the optimization problem. Find multiplier αi which

where k(xi,xj) is the kernel at points xi, and xj. The kernel is defined by functions (n(x), n=1,2,… The important property of this quadratic optimization problem is that no values in feature space should be computed.

The decision surface can be written as

f(x) = sgn((i=1m yiαik(x,xi) + b)

3.7.2 Support Vector Classification with Slack Variables
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Here the problem of the previous section is reconsidered in the case of slack variables. Now there is a cost associated with the slack variables and these slack variables modify the constraints:

Again, the kernels can be incorporated and the optimization problem can be rewritten using Lagrange multipliers. This leads to the quadratic optimization problem of Eq. (3.7.3), subject to the constraints

0 ( αi ( C,              i=1,2,…m

(i=1m αi yi = 0

The only difference from the separable case is the upper bound C on the Lagrange multipliers αi. This way, the influence of the individual samples (which could always be outliers) gets limited. As above the solution takes the form of
f(x) = sgn((i=1m yiαik(x,xi) + b)
The threshold can be computed by exploiting the fact that for all SVs xi with αi < C, the slack variable (i is zero (this follows from the KKT complementary conditions – see Section 1.10), and hence

(i=1m yiαik(xj,xi) + b = yj.

3.7.3 Sequential Minimial Optimization

A number of methods has been suggested for solving the dual problem. Traditional quadratic programming algorithms such as interior point algorithms are not suitable for large size problems because of the following reasons. First, the kernel matrix k(xi,xj) should be computed and stored in the memory. This requires extremely large memory. Also, these methods involve expensive matrix operations such as Cholesky decomposition of a large sub-matrix of the kernel matrix. Last, the coding of these methods is difficult.

Attempts have been made to develop methods that overcome some ar all of these problems. One such method is chunking. The idea here is to operate on a fixed size subset of training set at a time. This subset is called the working set and the optimization subproblem is solved with respect to the variables corresponding to the examples in the working set and a set of support vectors for the current working set is found. These current support vectors are then used to determine the new working set, the data the current estimator would make errors on. The new optimization subproblem is solved and this process is repeated until the KKT conditions are satisfied for all the examples.

Platt proposed an algorithm (see the web), called Sequential Minimal Optimization (SMO) for the SVM classifier design. This algorithm puts chunking to the extreme by iteratively selecting working sets of size two and optimizing the target function with respect to them. One advantage of using working sets of size 2 is that the optimization subproblem can be solved analytically. The chunking process is repeated till all the training examples satisfy KKT conditions. The SMO algorithm may however, be “confused” and may become inefficient, typically near the solution point, because of the way how it maintains a single threshold value b. The algorithm maintains two threshold parameters, bup and  bdown. This problem has been treated in the modified SMO algorithm by Shevade et al. (see the web).

3.7.4 Support Vector Regularization

The concept of margin is specific to pattern recognition. To generalize the SV algorithm to regression estimation, i.e., to function approximation, an analogue of the margin in the space of the target values y (note that in regression, we have y(R) by using Vapnik’s ε-sensitive loss function:

 Vε(y,f(x)) = |y-f(x)|ε := max{0, |y-f(x)|-ε}

To estimate the linear regression

f(x) = (w,x) + b

with precision ε, one minimizes

½ ||w||2 + C (i=1m |yi – f(xi)|ε
Written as a constrained optimization problem, this reads as
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According to (3.7.8)-(3.7.9) any error smaller than ε does not require a non-zero (i or (i* and hence does not enter the objective function (3.7.7).
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Generalization to non-linear regression estimation is carried out using kernel functions, in complete analogy to the case of pattern recognition. Introducing Lagrange multipliers, one thus arrives at the following optimization problem: for C>0, ε(0 chosen a priori,

The regression takes the form

f(x) = (i=1m (αi*-αi) k(xi,x) + b

where b is computed using that Eq. (3.7.8) becomes an equality with (i=0 if 0<αi<C, and similarly, Eq. (3.7.9) becomes an equality with (i*=0 if 0<αi*<C.
3.7.5 RKHS of polynomials
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Old standing question answered by Frederico Girosi in 1997: Is it possible to derive in the framework of regularization theory, an approximation scheme of the form:

where ( is some continuous, one dimensional function? A positive answer to the question can be given by noticing that it is possible to define a RKHS whose kernel is

