
jprince
http://www.therationaledge.com/splashpage_dec.html

jprince
Copyright Rational Software 2001 



 Issue 
Highlights:

●     Cover Story: 
Trends in UML 
and e-
Development

●     News: More 
Ways to Achieve 
Greater Speed, 
Higher Quality 
with Rational 
Suite 2001

●     Rationally 
Speaking: 
Rational 
Customers Talk 
about Improving 

Editor's Notes

Welcome to the premier issue of The Rational Edge, 
our new monthly, online magazine for the Rational 
community. Whether you are a manager of a 
development team, an individual contributor, or the 
CIO of a growing software company, I think you will 
find something new and engaging in these Web 
pages to expand your understanding of e-
development. 

If you find yourself asking, "What exactly is e-
development?" then you've come to the right 
place. Over the coming months, The Rational Edge 
will offer insight and straightforward explanations. 
You'll see that e-development embraces not only 
the wide range of software being designed for Web-
based businesses. It also includes the software for 
large and small e-devices which continue to 
transform our daily lives; it includes all the software 
and e-infrastructure that runs the Internet itself. 
And e-development integrates all these activities as 
today's most challenging realm for the software 
professional, where the demand for higher quality 
products is just as great as the demand to get these 
products to market at lightning speed. 

Are you a Code Warrior? If you've already found 
your place in the wild world of e-development, then 
you're looking for code samples, tips and tricks, the 
fast track to guru status with the latest technology 
from Rational and its partners. Please stay tuned! 
This inaugural issue will serve as a guide to the 
various concepts, products, and services that define 
Rational's mission; by the January issue, we will 
include more "how-to" content for you. 

Rational's mission is to ensure the success of 
customers who depend on developing or deploying 
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the Economics of 
Software 
Development

software. To support that goal, The Rational Edge 
staff will collect and present the best and brightest 
ideas from inside and outside Rational Software. If 
you have articles -- or ideas for articles - that you'd 
like to submit, click on "Submit an Article" at the 
right of this page. If you have comments you'd like 
to share about the contents of this or any upcoming 
issue of The Rational Edge, please email me directly 
at mperrow@rational.com. I look forward to hearing 
from you. 

Sincerely, 

Mike Perrow
Editor 
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Trends in UML and e-Development

by Jim Rumbaugh
Rational Methodologist

The Unified Modeling Language (UML) has gained broad industry 
acceptance as the industry-standard language for specifying, visualizing, 
constructing, and documenting the artifacts of software systems. It 
simplifies the complex process of software design, making a "blueprint" for 
construction. The UML definition was led by Rational Software's industry-
leading methodologists, Grady Booch, Ivar Jacobson, and Jim Rumbaugh. 
In the following article, Jim Rumbaugh offers his opinions on the new 
world of e-development, how its demands are affecting new requirements 
for the UML, and how these requirements are likely to be met. 

The Brave New World

The brave new e-world has turned previous 
assumptions on their head, and old 
approaches to business or software will no 
longer succeed. Recent online startups are 
worth more than venerable corporations that 
pound steel. Traditional businesses such as 
banks and stockbrokers are scrambling to go 
online to avoid the loss of their customers to 
new competitors. Music publishers are 
fighting free electronic distribution of their 
products. Even the Supreme Court publishes 
decisions on the Web. 

The e-world is now distributed, concurrent, 
and connected. Distributed, because 
information is all over the world, in many 

different places. The day of the monolithic central machine is long over. 
Concurrent, because activity is decentralized and simultaneous. Neither 
business decision making nor software programs can live with a single 
thread of control. Connected, because an action in one place can have 
profound effects everywhere. A virus maker in the Philippines can bring 
down half of the servers on the planet. The simple computer systems, 
languages, and models of the past are inadequate for today's needs. 

There are many drivers of this new world. Ten years ago, the Internet was 
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considered a research toy by most people in industry; now every pizza 
shop has a Web site (at least in California). More and more companies are 
entrusting critical operations to enterprise distributed object systems. 
These object-oriented systems contain distributed servers and databases 
that are connected to support highly concurrent business operations. More 
and more industries must interoperate in real time just to do business. 
Banks, airlines, and telephone companies cannot operate without massive 
information exchange among all the players in the field. Finally, real-time 
devices are now ubiquitous -- in cars, appliances, consumer electronics, 
buildings. Real-time issues are no longer the domain of a specialized few, 
but the concerns of everyone. 

The new e-world brings a lot of power, but that power comes at a high 
development cost. Concurrent, distributed systems have extremely 
complex interactions that can be hard to understand, let alone predict. 
Vague specifications are a major problem. In the past, the specifications 
for a monolithic system only affected the single system, and if it didn't 
work exactly as specified, nobody really cared. But now a business system 
may have to interoperate with another system halfway around the world; 
both are written by people who have never heard of each other. A failure 
to follow specifications can introduce errors that propagate around the 
world. You can't take a snapshot of a distributed system for backup or 
reboot it if part of it fails. The entire system must keep going in spite of 
failures, errors, or data corruption of some of its parts. Most systems are 
now real-time systems. Timing concerns matter a great deal to customers 
and partners. On top of everything else, performance of complex systems 
is often nonlinear and cannot be predicted by simple extrapolation. 

What can you do about it? You can use the same kinds of approaches 
available to engineers in every field: modeling before construction, 
architecture based on experience, a process based on best practices, 
building with reusable components, and the use of tools to leverage the 
developer's time and skill. Making these capabilities available to software 
developers is Rational's business. 

The UML in the e-World



Well-suited to the new demands of the brave 
new e-world, the Unified Modeling Language 
(UML) was designed to be distributed, 
concurrent, and connected. It is based on 
objects. Objects are distributed -- each one 
maintains its own state, distinct from all 
others. Objects are concurrent -- each one 
can potentially execute in parallel with all 
others. Objects are connected -- each one 
can send messages to others through a Web 
of links. UML is not tied to a single platform 
or programming language; therefore it is well 
suited to bridge networks of different 
systems. UML was designed with extensibility 
in mind, so it can adapt to new issues as they 
arise. 

Development of UML began in 1995 with the 
combining of the Booch and OMT methods at Rational. We at Rational 
chose to make it public, and a cooperative effort by a score of companies 
led to a specification adopted by the Object Management Group (OMG) in 
1997. This was UML version 1.1. Rational then gave rights to the UML to 
the OMG so that UML could serve as a publicly available standard. Since 
then, an OMG committee with representatives from various companies has 
worked on clarifying and fixing bugs in the original specification, releasing 
one update in 1998 (version 1.3) with another one expected by the end of 
2000 (version 1.4). Rational experts have been active participants in the 
committee process. The update process cleaned up many internal 
problems with the UML metamodel, clarified ambiguities in the original 
document, improved naming consistency, and fixed a number of features 
needed in specialized areas. But by and large, most average users will not 
notice many differences. Probably the biggest change in UML 1.3 was a 
reformulation of use case relationships, but even that did not represent a 
very big change. The most important addition in UML 1.4 will be the 
guidelines for writing profiles -- tailorings of UML for particular application 
domains. There are lots of specific detailed changes, of course, but overall 
UML is still the same language with the same capabilities. 

UML Extension Efforts by Rational

In parallel with the cleanup work on the UML document, there have been a 
number of initiatives to extend UML to new application areas, including 
Web systems and databases. Some of these efforts have been carried out 
as OMG initiatives, while others have been done by individual companies, 
such as Rational. 

To keep up with the rapidly changing e-business world, almost all 
companies need to develop Web systems. Work by Jim Conallen and 
others at Rational has provided a way to model Web systems using UML 
and Rational Rose. This capability is provided as a UML profile that enables 
modelers to represent the various kinds of elements that compose a Web 
application -- client pages, server pages, forms, frames, and so on. The 
profile contains a set of stereotypes for different elements and their 
relationships. This approach is described in Conallen's book, Building Web 



 

Applications with UML (Addison Wesley Longman, 2000). Recent versions 
of Rational Rose contain this profile. 

Almost all e-business applications need databases. Coordinating 
programming languages and databases has long been a thorny problem in 
system development, because each used a different way to declare data 
structure, leading to subtle inconsistencies and difficulties in moving 
information among programs and databases. By using a single UML model 
underlying both programming language code and database schemas, 
many of these problems can be avoided. Rational has developed a 
database modeling profile for UML that is supported by versions of 
Rational Rose. This profile allows a developer to construct a logical model 
of information and a model of the physical database tables derived from 
the information. Because there are two models, the database developer 
can tweak the database structure to optimize it -- an important issue with 
databases. Because the two models are linked together, changes in one 
model can be reflected in the other, avoiding the danger of 
inconsistencies. 

OMG Initiatives

OMG initiatives occur through an RFP (request for proposal) process. An 
OMG task force identifies a need and issues an RFP, stating the 
requirements and calling for member companies to propose solutions. 
Several companies normally band together to submit a joint proposal. The 
OMG encourages submitters of separate proposals to work together to 
merge their proposals rather than engaging in shoot-outs. This forces 
compromise, which often leads to some bloating of content, but which also 
promotes universal adoption, a desirable goal for any standard. For these 
reasons, the UML is messier than it might have been had it conformed 
strictly to the views of a single company, but it is more comprehensive 
and universally adopted. 

Several major OMG initiatives include:

Real-time modeling -- One major initiative has been adding real-time 
modeling capability to UML, an effort led by Bran Selic of Rational. 
Because of its wide scope, this work has been broken into several smaller 
RFPs. The first deals with time, scheduling, and performance modeling. An 
initial proposal has recently been submitted by a consortium containing all 
the leading players in the real-time modeling area (so it is likely to be 
accepted). Each initial submission undergoes feedback from the OMG 
membership and a second pass, so this effort will be completed next year. 
When that is done, the real-time submitters will take up the second part of 
the problem: modeling reliability and fault tolerance. Most likely, the same 
team of submitters will participate in both proposals. 

One important aspect of real-time systems is their architectural structure. 
In 1999, Bran Selic and I developed a UML profile called UML-RT that 
allows systems to be built hierarchically from encapsulated modules 
(capsules) with well-defined interfaces (ports) and explicit communications 
paths (connectors). Since then, we have realized that these architectural 
concepts are useful for most kinds of systems. At the same time, 



preparation for the next major update of UML (version 2.0) has shown 
that a number of other experts and modeling languages have very similar 
concepts. For example, the telecom language SDL has similar concepts, as 
do some hardware description languages. Extending UML to include 
architectural modeling constructs will therefore be part of the overall UML 
extension effort and will not be restricted to the real-time group. 

Defined execution model -- Perhaps the biggest hole in the original UML 
specification was the lack of an execution model. The static structure of 
UML models was precisely defined, but the run-time consequences of 
these models were vaguely described in words. Omitting the precise 
specification of run-time behavior was a correct decision originally, 
because our focus was to get the UML constructs defined and published; 
however, one of the first RFPs for UML extensions was to define the 
actions supported by UML and their run-time semantics. Bran Selic and I 
have participated in this effort for Rational, working with people from 
companies engaged in real-time modeling, action languages, and 
telecommunications. All of the participants have joined as a single team. 
The first version of this proposal has just been submitted. It contains an 
execution model that supports highly concurrent actions without the 
overspecification of control necessary in major programming languages. 
The intent of this proposal is not to invent yet another programming 
language, but to serve as the semantic base on top of which the effect of 
programming languages can be precisely defined in UML. 

Enterprise computing -- Several initiatives deal with enterprise computing. 
There are RFPs outstanding on Enterprise Distributed Object Computing 
(EDOC) and Enterprise Application Integration (EAI). There is considerable 
overlap among the RFPs (a side effect of OMG democracy) but the 
submitters are almost the same for both RFPs, and they are taking steps 
to coordinate the two proposals. These initiatives will define profiles for 
specifying how to construct large distributed, concurrent, event-driven 
business systems. Wojtek Kozaczynski is spearheading this work for 
Rational. 

Development process -- Another initiative deals with a framework for 
specifying software development processes. This would provide a standard 
way to specify a process, such as RUP (Rational Unified Process). The 
proponents claim that this would allow organizations using multiple 
processes to compare them easily. I am skeptical of the value of this -- I 
think that an organization should pick one process and stick with it -- but, 
in any case, it is important that RUP be expressible in such a framework, 
so Rational is participating in this initiative. Philippe Kruchten is the 
Rational lead on this work. 

Other initiatives -- There are also a number of related initiatives, such as a 
standard for data warehousing, CORBA maps to UML, and the XMI format 
for the exchange of UML models in text format. The various application 
domain interest groups are building profiles based on UML, but I won't 
discuss them because they represent uses of UML, rather than changes to 
it. 

