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Abstract-In my paper, human communication is placed into the center of informatics. The 
typical schema of elementary communication and communication in information systems is discussed 
by natural and formal schemas. The schemas are used to explain the main characteristics of the epochs 
of the evolution of human communication and the key effect of dramatic change in communication 
due to the very fast development of information technology. 

The main lows of two mathematical theories, namely Shannon’s information theory and the Kol- 
mogorov algorithmic entropy, are explained together with their roles in communication. The coin- 
cidence of the two entropies on very large objects is proved. The difference between large, algorith- 
mically generated, compressible objects and the typical, uncompressible random objects is visually 
demonstrated by black and white colorings. The interesting self-interference of random colorings is 
shown and explained. @ 2003 Elsevier Ltd. All rights reserved. 

Keywords-Communication, Information systems, Information theory, Kolmogorov complexity, 
Randomness. 

1. INTRODUCTION 

One of the most characteristic phenomena at the beginning of the third millennium is the speed 
of the development of the information technologies that exceeds the pace of every former tech- 
nological development and leads to the information revolution. 

In my paper, I first show the place of the new world of communication in the process of the 
evolution of human communication. Then some formal and mathematical models follow, which 
show mathematical boundaries and possibilities. The general theorems do not give keys for the 
solution; we are facing up to an inexhaustible world of algorithmic problems. 

What makes the communication run is basically the uncertainty, the randomness. To the 
contrary, the digital world is based on computability. The computable world cannot replace the 
reality; it can help in the modeling and cognition of the real world within some limit, and it may 
help in understanding the past and in the prediction of the future. 

My starting point to approach the aggregate of what is covered by the terms computing pro- 
fession, information technology, information engineering, software engineering, computer science, 
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Figure I 

information science, telecommunication, business information management, and many other re- 
lated terms in the U.S. (see in [l]) is h uman communication. I prefer to cover all of these by the 
term “informatics” , which is missing from the English vocabulary, but exists in German, French, 
and Hungarian. On the way of approaching informatics, my dominating experiences came from 
the introduction to probability theory and information theory by Renyi, from our common work 
with Arat in statistical analyses of stochastic processes, and from many database and informa- 
tion system development projects. In my paper, “informatics” has a wider meaning than in the 
definition of Denning in [l]: 

“Today, most computer scientists understand computer science as a discipline that stud- 
ies the phenomena surrounding computers. These phenomena include design of comput- 
ers and computational processes, representation of information objects and their trans- 
formations, theoretical and practical problems in hardware and software, eficiency, and 
machine intelligence. In Europe the discipline is called ‘informatics’ and in the U.S. 
‘the discipline of computing’ or information technology. ” 

I consider that the most important novelty in the information revolution is the new way of 
communication, not the computers. 

2. THE BASIC MODELS OF COMMUNICATION 

Communication covers all means of interaction between two human brains. 
The communication or interaction of two human beings can only be realized via intermediate 

physical changes between them. Messages and thoughts cannot be directly exchanged between 
the consciousnesses of human beings. Figure 1 shows one of them as the source of emitting a new 
message and the other one as the perceiver, the destination of the message. The selection and 
formulation of a message is the result of the interaction between observation of the surround- 
ing real world and the internal conscious processes. The source individual releases the sign of 
communication by appropriate change in the real physical world. This change then is spreading, 
traveling through time and space, reaches the observable reality of the destination individual, who 
perceives the sign, and by his/her conscious activity the message reaches his/her consciousness. 

The small darker areas on the figure show the possible effect of randomness in this elementary 
communicational process. The uncertainty of the selection of the message comes from the ob- 
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Figure 2. 

servation of the real world as well as from the internal process of thinking. The change caused 
by the release of the message in the real world goes through random distortions and it adds a 
noise to the sign which reduces the accuracy of the observation. Finally, the observation of the 
receiving individual has same external and internal random effect too. 

The necessary condition of the success of the communication is that for different messages the 
source should release different changes in the physical reality so that the receiving individual 
could distinguish them. 

Turning our attention from elementary communication to more complicated communication 
inside communities of human individuals, we get the general model of information svstems as 
summarized in Figure 2. 

The communication system of human communities makes use of the evolution of common 
knowledge which is the result of previous communications and common observations, and remains 
accessible either in human minds or in durable physical signals. (The most important common 
knowledge is the language.) 