[image: image139.wmf]å

å

=

=

=

=

=

¶

¶

=

¶

¶

m

i

i

n

i

i

n

i

i

y

y

b

J

b

J

b

1

)

(

w

0

,

0

)

,

,

(

,

0

)

,

,

(

x

w

w

w

j

a

a

a

a

and

conditions

 

have

 

then

 

We

m

1

i


where d is an integer. In fact, the kernel K above has an expansion of the form:
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where φn are the monomials of degree up to d, which constitutes a basis in the set of polynomial of degree d, and the λi are some positive numbers. The kernel above therefore can be used to give the structure of RKHS to the set of polynomials of degree d (in arbitrary number of variables), and the norm defined by (1.11.28) can be used as a smoothness functional in the regularization theory approach to derive an approximating scheme of the form:
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which is a special case of our starting equation.
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One dimensional example:

A similar result, although with a more complex structure can be derived for the multivariate case.

A much more interesting case is the one in which the function ( is a sigmoid or some other activation function. If it were possible to find an expansion of the form:
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for some fixed value of (, this would mean that a scheme of the form

could be derived in a regularization theory framework. Vapnik reports that if ((x)=tanh(x) the corresponding kernel is positive definite for some values of (, but the observation is of experimental nature, so that we do not know what the λi or the φn are, and therefore we do not know what kind of functions the corresponding RKHS contains.

The next Chapter follows the treatment of Girosi (1997).

4 SPARSE REPRESENTATION AND RECONSTRUCTION NETWORKS  

There has been a growing interest in approximating functions using linear superpositions of basis functions selected from a large, redundant set of basis functions, called dictionary. Wavelet bases, for example, belong to this class. The motivation behind is to find representations that compress well. In these approaches, one seeks an approximating function of the form

f(x,a) =  (i=1n ai ( i(x)

where (({( i(x)}i=1n is a fixed set of basis functions that we will call dictionary. If n is very large (possibly infinite) and ( is not an orthonormal basis it is possible that many different sets of coefficients will achieve the same error on a given data set. A sparse approximation scheme looks, among all the approximating functions that achieve the same error, for the one with the smallest number of non-zero coefficients. The sparsity of an approximation scheme can also be invoked whenever the number of basis functions initially available is considered, for whatever reasons, too large. More formally, we say that an approximating function of the form given above is sparse if the coefficients have been chosen to that they minimize the following cost function:

J[a,θ] = || f(x) - (i=1n θi ai ( i(x) ||2L2 + λ ((i=1n θi)p          
(4.1)
where {θi}i=1n is a set of binary variables, with values in {0,1}, ||.||2L2 is the usual L2 norm, and p is a positive number that we set to one unless otherwise stated. It is clear that, since the L0 norm of a vector counts those number of elements of that vector which are different from zero, the cost function above can be replaced by the cost function:

J[a] = ||f(x) - (i=1n ai ( i(x)||2L2 + λ ||a||pL0 



(4.2)

The problem of minimizing such a cost function, however, is extremely difficult because it involves a combinatorial aspect, and it will be impossible to solve in practical cases. In order to circumvent this problem (!!!!), approximated versions of the cost function above have been proposed. Olshausen and Field has considered the following approximative cost function:

J[a] = ||f(x) - (i=1n ai ( i(x)||2L2 + ε (i=1n S(ai)

where the function S was chosen in such a way to approximately penalize the number of non-zero coefficients. They reported numerical results for the following functions: |x|, -exp(-x2), log(1+x2). 

Let us use variables θi that may take one of the values of {-1, 0, 1}. Then the cost function (4.2) can be rewritten as

J[a,θ] = ||f(x) - (i=1n θi ai ( i(x)||2L2 + λ (i=1n |θi|

if p=1. If we now let the variables θi assume values over the real line. Assume that the coefficients ai are bounded with the same bound. Then it is clear that the coefficients ai are redundant, and can be dropped from the cost function. Renaming the variables θi as ai we then have the approximated cost function:

J[a] = ||f(x) - (i=1n ai ( i(x)||2L2 + λ (i=1n |ai| L1
which is the one proposed in the basis pursuit de-noising method of Chen, Donoho and Saunders. This is also one of the examples considered by Olshausen and Field

4.1 Equivalence Between SVMs and Sparse Coding

We know make the following choice for the basis functions ( i(x):

( i(x) = k(x,xi) 


( i=1,…,m

where k(x,y) is the reproducing kernel of a RKHS and {(xi,yi)}i=1m is a data set which has been obtained by sampling, in absence of noise, the target function f. We make the explicit assumption that the target function f belongs to the RKHS. The it follows that our approximating function is:

f*(x) = (i=1m ai k(x,xi)

This model is similar to the one of SVM except for the constant b, and if k(x,y)=G(||x-y||), where G is a positive definite function, it corresponds to a classical radial basis functions approximation scheme. We look for the set of coefficients a that minimize the following cost function:

J[a] = ½ ||f(x) - (i=1m ai k(x,xi)||2H + ε ||a|| L1
where ||.||H is the standard norm in the RKHS. An interesting property arises, the norm can be computed in spite of the fact that function f is not known.