UML 2.0 Work



As a standard, UML is similar in many ways to a programming language. 
As people use the language, they discover new features that they want to 
add. It is undesirable to change a language too often, however; users 
need time to absorb a version of the language and get proficient with it. 
Also, it takes time to develop tools (such as Rational Rose) to support a 
language, and changing the language too rapidly risks losing tool support. 
Nevertheless, new needs do arise and languages do need to evolve to 
support them. I believe that a major upgrade approximately every five 
years is appropriate for languages, including UML. Some UML developers 
have argued for more rapid change, but I believe that they have not 
adequately weighed the benefits of new features against the costs of 
instability. In any case, a committee-based political process such as OMG's 
(or any standards organization) contains a lot of inertia, so the evolution 
of UML is going to take time no matter what people want. 

Planning for a new version of UML has begun. The OMG solicited input on 
proposed changes, and almost 30 responses were received. Some 
responses focused on a particular area, and others contained long laundry 
lists of new features. The responses were condensed and prioritized to 
obtain a shorter list of changes that could be completed in a reasonable 
time. The result was a set of RFPs that OMG issued in September 2000: 

●     UML infrastructure -- Reorganize the internal structure of the UML 
metamodel to be more modular, to better support extensibility, and 
to better align with other OMG standards, especially the meta-
object facility (MOF) and the XMI exchange format. This does not 
directly support end users, but it simplifies changing the language 
and writing profiles, which should be cleaner and more usable as a 
result. 

●     OCL -- The Object Constraint Language (OCL) is a declarative text 
language for writing constraints. It is used in the UML specification 
to express the rules for well-formed models. It needs a metamodel 
of its own (in UML) and additional features to support recent 
changes to UML. This is a tightly focused initiative and will not affect 
most end users directly. 

●     UML superstructure -- This is the user-visible stuff. Among the 
major areas of work are modeling of architectural structure, 
component-based development, relaxation of restrictions on the 
structure of activity graphs, and adjustments to some of the UML 
relationships. Some new notation will probably become available to 
users. These changes should expand the usability of UML in stages 
of the development process where it is currently a bit weak. 

●     Diagram exchange format -- The original UML specification defined 
a metamodel for the semantic model but not for diagram layout. 
Now the diagram format is needed to permit exchange of diagrams 
among tools from different vendors. I am hopeful (albeit somewhat 
doubtful) that this effort will involve only actual tool vendors rather 
than dilettantes who have never written any tool code. This RFP will 
be issued later than the others to permit a staggered start.

As UML 2.0 changes are made, an important overriding requirement will 



be to maintain compatibility with existing UML models as much as 
possible. Developers and their companies have made a large investment in 
their models and don't want to have to change them. In addition, 
proliferation of new concepts should be discouraged wherever existing 
concepts can be extended to cover the new needs. There will be an effort 
to purge unused concepts, however, especially stereotypes with names 
but no semantics. (Hint: If the definition is one or two sentences with no 
structure or semantics, it is probably one of these.) 

The work will proceed in two stages with intermediate feedback, with a 
target completion date of January 2002. I fully expect UML 2.0 to slip to 
the end of the year. (No, I'm not afraid to make predictions in print. Check 
back in two years to see if I was correct.) I expect a number of multi-
company consortia to work on various areas of the problem. There may be 
several proposals to some of the RFPs, but I expect the submitters to work 
amicably to merge their proposals in the second stage. The biggest 
problem will be to restrict feature bloat in the language, which is always 
difficult in a political process. 

Outlook

UML is a usable and useful language today, 
and you should not wait to begin using it 
just because it will be extended two years 
from now. Most of UML will remain 
unchanged, and most of its extensions will 
broaden the scope of the language rather 
than alter existing semantics. Like any 
language, including the one in which this 
article is written, UML is a living language 
that evolves to meet changing needs. Its 
broad acceptance, coupled with its capacity for enhancement, should give 
any potential UML user the confidence to make the investment in learning 
it. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 
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Next-Generation Software Economics

by Walker Royce
Vice President and General Manager
Strategic Services
Rational Software

Software engineering is dominated by 
intellectual activities focused on solving 
problems with immense complexity and 
numerous unknowns in competing 
perspectives. The early software approaches of 
the 1960s and 1970s can best be described as 
craftsmanship, with each project using a 
custom process and custom tools. In the 
1980s and 1990s, the software industry 
matured and transitioned to more of an 
engineering discipline. However, most software 
projects in this era were still primarily research-
intensive, dominated by human creativity and 
diseconomies of scale. The next generation of 
software processes is driving toward a more 
production-intensive approach dominated by 
automation and economies of scale. Next-
generation software economics are already 

being achieved by some advanced software organizations. Many of the 
techniques, processes, and methods described in a modern process 
framework have been practiced for several years. However, a mature, 
modern process is nowhere near the state of the practice for the average 
software organization. 

This article introduces several provocative hypotheses about the future of 
software economics. In 1987 Barry Boehm published a one-page 
description of the "Industrial Software Metrics Top 10 List." This 
assessment remains a good objective framework for discussing the 
predominant economic trends of software development. Although many of 
the metrics are gross generalizations, they accurately describe some of 
the fundamental economic relationships that resulted from the 
conventional software process practiced over the past 30 years. 
Quotations from Boehm's list are presented in italics in the paragraphs 
below. After each quotation I summarize some of the important economic 
results of the conventional process and speculate on how a modern 
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software management framework, or iterative process like the Rational 
Unified Process (RUP), can improve these performance benchmarks. 
Although there are not enough project data to validate my assertions, I 
believe that these expected changes provide a good description of trends a 
software organization should look for in making the transition to a modern 
process. 

1.  Finding and fixing a software problem after delivery costs 100 times 
more than finding and fixing the problem in early design phases. 

This metric dominates the rationale for most software process 
improvement. Modern processes, component-based development 
technologies, and architecture frameworks are explicitly targeted at 
improving this relationship. An architecture-first approach will likely 
yield ten-fold to hundred-fold improvements in the resolution of 
architectural errors. Consequently, a modern process places a huge 
premium on early architecture insight and risk-confronting 
activities. 

2.  You can compress software development schedules 25% of 
nominal, but no more. 

An N% reduction in schedule would require an M% increase in 
personnel resources (assuming that other parameters remain 
fixed). Any increase in people requires more management 
overhead. In general, the limit of flexibility in this overhead, along 
with scheduling concurrent activities, conserving sequential 
activities, and other resource constraints, is about 25%. This metric 
should remain valid for the engineering stage of the life cycle, 
where the intellectual content of the system is evolved. However, if 
the engineering stage is successful at achieving a consistent 
baseline, including architecture, construction plans, and feature 
scope, schedule compression in the production stage should be 
more flexible. Whether a line-of-business organization is amortizing 
the engineering stage across multiple projects, or a project 
organization is amortizing the engineering stage across multiple 
increments, there should be much more opportunity for concurrent 
development. 

3.  For every $1 you spend on development, you will spend $2 on 
maintenance. 

Anyone working in the software industry over the past 10 to 20 
years knows that most of the software in operation is considered to 
be difficult to maintain. A better way to measure this ratio would be 
the productivity rates between development and maintenance. One 
interesting aspect of iterative development is that the line between 
development and maintenance has become much fuzzier. There is 
no doubt that a mature iterative process and a good architecture 
can reduce scrap and rework levels considerably. Given the overall 
homogenization of development and maintenance activities, my 
guess is that this metric should change to a one-for-one 



 

relationship, where development productivity will be similar to 
maintenance productivity. 

4.  Software development and maintenance costs are primarily a 
function of the number of source lines of code. 

This metric is primarily due to the predominance of custom software 
development, lack of commercial components, and lack of reuse 
inherent in the era of the conventional process, in which the size of 
the product was the primary cost driver and the fundamental unit of 
size was a line of code. Commercial components, reuse, and 
automatic code generators can seriously pollute the meaning of a 
source line of code. Construction costs will still be driven by the 
complexity of the bill of materials. More components, more types of 
components, more sources of components, and more custom 
components will result in more integration labor and drive up costs. 
Fewer components, fewer types, fewer sources, and more industrial-
strength tooling will drive down costs. Next-generation cost models 
should become less sensitive to the number of source lines and 
more sensitive to the discrete numbers of components and their 
ease of integration. 

5.  Variations among people account for the biggest differences in 
software productivity. 

This is certainly a key piece of 
conventional wisdom: Hire good people. 
This metric is also a subject of overhype 
and underhype. When you don't know 
objectively why you succeeded or failed, 
the obvious scapegoat is the quality of 
the people. It is subjective and difficult to 
challenge. In any engineering venture 
where intellectual property is the real 
product, the dominant productivity 
factors will be personnel skills, teamwork, 
and motivations. To the extent possible, a modern process 
emphasizes the need for high-leverage people in the engineering 
stage, when the team is relatively small. 

6.  The overall ratio of software to hardware costs is still growing. In 
1955 it was 15:85; in 1985, 85:15. 

The need for software, its breadth of applications, and its 
complexity continue to grow almost without limits. The main impact 
of this metric on software economics is that hardware continues to 
get cheaper. Processing cycles, storage, and network bandwidth 
continue to offer new opportunities for automation. Consequently, 
software environments are playing a much more important role. 
From a modern process perspective, I can see the environment 
doing much more of the bookkeeping and analysis activities that 
were previously done by humans. Configuration control and quality 



assurance analyses are already largely automated, and the next 
frontier is probably significant improvements in automated 
production and automated testing. 

7.  Only about 15% of software development effort is devoted to 
programming. 

The amount of programming that goes on in a software 
development project is probably still roughly 15%. The difference is 
that modern projects are programming at a much higher level of 
abstraction. An average staff-month of programming produced 
maybe 200 machine instructions in the 1960s and 1000 machine 
instructions in the 1970s and 1980s. Programmer productivity in 
the 1990s can produce tens of thousands of machine instructions in 
a single month, even though only a few hundred human-generated 
source lines may be produced. 

8.  Software systems and products typically cost three times as much 
per instruction as individual software programs. Software-system 
products (i.e., system of systems) cost nine times as much. 

This exponential relationship is the 
essence of what is called "diseconomy of 
scale." Unlike other commodities, the 
more software you build, the more 
expensive per unit item it is. This 
diseconomy of scale should be greatly 
relieved with a modern process and 
modern technologies. Under certain 

circumstances, such as a software line of business producing 
discrete, customer-specific software systems with a common 
architecture, common environment, and common process, an 
economy of scale should be achievable. 

9.  Walkthroughs catch 60% of the errors. 

This may be true, but walkthroughs are not catching the errors that 
matter. All defects are not created equal. In general, walkthroughs 
and other forms of human inspection are good at catching surface 
issues and style issues; few humans are good at reviewing even 
first-order semantic issues in a code or model segment. How many 
programmers get their code to compile the first time? Human 
inspections and walkthroughs will not expose the significant issues 
(resource contention, performance bottlenecks, control conflicts, 
and the like); they will only help resolve them. While the 
environment catches most of the first-level inconsistencies and 
errors, the really important architectural issues can only be exposed 
through demonstration and early testing and resolved through 
human scrutiny. 

10.  80% of the contribution comes from 20% of the contributors. 



This is true across almost any engineering discipline. These are the 
fundamental postulates that underlie the rationale for a modern 
software management process framework. 80% of the engineering 
is consumed by 20% of the requirements. 80% of the software cost 
is consumed by 20% of the components. 80% of software scrap and 
rework is caused by 20% of the errors. 80% of the resources are 
consumed by 20% of the components. 80% of the progress is made 
by 20% of the people. These relationships are timeless and 
constitute the background philosophy to be applied throughout the 
planning and conduct of a modern software management process. 

As this discussion illustrates, the next generation of software processes, 
and specifically the techniques presented in the Rational Unified Process, 
can help software organizations achieve unprecedented economic 
advantages. As we head into an era that leverages a more production-
intensive approach for software development, dominated by commercial 
components and automation, we can start to achieve economies of scale. 
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The Ten Essentials of RUP

by Leslee Probasco
Development Manager
Rational Unified Process
Rational Software Canada

To effectively apply the Rational Unified Process 
(affectionately known as "RUP"), it is important to 
first understand its key objectives, why each is 
important, and how they work together to help your 

development team produce a quality product that meets your 
stakeholders' needs. 

Camping Trip? Software Project? Identify 
Essentials First

The other evening, my neighbor Randy came over to ask for help: He was 
preparing for a weekend camping and hiking trip and trying to determine 
what gear to pack. He knows that I often lead and participate in 
wilderness trips and was impressed with how I'm able to quickly and 
efficiently determine what items to cram into my limited packing space, 
while referring to a list of all the equipment and clothing I own. "Do you 
think I could borrow that list?" he asked. 

"Sure, but I'm afraid it won't be much help," I explained. You see, I have 
literally hundreds of items on my outdoor gear list, covering many 
different types of outings -- from backpacking and climbing, to skiing, 
snow-shoeing, ice-climbing, and kayaking -- and for trip lengths ranging 
from simple day trips to multi-day expeditions. I knew that without some 
guidance, Randy would probably not be able to wade through the 
multitude of items on my list and figure out what he really needed for his 
relatively simple outing. 