Many of the new messages are not directed to definite receiving individuals; instead they are 
relative to the common knowledge, and they contribute to its development. From the collective 
knowledge the relevant, necessary information as answer messages are retrieved by means of 
special query messages. I call this kind of collective communication an information system. 
Naturally, an information system should contain some solution to “remember” the collective 
knowledge, something like the institution of wizards in ancient tribes, clergymen in ancient Egypt, 
libraries, vital registers, educational system, and among many others the most important, the 
language. Still, the first step of the communication, the release of a new message, is done by some 
changes in physical reality, and the ending step, the recognition of a message, is an observation 
of some changes in the physical reality by the senses of a human being. 

The storage, access, distribution, and secrecy of the collective knowledge need organized solu- 
tions. 

Now, the evolutionary process of human communication reaches a new epoch. After the epoch 
of talking and speech, then the epoch of writing and printing, the Guttenberg Galaxy, we are in the 
middle of the revolutionary evolving new epoch of the information society, where the computer, 
electronic, information, telecommunication, and multimedia technologies are integrated into a 
new communicational infrastructure and a worldwide digital information system. The space and 
time limitations of communication are vanishing, the capacity of storing, processing, accessing, 
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and transmitting data is still growing exponentially, and a new medium with services of ever 
evolving intelligence is being built for human to human, human to nature, and nature to nature 
interaction. 

3. FORMAL MODELS 
It was in the middle of the 20th century when the development of formal, mathematical models 

of communication became a must for the utilization of new telecommunication technologies. The 
milestone in mathematical treatment of communication was the seminal paper [2] of Shannon. 
The introduction of entropy brought the possibility to mathematically analyze the information 
transmission process. We use Shannon’s model to characterize the evolution of the communication 
and to point out the great qualitative differences of the present state from all the previous 
solutions. 

Figure 3 shows a slightly modified version of Shannon’s original schematic diagram of a general 
communication system. We stress that artificial channels are the new technical solutions to 
transmit the signal from the transmitter (sender) to the receiver. Both the transmitter and 
receiver are artificial equipment and their encoding and decoding function play very important 
role. 

Shannon’s mathematical model of 
commnnication 

source encoder channel decoder destination 

~t+iJ-./J--~~~ 

message signal signal message 

A) Quantitative level (entropy and capacity) 
B) Semantic level (understanding) 
C) Effectiveness (reaching the intended effect) 

AMicial chat&els 

Figure 3 

Similarly to Shannon’s schema, the automated information system consists also of five main 
components as shown in Figure 4. The possibility of storing the common knowledge in the 
database gives new capabilities and restrictions as well. The new capabilities are in the high 
power and capacities in storing, accessing, processing, updating of the data representing the 
common knowledge, and the restrictions are that we are closed into the formal, algorithmic 
world of the signals. The selection of the messages should comply with the structure of the 
database, and formulations of the source, query, and answer messages are restricted to predefined 
formal languages. The evolution of information technologies widens the barrier supplying human 
interaction-the ensignaling and designaling phase--with more and more powerful intelligent 
interfaces, extending the graphical, visual, voice-based interaction and via the virtual reality up 
to the possibilities of teleimmersion. All these lead to new complex languages of high expressing 
power. 
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The fast transformation of our common knowledge into the world of signals hides serious dan- 
gers: after our messages become signals, they start an independent life. They can undergo to 
any computation. Decoding and designaling the result of the computation may lead to meaning- 
less or misleading results in the real world. The human race genetically has with thinking the 
capability of counting and computing, that differentiates us from other behaviors of nature and 
life. Computers amplify this capability, and moreover, we trust too much in the correctness of 
computer calculations. Our messages reflect in some way the reality, and encoding them leads to 
the world of signals where we can introduce computations over them which are not true in their 
original world. Let me give a very primitive example. 

Let us encode apple by 1, pear by 2, and peach by 3. Then, using addition over our codes we 
get apple plus pear is peach! The mistake is the consequence that the operation is not generic 
on the encoding; it is not invariant under the permutation of codes. 

4. THE HISTORY OF COMMUNICATION IN BRIEF 

The basic and formal models of human communication allow us to characterize the impor- 
tant possibilities of the main communicational epochs. The figures use Shannon’s schema for 
visualization and I hope they are self-explanatory. 

The typical channel is presented in the figures, and at the bottom the characteristic solution 
of managing the common knowledge is mentioned. 

Figure 5 shows the communication schema of speech and talking. The state of the human minds 
is symbolized by the gray clouds with a rectangular shaped message. The encoder/transmitter 
and the receiver/decoder boxes are our biologically built-in “equipment?, and the speed of the 
communication is not limited by the channel capacity, but by our limited capabilities in pro- 
nunciation and speech recognition. Simultaneity and limitation in distance also give restrictions. 
The only recording solution is the memory of living individuals. The birth of languages is the 
main outcome of the prehistoric era. 