For simplicity we assume that the target function f has zero mean in the RKHS, which means that its projection on a constant function g(x)=1 is zero (g(x)=1 does not have to belong to the RKHS):

<f,1>H=0

We normalize k(.,.) in such a way that <1,k(x,y)>H=1. We impose one additional constraint on the problem:

(i=1m ai = 0

which implies that the approximating function has a zero mean: <f*,1>H=0

Now we can expand the cost function as

J[a]=½||f||2H-(i=1mai<f(x),k(x,xi)>H+½(i,j=1maiaj<k(x,xi),k(x,xj)>H+ ε(i=1m|ai|

Using the reproducing property of the kernel k we have

<f(x),k(x,xi)>H = f(xi) = yi       (the noise free property is used here)
<k(x,xi),k(x,xj)>H = k(xi,xj)

Now the cost function assumes the form
J[a] =  ½ (i,j=1maiaj k(xi,xj) + ε(i=1m|ai| - (i=1mai yi  
Where the a constant term (½||f||2H) was neglected. Breaking the parameters ai into positive and negative parts: αi,αi*(0 and setting ai=αi*- αi we have to minimize the following quadratic expression:

J[α*,α] = - (i=1m (αi*-αi)yi + ½ (i,j=1m (αi*-αi) (αj*-αj)k(xi,xj) + ε (i=1m (αi*+αi)

subject to the constraints:

αi,αi*(0

(i=1m (αi*-αi) = 0

αi,αi*= 0

These are the equations of the SVM problem. Notice that the constant term b does not appear in the solution. It can be argued that for most commonly used kernels k this term is not needed, because it is already implicitly included in the model.

The number of support vectors, that is the degree of sparsity is controlled by the parameter ε, which is the only free parameter of this theory.

The next Chapter follows the treatment of Olshausen.

5 ICA AS A SPECIAL CASE OF SPARSE REPRESENTATION

The sparse coding cost function is written as

J[a] = ||f(x) - (i=1n ai ( i(x)||2L2 + ε (i=1n S(ai)


(5.1)

and we are supposed to minimize it with respect to the parameters ai and also with respect to the functional form of ( i. 

Gradient descent on J is performed in two phases, one nested inside the other: For each samples J is minimized with respect to the ai; the (i then are trained by gradient descent on J averaged over many samples. 

We give the example when f(x) is a pixel discretized image. In the original formulation f(x)(RN denotes the value of the image (there are m images) at pixel positioned at point x(R2. In the pixel space xp(RN denotes the image reordered to vector form and the number of input vectors is m, x denotes pixel position. In this case ( i(x) can be thought of as a function ( i:R2(R that provided real values over pixel positions. We make the following notation. We denote the position of the jth pixel by pj, the value of the pixel discretized image at the jth pixel by xj (i.e., f(pj)=xj), and the ratio between (i(pj) and xj as qij, i.e., 

( i(pj) = qijxj
and use (initially) a random value for qij if xj is zero. Training means the gradual modification of the parameter vectors qi from image to image. To avoid confusion quantities in pixel space will be indexed by letter p whne necessary. The basis vectors are also n-dimensional vectors, there are m of them, and they form an nxm dimensional matrix Q. The minimization problem is then:

J[up] =  ½ ||xp – Qup||2 + ε S(up)

where the amplitudes of the columns are given by vector up, subject to optimization. The relaxation equation and the learning rule can be given by computing the gradient of J[up] according to up and Q, respectively:

dup/dt =  QT(xp – Qup) + εS’(up)