Start With Essentials, Then Add the Extras 

Instead, I offered to look through the items Randy had already crammed 
into his bulging pack. We could see what he might eliminate to lighten his 
load and also whether any necessary items were missing. Within a short 
time, I could tell that what he really lacked was an understanding of what 
were the "essentials" for any wilderness outing. 
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I pulled out a blank sheet of paper and listed ten items1: 

1.  Map 

2.  Compass 

3.  Sunglasses & sunscreen 

4.  Extra clothing 

5.  Extra food & water 

6.  Headlamp 

7.  First-aid kit 

8.  Fire-starter 

9.  Matches 

10.  Knife 

"Here, Randy. This is the list you really need. If you start with these 'ten 
essentials,' then for any trip, the other necessary items will become 
obvious." I memorized this list many years ago, when I first started 
mountaineering, and I still refer to it -- no matter what type of trip I am 
preparing for or how long I'll be gone. Each of these items scales up or 
down, depending on the trip, but starting with a "short list" and expanding 
it as needed is much easier than starting from a long list and trying to 
decide what not to take. 

Applying This Lesson to RUP 

Often, as I help project teams sort through the many elements in RUP, I 
hear questions such as: "How do I sort through all of these items and 
determine which ones I need for my project?" "RUP contains so much 
information. It must be intended only for big projects -- can I really use it 
for my small one?" 

What these folks 
really need, I've 
decided, is a "Ten 
Essentials of 
RUP," similar to 
the simple list I 
gave to my friend 
Randy -- one that 
would serve as a 
reasonable 
starting point for 
any project: 
small, medium, or 
large. This list 
would focus on 
what I call "the 



For those of you who are unfamiliar with RUP, this diagram 
represents the incremental and iterative nature of the Rational 
Unified Process, which covers a vast array of disciplines within 
the software development lifecycle, including artifacts, 
guidelines, team member roles, and activities.

essence" of RUP -- 
or of any effective 
software process, 
for that matter. 

Often, projects 
get bogged down with the details in one particular area before all the 
participants understand the key process elements required to fully produce 
and deliver a quality product. Then, when the project falls behind, the 
blame is placed on some activity that may have been over-emphasized or 
whose usefulness they don't understand: "See, I told you that 
requirements management (or use cases, or collecting project metrics, or 
using configuration management, or using a defect tracking tool, or having 
status meetings) would slow us down!" 

Having an "Essentials" list allows team members to take a more 
systematic and holistic approach to the overall process of developing 
software. Once a process framework or "architecture" is in place, then 
team members can more effectively focus on individual problem areas 
(and often, I'll admit, requirements management is right there at the top 
of the list). It is also important to identify and prioritize obvious problems 
and their associated risks at the outset, so the team can apply early 
mitigation strategies as needed. 

The Ten Essentials of RUP

So, what should be on the "Ten Essentials of RUP" list? Here are my 
choices:

1.  Develop a Vision 

2.  Manage to the Plan 

3.  Identify and Mitigate Risks 

4.  Assign and Track Issues 

5.  Examine the Business Case 

6.  Design a Component Architecture 

7.  Incrementally Build and Test the Product 

8.  Verify and Evaluate Results 

9.  Manage and Control Changes 

10.  Provide User Support 

Let's look at each of these items individually, see where they fit into RUP, 
and find out why each made my "short list." 

1.  Develop a Vision 



Having a clear vision is key to developing a product 
that meets your stakeholders' real needs. 

The Vision captures the "essence" of the 
Requirements Workflow in RUP: analyzing the 
problem, understanding stakeholder needs, 
defining the system, and managing the 

requirements as they change. 

The Vision provides a high-level, sometimes contractual, basis for 
more detailed technical requirements. As the term implies, it is a 
clear, and usually high-level, view of the software project that can 
be articulated to any decision maker or implementer during the 
process. It captures very high-level requirements and design 
constraints, giving the reader an understanding of the system to be 
developed. It also provides input for the project-approval process, 
and is therefore intimately related to the Business Case. And finally, 
because the Vision communicates the fundamental "why's and 
what's" of the project, it serves as a means for validating future 
decisions. 

The Vision statement should answer the following questions, which 
can also be broken out as separate, more detailed items: 

●     What are the key terms? (Glossary) 

●     What problem are we trying to solve? (Problem Statement) 

●     Who are the stakeholders? Who are the users? What are their 
respective needs? 

●     What are the product features? 

●     What are the functional requirements? (Use Cases) 

●     What are the non-functional requirements? 

●     What are the design constraints?

2.  Manage to the Plan 

"The product is only as good as the plan for the product."2 

In RUP, the Software Development Plan (SDP) aggregates all 
information required to manage the project and may encompass a 
number of separate items developed during the Inception phase. It 
must be maintained and updated throughout the project. 

The SDP defines the project schedule (including 
Project Plan and Iteration Plan) and resource needs 
(Resources and Tools), and is used to track 
progress against the schedule. It also guides 
planning for other process components: Project 
Organization, Requirements Management Plan, 
Configuration Management Plan, Problem 



 

Resolution Plan, QA Plan, Test Plan, Test Cases, Evaluation Plan, 
and Product Acceptance Plan. 

In a simple project, statements for these plans may consist of only 
one or two sentences. A Configuration Management Plan, for 
example, may simply state: "At the end of each day, the contents 
of the project directory structure will be zipped, copied onto a 
dated, labeled zip disk, marked with a version number, and placed 
in the central filing cabinet." 

The format of the Software Development Plan is not as important as 
the activity and thought that go into producing it. As Dwight D. 
Eisenhower said, "The plan is nothing; the planning is everything." 

"Manage to the Plan" -- together with essentials #3, #4, #5, and 
#8 in our list above -- captures the essence of the Project 
Management Workflow in RUP, which involves conceiving the 
project, evaluating scope and risk, monitoring and controlling the 
project, and planning for and evaluating each iteration and phase. 

3.  Identify and Mitigate Risks 

An essential precept of RUP is to identify and attack 
the highest risk items early in the project. Each risk 
the project team identifies should have a 
corresponding mitigation plan. The risk list should 
serve both as a planning tool for project activities 
and as the basis for specifying iterations.

4.  Assign and Track Issues 

Continuous analysis of objective data derived 
directly from ongoing activities and evolving 
product configurations is important in any project. 
In RUP, regular status assessments provide the 
mechanism for addressing, communicating, and 
resolving management issues, technical issues, and 
project risks. Once the appropriate team has identified the hurdles, 
they assign all of these issues a due date and a person with 
responsibility for resolving them. Progress should be tracked 
regularly, and updates should be issued as necessary. 

These project "snapshots" highlight issues requiring management 
attention. While the period may vary, regular assessment enables 
managers to capture project history and remove any roadblocks or 
bottlenecks that restrict progress. 

5.  Examine the Business Case 



The Business Case provides the necessary 
information, from a business standpoint, to 
determine whether the project is a worthwhile 
investment. The Business Case also helps develop 
an economic plan for realizing the project Vision. It 
provides justification for the project and establishes 
economic constraints. As the project proceeds, 
analysts use the Business Case to accurately assess return on 
investment (ROI). 

Rather than delve deeply into the specifics of a problem, the 
Business Case should create a brief but compelling justification for 
the product that all project team members can easily understand 
and remember. At critical milestones, managers should return to 
the Business Case to measure actual costs and returns against 
projections and decide whether to continue the project. 

6.  Design a Component Architecture 

In the Rational Unified Process, a software system's architecture (at 
a given point in time) is defined as the organization or structure of 
the system's significant components interacting, through interfaces, 
with components composed of successively smaller components and 
interfaces. What are the main pieces? And how do they fit together? 

RUP provides a methodical, systematic way to 
design, develop, and validate such an architecture. 
The steps involved in the Analysis and Design 
Workflow include defining a candidate architecture, 
refining the architecture, analyzing behavior, and 
designing components of the system. 

To speak and reason about software architecture, you must first 
create an architectural representation that describes important 
aspects of the architecture. In RUP, this is captured in the Software 
Architecture Document, which presents multiple views of the 
architecture. Each view addresses a set of concerns specific to a set 
of stakeholders in the development process: end users, designers, 
managers, system engineers, system administrators, and so on. 
The document enables system architects and other project team 
members to communicate effectively about architecturally 
significant project decisions. 

7.  Incrementally Build and Test the Product 

The essence of the Implementation and Test 
workflows in RUP is to incrementally code, build, 
and test system components throughout the 
project lifecycle, producing executable releases at 
the end of each iteration after inception. 

At the end of the elaboration phase, an architectural prototype is 



available for evaluation; this might also include a user-interface 
prototype, if necessary. Then throughout each iteration of the 
construction phase, components are integrated into executable, 
tested builds that evolve into the final product. Also key to this 
essential process element are ongoing Configuration Management 
and review activities. 

8.  Verify and Evaluate Results 

As the name implies, the Iteration Assessment in 
RUP captures the results of an iteration. It 
determines to what degree the iteration met the 
evaluation criteria, including lessons learned and 
process changes to be implemented. 

Depending on the scope and risk of the project and 
the nature of the iteration, the assessment ranges 

from a simple record of a demonstration and its outcomes to a 
complete, formal test review record. 

The key here is to focus on process problems as well as product 
problems. The sooner you fall behind, the more time you will have 
to catch up. 

9.  Manage and Control Changes 

The "essence" of RUP's Configuration and Change Management 
Workflow is to manage and control the scope of the project as 
changes occur throughout the project lifecycle. The goal is to 
consider all stakeholder needs and meet them to whatever extent 
possible, while still delivering a quality product, on time. 

As soon as users get the first prototype of a product (and often 
even before that!), they will request changes. It is important that 
these changes be proposed and managed through a consistent 
process. 

In RUP, Change Requests are used to document 
and track defects, enhancement requests, and any 
other type of request for a change to the product. 
They provide an instrument for assessing the 
impact of a potential change as well as a record of 
decisions made about that change. They also help 
ensure that all project team members understand 
the potential impact of a proposed change. 

10.  Provide User Support 



In RUP, the "essence" of the Deployment Workflow is to 
wrap up and deliver the product, along with whatever 
materials are necessary to assist the end-user in learning, 
using, and maintaining the product. 

At a minimum, a project should supply users with a User's 
Guide -- perhaps implemented through online Help -- and 
possibly an Installation Guide and Release Notes. 
Depending on the complexity of the product, users may 

also need training materials. Finally, a Bill of Materials clearly 
documents what should be shipped with the product. 

What about Requirements?

Some of you may look at my list of essentials and vehemently disagree 
with my choices. You may ask, for example, where "requirements" fit into 
this picture. Aren't they essential? I'll tell you why I have not included 
them on my list. Sometimes I'll ask a project team (especially a team for 
an internal project), "What are your requirements?" and receive the 
response, "We don't really have any requirements." 

This amazed me at first (since I come from a military-aerospace 
development background). How could they not have any requirements? As 
I talked to these teams further, I found out that to them, "requirements" 
meant a set of externally imposed "shall" statements about what they 
must have or the project will be rejected -- and they really don't have any 
of those! Especially if a team is involved in research and development, the 
product requirements may evolve throughout the project. 

So for these projects, I follow up their response with another question: 
"Okay, then what is the vision for the product?" Then their eyes light up. 
We move easily through each of the questions listed as bullet points under 
RUP essential #1 above ("Develop a Vision"), and the requirements just 
flow naturally. 

For teams working on contracts with specified requirements, it may be 
useful to have "Meet Requirements" on their essentials list. Remember, 
my list is meant only as a starting point for further discussion. 

Summary: Applying the Ten Essentials

So, how can discovery of the "Ten Essentials of RUP" make a difference in 
my life? Here are a few ways that these recommendations can help me 
work with projects of varying sizes. 

For Very Small Projects 

First of all, if someone asks me how they might use RUP and the Rational 
development tools for building a simple product with a very small, 
inexperienced team that is just learning about process, I can share my 
"Ten Essentials" list and avoid overwhelming the project team with all the 
details in RUP and the full power of the Rational Suites of tools. 



In fact, these ten essentials can be implemented without any automated 
tool support! A project notebook with one section devoted to each of the 
ten essentials is actually a very good starting point for managing a small 
project. (And I have found Post-It Notes invaluable for managing, 
prioritizing, and tracking change requests on small projects!) 

For Growing Projects 

Of course, as a project's size and complexity grow, these simple means of 
applying the ten essentials soon become unmanageable, and the need for 
automated tools will become more obvious. Nevertheless, I would still 
encourage team leaders to start with the "Ten Essentials" and "Best 
Practices" of RUP and incrementally add tool support as needed, rather 
than immediately attempt to fully utilize the complete set of tools in the 
Rational Suites. 

For Mature Project Teams 

For more mature project teams that may already be applying a software 
process and using development tools, the "Ten Essentials" can help 
provide a quick method for assessing the balance of key process elements 
and identify and prioritize areas for improvement. 