Writing and printing, the next epoch as shown on Figure 6, brought the possibility of recording 
messages of the present for the future. It also introduced new message releasing solutions by hand 
movement, and involved our most powerful sense, the vision of message recognition. New writing, 
which is not, only a copy of an older one, needs the release of new human messages. Addition, 
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Speech 

Figure 5. 

source encoder channel decoder destination 

Extemion,addith, 
devcdopmemtonly-by 

coluXhs achl. 

Figure 6. 

processing, development, and change of the recorded knowledge can be done only by conscious 
action. 

Although a lot of interesting questions and solutions can be studied on speech and writing 
based communication and information systems, they do not really need mathematical, formal 
models. 

Now, skipping over some smaller steps in the evolution of communication we arrive at the 
present epoch of computers. 

Figure 7 demonstrates elementary communication between persons where general purpose com- 
puters are used for encoding, transmitting, receiving, and decoding signals. Analyzing the schema 
from top down, the first novelty is the disconnection of the source and destination from encoder 
and decoder marked with question mark. Since signals used by computers cannot be directly 
manipulated, produced, and observed by humans, we have to construct interfaces, ensignaling 
and designaling devices for human/computer interaction. 
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Devices, like keyboard, mouse, touchpad, touch-screen, electronic gloves, microphone, camera, 
and a lot more, are for primary release of human messages, and transforming them immediately 
into electronic signals. In the opposite direction the corresponding devices, the displays, printers, 
loudspeakers, radio and TV sets, and virtual reality environments, are transforming and ampli- 
fying electronic signals to physical changes recognizable by human senses. (In the same way as 
physical changes originated by a human message release can be ensignaled and designaled, many 
natural and technically designed physical processes became observable by electronic devices which 
produce instrumental data source, and in the opposite direction from the electronic signals am- 
plifiers produce physical processes. This is the new way of interaction, “communication” with 
nature.) 

The next new components in the figure are the two storage boxes below the computers. Once 
a message became signals for the computer, it was possible to record it and store it for future 
communications that may have independent timing from the persons’ primary communication. 

Between two electronic storage systems we can build an electronic data transmission connection 
as you see magnified in Figure 8. So we get the basic building boxes of electronic data transmission 
networks, Both the source and the destination are processors, or computers. They supervise 
the data storage and use it for selecting messages for transmission and for recording received 
messages. The processors are working in an artificial physical environment and use signals that 
are unobservable or unrecognizable for human senses. 
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Co~~vergtllre: information technology-telecommunication-media 

Integration: informatics integrates the components 

I 

Figure 9. 

Processors may have other connections to real world processes as Figure 9 shows. Persons 
can be connected to them via ensignaling/designaling devices. They may receive data from 
observation of physical processes via measuring, recording instruments, or can send signals to 
interfere with physical processes. We can observe the three main components of the new world 
of communication. 

l The Sender-Channel-Receiver boxes represent the main area of telecommunication, 
including wired, satellite, optical, radio wave data transmission, broadcasting, mobile 
communication, and other solutions. 

l The Data-Processor-Interfaces represent the area of information technologies. 
l The applications with their specijic interfaces and systems of services around them are 

expanding from automation, process control, office automation, CAD/CAM systems, 
e-business, e-government, e-learning, and media and culture. 

I would prefer to call this whole “informatics”, which integrates the three main components. 

The popular concept of the convergence of information technology, telecommunication, and 
media reflects one of the largest effects of the evolution, the effect on mass communication. This 
concept puts the processor, the computer, in the center. In my approach-following Weaver [3]- 
communication covers all the means one human brain can influence the consciousness of some 
other person. Placing the communication into the center, the integrating character of informatics 
better fits to the matter. 

The elementary building blocks of data transmission in Figure 8 can be connected to each other; 
they can build a network of interconnected, communicating processors, and storage systems. The 
communication can be interrupted, postponed, delayed, recorded, repeated, and automated. This 
is the basis of the internet, of the new worldwide communication infrastructure. 