(Q = (xp – Qup) upT

Now, we state the optimization problem more formally. We seek a set of basis functions, (*, such that 
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where <.>samples denotes an ensemble average over the inputs (e.g., images). Note, that in this expression f refers to an input vector, ( refers to a matrix with components (i, and a refers to a vector to be optimized that will form the sparse representation.
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The first term of the right hand side of Eq. (5.1) can be interpreted as the negative log-likelihood of the input given ( and a (assuming a Gaussian noise model), while the second term may be interpreted as specifying a log-prior on a. That is,
with ε=2σ2β. Thus, we may interpret J as being proportional to log1/P(f,a|(), since

P(f,a|() = P (f|a,() P(a) ( exp (-J(f,a|()/2σ2)

Under the maximum-likelihood approach, we would try to find the set of basis functions (*,such that

(* = argmax( < log P(f|() >samples
P(f|() = ( P(f|a,()P(a)da



 
(5.4)

In other words, we are trying to find a set of (i that maximize the log-likelihood that the set of samples could have arisen from a random process in which (i are linearly mixed with statistically independent amplitudes distributed according to (Zβ)-1exp(-βS(ai)), with additive Gaussian noise. This is formally equivalent to minimizing the KL divergence between the actual joint probability of the samples P*(f), and our model of the joint probability based on independent causes, P(f|(), since

D(P*(f)|| P(f|()) = ( P*(f) log (P*(f)/ P(f|()) df



      = - HP*  -  <log P(f|()>samples

and HP*= -( P*logP* is fixed, so maximizing <log P(f|()>samples minimizes the KL divergence.

However, to integrate over the entire set of ai in Eq. (5.4) is computationally intractable. A reasonable approximation may be to assume that σ is small, in which case the dominant contribution to the integral is at the maximum of P(f,a|(). Thus

(* ( argmax( < log [maxa P(f|a,()P(a)] >samples
This is equivalent to the algorithm of Olshausen and Field. The intuition why this approximation works in practice can be understood as follows. Assume that we have priors which are products of 1D “sparse” distributions, such as (1+ai2)-1. This prior is unimodal (singly peaked) and peaks at zero. The likelihood, P(f|a,(), is a multivariate Gaussian. We are working in the overcomplete case (the number of basis functions exceeds the dimensionality of the input) thus the distribution will take the form of a Gaussian ridge having its maximum along the hypersurface f=a(. (Homework: Argue why is this a good approximation.) The product of the these two functions, P(f|a,()P(a), will have its maximum displaced away from the maximum along the Gaussian ridge (i.e., away from the ‘perfect solution’) and towards the origin, but also towards the ridges of the prior. Thus the gradient with respect to ( will tend to steer the Gaussian ridge towards the ridges of the prior, which will in turn, increase their product, i.e., P(f|(). The approximation can work because two smooth unimodal functions are used.

5.1 Relation to the ICA Formulation of Bell and Sejnowski

Bell and Sejnowski examine the case where the number of basis functions is equal to the number of inputs, and where the (i are linearly independent. (From now on, we use the matrix notation of the previous section.) In this case, there is a unique set of ai for which |x-Qu|2 equals zero for any given input, x. In terms of the previous section P(x|u,Q) is now a Gaussian hump with a single maximum at u=xQ-1, rather than a Gaussian ridge. If we let σ go to zero in Eq. (5.2), then P(x|u,Q) becomes like a delta function and the integral of Eq. (5.4) becomes

P(x|Q) = ( δ(x-Qu) P(u) du
             = P(xQ-1) |det Q-1|

and so

(* ( argmax( [ < log [ P(xQ-1) >samples + log  |det Q-1| ]

    = argmin( [ < λ(i=1n S(xQ-1)i >samples - log  |det Q-1| ]

Computing the (stochastic) gradient descent, we have

(Q-1 = ( (QT - S’(u)xT) 

Noting that (by definition) Q=W-1 we have, that the learning equation corresponds to the learning rule of Bell and Sejnowski. We note that the learning rule of the sparse representation could be made faster if a natural gradient is derived.

5.2 Reconstruction Networks

In case of ANN formulation we would like to find a structure which is capable to perform minimization of the performance measure

J[a] =  ½ ||x – Qa||2 + ε S(a)

i.e., to proceed according to

da/dt =  QT(x – Qa) + εS’(a)



(5.5)

and to allow Hebbian learning for the training rule

(Q = (x – Qa) aT
[image: image147.wmf]where subscript p was dropped and letter u was replaced by letter a. Introducing reconstruction vector y=Qa and assuming that (x-y) is available for learning we arrive to the following network that satisfies our conditions. 