For All Projects 

Of course, each project is different, and it may seem that some projects 
don't really need all of these "essentials." In these cases, it is also 
important to consider what will happen if your team ignores any of these 
essentials. For example: 

●     No vision? You may lose track of where you are going and wind up 
taking unproductive detours. 

●     No plan? You will not be able to track progress. 

●     No risk list? Your project is in danger of focusing on the wrong 
issues now and may get blown up by an undetected "land mine" five 
months from now. 

●     No issues list? Without timely analysis and problem solving, small 
issues often evolve into major roadblocks. 

●     No business case? You risk losing time and money on the project. 
Eventually it may run out of funds and be cancelled. 

●     No architecture? You may be unable to handle communication, 
synchronization, and data access issues as they arise. You may also 
have problems with scaling and performance. 

●     No product (prototype)? You won't be able to test effectively and 
will also lose credibility with customers. 

●     No evaluation? You'll have no way of knowing how close you really 
are to meeting your deadlines, project goals, and budget. 

●     No change requests? You'll have no way to assess the potential 
impact of changes, prioritize competing demands, and update the 



whole team when changes are implemented. 

●     No user support? Users will not be able to use the product to best 
advantage, and tech support may be overwhelmed with requests for 
help. 

So, there you have it -- it's very risky to live without 
knowledge of the "Ten Essentials." I encourage you 
to use these as a starting point for your project 
group. Decide what you want to add, change, or 
take away. Then, decide what else is really 
"essential" for your project -- no matter what size it 
may be -- to deliver a product on time, within 
budget, that meets your stakeholders' real needs!

Other Essentials 

Other organizations have published similar lists of software project 
essentials. IEEE Software Magazine, March/April 1997, included an article 
by Steve McConnell, "Software's Ten Essentials." The Software Project 
Manager's Network includes a listing of "16 Critical Software 
Practices," available at www.spmn.com. And the Software Engineering 
Institute's (SEI) Capability Maturity Model (CMM) contains Key Process 
Areas (KPAs) which might also be considered "essentials" (see 
www.sei.cmu.edu).

1For a complete analysis of this "Ten Essentials" list, see pages 35-41 of Mountaineering: The 
Freedom of the Hills, 6th edition, published by The Mountaineers of Seattle, WA in 1997. 

2From the Johnson Space Center Shuttle Software Group. Quoted in "They Write the Right 
Stuff," by Charles Fishman, Fast Company, Issue 6, p. 95, December 1996. 
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From Craft to Science: Searching for First 
Principles of Software Development

by Koni Buhrer
Software Engineering Specialist
Rational Software

Developing large software systems is notoriously 
difficult and unpredictable. Software projects often 
are canceled, finish late and over budget, or yield low-
quality results -- setting software engineering apart 
from established engineering disciplines. While 
puzzling at first glance, the shortcomings of software 
"engineering" can easily be explained by the fact that 
software development is a craft and not an 
engineering discipline. To become an engineering 

discipline, software development must undergo a paradigm shift away 
from trial and error toward a set of first principles. 

In this first article of a two-part series for The Rational Edge, I will 
provide support for this theory and propose a first principle of software 
development, along with a corresponding set of "axiomatic" software 
requirements. In my next article, I will outline a set of design rules -- the 
"universal design pattern" -- featuring four types of design elements that, 
in combination, can describe an entire software system in a single view. 

Crafting vs. Engineering

When I look at the fabulous Gothic cathedrals in Europe, I often wonder: 
Who were the architects that designed and constructed them? How did 
they acquire the knowledge to create structures that were not only 
beautiful, but also sturdy enough to withstand the forces of nature for 
centuries? How were they able to construct these buildings without 
computers, hydraulic tools, or modern construction materials? 

Clearly, the medieval architects had extraordinary knowledge of building 
design and construction -- knowledge for which they were highly respected 
and honored as masters of their trade. And masters they were; but they 
do not deserve to be called engineers. 
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Why not? The reason is simple. While the medieval 
architects had profound knowledge of how to construct 
tall buildings, they knew nothing about the laws of 
physics. They knew that the shape of an arched ceiling 
had to be conical, but they had never heard of 
differential equations. The knowledge of the medieval 
architects was based exclusively and entirely on 
experience from trial and error and did not have any 
scientific foundation. In a nutshell: The medieval 
architects knew how to do things, but they had no idea 
why things had to be done that way1. Building design and construction 
was a craft, and the medieval masters of architecture were craftsmen and 
not engineers. 

The difference between the medieval master of architecture and the 
modern construction engineer is that the engineer understands the 
reasons for the architectural rules. He can deduce the rules from the laws 
of physics and therefore prove the soundness of a design before doing any 
construction work, even if he has no applicable experience. The medieval 
architect, by contrast, had to accumulate his knowledge slowly and 
painfully through trial and error. Eventually he would become a master 
and pass on this knowledge to his apprentices. Some of the apprentices 
would in time become masters themselves and pass on their knowledge to 
their apprentices. And so the medieval craft of architecture slowly matured 
over time -- all the while remaining a craft. 

Building design and construction abruptly advanced 
from a craft to an engineering discipline when it was 
based upon the scientific foundation provided by the 
laws of physics. Maturity alone does not turn a craft 
into an engineering discipline; engineering requires a 
paradigm shift. Crafting is based on trial and error, 
while engineering is based on a set of first principles 

(often the applicable laws of physics) from which all knowledge can be 
inferred. Trial and error is the hallmark of crafting; first principles are the 
hallmark of engineering. 

What Is Software Development Today? 

With this distinction in mind, let's ask ourselves: Is software development 
today a craft, an engineering discipline, or something in between? Many 
software developers would probably assert that software development is 
not yet an established engineering discipline, but it is well on its way to 
becoming one. 

I think that is a delusion. In my view, software development is pure craft. 
It can't be an engineering discipline -- and in fact does not embody any 
aspect of engineering -- because it has no first principles. All knowledge 
on how to develop software is based exclusively on trial and error. Yes, we 
have made some progress since the dawn of software development. 
Masters of software development like Grady Booch, Jim Rumbaugh, and 
Walker Royce, for example, have invented successful methods and rules, 
often called best practices, to guide the software developer. Yet, like the 



medieval architects, software developers have learned and validated those 
best practices through trial and error. What software development lacks at 
this time is a set of first principles on which its rules and methods could be 
based2. 

The lack of first principles3 of software development has serious 
consequences, often captured by the phrase "the software crisis." 
Software projects are often canceled before completion, and the projects 
that are completed are often over budget, late, and yield low-quality 
results. As others have observed, the key factor for the success of a 
software project is a good architecture. And the inability to routinely 
create a good architecture is exactly what distinguishes software 
development from established engineering disciplines. Why this 
embarrassing discrepancy? Well, unlike the software developer, the 
engineer uses a set of first principles to prove the adequacy of a design 
before any construction work is done. The software developer, on the 
other hand, must rely on testing to assess the quality of an architecture. 
Or, to put it plainly, the software developer has to find a good architecture 
by trial and error. 

And that explains why the two most widely seen problems in unsuccessful 
software projects are "late scrap and rework" and "late design breakage." 
The software developer creates an architectural design early during 
software development, but has no means to immediately assess its 
quality. The software developer has no first principles at hand to prove the 
adequacy of a design. Testing the software eventually reveals all 
architectural defects, but only in a late development phase when fixing 
them is costly and disruptive. 

What Is Different about Software Engineering? 

The inability of the software developer 
community to turn software development into a 
successful engineering discipline has caused 
quite a bit of embarrassment. The low success 
rate of software projects clearly sets software 
development apart from established engineering 
disciplines. Many reasons have been proposed to 
explain why software engineering should be 

different from other engineering disciplines. Let's look at three well-known 
examples. 

Every engineering discipline involves elements of art and science.
This is true, but it is the scientific element -- not the artistic element -- 
that distinguishes engineering from craft. And the scientific element is 
exactly what software development is lacking, because it has no first 
principles on which any science could be based. Moreover, the artistic 
element of engineering is negotiable. A bridge designed by a civil engineer 
may be ugly, but it will always be safe. Software development, however, is 
all art (or craft), and the quality of a software system depends solely on 
the artistic capabilities of a software developer4. 

Other engineering disciplines have a long history and lots of past 



experience, but software engineering is still in its fledgling state.
Many engineering disciplines do indeed have a long history, because they 
emerged from an ancient craft. But the transition from a craft to an 
engineering discipline is not a matter of maturity; it is always the result of 
a paradigm shift away from trial and error toward a set of first principles. 
Most modern engineering disciplines underwent this paradigm shift quite 
abruptly when they became based upon the laws of physics. Software 
development, however -- because it lacks any scientific foundation -- is 
still a craft. Although it will mature over time, maturity alone will not turn 
it into an engineering discipline. 

Software projects are so unpredictable because software has 
unlimited flexibility.
This is nonsense. The truth is that many software developers neither know 
how to create good software architectures nor know how to spot the bad 
ones. The lack of first principles in software development makes it 
impossible to objectively distinguish between good and bad architectures. 
And as a result, software architectures are often bad. Yet the great 
flexibility of software -- and it is true that software is very, very flexible -- 
allows a project to progress a long way toward implementing even the 
worst architecture. Eventually, however, architectural defects become 
major obstacles that cause extensive scrap and rework, time and budget 
overruns, and generally poor software quality. So, it is not the great 
flexibility of the software that makes software projects hard to manage; it 
is the inability of software developers to routinely and predictably create 
good architectures. 

Software Development Is Inherently a Design 
Activity

Puzzled by Software 
Development Issues? 
There's a Simple 
Explanation! 

The fact that software 
development is inherently a 
design activity helps to explain 
a number of otherwise 
puzzling issues. Here are some 
examples: 

Q. Why is it much harder to 
create a detailed work 
breakdown structure for 
software implementation than 
for skyscraper construction? 

A. Because software 
implementation is the 
equivalent of skyscraper 
design (i.e., the creation of the 

How did we get into this mess? Why 
does the spirit of trial and error so 
deeply permeate software 
development? Why haven't we 
explored the fundamental laws of 
software development and 
discovered its first principles yet? 

To answer these questions, we need 
to understand that software 
development is inherently a design 
activity with no aspect of 
construction or manufacturing. You 
may find this claim hard to swallow, 
but it can easily be justified. We have 
a good understanding of what design 
is, where it ends, and where 
construction or manufacturing starts. 
Consider the following two 
arguments: 

1.  The boundary between design 



 

blueprints for a skyscraper) 
and not skyscraper 
construction. Design work is 
naturally less amenable to 
planning than construction 
work -- which is true for 
skyscrapers as well as for 
software -- because the scope 
and complexity of the end 
product are discovered only in 
the course of the design work.

Q. Why can we implement two 
software modules in parallel, 
whereas the floors of a 
building have to be 
constructed sequentially?

A. Because the equivalent of 
implementing a software 
module is designing -- and not 
constructing -- a building floor. 
And two architects can very 
well design two building floors 
in parallel, as long as they 
observe certain interface 
constraints -- just as two 
software developers can 
implement two modules in 
parallel. The compiler, on the 
other hand -- which truly 
constructs the software 
product -- must compile the 
modules in the right sequence, 
just as building floors have to 
be constructed in the right 
sequence.

Q. Why can't we achieve 
economies of scale in software 
development?

A. The diseconomy of scale we 
see in software development is 
inherent to its design nature. 
We know from other industries 
that economies of scale apply 
only to manufacturing 
processes but not to design 
tasks. For good reason: Design 
not only has to deal with each 
of the design elements, but 
also with all interactions 
between the design elements. 

and construction is always 
clearly marked by an artifact: 
the blueprint. Design 
encompasses all the activities 
needed to create the blueprint; 
construction encompasses all 
the activities needed to create 
products from the blueprint. In 
a perfect world, the blueprint 
would specify the product to be 
created in every detail -- which 
of course is rarely the case. 
Still, the purpose of a blueprint 
is to describe the product to be 
constructed as precisely as 
possible. Does the architectural 
design of a software system 
describe the software product 
"as precisely as possible"? No 
way. The architectural design is 
intended to describe the 
essentials, but certainly not all 
the details of a software 
system. So the architectural 
design is clearly not a 
blueprint. Only the high-level 
language code describes all the 
details of a software system, 
and thus qualifies as the 
software's blueprint. And 
because all activities leading up 
to the blueprint are design, all 
software development must be 
design. 

2.  The effort (time, money, 
resources) needed to create a 
commercial product can always 
be divided into design effort 
and manufacturing effort. What 
is the difference? The design 
effort is common to all copies 
of the product and has to be 
expended only once. The 
manufacturing effort has to be 
expended every time a copy of 
the product is created. A 
software product is typically 
the binary executable of a 
program delivered on a CD-
ROM. Clearly, the effort to 
create the source code of a 
program -- including 
architectural design, detailed 



The number of interactions 
between design elements rises 
with the number of elements 
in a non-linear fashion. This is 
true even with extensive reuse 
and commercial off-the-shelf 
components. Software 
development, which is pure 
design, will therefore never 
achieve true economies of 
scale.