Storage devices, processors, transmitters, channels, receivers, and devices of interactions are 
all technical, engineered tools, utilizing very deep new discoveries in physics. What makes this 
infrastructure work is the large mass of programs running on processors. The programs connect 
the infrastructure to the applications, and in consequence program design, development, and 
maintenance deeply depend on application area. All these lead to a new system of professionals. 
There will be a need for an information technology specialist for application areas, and the 
most important general profession will be-according to Denning-the profession of computing. 
Ending this part, we cite his ending paragraph from [l]. 
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X’omputer scientists, software engineers, computational scientists, and other infarma- 
tion technologists have a maruelous opportunity to transform their academic disciplines 
into the profession of computing. They will have to face, and cross, the chasm between 
their practices as inventors and visionaries, and the pragmatic interests of their many 
clients and customers. It will not be easy. They have shown they can do it before. and 
they can do it again. ” 

5. MATHEMATICAL PROBLEMS 

Let us start with the problem of one-to-one mapping from the set of possible messages to the 
set of available channel sequences, or signals in Shannon’s model. The problem is to associate 
different channel sequences to different messages. According to the principle of packing in boxes, 
if the number of the boxes is less than the number of balls, then there will be at least one box 
packed with two balls. So we can solve the problem of communication if and only if the number 
of channel sequences is not less than the number of different messages. 

The next problem is how to count them. It is not easy at all; information theory is responsible 
for doing that. We shall show it only for the discrete, elementary case where both the mes- 
sages and the signals consist of finite grade elements, from symbols and signs, respectively. The 
parameter or dimension which influences the size of the problem is time. 

Let us take a channel with N(T) different allowable sequences of signals that can be transmitted 
in time T. Clearly, two channels are equivalent if their N(T) functions are equal. 

The capacity of the channel with function N(T) is defined by the formula 

This definition gives for symmetric binary channels the intuitively clear C bit/set capacity. Chan- 
nels are designed and constructed to achieve a given capacity, so C is given. 

Determining the number of possible messages that can be selected in time T is a bit harder. 
Shannon’s entropy is not a direct measure for that. It measures the uncertainty of the selection 
from the set of possible messages. Nevertheless, for very long messages it gives the basis for an 
estimate of the number of typical messages. Shannon’s famous formula assigns to the probability 
distribution (~1, ~2, . . . , p,) the entropy 

H(Pl,P2 Y..‘, p,) = -~PilogzPi. 
i=l 

(2) 

The mathematical model of the message selection is given by a sequence of random vari- 
ables, &, (2, . . , <N, where the possible value of the variables comes from the set of symbols 

(z1,572,... , 2,). The average source entropy per symbol is defined as 

(3) 

where H(q, 52, . . , z,) is the Shannon entropy of the joint distribution. 
From laws of probability theory, it follows under very general assumptions (ergodicity) for the 

source that for very large N the selection falls to a typical set with probability 1 - p, and the 
probability p,- of the selection of a given element 5 from the typical set satisfies 

~-NW+/J) < ps < 2-NW-d (/5’ and p small with N large). (4 

From this inequality we get the following estimation for M(N), the number of elements in the 
typical set: 

(1 - p)2N(H-p) < M(N) < 2N(H+p). (5) 
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Now we can return to our original problem. Given the channel capacity C (bit/set), and the 
source entropy H (bit/symbol), we shall answer the question of what the limit is for the rate V 
(symbol/set) of the source where there exists one-to-one mapping from messages to sequences of 
channel signals for large time interval T. 

From (1) and (5), it follows that for arbitrarily small positive Q, /3, x there exists To, such that 
for any T > To the following holds: 

2T(C-Q) < N(T) < 2T@+4; 
(6) 

and with probability greater than 1 - /?, the selected message belongs to the typical set contain- 
ing M(VT) elements satisfying inequality 

(1 - p)‘pvf-X) < M(VT) < 2VT(H+X). (7) 
Comparing the upper bound in (6) and the lower bound in (‘7), we get the necessary condition 

V(H-X) < T(C+ ) f Q or encoding, which means V cannot exceed C/H. In order to get sufficient 
conditions, we first estimate the expected size of the possible message set for sufficiently large 
message length N. With probability 1 - ,B the size is M(N), and with probability p the size 
is nN. Using two different code lengths, Tl and Tz = Tl + T3 for the typical messages and for 
untypical messages, respectively, the sufficient time values are with arbitrarily selected small 6, 
Tl = N(H/C + 6) and T3 = N((log, n)/C + b). So the expected time sufficient to transmit 
messages of length N is T = Tl + pT3 = N(H/C + E), where E can be arbitrarily small when 
N is large. This means that for any y > 0 operating the source at rate V = C/H - y, then 
it is possible to encode the messages of the source in such a way as to transmit them through 
the channel without any loss. This is the proof of Shannon’s fundamental theorem for noiseless 
channel and ergodic sources. 