Figure 1. Reconstruction network

x: input to the network, a: output of the network, PT bottom-up matrix, Q top-down (generative) matrix, y: reconstruction vector.

The condition that (x-y) is available for learning can be satisfied by collapsing input and the reconstructed input layers into a single layers that subtracts reconstructed inputs from inputs. In the network Eq. (5.5) is also generalized to

da/dt =  PT(x – Qa) + εS’(a)



(5.6)

Note, that this generalization concerns the solution of the equation da/dt=0. However, if the ε=0 and the both matrices are invertible then the solution of the equation da/dt=0 is not affected by this generalization. 

Consider the case when the internal representation compresses, i.e., when a(Rn x(RN and n<N. Assume also, that P=Q and ε=0. Then the stopping condition of Eq. (5.6) for a given input is

QTx = QTQa
and thus

a = (QTQ)-1 QTx

Matrix (QTQ)-1 QT is the pseudoinverse of matrix Q if multiplied from the left. The reconstruction vector y=Qa can be written as:

y = Q(QTQ)-1 QTx
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Matrix A=Q(QTQ)-1 QT  is a projector matrix, i.e., A2=A. The solution of Eq. (5.6) can be given as 

that can be shown be substitution into the differential equation. That is, the solution is convolution. Matrix QTQ is positive semi-definite. If it is positive definite then the network has a finite relaxation time. It is determined by (it is the inverse of) the smallest eigenvalue of matrix QTQ. Assume normalized column vectors for matrix Q. Then the larger the dot product between the columns of matrix Q the smaller the smallest eigenvalue will be. Independent components are typically not orthogonal and thus independent components may lead to long relaxation time. In other words, the outputs of the a reconstruction network may be corrupted by the properties of the convolution. In real world applications this could be a serious obstacle.

The convolution, however, is rather attractive from the point of view that it allows to develop connections representing temporal order by Hebbian means. This is so, because output activities representing past and present inputs may coexist. Such connections connect output units. Such connections are called predictive connections. It can be shown that such connections can compensate for the temporal convolution of the network. We note that a network equipped with predictive connections is one representation of Kalman filters. The predictive connections allow temporal inference. The interested reader is referred to the literature for further discussions (see e.g., Rao and Ballard on the web).

6 GRAPHS, TREES AND INFERENCE ON GRAPHS

6.1 The Joint Problem of Inference and Representation

In terms of events, inference concerns temporal predictions. A hierarchical event based system can be defined as a system of stochastic variables where inference concerns temporal predictions of the behavior of the variables (the dynamics of the variables) and the temporal order between variables (the interaction between variables). This latter can be thought of as the dynamics of some higher order variables. 
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The task of a learning system that makes temporal inferences is to optimize its inference structure and to improve its predictive capabilities. This concept can be explained by considering connections between output units of a reconstruction network. 

Figure 3: (a) Reconstruction network, (b) Reconstruction network with predictive connections, (c) Reconstruction network without predictive connections

We can ask the following question: Under what circumstances will these connection represent temporal sequences the best? An intuitive answer to this question is that the longer the smaller the entropy rate that predictions produce, the better the system is. In terms of the predictive connections this can be viewed as an inter-unit graph that minimizes the branching ratio. A smaller branching ratio means that the number of inter-unit connections is smaller. We shall now examine graphical structures and we will show that general directed acyclic graphs can be re-organized into tree structures. Then we shall study the problem that under what conditions the number of inter-unit connections can be lowered. 

6.2 Procedural Guide

6.2.1 Interpretation:

Let X and Y be stochastic variables. Assume that we are interested in estimating Y, and we begin with a prior probability P(Y) for our belief about Y, and then we observe X. Assume that the “model” (the likelihood that given Y we observe X) P(X|Y) is given. Then Bayes’ theorem tells us how our revised belief for Y, the posterior probability P(Y|X) can be expressed

P(Y|X) = α  P(X|Y) P(Y)

α is the normalization constant that makes the entries of the left hand side to sum to 1.

Posterior ( Prior x Likelihood

6.2.2 Belief network

1. A set of random variables makes up the network

2. A set of directed links or arrows connects pairs of nodes. The intuitive meaning of an arrow from node X to node Y is that X has a direct influence on Y.