Q. Can we profit from 
economies of scale in software 
manufacturing?

A. No, because software 
products are manufactured by 
the compiler, the linker, and 
other operating system tools 
at a largely negligible cost. 
The sales price of a software 
product thus only has to cover 
its design cost, but practically 
no manufacturing cost. In 
other industries it is the 
manufacturing cost of each 
copy of the product that 
substantially decreases if more 
copies are produced. This does 
not apply to software 
products.

Q. Why does software have 
such a low level of reuse?

A. In most industries, reusing 
existing design elements has a 
double benefit. It speeds up 
system design and decreases 
manufacturing cost. 
Electronics components, for 
example, are so popular 
because they are cheap -- a 
result of mass production. 
Using off-the-shelf electronics 
components thus lowers the 
traditionally high 
manufacturing cost of 
electronics systems. 
Unfortunately that doesn't 
apply to software, because 
software is manufactured at a 
largely negligible cost already. 

design, and high-level 
language code -- has to be 
expended only once, no matter 
how many copies of the 
software are produced. 
Consequently, the effort to 
create the source code of a 
program is entirely a design 
effort, and all software 
development is design. 

Software developers do not construct 
software; they design software. The 
final result of that design effort -- the 
high-level language code5 -- is the 
blueprint of the software. And it is 
the compiler/linker that mechanically 
constructs the software product -- a 
binary executable -- from the high-
level language code. The 
architectural design of a software 
system most closely corresponds to 
the cardboard models or design 
sketches used in some engineering 
disciplines. 

Now, to understand why software 
developers have not sought and 
found first principles yet, let's 
imagine a world where creating a 
skyscraper would require no more 
than a detailed blueprint. With the 
blueprint, an architect could, at the 
push of a button, have the 
skyscraper constructed -- instantly, 
and at virtually no cost. The architect 
would then test the skyscraper and 
compare it to the specifications. 
Should it collapse or not pass the 
test, the architect could have it 
demolished and the rubble removed -- 
instantly, and again at no cost. 
Would this architect spend much 
time on formally verifying that the 
skyscraper design complies with the 
laws of physics? Or even try to 
explore and understand those laws? 
Hardly. He could probably get results 
more quickly by constructing, 
testing, and demolishing the 
skyscraper a couple of times, while 
fixing the blueprint each time 
around. In a world where 
construction and demolition are free, 



Integrating off-the-shelf 
components doesn't save on 
manufacturing; on the 
contrary, it may incur royalty 
fees.

trial and error is the approach of 
choice, and basic research is for 
suckers. 

Well, software development happens 
in exactly such a world. The software 
developer creates a blueprint of the 
software in the form of a high-level language program. He then lets the 
compiler and the linker construct the software product in the blink of an 
eye, at virtually no cost. Yes, creating the blueprint requires considerable 
effort, but construction by the compiler and the linker is practically free. 
And the software developer certainly doesn't worry about demolition and 
removal of debris -- at least not until he runs out of disk space. No wonder 
that the trial and error spirit is deeply entrenched in the software 
development process, and that the software developer community has not 
bothered to explore the first principles of software development. 

In fact, trial and error has brought us a long way. But with the increasing 
complexity of modern software systems we are approaching a hard limit. 
Beyond a certain level of complexity it becomes impossible to create 
quality architectures by trial and error6. 

Proposal: A First Principle of Software 
Development

Without first principles, software development will remain a craft forever, 
and the software crisis (cancelled projects, or results that are over-budget, 
late, and of poor quality) will persist. So, let's go out and find some first 
principles -- but where? The laws of physics don't apply to software. Does 
that mean first principles of software development do not exist? Or have 
we just not looked carefully enough to find them? 

Let's consider how the presence of a first 
principle -- say, the law of gravity, for 
instance -- affects the architecture of a 
system. From an abstract viewpoint, a 
first principle does nothing more than 
induce non-negotiable requirements, 
which the architect has to deal with. I will 
call those requirements axiomatic 
requirements. For example, in 
construction a simple axiomatic 
requirement would be, "The building shall 
withstand the force of gravity." What 
makes axiomatic requirements so special 
is that they apply to each and every 
system that ever has been and ever will 

be constructed. Axiomatic requirements are in fact so obvious and 
common that they are usually implicit. But from the axiomatic 
requirements, established engineering disciplines have derived a set of 
architectural rules -- rules all designs must comply with to be worthy of 
consideration. Designs that violate these rules are obviously at odds with 
the first principles and are probably faulty. 



If it is too hard to find the first principles of software development, it is 
easy enough to find some axiomatic requirements -- requirements that 
apply to each and every software system. Here is the list I'd like to 
propose: 

1.  The software must obtain input data from one or more external 
(hardware) interfaces. 

2.  The software must deliver output data to one or more external 
(hardware) interfaces. 

3.  The software must maintain internal data to be used and updated 
on every execution cycle. 

4.  The software must transform the input data into the output data 
(possibly using the internal data). 

5.  The software must perform the data transformation as quickly as 
possible. 

That sounds brain-dead, doesn't it? But believe me: Very few software 
systems have an architecture that obviously satisfies the axiomatic 
requirements above. Many software systems may implicitly satisfy them, 
but not obviously!7 

The axiomatic requirements above seem to be related to the hardware 
environment of a software system to some degree. I would therefore 
postulate that the underlying first principle of software development is: 
"Software runs on and interacts with hardware -- hardware that has only 
finite speed." 

That the hardware environment should play such a dominant role in 
software architecture is a little surprising. Many software design 
approaches seem to ignore the hardware environment in the logical, 
structural, and dynamic views of the architecture. Hardware is often 
treated as a deployment issue with little significance for architectural 
structure and behavior. I, however, believe that the hardware 
environment should be a primary driving force for the architectural design 
of a software system. 

Next Step: Defining a Universal Design Pattern

In my next article for The Rational Edge, slated for 
the January issue, I will focus on the design rules 
associated with the first principle and its axiomatic 
requirements. These rules represent a highly useful, 
universal design pattern to guide software design. 
The universal design pattern is a first step toward 
making software development a predictable, 
repeatable engineering activity -- so don't forget to 
come back! 



1More precisely, the medieval master had no means of formally justifying it. For example, if 
an apprentice would ask the master, "Why do I have to do it like this?" the master would 
answer, "Because I said so!" A modern engineer, by contrast, would answer, "Well, according 
to the laws of static mechanics. . . if we take this formula. . . " and so on, thus providing a 
formal justification of why things have to be done in a certain way. 

2Some might argue that the best practices constitute the first principles of software 
development. But unfortunately that is not the case. The reason is that we do not know 
whether those best practices are actually good practices. We don't have any understanding of 
why a software development practice deserves to be called good or bad -- other than that it 
proved to be successful in some past application. Identifying best practices by trial and error 
might eventually lead to deeper understanding of the first principles and mechanisms that 
determine the quality of a software development practice. But by itself, identifying best 
practices does not advance software development past its current stage of a craft. 

3To be clear, first principles are not guiding principles. First principles are well-defined 
axioms that allow formal verification of software development rules and procedures. 

4Let me elaborate. If asked whether a design was sound, an engineer might answer, "I 
applied the formulas of static mechanics to verify it." A software developer, however, would 
answer, "I'm confident, because it looks good" -- much like an artist would judge a sculpture. 

5Or the detailed design if the compiler can generate code directly from the design models. 

6Iterative development only expands the limit of complexity that can be mastered by trial 
and error. 

7A popular design approach is to identify nouns in the requirements documents and associate 
a class with each noun. System functionality is modeled by messages the classes exchange. 
This design approach invariably results in software architectures that make verifying the 
axiomatic requirements very difficult. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 
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From Waterfall to Iterative Development -- A 
Challenging Transition for Project Managers

by Philippe Kruchten
Rational Fellow

The Rational Unified Process (RUP) advocates an iterative 
or spiral approach to the software development lifecycle, 
as this approach has again and again proven to be 
superior to the waterfall approach in many respects. But 
do not believe for one second that the many benefits an 
iterative lifecycle provides come for free. Iterative 
development is not a magic wand that when waved solves 
all possible problems or difficulties in software 
development. Projects are not easier to set up, to plan, or 
to control just because they are iterative. The project 
manager will actually have a more challenging task, 
especially during his or her first iterative project, and most 
certainly during the early iterations of that project, when 
risks are high and early failure possible. In this article, I 
describe some of the challenges of iterative development 
from the perspective of the project manager. I also 
describe some of the common "traps" or pitfalls that we, at 

Rational, have seen project managers fall into through our consulting 
experience, or from reports and war stories from our Rational colleagues.

Iterative Development

Classic software development processes follow the waterfall lifecycle, as 
illustrated in Figure 1. In this approach, development proceeds linearly 
from requirements analysis through design, code and unit testing, 
subsystem testing, and system testing, with limited feedback on the 
results of the previous phases.

Figure 1: The Waterfall Development Process
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The fundamental problem of this approach is that it pushes risk forward in 
time, where it's costly to undo mistakes from earlier phases. An initial 
design will likely be flawed with respect to its key requirements, and 
furthermore, the late discovery of design defects tends to result in costly 
overruns and/or project cancellation. The waterfall approach tends to 
mask the real risks to a project until it is too late to do anything 
meaningful about them. 

An alternative to the waterfall approach is the iterative and incremental 
process, as shown in Figure 2.

Figure 2: An Iterative Approach to Development

In this approach, built 
upon the work of Barry 
Boehm's spiral model 
(see "Further Reading"), 
the identification of risks 
to a project is forced 
early in the lifecycle, 
when it's possible to 
attack and react to them 
in a timely and efficient 
manner. This approach is 
one of continuous 
discovery, invention, and 
implementation, with 
each iteration forcing the 
development team to 
drive to closure the 
project's artifacts in a 
predictable and 
repeatable way. 

The Good: Benefits of Iterative Development

Compared with the traditional waterfall process, the iterative process has 



many advantages. 

1.  Serious misunderstandings are made evident early in the lifecycle, 
when it's possible to react to them. 

2.  It enables and encourages user feedback, so as to elicit the 
system's real requirements. 

3.  The development team is forced to focus on those issues that are 
most critical to the project, and team members are shielded from 
those issues that distract them from the project's real risks. 

4.  Continuous, iterative testing enables an objective assessment of the 
project's status. 

5.  Inconsistencies among requirements, designs, and implementations 
are detected early. 

6.  The workload of the team, especially the testing team, is spread out 
more evenly throughout the lifecycle. 

7.  This approach enables the team to leverage lessons learned, and 
therefore to continuously improve the process. 

8.  Stakeholders in the project can be given concrete evidence of the 
project's status throughout the lifecycle.

Risk Mitigation

An iterative process lets you mitigate risks earlier because integration is 
generally the only time that risks are discovered or addressed. As you roll 
out the early iterations, you go through all process components, exercising 
many aspects of the project, including tools, off-the-shelf software, and 
people skills. Perceived risks will prove not to be risks, and new, 
unsuspected risks will be discovered. 

If a project must fail for some reason, let it fail as soon as possible, before 
a lot of time, effort, and money are expended. Do not bury your head in 
the sand too long; instead, confront the risks. Among other risks, such as 
building the wrong product, there are two categories of risks that an 
iterative development process helps to mitigate early: 

●     Integration risks 

●     Architectural risks 

An iterative process results in a more robust architecture because you 
correct errors over several iterations. Flaws are detected in early iterations 
as the product moves beyond inception. Performance bottlenecks are 
discovered at a time when they can still be addressed instead of being 
discovered on the eve of delivery. 

Integration is not one "big bang" at the end of the life cycle; instead, 
elements are integrated progressively. Actually, the iterative approach 
that we recommend involves almost continuous integration. What used to 
be a lengthy time of uncertainty and pain -- taking as much as 40% of the 



total effort at the end of a project -- is now broken into six to nine smaller 
integrations that begin with far fewer elements to integrate. 

Accommodating Changes 

You can envisage several categories of changes: 

●     Changes in requirements
An iterative process lets you take into account changing 
requirements. The truth is that requirements will normally change. 
Requirements change and "requirements creep" have always been 
primary sources of project trouble, leading to late delivery, missed 
schedules, unsatisfied customers, and frustrated developers. But by 
exposing users (or representatives of users) to an early version of 
the product, you can ensure a better fit of the product to the task. 

●     Tactical changes
An iterative process provides management with a way to make 
tactical changes to the product -- for example, to compete with 
existing products. You can decide to release a product early with 
reduced functionality to counter a move by a competitor, or you can 
adopt another vendor for a given technology. You can also 
reorganize the contents of an iteration to alleviate an integration 
problem that needs to be fixed by a supplier. 