From this introductory mathematical reasoning we get the basic limits and possibilities of 
the elementary communication, but it does not give direct help in solving real communicational 
problems. 

Entropy formula (2) is invariant under the permutation of the probabilities, and does not 
depend on the possible set of the message symbols. All this information should be available 
in some form at the encoding and decoding processors. Without computational and storage 
capacities, we were not able to use the new digital channels. 

The utilization of high speed (large capacity) channels by low bit/symbol sources needs very 
high symbol rate and, as suggested from the proof of the fundamental theorem, encoding of blocks 
of very long messages. Instead of collecting messages in time, we can collect them in space, which 
means the multiplexing of messages coming from a large number of sources. 

The capacity of high speed digital channels is growing a bit faster than predicted; today 40 
Gigabit/set is the highest capacity of a wide area network in the civil sphere; it connects two 
supercomputing centers of two universities in the U.S. The predicted available channel capacity 
in 2008 will be 1 Terabit/sec, which is 10 l2 bit/set. This allows multiplexing simultaneous typing 
of ten billion (= lOlo) persons using typical keyboards of 128 keys at a 13 keystrokes/set rate. 

The mathematical model for the random behavior of the source is the probability distribution. 
A very important practical condition for the approximating distribution is that its entropy should 
be greater than the entropy of the real source. For example, assuming identical distribution for 
selecting a message symbol, among the possible joint distributions of selecting a sequence of 
symbols, the independent distribution has the highest entropy. In good models, the typical set 
of very long real messages should be a subset of the typical long sequences of the approximating 
distribution. 

We arrive at the second mathematical problem if we investigate very long and very complex 
messages as they are, without any distribution of the message selection, and from the possi- 
bility of compression. This leads to the realm of algorithms and to another notion of entropy, 
Kolmogorov’s algorithmic entropy, or the Kolmogorov complexity. 
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The theory of Kolmogorov complexity has its roots in the beginning of the Sixties after the 
works of Kolmogorov, Solomonov, and Chaitin. The three mathematicians independently of each 
other and nearly the same time found the fundamental theorem of the theory. The origin of 
Kolmogorov complexity is the paper [4] of Kolmogorov. A good summary can be found in the 

book [5] and in the special edition (61 of The Computer Journal. Kolmogorov’s original question 
was: what is the length of the shortest program that prints the book War and Peace? 

The measure of compressibility is related intuitively to short codes. Without loss of generality, 
we suppose that the codes are finite binary words. Moreover, sorting binary words by lengths 
and by their binary value, we have a one-to-one mapping from the set of finite binary words (0) 
onto the set of nonnegative integers (N), and therefore, we do not differentiate the rzth binary 
word and the integer n. 

Let us consider decoding function f : N ---) N. Without loss of generality we suppose that all 
the decoding functions we use in the sequel are computable functions (partial recursive functions). 

DEFINITION 1. The complexity of z E N relative to the partial recursive function f ii 

Cfbc) = mW(p) I f(p) = x) 

if such p exists, and C,(x) = 00 otherwise. 

FUNDAMENTAL THEOREM. (See Kolmogorov, Soiomonoff, Chaitin.) There exists optimal partial 
recursive function fo(p), such that for every partial recursive function f(p) 

Cf, (xl 5 Cf (x) + kf, 

for all x E N, where kf depends only on f. 

(The proof uses a universal U : N x N + N partial recursive function, for which there exists 
for every f(p) partial recursive function nf, such that U(nf ,p) = f(p). From an appropriate 
encoding function of the ordered pair (nf , p) we can construct fo. The optimal function minimizes 
the sum of the length of the decoding program and the length of the code.) 

Clearly, the complexities relative to optimal functions differ only in an additive constant. So 
we agreed to f?x from now on the optimal function fo. 

DEFINITION 2. THE KOLMOGOROV COMPLEXITY. The Kolmogorov complexity of z E N, 
denoted by I(z), is defined as 

e) = Cf, (x) * 

The function I(x) is an objective measure of compressibility, but it has an important, drawback: 
it is not computable. 

In spite of that, I(x) has two elementary properties which are very useful in analyzing its 
properties and in its application. 

PROPERTY 1. According to the Fundamental Theorem and formula (8)! Cf (xj gives an upper 
estimate of I(x) up to an additive constant. 

Application: taking f(z) = x proves I(z) < I(x) + kl. 