3. Each node has a conditional probability table that quantifies the effects that the parents have on the node. The parents of a node are all those nodes that have arrows pointing to it
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P(X)P(Y|X)

  P(X,Y)


P(Y)P(X|Y)

Downward arrow: “causal arrow”

Upward arrow: “inferential arrow”

6.2.3 Introductory Inference Problems

1. Model: X(Y

We have P(X), P(Y|X) 

We observe Y=y. 


Question: What is P(X|Y=y)?

Solution

P(Y)=(P(Y|x)P(x)dx

P(X|Y=y) = P(Y=y|X) P(X)/P(Y=y)

2. Model for Z: Z ( X ( Y

We have P(X), P(Y|X), P(Z|X)


We observe Y=y


Q: P(Z|Y=y)


Brute force solution:


P(X,Y,Z)=P(Y|X)P(Z|X)P(X)


Calculate

a. the joint distribution

b. the marginal distribution P(Y), P(Y=y)

c. the marginal distribution P(Z,Y) and thence P(Z,Y=y)

d. P(Z|Y=y)=P(Z,Y=y)/P(Y=y)

Alternative solution

a. Calculate P(Y=y)= (P(Y|x)P(x)dx

b. P(X|Y=y)=P(Y=y|X)P(X)/P(Y=y)

c. Find P(Z|Y=y)= (P(Z|x)P(x|Y=y)dx

Number of states grows exponentially in joint distributions

3. Undirected structure ZX – X – XY and probabilities P(Z,X), P(X) and P(Y,X)

Q: P(Z|Y=y)

Note that

P(Z,X) = P(Z|X)P(X)

P(Y,X) = P(Y|X)P(X)

P(X,Y,Z)=P(Z,X)P(Y,X)/P(X)

Calculate:

a. P(X) ≡ (P(X,Y=y)dy  (message)

b. P(Z,X) ≡ P(Z,X) P(X)/P(X) (send messge)

c. P(Z,Y=y) = (P(Z,x)dx

d. P(Z|Y=y) = P(Z,Y=y)/ (P(z,Y=y)dz

6.2.4 Conditional Independence ╨
In Example 3

P(X,Y,Z) = P(Y|X)P(Z|X)P(X)

( P(Y|Z,X) 
= P(X,Y,Z)/P(Z,X)




= P(Y|X)P(Z|X)P(X)/P(Z,X)




= P(Y|X)

( P(Z|Y,X)
= P(Z|X)

Thus given X=x we obtain 

P(Y|Z,X=x) = P(Y|X=x)

P(Z|Y,X=x) = P(Z|X=x)

Three possible factorization for P(X,Y,Z):

Z(X(Y: P(X)P(Y|X)P(Z|X)

Z(X(Y: P(Y|X)P(Z|X)P(Z)

Z(X(Y: P(X|Y)P(Z|X)P(Y)

Z is conditionally independent of Y given X

(Z ╨ Y|X)

NOTE that Z(X(Y does not obey the conditional independence property
6.2.5 General Inference Engines
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Distribution:

P=P(A)P(C)P(B|C)P(D|A,B,C)P(E|D)

6.2.6 Markov nets or Markov random fields

Global Markov property:

A variable is independent of all the others given its neighbors

Clique of an undirected graph:

the maximal subset of variables that are all neighbors of each other

( The probability is a product of functions called clique potentials defined each on a clique of the graph
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P=Φ(A,B,C)Φ(A,D)Φ(D,E)Φ(B,E)
A probability distribution that can be mapped perfectly as both a Bayes net and a Markov net is called a decomposable model.

In decomposable models, the cliques of the unidirected graph representation play a special role. They can be arranged in a tree (i.e., in an acyclic graph) structure called junction tree

The vertices of the junction tree are the cliques. 

For general multiply connected Bayes nets, inference is NP hard

Procedure: add extra edges to the multiply connected Bayes net and transform it into a decomposable model. (This makes computationally unusable some of the independendencies). Then use

1. the a general algorithm for the cliques of the tree 

2. the junction tree algorithm on the decomposable model.

Trees are decomposable

Singly connected Bayes networks: the underlying undirected graph has no cycles. There is always at most one (undirected) path between any two variables. 