●     Technological changes
To a lesser extent, an iterative approach lets you accommodate 
technological changes. You can use it during the elaboration phase, 
but you should avoid this kind of change during construction and 
transition because it is inherently risky.

Learning as You Go

An advantage of the iterative process is that developers can learn along 
the way, and the various competencies and specialties are more fully 
employed during the entire life cycle. For example, testers start testing 
early, technical writers write early, and so on; in a non-iterative 
development, the same people would be waiting to begin their work, 
making plan after plan. Training needs -- or the need for additional 
(perhaps external) help -- are spotted early during assessment reviews. 

The process itself can also be improved and refined along the way. The 
assessment at the end of an iteration looks at the status of the project 
from a product/schedule perspective and analyzes what should be 
changed in the organization and in the process so that performance will be 
better in the next iteration. 

Increased Opportunity for Reuse 

An iterative process facilitates reuse of project elements because it is 
easier to identify common parts as they are partially designed or 
implemented instead of identifying all commonality in the beginning. 
Identifying and developing reusable parts is difficult. Design reviews in 



early iterations allow architects to identify unsuspected potential reuse and 
to develop and mature common code in subsequent iterations. It is during 
the iterations in the elaboration phase that common solutions for common 
problems are found and patterns and architectural mechanisms that apply 
across the system are identified. 

Better Overall Quality

The product that results from an iterative process will be of better overall 
quality than are products that result from a conventional sequential 
process. The system will have been tested several times, improving the 
quality of testing. The requirements will have been refined and will 
therefore be more closely related to the users' real needs. And at the time 
of delivery, the system will have been running longer. 

The Hard: Unexpected Downside and Common 
Traps

Iterative development does not necessarily mean less work and shorter 
schedules. Its main advantage is to bring more predictability to the 
outcome and the schedule. It will bring higher quality products, which will 
satisfy the real needs of end-users, because you will have had time to 
evolve requirements as well as a design and an implementation. 

Iterative development actually involves much more planning and is 
therefore likely to put more burden on the project manager: An overall 
plan has to be developed, and detailed plans will in turn be developed for 
each iteration. It also involves continuous negotiation of tradeoffs between 
the problem, the solution, and the plan. More architectural planning will 
also take place earlier. Artifacts (plans, documents, models, and code) will 
have to be modified, reviewed, and approved repeatedly at each revision. 
Tactical changes or scope changes will force some continuous replanning. 
Thus, team structure will have to be modified slightly at each iteration. 

Trap: Overly Detailed Planning Up to the End
It is typically wasteful to construct a detailed plan end-to-end, except as 
an exercise in evaluating the global envelope of schedule and resources. 
This plan will be obsolete before reaching the end of the first iteration. 
Before you have an architecture in place and a firm grip on the 
requirements -- which occurs roughly at the Lifecycle Architecture (LCA) 
milestone -- you cannot build a realistic plan. 

So, incorporate precision in planning commensurate with your knowledge 
of the activity, the artifact, or the iteration being planned. Near-term plans 
are more detailed and fine grained. Long-term plans are maintained in 
coarse-grained format. 

Resist the pressure that unknowledgeable or ill-informed management 
may bring to bear in an attempt to elicit a "comprehensive overall plan." 
Educate managers, and explain the notion of iterative planning and the 
wasted effort of trying to predict details far into the future. An analogy 
that is useful: a car trip from New York to L.A. You plan the overall route 
but only need detailed driving instructions to get you out of the city and 



onto the first leg of the trip. Planning the exact details of driving through 
Kansas, let alone the arrival in California, is unnecessary, as you may find 
that the road through Kansas is under repair and you need to find an 
alternate route, etc. 

Acknowledging Rework Up Front

In a waterfall approach, too much rework comes at the very end, as an 
annoying and often unplanned consequence of finding nasty bugs during 
final testing and integration. Even worse, you discover that most of the 
cause of the "breakage" comes from errors in the design, which you 
attempt to palliate in implementation by building workarounds that lead to 
more breakage. 

In an iterative approach, you simply acknowledge up front that there will 
be rework, and initially a lot of rework: As you discover problems in the 
early architectural prototypes, you need to fix them. Also, in order to build 
executable prototypes, stubs and scaffolding will have to be built, to be 
replaced later by more mature and robust implementations. In a healthy 
iterative project, the percentage of scrap or rework should diminish 
rapidly; the changes should be less widespread as the architecture 
stabilizes and the hard issues are being resolved. 

Trap: Project Not Converging
Iterative development does not mean scrapping everything at each 
iteration. Scrap and rework has to diminish from iteration to iteration, 
especially after the architecture is baselined at the LCA milestone. 
Developers often want to take advantage of iterative development to do 
gold plating: to introduce yet a better technique, to perform rework, etc. 
The project manager has to be vigilant so as to not allow rework of 
elements that are not broken -- that are OK or good enough. Also, as the 
development team grows in size, and as some people are moved around, 
newcomers are brought in. They tend to have their own ideas about how 
things should have been done. Similarly, customers (or their 
representatives in the project: marketing, product management) may 
want to abuse the latitude offered by iterative development to 
accommodate changes, and/or to change or add requirements with no 
end. This effect is sometimes called "Requirements Creep."Again, the 
project manager needs to be ruthless in making tradeoffs and in 
negotiating priorities. Around the LCA milestone, the requirements are 
baselined, and unless the schedule and budget are renegotiated, any 
change has a finite cost: Getting something in means pulling something 
out. And, remember that "Perfect is the enemy of good." (Or in French: 
"Le mieux est l'ennemi du bien.") 

Trap: Let's Get Started; We'll Decide Where to Go Later
Iterative development does not mean perpetually fuzzy development. You 
should not simply begin designing and coding just to keep the team busy 
or with the hope that clear goals will suddenly emerge. You still need to 
define clear goals, put them in writing, and obtain concurrence from all 
parties; then refine them, expand them, and obtain concurrence yet again. 
The bright side is that in iterative development, you need not have all the 
requirements stated before you start designing, coding, integrating, 
testing, and validating them. 



 

Trap: Falling Victim to Your Own Success
An interesting risk comes near the end of a project, at the moment the 
"consumer bit" flips. By this we mean that the users go from believing that 
nothing will ever be delivered to believing that the team might actually 
pull it off. The good news is that the external perception of the project has 
shifted: whereas on Monday the users would have been happy if anything 
were delivered on Tuesday, they become concerned that not everything 
will be delivered. This is the bad news. Somewhere between the first and 
second beta, you find yourself inundated with requests for features that 
people want to be sure are included in the first release. Suddenly, these 
become major issues. The project manager goes from worrying about 
delivering minimal acceptable functionality to a situation in which every 
last requirement is now "essential" to the first delivery. It is almost as 
though, when this bit flips, all outstanding items get elevated to an "A" 
priority status. The reality is that there is still the same number of things 
to do, and the same amount of time in which to do them. While external 
perceptions may have changed, prioritization is still very, very important. 

If, at this crucial moment, the project manager loses his nerve and starts 
to cave in to all requests, he actually puts the project in schedule danger 
again! It is at this point that he or she must continue to be ruthless and 
not succumb to new requests. Even trading off something new for 
something taken out may increase risk at this point. Without vigilance, 
one can snatch defeat from the jaws of success. 

Putting the Software First

In a waterfall approach, there is a lot of emphasis on "the specs" (i.e., the 
problem-space description) and getting them right, complete, polished, 
and signed-off. In the iterative process, the software you develop comes 
first. The software architecture (i.e., the solution-space description) needs 
to drive early lifecycle decisions. Customers do not buy specs; it is the 
software product that is the main focus of attention throughout, with both 
specs and software evolving in parallel. This focus on "software first" has 
some impact on the various teams: Testers, for example, may be used to 
receiving complete, stable specs, with plenty of advance notice to start 
testing, whereas in an iterative development, they have to begin working 
at once, with specs and requirements that are still evolving. 

Trap: Too Much Focus on Management Artifacts
Some managers say, "I am a project manager, so I should focus on 
having the best set of management artifacts I can; they are key to 
everything." Not quite true! Although good management is key, the 
project manager must ensure in the end that the final product is the best 
that can be produced. Project management is not an exercise in covering 
yourself by showing that you have failed despite the best possible 
management. Similarly, you may focus on developing the best possible 
spec because you have been hurt by poor requirements management in 
the past; this will be of no use whatsoever if the corresponding product is 
buggy, slow, unstable, and brittle. 

Hitting Hard Problems Earlier



In a waterfall approach, many of the hard problems, the risky things, and 
the real unknowns are pushed to the right in the planning process, for 
resolution during the dreaded system integration activity. This leaves the 
first half of the project as a relatively comfortable ride, where issues are 
dealt with on paper, in writing, without involving many stakeholders 
(testers, etc.), hardware platforms, real users, or the real environment. 
And then suddenly, the project enters integration Hell, and everything 
breaks loose. In iterative development, planning is mostly based on risks 
and unknowns, so things are tough right from the onset. Some hard, 
critical, and often low-level technical issues have to be dealt with 
immediately, rather than pushed out to some later time. In short, as 
someone once said to me: In an iterative development you cannot lie (to 
yourself or to the world) very long. A software project destined for failure 
should meet its destiny earlier in an iterative approach. 

One analogy is a university course in which the professor spends the first 
half of the semester on relatively basic concepts, giving the impression 
that it is an easy class that allows students to receive good marks at the 
mid-term with minimal effort. Then suddenly, acceleration occurs as the 
semester comes to a close. The professor tackles all the challenging topics 
shortly before the final exam. At this point, the most common scenario is 
that the majority of the class buckles under the pressure, performing 
lamentably on the final exam. It is amazing that otherwise intelligent 
professors are taken aback by this repeated disaster, year after year, class 
after class. A smarter approach would be to front-load the course, tackling 
60% of the work prior to the mid-term, including some challenging 
material. The correlation to managing an iterative project is to not waste 
precious time in the beginning solving non-problems and accomplishing 
trivial tasks. The most common reason for technical failure in startups: 
"They spent all their time doing the easy stuff." 

Trap: Putting Your Head in the Sand
It is often tempting to say, "This is a delicate issue, a problem for which 
we need a lot of time to think. Let us postpone its resolution until later, 
which will give us more time to think about it." The project then embarks 
on all the easy tasks, never dedicating much attention to hard problems. 
When it comes to the point at which a solution is needed, hasty solutions 
and decisions are taken, or the project derails. You want to do just the 
opposite: tackle the hard stuff immediately. I sometimes say, "If a project 
must fail for some reason, let it fail as soon as possible, before we have 
expended all our time and money." 

Trap: Forgetting About New Risks
You performed a risk analysis at the inception and used it for planning, but 
then forgot about risks that develop later in the project. And they come 
back to hurt you later. Risks should be re-evaluated constantly, on a 
monthly, if not weekly, basis. The original list of risks you developed was 
just tentative. It is only when the team starts doing concrete development 
(software first) that they will discover many other risks. 

Clashes Because of Different Lifecycle Models

The manager of an iterative project will often see clashes between his 



environment and other groups such as top management, customers, and 
contractors, who have not adopted -- or even understood the nature of -- 
iterative development. They expect completed and frozen artifacts at key 
milestones; they do not want to review requirements in small 
installments; they are shocked by rework; and they do not understand the 
purpose or value of some ugly architectural prototype. They perceive 
iteration as just fumbling purposelessly, playing around with technology, 
developing code before specs are firm, and testing throwaway code. 

At a minimum, make your intentions and plans clearly visible. If the 
iterative approach is only in your head and on a few whiteboards shared 
with your team, you will run into trouble later on. 

The project manager must protect the team from external attacks and 
politics in order to prevent the outside world from disrupting or 
discouraging the team. He or she must act as a buffer. In order to be "the 
steady hand on the tiller," the project manager must build trust and 
credibility with the external community. Therefore, visibility and "tracking 
to plan" is still important, especially in light of "the plan" being somewhat 
unconventional in many people's eyes. In fact, it is actually more 
important. 

Trap: Different Groups Operating on Their Own Schedules
It is better and easier to have all groups (or teams, or subcontractors) 
operating according to the same phase and iteration plan. Often project 
managers see some benefit in fine-tuning the schedule of each individual 
team, each of which ends up having its own iteration schedule. When this 
happens, all the perceived benefits will be lost later, and teams will be 
forced to synchronize to the slower group. As much as is feasible, put 
everybody on the same heartbeat. 

Trap: Fixed-Price Bidding During Inception
Many projects are pushed into bidding for contractual development far too 
early, somewhere in the middle of inception. In an iterative development, 
the best point in time for all parties to do such bidding is at the LCA 
milestone (end of elaboration). There is no magic recipe here: It takes 
some negotiation and education of the stakeholders, showing the benefits 
of an iterative development, and eventually a two-step bidding process. 