PROPERTY 2. The Kolmogorov complexity of a given number x is the length of an existing and 
unique number; that is, I(x) = k means that for a unique p, fo(p) = 3: and l(p) = k. 

Application: there are less than 2” numbers of less than k Kolmogorov complexity, ,just because 
there are no more code words shorter than k. 

From the many special versions of Kolmogorov complexity, one with the greatest importance 
is the prefix Kolmogorov complexity. We get the prefix complexity if we use only prefix-free 
decoders. The fundamental theorem holds for prefix-free decoders, and we agreed to fix from 
now on the go optimal prefix-free decoder. The prefix-free Kolmogorov complexity is defined by 

K(x) = Gmw 
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The next important concept is the conditional Kolmogorov complexity. Intuitively, the con- 
ditional complexity answers the question: what is the length of the shortest program that can 
compute x from y? First, similarly to the unconditional complexity, we define the conditional 
complexity by a given partial recursive function f : N x N + N. 

DEFINITION 3. The conditional complexity of z given y according to function f is C,(z ( 2) = 
min(l(p) ) f(p, y) = s), if such p exists and 00 otherwise. 

THEOREM 2. FUNDAMENTAL THEOREM. There exists an optimal partial recursive function 

fob, Y) (prefix-free in P g0h Y)) such that for any partial recursive functions f(p, y) CfO (z ( y) 5 
Cf (x ( y) + k,, for all x, y where kf depends only on f. 

Fixing from now on the optimal functions fs(p, y) and go@, y), the conditional Kolmogorov 
complexity is defined by 

1(x I Y) = Cfo(X I Y)1 

and for prefix-free complexity 

K(x I Y) = C& I Y). 

All the properties of the conditional Kolmogorov complexity are similar to the unconditional 
complexity. 

An important advantage of the conditional complexity is in the possibility to measure the 
conditional complexity of an element given the set containing it. The set, naturally, should be 
finite or should have finite representation. 

Let A be a finite set of m finite binary words, and let its finite representation be the finite 
binary word a. Then for x E A, we can define the conditional complexities of x given the set 
A as 1(x 1 A) = 1(x 1 a) and K(a: 1 A) = K(s ( a). F’r om Property 2 we easily get that at 
most 2-km elements of A can have smaller conditional complexity than log, m - k and for the 
prefix-free complexity 2-k-1m elements of A can have smaller complexity than log, m - k. (The 
elements of A with 1(x 1 A) 2 log2 m - A are called by Kolmogorov A-random elements of A.) 

An important system of finite sets is defined by any effectively enumerable set B c N x N, 
where the set B, with parameter a is B, = (x 1 (x, a) E B), and we suppose that the number of 
elements in B, is m, < 03. 

LEMMA 1. Under these conditions 

and 

for all a and x E B,, where ks and cn depends only on the enumeration function of B. 

The practical meaning of the lemma is that given B,, there is no better way to encode its 
elements than using the uniform code of length m,, and this encoding is computable. 

The world of the large databases and automated information systems suggests the feeling that 
computers produce new information. It is natural to ask, what is the information quantity we can 
retrieve from a database? What does it mean, that from a database that stores the father-son 
relationships we can retrieve the name of the grandfather of a given person? Do we really gain 
information? The conditional Kolmogorov complexity gives the exact answer: the information 
quantity which we can retrieve from a database cannot exceed the information quantity we entered 
to the database. We state it formally as the law of information conservation (nongrowth), or 
information balance. 

In order to give the exact mathematical formulation, let y denote the data in the database 
(including all th e program codes for managing, accessing, processing, retrieving data), q denote 
the prefix-free encoding of the query, and v the answer to the query from the database. Since the 
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answer is a computable function f(q, y) = u, using the inequality of the fundamental theorem we 

get 
K(wlY)=C,,(~(y)~Cj(“lY)+nji~(~)+~f~ (9) 

In practice, inequality (9) means that the information quantity of the new information in 
the answer message produced from a database for the query message q under the condition 
that the content of the database is given cannot be greater than the information quantity of 
the query message. In other words, this means that inside the automated information system’s 
database there is no information source. It is important to note that the real gain in getting the 
answer v = f(q, y) is not its conditional information quantity, but rather the algorithmic work 
of evaluation of function f that typically is impossible for human thinking. The other important 
value of answer message w for the destination is in the fact that the destination typically has only 
partial knowledge about the content of the database, so the conditional complexity of II given 
the knowledge of the destination can be much greater than the conditional complexity given the 
content of the database. 