6.2.7 Constructing an inference engine
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Triangulated Graph
[image: image195.wmf]C

B

AC

C

B

AC

AB

B

A

B

A

A

I

I

A

A

B

A

AB

B

A

B

A

A

AB

A

B

A

A

+

º

+

+

+

º

+

=

=

º

+

º

º

+

º

+

º

+

0

0

laws

 

s

 Morgan'

or De

 

n,

dualizatio

)

(

)

(

absorption

 

of

 

laws

)

(

[image: image196.wmf]f

g

x

g

f

x

g

f

x

÷

ø

ö

ç

è

æ

¶

¶

+

÷

ø

ö

ç

è

æ

¶

¶

=

¶

¶

'

'

'









6.2.8 Junction Tree

1. Add undirected edges to all co-parents which are not currently joined (marry parents)

2. Drop all directions in the graph after 1. (Moral graph)

3. Triangulate: add sufficient additional undirected links between nodes such that there are no cycles (i.e., closed paths) of length 4 or more distinct nodes without short-cut

4. Join the cliques together to form a junction tree
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6.3 Trees

6.3.1 Properties of trees

Let V denote the set of variables of interest. For each variable v(V let rv denote its number of values, ((v) represent its domain and xv(((v) a particular value of v. ((V)= is the state-space of all variables in V; to simplify notation xV will be denoted by x. 

Each variable is viewed as a vertex of an (undirected) (V,E). An edge connecting variables u and v is denoted by (uv). As we noted before, a graph (V,E) is called a tree if it has no cycles. 

Let us denote Tuv and Tv the marginals of T for u,v(V and (uv)(E:

Tuv(xu,xv) = (x|u=xu,v=xv T(x)

Tv(xv) = (x|v=xv Tuv(xu,xv)



They must satisfy the consistency condition

Tv(xv) = (xu Tuv(xu,xv)

( u,v, (uv)(E

Let deg(v) be the degree of vertex v, i.e., the number of edges incident to v(V. Then , the distribution T is conformal with the tree (V,E) if it can be factored as:

T(x) = ((u,v)(E Tuv(xu,xv) /  ( v(V Tv(xv)deg(v-1)   

(6.1)

The distribution T itself will be called a tree when no confusion is possible. The graph (V,E) represents a structure of the distribution T. For all trees over the same domain V the edge set E alone uniquely defines the tree structure. The edge set E can be identified with the structure. A tree is called connected if it spans all the nodes in V.

Because the tree is a triangulated graph it is easy to see that a tree dsitribution is a decomposable model. Equation (6.1) is identical to the junction tree representation of T. The cliques indentify with the graph’s edges (hence all cliques are size of two) and the separators are all the nodes of a degree larger than one. Thus the junction tree of a tree is identical with the tree itself with clique and separator potentials being the marginals Tuv and Tv, deg(v)>1 respectively. Thus a distribution T that is conformal with the tree (V,E) is completely determined by its edge marginals {Tuv, (uv)(E}.

Because every tree T is a decomposable model it can be represented in terms of the conditional probabilities

T(x) = (v(V Tv|pa(v)(xv|xpa(v))



(6.2)

where pa(v) represents the parent of vertex v. Equation (6.2) is called the directed tree representation of the tree. This form can be obtained from the undirected representation (6.1) by choosing an arbitrary root in each connected component and directing each edge away from the root. Note that in the directed tree thus obtained each, each vertex has at most one parent. After having transformed the structure into a directed tree one computes the conditional probabilities corresponding to each directed edge by recursively substituting Tv|pa(v) by Tvpa(v)/Tpa(v) starting from the root.

6.3.2 Learning trees in the ML Framework

Assume a domain V and a set of observations from V called data set D={x(1), x(2),… x(N)}. We further assume that these data were generated by sampling independently from an unknown tree distribution T0 over V. The learning problem consists in estimating T0. According to the maximum likelihood principle the estimate of T0 from D is the model that maximizes the probability (or likelihood) of the observed data. In a broader context we are after to find the tree T that best fits the distribution P represented by the data set D. The goodness of the fit can be evaluated by the Kullback-Leibler divergence:

D(P||T) = (x(D P(x) log P(x)/T(x)



= (x(D P(x) log P(x) - (x(D P(x) log T(x)

The first term does not depend on T. Thus minimizing the KL divergence is equivalent to maximizing the second term (sometimes called the cross-entropy).

