Ad Hoc Networks

Introduction

Ad Hoc Networks 1 Tamás Lukovszki

Organization

- Lecture: Wednesday 16:15 -17:45, room 7.102
- http://people.inf.elte.hu/lukovszki/Courses/1617MSC_EN/
- Practice: Wednesday 17:45 19:15, room 7.102

Topics

- Introduction
- Physical backgrounds
- Medium Access Control
- Flows and network capacity
- Topology control
- Position based routing
- Distributed location services
- Energy, dilation, congestion trade-offs
- Mobility models
- Network coding

Ad Hoc Networks 3 Tamás Lukovszki

Literature 1

- Editor: Jie Wu
 - Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Networks and Peer-to-Per Networks
 - Auerbach, 2005
- Collection of works written by experts

Literature 2

- Murthy and Manoj
 - Ad Hoc Wireless Networks, Architectures and Protocols
 - Pearson/Prentice Hall, 2004
- Covers many aspects of wireless communication
 - 802.3, 802.11, HiperLAN, GSM, ATM, WATM, MobileIP, MANET, MAC for Wireless, Routing and Multicast Routing in MANETs, Transport layer, QoS, Energy Management, Sensor Networks, Hybrid Networks

Literature 4

- Charles E. Perkins
 - Ad Hoc Networking
 - Addison-Wesley 2001
- A classic book
 - Little bit outdated
- Topics:
 - mainly routing algorithms, like DSDV, Cluster-based Routing, DSR, AODV, ZRP, Link Reversal

Literature 3

- Protocols and Architectures for Wireless Sensor Networks
- Holger Karl, Andreas Willig
 - John Wiley & Sons, 2006

Ad Hoc Networks 7 Tamás Lukovszki

Types of Wireles Networks

- Cellular Networks
 - base stations distributed over the field
 - each base station covers a cell
 - used for mobile phones
 - WLAN can be seen as a special case

Tamás Lukovszki

Types of Wireles Networks

- Mobile Ad Hoc Networks (MANET)
 - self-configuring network of mobile nodes
 - node serve as client and router
 - no infrastructure necessary

Ad Hoc Networks 9 Tamás Lukovszki

Types of Wireles Networks

- Sensor Networks
 - network of sensor devices with controller and radio transceivers
 - base station with more resources

Applications of MANETs

- Military
- Deserted Areas
- Sensor networks
 - Environmental control
 - Intelligent Home
 - Supermarket
- Car technology

WLAN hotspot extension

• ...

Ad Hoc Networks 11 Tamás Lukovszki

Challenges

- Self-construction, self-maintenance
- Scalability
- Reliability
- Resource efficiency
 - -Energy
 - -Storage
- Fault- / disaster-tolerance
 - -Tolerates simultaneous (node/link) faults
 - -Fast reconfiguration on detection of faults
- Mobility

•

Topics

- Physical backgrounds
- Medium Access Control
- Flows and network capacity
- Topology control
- · Position based routing
- Distributed location services
- · Energy, dilation, congestion trade-offs
- · Mobility models
- Network coding

Tamás Lukovszki Ad Hoc Networks

Physical Backgrounds

- · Electro-magnetic waves
- Frequency bands
- Noise and interference, bit error rate
- Sharing the medium

Medium Access Control (MAC)

Problems for MAC protocols

Hidden terminal

Exposed terminal

- Protocols: MACA, MACAW
- Problem of using different transmission power

Tamás Lukovszki Ad Hoc Networks

Capacity of Wireless Networks

- · Random placement model
- Data flow in networks
 - Max flow, min cut
 - Multi commodity flows
- · Minimum density for connectivity

Capacity

Topology Control

Example: no topology control

Maximum transmission distance R

- High energy consumption
- High amount of interference
- Low throughput

Tamás Lukovszki Ad Hoc Networks

Topology Control

Example, using topology control

- Global connetivity
- Low energy consumption
- Low amount of interference
- High throughput

Topology Control

- Sparse topologies
- Low node degree
- Short paths, low energy paths
- Low load
- Distributed construction and maintenance
 - scalability
 - fault tolerance
 - self-reconstruction

Tamás Lukovszki Ad Hoc Networks

Position Based Routing

 The packets are forwarded "on the fly" to the next node based on the geographic position of

- the current node,
- the neighbors of the current node,
- the destination node
- Routing table is not needed
- Support of geocasting

How the position of the destination can be detected?

Distributed Location Services

Location service: provides position information for a requested node

Problems with centralized solutions:

- Each node must know the position of the location servers (a chicken-egg problem)
- High amount of traffic on the location servers and nodes in their environment

Desired properties of distributed location services

- Load is balanced over rhe nodes
- Low storage and communication costs
- Short paths for the position queries
- Fault tolerance

Tamás Lukovszki Ad Hoc Networks

Mobility

- · Mobility patterns
 - Pedestrian
 - Marine and Submarine
 - Earth Bound Vehicles
 - Aerial Mobility
 - Medium Based
 - Space
- Mobility models
 - Random Walk
 - Trace Based
 - Fluid Flow
 - Brownian Motion
 - Random Waypoint
 - Group-Mobility Models

Network Coding

- The nodes of the network are able to combine the received packets.
- They send the combined packets through the links
- From a source node to a set of destination nodes the rate of the multicast can achieve the "cut bound" by using network coding

Tamás Lukovszki Ad Hoc Networks

Network Coding

- Applications in wireless networks
 - increase traffic throughput in Ad Hoc Networks
 - decrease energy consumption in multicast
 - increase robustness and reduce the error rate
 - increase throughput in Peerto-Peer Networks
 - increase throughput in Wireless Sensor Networks

Thank you!

Tamás Lukovszki lukovszki@inf.elte.hu