Investigation of the effect of the growth of the database on query and answer complexity is 
beyond the scope of the paper. 

After this short introduction to Kolmogorov complexity it is natural to raise t.he question what 
is the relationship between the two notions of information quantity. The essence of the answer is 
that the larger the messages are, the closer the two entropy quantities are to each other. 

For very large random sequences (messages) coming from an ergodic source the selection falls 
with probability greater than 1 - /3 into a set of typical sequences, B(N), and the probability 
distribution of the selection from B(N) converges to the uniform distribution. (i? can he taken 
small with the length of the message becoming large.) Inequalities (4) and (5) say that for 
arbitrarily small p, p the number of typical sequences, M(N), satisfies for N large enough the 
inequality (1 - p)2 N(H--P) < M(N) < p(H+P). 

Using the notations for formula (3), let us choose an arbitrary prefix-free binary encoding of 
the symbols xl, 52,. . ,x,, and denote by y(Z) the encoding of the sequence 2 = x,,Lc,, x,, 
Whenever the membership of B(N) can be checked by a computable st&k.&al predi&,e, the 
system of sets of binary strings AN = (y(2) 1 Z E B(N)) satisfies the condition of Lemma 1. 
From Lemma 1, we get for any y E AN and N large that 

N(H - p) + log,(l - p) < K(y / AN) < N(H + p) -t- 21og, N(H A i~i i- Icy (10) 

The lower estimate in (10) holds only on the overwhelming majority of AN. 
Dividing the sides of inequality (10) by N, we get 

H - p1 < I+K(y j AN) < H + ~2, (11) 

which proves that for large objects the two entropy measures give the same value in limit. 
Summarizing, we conclude in both mathematical theories that in our e#ort to solve efficiently 

the encoding of messages and knowledge, the best approach is to find the possible smallest set that 
covers all the possible and typical situations we should face to in the future, and there is no better 
way for encoding the elements than using the uniform length encoding. In. both ways ‘we arrive at 
the same limitations and possibilities of computable encodings. 

A strong suggestion comes from the discussion above that there must be some connection be- 
tween randomness and algorithms. Paradoxically, the randomness of infinite sequences can be 
characterized in algorithmic way. It is worth mentioning that the last paper [7] of Kolmogorov 
(with Uspenskii) gives an exciting summary on the strong relationship of algorithms and ran- 
domness where Kolmogorov complexity plays a central role. 

In the case of finite objects the situation is quite different. Imagine a random string of zeroes 
and ones coming from the experiment of 1000 tossings of a fair coin. Start replacing the ones in 
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Figure 10 

Figure 11 

the string with zero in some random order. Finally, we get the nonrandom string of 1000 zeroes. 
Is it possible to say when we crossed the border between random and nonrandom strings? 

For a finite string from a finite set the randomness cannot be defined, but following Kol- 
mogorov’s approach from [7], we can define the defect of the randomness as the difference of the 
base 2 logarithm of the number of elements of the set and the conditional Kolmogorov complexity 
of the element given the set. This is the motivation of A-randomness mentioned before Lemma 1. 

The typical elements of a set are those which are A-random for some small A. The full 
characterization of a large set consists of the description of the set of its typical elements via 
some computable characterization and from the individual encoding of typical elements. This 
suggests to avoid the use of special shorter encoding for simpler elements and to treat the few 
possible very complex elements as exceptions. 

For the visual demonstration of the above principle let us take the black and white pictures 
of uniformly l/2 gray level, that is, where half of the pixels are colored black, and the others 
white. (These pictures are visual representations of fuzzy sets with constant l/2 membership 
function,) Figure 10 shows the chessboard or checkered coloring, and the color of the left upper 
pixel uniquely determines the picture. Figure 11 is a coloring generated by a random number 
generator. (I am still using the first printing I got in 1990. The darker strip on the left side is 
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Figure 13. 

the effect of error messages of the laser printer.) For those who do not know the generator, it is 

impossible to make a dense encoding of that picture. Clearly, it is a typical element, of our set of 
pictures. 

Thanks to chance, when I was preparing a presentation about algorithmic definition of fuzziness 
(see [S]) I put the transparency on the printing of the pictures. The interference of checkered 
colorings as shown magnified in Figure 12 produces a picture of squared symmetric darker and 
lighter areas. It is a nice Moire pattern. 