Assume first that the structure E is fixed and expand the KL divergence:

D(P||T) = -H(P) - (x(D P(x) log (v(V Tv|pa(v)(xv|xpa(v))


= -H(P) - (v(V (x(D P(x) log Tv|pa(v)(xv|xpa(v))


= -H(P) - (v(V (xv,xpa(v) Pv,pa(v)(xv,xpa(v)) log Tv|pa(v)(xv|xpa(v))


= -H(P) -(v(V(xpa(v) Ppa(v)(xpa(v)) (xv Pv|pa(v)(xv|xpa(v)) log Tv|pa(v)(xv|xpa(v))

where H(P) denotes the entropy of distribution P, Puv, Pv represent respectively the marginals of {u,v}, v under P. When v is a root node, pa(v) is the void set and its corresponding range has one value with a probability 1. The terms that depend on T are of the form:

- (xv Pv|pa(v)(xv|xpa(v)) log Tv|pa(v)(xv|xpa(v))

which differs only by a constant independent of T from the KL- divergence

D(Pv|pa(v)|| Tv|pa(v))

We know that this KL divergence is minimized by

Tv|pa(v)(.|xpa(v)) ( Pv|pa(v)(.|xpa(v))  


( v(V

(6.3)

Thus for a fixed structure E, the best tree parameters in the sense of the minimum KL divergence are obtained by copying the corresponding values from the conditional distribution Pv|pa(v). The indentity (6.3) can be achieved for all v and xpa(v) because the distribution Tv|pa(v)=xpa(v) are each parametrized by its own set of parameters. It also follows that

Tuv ( Puv  


( (u,v)(E



(6.4)

and subsequently, that the resulting distribution T is the same independently of the choice of the roots. For each structure E we denote by TE the tree with edge set E and whose parameters satisfy Eq. (6.4). TE achieves the optimum over all tree distributions conformal with (V,E).

We proceed with the minimization of the KL divergence over different tree structures. This task is equivalent to maximizing the objective

J(E) = (x(D P(x) log TE(x)

over all structures E. Expanding this formula and using the optimal results for a given structure E we obtain:

J(E) = (i=1N P(x(i)) log TE(x(i))

= (i=1N P(x(i)) [((u,v)(E log TuvE(xu(i),xv(i)) - (v(V (deg(v)-1) log TvE(xv(i))]

= (i=1N P(x(i)) [((u,v)(ElogPuv(xu(i),xv(i)) - (v(V (deg(v)-1) logPv(xv(i))]

= ((u,v)(E (i=1N P(x(i))[logPuv(xu(i),xv(i)) - logPv(xv(i)) - logPu(xu(i))]

            + (v(V(i=1N P(x(i))logPv(xv(i))

= ((u,v)(E (i=1N P(x(i))log[Puv(xu(i),xv(i))/Pu(xu(i))Pv(xv(i))]

           +(v(V(i=1NP(x(i))logPv(xv(i))

=((u,v)(E(xu,xvPuv(xu,xv)log[Puv(xu,xv)/Pu(xu)Pv(xv)]+(v(V(xvPv(xv)logPv(xv)

J(E)  = ((u,v)(E Iuv - (v(V H(Pv)




(6.5)

where Iuv represents the mutual information between variables u and v under the distribution P:

Iuv = Puv(xu,xv)log[Puv(xu,xv)/Pu(xu)Pv(xv)] ( 0

The mutual information between two variables is 0 only when the variables are independent. The second term of Eq. (6.5) is independent of the structure E. The dependence of J(E) from E is additive w.r.t the elements of the set E. In other words, each edge in (u,v) (E contributes a certain positive amount to J(E) and this amount Iuv is always the same independently of the presence or absence of other edges and of the size of their contributions.

In this situation, maximization of J over all structures can be performed efficiently via the Maximum Weight Spanning Tree algorithm that proceeds greedily by adding one edge at a time, in decreasing order of the “weights” Iuv. The tree construction can be considered as a special form of non-linear diffusion on the network defined by the weights Iuv between nodes u and v. (How?).

We note – at this is the punch line here – that temporal chains correspond to sets of nodes that sets have zero mutual information. In other words, any disconnectedness in E represents some kind of independence and thus blind source separation (ICA) is an important step when the representation for V is developed. Given any kind of representation for V and then deriving another by using blind source separation the resulting connectedness of the tree structure can not grow. If the original representation was the result of mixing independent sources then the representation upon ICA will have no units that would be connected.
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� This formulation is related to the concept of uniform convergence, or structural risk minimization. The corresponding ANN tool is called support vector machine (see Section 3).


� Cecil Huang and Adnan Darwiche: Inference in Belief Networks: A Procedural Guide. You can download it starting from www.inf.elte.hu/~lorincz/Materials.html





� This section follows the 2nd  Chapter of Marina Meila’s Thesis
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