Accounting for Progress Is Different

The traditional earned-value system to account for progress is different, 
since artifacts are not complete and frozen, but are reworked in several 
increments. If an artifact has a certain value in the earned value system, 
and you get credit for it at the first iteration in which you created it, then 
your assessment of progress is overly optimistic. If you only get credit 
when it becomes stable two or three iterations later, your measure of 
progress becomes depressingly pessimistic. So when using such an 
approach to monitor progress, artifacts must be decomposed in chunks. 
For example: initial document (40%), first revision (25%), second revision 
(20%), final document (15%). Each chunk must be allocated a value. You 
can then use the earned value system without having to complete each 
element. 



An alternative would be to organize the earned value around the iterations 
themselves, and gauge the value from the evaluation criteria. Then the 
intermediate tracking points (usually monthly) reported in the Status 
Assessment would be built around the Iteration Plan. This requires a finer-
grained tracking of artifacts than the traditional requirements spec, design 
spec, etc., because you are tracking the completion of various use cases, 
test cases, and so on. 

As Walker Royce says, "A project manager should be more focused on 
measuring and monitoring changes: changes in requirements, in the 
design, in the code, than in counting pages of text and lines of code." (See 
References and "Further Reading" below.) And Joe Marasco adds, "Look 
out not only for change, but also for churn. Things that change multiple 
times to return to the same starting point are a symptom of deeper 
problems." 

On the positive side, having concrete software that runs early can be used 
by the wise project manager to obtain some early credibility points. It can 
show off progress in a more meaningful fashion than completed and 
reviewed paperwork with hundreds of check boxes ticked off. Also, 
engineers prefer "demonstrations of how it works" to "documentation of 
how it should work." Demonstrate first, then document. 

Deciding on Number, Duration, and Content of 
Iterations

What do we do first? The manager who is new to iterative development 
often has a hard time deciding on the content of iterations. Initially, this 
planning is driven by risk, technical and programmatic, and by criticality of 
the functions or features of the system under construction. (RUP gives 
guidelines for deciding the number and duration of iterations.) The criteria 
also evolve throughout the lifecycle. In construction, planning is geared to 
completing certain features or certain subsystems; in transition, it is 
geared to fixing problems and increasing robustness and performance. 

Trap: Pushing Too Much in the First Iteration
We talked above about not tackling the hard problems first. On the other 
hand, going too far in the opposite direction is also a recipe for failure. 
There is a tendency to want to address too many issues and cover too 
much ground in the first or first few iterations. This fails to acknowledge 
other factors: A team needs to be formed (trained), new techniques need 
to be learned, and new tools need to be acquired. And often, the problem 
domain is new to many of the developers. This often leads to a serious 
overrun of the first iteration, which may discredit the entire iterative 
approach. Or, the iteration is aborted -- declared done when nothing runs -
- which is basically declaring "victory" at a point at which none of the 
lessons may be drawn, missing most of the benefits of iterative 
development. 

When in doubt, or when confronted with crisis, make it smaller somehow 
(this applies to the problem, the solution, the team). Remember that 
completeness is a late lifecycle concern. "Appropriate incompleteness" 
should be the manager's early lifecycle concern. If the first iteration 



contains too many goals, split it into two iterations, and then ruthlessly 
prioritize which objectives to attempt to achieve first. 

It is better to shoot for a simpler, more conservative goal early in the 
project. Note we didn't say easy. Having a solid, acquired result early in 
the process will help build morale. Many projects that miss the first 
milestone never recover. Most that miss it by a lot are doomed despite 
subsequent heroic efforts. Plan to make sure you don't miss an early 
milestone by a lot. 

Trap: Too Many Iterations
First, a project should not confuse the daily or weekly builds with 
iterations. Since there is fixed overhead in planning, monitoring, and 
assessing an iteration, an organization that is unfamiliar with this 
approach should not attempt to iterate at a furious rate on its first project. 
The duration of an iteration should also take into consideration the size of 
the organization, its degree of geographic distribution, and the number of 
distinct organizations involved. Revisit our "six plus or minus three" rule of 
thumb. 

Trap: Overlapping Iterations
Another very common trap is to make iterations overlap too much. 
Starting to plan the next iteration somewhere toward the last fifth of the 
current iteration, while attempting to have a significant overlap of 
activities (i.e., starting detailed analysis, designing and coding the next 
iteration before finishing the current one and learning from it) may look 
attractive when staring at a GANTT chart, but will lead to problems. Some 
people will not be committed to following up and completing their own 
contribution to the current iteration; they may not be very responsive to 
fixing things; or they will just decide to take any and all feedback into 
consideration only in the next iteration. Some parts of the software will 
not be ready to support the work that has been pushed forward, etc. 
Although it is possible to divert some manpower to perform work 
unrelated to the current iteration, this should be kept minimal and 
exceptional. This problem is often triggered by the narrow range of skills 
of some of the organization's members, or a very rigid organization: Joe is 
an analyst, and this is the only thing he can or wants to do; he does not 
want to participate in design, implementation, or test. Another negative 
example: A large command and control project has its iterations so 
overlapped that they are basically all running in parallel at some point in 
time, requiring management to split the entire staff across iterations, with 
no hope of feeding back lessons learned from the earlier ones to the later 
ones. 

See Figure 3 for a few common unproductive iteration patterns.

A Good Project Manager and a Good Architect

To succeed, a software project needs both a good project manager and a 
good architect. The best possible management and iterative development 
will not lead to a successful product without a good architecture. 
Conversely, a fantastic architecture will fail lamentably if the project is not 
well managed. It is therefore a matter of balance, and focusing solely on 



Figure 3: Some Dangerous Iteration 
Patterns

project management will not lead to 
success. The project manager 
cannot simply ignore architecture: It 
takes both architecture expertise 
and domain expertise to determine 
the 20% of things that should go 
into early iterations. 

Trap: Use the Same Person as 
the PM and the Architect 
Using the same person as project 
manager and architect will work only 
on small projects (5-10 people). For 
larger endeavors, having the same 
person play the role of both project 
manager and architect will usually 
end with the project neither properly 
managed nor well architected. First, 
the roles require different skill sets. 
Second, the roles, in and of 
themselves, are more than a full-
time job. Therefore, the project 
manager and architect must 
coordinate daily, communicate with 
one another, and compromise. The roles are akin to that of a movie 
director and a movie producer. Both work toward a common goal but are 
responsible for totally different aspects of the undertaking. When the same 
person plays two roles, the project rarely succeeds. 

Conclusion

At this stage, you may feel discouraged: so many problems ahead, so 
many traps to fall into. If it is so hard to plan and execute an iterative 
development, why bother? Rejoice; there are recipes and techniques to 
systematically address all these issues, and the payoffs are greater than 
the inconvenience in terms of achieving reliably higher quality software 
products. Some key themes: "Attack the risks actively or they will attack 
you." (From Tom Gilb's book, listed under References and Further 
Reading.) Software comes first. Acknowledge scrap and rework. Choose a 
project manager and an architect to work together. Exploit the benefits of 
iterative development. 

The waterfall model made it easy on the manager and difficult for the 
engineering team. Iterative development is much more aligned with how 
software engineers work, but at some cost in management complexity. 
Given that most teams have a 5-to-1 (or higher) ratio of engineers to 
managers, this is a great tradeoff. 

Although iterative development is harder than traditional approaches the 
first time you do it, there is a real long-term payoff. Once you get the 
hang of doing it well, you will find that you have become a much more 
capable manager, and you will find it easier and easier to manage larger, 
more complex projects. Once you can get an entire team to understand 



and think iteratively, the method scales far better than traditional 
approaches. 

Author Note: John Smith, Dean Leffingwell, Joe Marasco, and Walker 
Royce helped me write this article by sharing their experiences in iterative 
project management. Part of this article is included in Chapter 6 of our 
colleague Gerhard Versteegen's new book on software development (see 
below).
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What Is Real-Time Embedded Software?

by Garth Gullekson
Rational Software

Welcome to the "eManagement" column, where The Rational Edge 
spotlights management issues and solutions. In this inaugural issue, I 
would like to define real-time embedded software and describe the major 
challenges associated with its development. In future columns I will 
describe in detail these aspects of Rational's approach to real-time 
embedded software solutions. 

Real-Time Embedded Systems Defined

There are two obvious characteristics of real-time embedded systems that 
we should briefly examine. First of all, they are "real-time" systems, which 
means they are designed to process information "now, and not later." 
More specifically, real-time systems must respond to stimuli correctly and 
in a timely manner. For example, in an airplane the delay between pilot 
input and changes in control surfaces (e.g., rudders) must occur within 
certain acceptable time intervals or the plane will not be flyable. This 
contrasts with many business applications (e.g., payroll), for which time 
delays can be irritating but are rarely fatal! 

Second, we are describing "embedded" systems, which means that their 
computing power is built into, or embedded in, the system. Embedded 
processors are usually designed for specific applications rather than 
general purposes. For example, a telephone system comprises many 
embedded processors for various functions such as handling terminals, 
controlling voice and data switches, etc. 

Real-Time Embedded Systems in Business

Most real-time systems are embedded, and vice versa, so the industry 
often uses both terms when referring to this computing domain. Real-time 
embedded systems span a broad set of application types and sizes. 
Everything from programmable washing machines to vast distributed 
telecommunication networks can be classified as real-time embedded 
systems. Consumer awareness of these "hidden" computers increased 
substantially during the Y2K crisis, when the volumes of information 
regarding airline safety, telecommunications integrity, and proper 
functioning within a host of other industries demonstrated how reliant our 
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world has become on real-time embedded technology. 

The Internet has accelerated the development of real-time embedded 
systems, in particular for Internet infrastructure (e.g., communication 
switches and routers) and Internet-connected devices (e.g., PDAs). The 
embedded-systems market is rapidly moving to connect almost all 
embedded devices to the Internet, including those in vehicles, home 
appliances, and medical devices. 

Development Challenges

The growing use of real-time embedded software offers a particularly 
strong example of what Rational calls "the software development 
paradox": While companies need to reduce the time they spend on 
development, at the same time they need to deliver higher product 
quality. Because real-time embedded software is used in the world's most 
critical systems (e.g., telecommunications, avionics, and medical 
equipment), software quality cannot be compromised. Yet this software is 
complex and difficult to develop, and embedded software is often difficult 
to upgrade. Real-time embedded software designs must address many 
challenges, including timeliness, event-driven stimuli, concurrency, 
distribution, dynamic structure, and dependability. 

Timeliness is the most obvious requirement of the problem domain. 
Systems have to provide high overall performance and low latency (that 
is, minimum response time) to individual stimuli. However, timeliness is 
certainly not the only design challenge. These systems are highly "event-
driven." Rather than simply providing functionality from start to finish 
based on a single command (e.g., printing a document, calculating income 
tax owed based on financial data), an event-driven system needs to 
continuously react to various discrete events such as input from users and 
messages from hardware peripherals. For example, a telephone call 
progresses from one state to another (e.g., providing dial tone, analyzing 
what number the user is dialing, ringing, etc.) as events stimulate the 
system (e.g., input from the user's terminal). Such input usually comes 
from various uncoordinated independent sources, and can occur in random 
order. This makes designing the behavior of software components 
extremely challenging, because at every state in a component's operation 
it must be able to respond properly to many different types of events. For 
example, in the middle of dialing a phone number, a user may hang up. 

Most systems are highly concurrent, supporting multiple use cases (i.e., 
capabilities) running in parallel. The stimuli driving the systems are 
themselves often highly concurrent (e.g., multiple users of a system). This 
can cause design problems because software components are often 
involved in multiple use cases. Not only must the components be designed 
to handle each individual use case properly, but also they often must 
support the concurrent execution of multiple use cases. This includes 
managing the interactions among concurrent use cases. For example, a 
component handling a terminal in a telephone system must be prepared to 
properly handle the use case of taking a terminal out of service while 
simultaneously executing the use case of the terminal being involved in a 
call. In such a situation, the software must ensure that the terminal is not 



taken out of service until the call is completed. 

Many systems, especially for e-development, are also distributed, 
including multiple processors in the same box or geographical distribution 
across a network. For example, a photocopier exploits the power of 
multiple processors to control naturally concurrent activities such as paper 
feed, image capture, and output control. Distribution increases both the 
concurrency of stimuli to each embedded system and the complexity of 
the coordination required among systems. For example, the failure of a 
particular processor should not cause the other processors in a distributed 
system to fail. 

The structure of real-time embedded systems is often highly dynamic, 
either based on configuration or dynamically as the system is running 
(e.g., objects representing telephone calls). Most systems have to be 
highly dependable, and some are life critical. 

Development Tool Requirements

In addition to the above problems associated with the real-time embedded 
software domain, managers need to concern themselves with the following 
general development tool needs: 

●     Projects need a completely integrated environment that maximizes 
development team effectiveness. These environments need to span 
the complete development lifecycle, including requirements and 
design, code generation and debugging, configuration management, 
and ultimately deployment of the applications running on real-time 
operating systems (RTOSs). Out-of-the-box integration among 
these key tool elements is critical. Any effort spent by a 
development group on integration only detracts from the group's 
effort toward building the application. 