The self-interference of the random coloring was surprising. As Figure 13 shows, concentric cir- 
cles are observable around a light center. The spectacle is more impressive while the transparency 
is moved and rotated over the printing. Reducing the size of the transparency, the interference 
lines form either radiated lines (no rotation) or spiral curves winding to the light center. See 
Figures 14 and 15. 

The explanation of this phenomenon is in the strong regularity of randomness: in a random 
coloring every colored pattern of a small number of pixels should occur with relative frequency 
close to its probability. From this, it follows that there must be many black patterns, such that 
they fit the invariant curves of the transformation of the plane that corresponds to the placement 
of the transparency on top of the printing. These patterns tend to become longer when placed 
on each other along the invariant curves. We can visually observe it within some area around 
the fixed point of the transformation. 
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Figure 14 

Figure 15 

Another more formal explanation is that the dispersion of the numbers of black pixels along 
the invariant curves are greater than along any other area when we put the transparency on the 
printing. Placing the transparency of a line of independently colored black and white pixels shifted 
by Ic pixels over the original line, the dispersion of the number of black pixels in n consecutive 
pixels is np(2-p)(l-p)2+2(n-Ic)p(l --P)~, where the black color is chosen with probability p. 
In the case of placing independent colorings on each other, the dispersion of the number of black 
pixels in the same configuration is np(2 - p)(l - P)~. 

Kolmogorov complexity has a strong connection to inductive inference, to the general theorems 
of machine learning, and to computable statistical inference. The basics of this theory were 
developed by Solomonoff [8] and Levin [9]. 

The main point is the proposal for a universal a priori probability distribution on the set of 
nonnegative integers. The construction of the universal a priori distribution uses an analogy 
with Shannon entropy. The information quantity of a probability value p in the Shannon entropy 
is - log, p. The information quantity of x assigned by the prefix Kolmogorov complexity is K(z). 
Using the analogy, the universal a priori distribution (the Solomonoff-Levin distribution) is 
defined by 

x, zz 2-K@). (12) 
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Since the system of code-words used by the optimal function go(p) is prefix-free it fOhwS from 
the Kraft inequality that 

c ?rx < 1. 
XEN 

Unfortunately, the distribution 1~~ is not full and not computable. But it is semicomputable 
from below, and it multiplicatively dominates every distribution which is semicomputable from 
below. (A real valued function f is semicomputable from below iff there exists a recursive function 
g(x, Ic) with rational values, nondecreasing in k, with limk,, g(x, Ic) = f(x).) 

The dominating property of 7rr, is the following: for any measure m, which is semicomputable 
from below there exists a constant c such that mZ < c7r, for all x. The intuitive meaning of 
the dominating property of nTI is that it is the possible most uniform probability distribution 
on the nonnegative integers. So in Bayesian inference if there is no information on a priori 
distribution on the countable set of hypotheses the best choice is the universal a prio7‘1. This is 
the generalization of Bayes’s principle to infinite countable hypotheses and algorithmic i machine) 
inference. See detailed discussion in [lo]. 

6. CONCLUSION 

All the above mathematical models give laws of possibilities and limitations of our artificial, 
digitized communication technology. These laws are typically valid in limit, and as many ideal 
concepts of mathematics like infinity, continuity, probability, and universal algorithms. they ap- 
proximate finite systems from the infinity. Now, the new achievements of information technologies 
have enlarged the possibility to solve very large finite problems. The effects of the above mathe- 
matical lows are getting stronger on these large problems, but they do not absolve us of searching 
for good approximating, compromised finite solutions. It is important to note that after messages 
or knowledge have been encoded to signals, they are not random at all; they were random before 
or during the selection or observation. What is still random in this new worldwide networked 
signal collection is the noise in it. Paradoxically, programs are the most significant, source of 
noise that may corrupt the stored data. The main task, responsibility, and mission of comput- 
ing professionals (or forming the term informaticians from the corresponding Hungarian term 
“informatikusok”) are the reduction of this noise. 

It was my definite intention to give a central role in my paper to randomness. Communication 
has its role only in random, uncertain situations. We can trust in randomness as the essential 
property of nature and life, and therefore, human communication will remain among human 
beings. 

I close my paper with the words of Kolmogorov about randomness: 

‘ln everyday language we call random those phenomena where we cannot find a regular- 
ity allowing us to predict precisely their results. Generally speaking, there is no ground 
to believe that random phenomena should possess any definite probability. Therefore, 
we should distinguish between randomness proper (as absence of any regularity) and 
stochastic randomness (which is the subject of probability theoy). There emerges the 
problem of finding reasons for the applicability of the mathematical theory of probability 
to the real world. ” 
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