●     Project success requires a well-understood development process, 
given the complexity of the software to be developed and the risk of 
not delivering the product on time. 

●     Both the development process and tools must be scalable, from 
small local development teams to the increasingly large and 
geographically distributed teams so prevalent in today's e-
development. 

The Rational Approach

Rational is extremely well placed to serve the real-time embedded 
software market. The company's first product in 1981 was designed for 
real-time embedded development using the Ada programming language, 
and Rational has continued to serve leading real-time embedded 
companies such as Ericsson and Motorola. Fueled by the Internet and 
technology advances, real-time embedded software is becoming 
increasingly ubiquitous. And it is obvious from the above discussion that 
real-time embedded development presents numerous unique challenges 
that can benefit from an optimized solution. 



Rational Software has taken an integrated approach to this problem. Our 
approach includes a graphical user interface for visual design and a 
development language (the Unified Modeling Language, or UML) that is 
optimized for the problem domain. As a complement, we also vend an 
integrated set of tools to meet complete project needs -- from 
requirements management through development to configuration 
management. These offerings are anchored by Rational Rose RealTime, 
cited by IDC as "a major contender as the de facto standard for real-time 
embedded software development." To accelerate project startup, reduce 
development risk, and manage complexity, we offer a proven development 
process and various services. 

Until the next issue, if you have any questions, please contact me at 
garth.gullekson@rational.com. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 
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Keeping Geographically Distributed 
Development Teams in Sync

by Ralph Capasso
Product Manager
Rational Software

Global production, outsourcing, and jointly developed software projects 
have all contributed to a new trend in the management of software 
development projects. It's what we call distributed development, meaning 
that a project's development resources -- including development tools, 
hardware, middleware, and the development staff -- may be 
geographically distributed over an area as vast as the globe itself. The 
days of single-site software development projects are rapidly dwindling. In 
today's global economy, collaborative software projects spanning multiple 
development locations are becoming the norm rather than the exception. 
As a result, developers working on today's largest software projects can 
span as many as 20 distinct development sites, sometimes across several 
continents. 

Furthermore, with the technical job market as competitive as it's ever 
been, companies are leveraging development resources wherever they are 
located, even if they're half a world away. It isn't uncommon today for 
even small- to medium-sized software development projects to consist of 
two or more clusters of developers working across several distributed 
locations. 

Prior Limitations

As little as ten years ago, even the largest software projects possessed 
neither the tools nor the infrastructure to make geographically distributed 
development practical. Wide Area Networks (WANs), when they were 
available, were not nearly as fast and reliable as they are today, and 
working across these early WANs as if they were local networks was not a 
reasonable option. 

To complicate matters, configuration management technology a decade 
ago barely addressed large-team complexity issues at a single location, 
never mind multiple, loosely connected sites. Projects either avoided the 
multiple-site scenario altogether, or simply established producer/consumer 
relationships in which one team would "throw code over the wall" to 
remote recipients at another location. Providing concurrent access to the 
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same set of development tools and artifacts in distributed development 
environments was difficult, and achieving parallel development across 
distinct sites was nothing short of a dream. 

Early attempts at achieving true parallel development across multiple sites 
frequently resulted in failure. Not only were WANs impractical for remote 
users to access a central site quickly or reliably; in addition, attempts at 
replication were inefficient and prone to error, and they did not begin to 
address critical issues involving automation, synchronization, or change 
conflict resolution. In fact, many of today's commercial configuration 
management systems still have difficulty solving the problems of parallel 
development -- even within a single site. 

Laying the Groundwork

As time progressed, WAN technologies became more robust, reliable, and 
affordable. Connectivity barriers were lowered, yet the lack of support for 
complex parallel development in most configuration management systems 
only intensified the problem. WAN improvements increased the temptation 
to develop globally by providing better connectivity, but the available 
infrastructure tools weren't equipped to take advantage of the bandwidth. 

A handful of robust configuration management systems, like Rational 
ClearCase, did come along to address the problems of complex parallel 
development. These tools, coupled with advances in WAN technology, 
made global parallel development possible but hardly practical. Even with 
more robust WANs in place, working across these networks from multiple 
remote clients to centrally located servers only uncovered a new set of 
performance and reliability concerns. The foundation for a practical 
solution had been laid, but the solution itself hadn't been realized. 

Enter Rational ClearCase MultiSite

Rational ClearCase MultiSite is an add-on to Rational ClearCase, the 
industry-leading software configuration management solution. As its name 
suggests, ClearCase MultiSite extends the power of ClearCase's robust 
configuration management solution across multiple, geographically 
distributed development sites. 

Rational ClearCase MultiSite's replication features allow every 
development site to have its own "replica" of artifacts, enabling users at 
each site to work against a local server rather than having to reach across 
a WAN for access to important data. By working against local servers of 
replicated data, developers experience neither the performance problems 
nor the reliability side effects that often accompany deployments that 
depend on WAN access to centrally located servers. Working in a 
replicated data model also frees up an organization's bandwidth for other 
cross-site communication tasks rather than placing unnecessary strain 
upon the wide-area information artery. WANs need only be utilized to 
transfer synchronization packets from site to site rather than shouldering 
the load of network traffic created by remotely located clients. 

Furthermore, Rational ClearCase MultiSite provides automatic 



synchronization capabilities that enable each replica to be updated with 
the changes, and only the changes, that have occurred at every other 
remote site since the last synchronization. ClearCase MultiSite sync 
schedules are configurable and can be tailored to meet the needs of 
development sites connected by high-speed WANs, lower speed 
connections, and even sites without any network connectivity at all. 

Rational ClearCase MultiSite also introduces the notion of "mastership" in 
order to mask the complexity involved with conducting parallel 
development across many distinct sites. Mastership virtually ensures that 
no conflicts will occur during the synchronization of parallel changes made 
by developers working on the same artifacts simultaneously at different 
sites, while at the same time not inhibiting their ability to view, change, 
and integrate their work. 

So whether you have projects that span two development sites or twenty, 
Rational ClearCase MultiSite can bring your team together by providing 
replication, automated synchronization, and a level of flexibility that meets 
today's distributed development needs. Over five years and fifty thousand 
users later, ClearCase MultiSite is still providing value to both large and 
small shops that have distributed configuration management needs. Most 
ClearCase MultiSite customers claim that the product pays for itself within 
the first few months of deployment. Realizing this high rate of return is 
critical in order to compete in today's global economy. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 
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Bridging the Gap between Black Box and White 
Box Testing

by Brian Bryson
Technology Evangelist
Rational Software

I was fortunate enough to get married last year. I say "fortunate," as I 
rarely discover software testing professionals burning up the "Most 
Wanted Bachelor" charts. It was a wonderful event, followed by a 
wonderful honeymoon in Fiji. Upon our return, my wife and I went to the 
bank to convert our remaining Fijian dollars, and as we waited in line, a 
commotion erupted. The security guard locked the door. The bank had 
just been robbed. 

Within minutes, officers and detectives were on the scene. The 
investigation began. To hear the descriptions given by the staff and 
customers, you would think no two people saw the same event. 
Nevertheless, within 30 minutes the detectives were able to collate the 
divergent accounts of the event into a single, accurate portrayal of what 
had transpired and gather a precise description of the perpetrator. Within 
an hour a suspect had been apprehended. 

What's the lesson in this tale? That no one single perspective can fully 
depict a given event or situation. This is not news. In fact, in 1995, 
Rational's own Philippe Kruchten described this same problem in an IEEE 
article entitled "Architectural Blueprints: The '4+1' View Model of Software 
Architecture1." In this article Kruchten describes how five concurrent views 
are necessary to fully describe a software system. The same is true with 
testing. No single type of test provides enough information to quantify the 
quality of a system. Instead, multiple types of testing must be undertaken 
to fully ascertain a software application's quality. 

Black box and white box tests represent two broad categories of test 
types. Neither in isolation can accurately depict the quality of the system. 
Together, however, they give testers a much clearer perspective on 
system quality. 
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I Thought We Were Testing Software, Not Boxes

The "box" in black box and white box testing refers to the system under 
test; the color refers to the visibility that the tester has into the inner 
workings of the system. With black box testing, the tester has no visibility 
into those inner workings. The tester sees only the interfaces exposed by 
the system. By contrast, white box testing offers the tester full visibility 
into how the system works. Think of a soda vending machine. A black box 
test would involve inserting the money into the machine and verifying that 
a soda drops out and that correct change is given. A white box test might 
involve opening the back panel on the machine and manually triggering 
the switch that drops the soda. 

Black box testing is sometimes referred to as functional or behavioral 
testing, and it offers numerous benefits. In the first place, a black box test 
validates whether or not a given system conforms to its software 
specification. In implementation, black box tests introduce a series of 
inputs to a system and compare the outputs to a pre-defined test 
specification. They test not only individual system components, but also 
the integration between them. The tests are architecture independent -- 
they do not concern themselves with how a given output is produced, only 
with whether that output is the desired and expected output. Finally, as 
they require no knowledge of the underlying system, one need not be a 
software engineer to design black box tests. 

White box testing is sometimes referred to as structural testing. Because 
white box tests involve the individual components of a system, they 
require an implicit knowledge of the system's inner workings. In 
implementation, white box tests introduce a given set of inputs to a 
component or individual function of a system and compare the outputs to 
an expected result. Testing is generally not done through a user interface, 
but by using the debugging features of the given development 
environment. 

How to Choose a Black Box or White Box Test

Black box testing is generally performed by QA analysts who are 
concerned about the predictability of the end-user experience. Their job is 
to make sure that the application meets customer requirements and that 
the system does what it's designed to do. But black box tests offer no 
guarantee that every line of code has been tested. Being architecture 
independent, black box testing cannot determine the efficiency of the 
code. Finally, black box testing will not find any errors, such as memory 
leaks, that are not explicitly and instantly exposed by the application. This 
stands in sharp contrast to white box testing, in which, given an infinite 
amount of time, all lines of code can be tested and clues as to the code's 
relative efficiency can be ascertained. Generally, developers whose time is 
relatively more expensive than that of QA analysts perform white box 
testing. White box testing proves insufficient, however, for situations in 
which testing isolated components may not reveal integration errors with 
other components. 

The Tools



Rational Software has been producing tools for automated black box and 
automated white box testing for several years. Rational's functional 
regression testing tools capture the results of black box tests in a script 
format. Once captured, these scripts can be executed against future builds 
of an application to verify that new functionality hasn't disabled previous 
functionality. Rational also offers white box testing tools that 1) provide 
run-time error and memory leak detection; 2) record the exact amount of 
time the application spends in any given block of code for the purpose of 
finding inefficient code bottlenecks; and 3) pinpoint areas of the 
application that have and have not been executed. 

For as long as these tools have been available, the black box testing tools 
have resided almost exclusively on the QA analyst's machine, while the 
white box tools have been purchased primarily by developers. There are 
several reasons for this divide. 

In the first place, QA analysts traditionally do not have a coding and 
debugging environment at their disposal. And even if they did, the 
argument goes, most analysts would not understand the information 
output by the tools. Rational believes that this is an artificial barrier, and 
that QA work can be improved via white box testing tools that do not 
require access to source code or a development environment. Now, 
Rational uses a patented Object Code Insertion (OCI) technology to 
instrument an application's executable files. No source code is required. 
This approach to the problem also enables Rational tools, Purify Quantify 
and PureCoverage, to perform white box testing on third party code and 
controls, for which source code may not otherwise be available. 

With the introduction of Rational Test Studio in early 1999, white box 
testing became integrated with black box testing; since then, QA analysts 
have been able to perform white box tests at the same time as black box 
tests. With Rational's OCI technology eliminating the need for source code 
or a development environment, QA analysts now have visibility into the 
"black" box. 

While QA analysts are running their functional black box tests, structural 
white box tests for memory leaks, code bottlenecks, or measuring code 
coverage can also occur, that development teams as the intended 
audience. In essence, the QA group can now undertake a job which 
previously had to be completed by an engineer. Given the relative average 
salary levels for these two populations, this is clearly an efficient 
optimization. 

Great Minds Don't Think Alike -- They Think 
Together

I don't think it's too much of a stretch to claim that the technological 
advancement of Rational's tool set is like a marriage of the white box and 
black box testing roles. That's why I began this article with the anecdote 
about my own recent marriage. We're still different people, my wife and I, 
but our goals are more focused now, and we're working together toward 
some common objectives. Similarly, the more testing professionals can 



share their detection tools and information base, the more quickly and 
accurately they can ascertain the overall quality of a software application. 

Testers performing traditional black box tests can leverage these same 
scripts to reap information from their testing that was previously only 
available to the white box tester on the development team. In so doing, 
QA analysts have the opportunity to lighten the load on the development 
team at very little expense. Earlier, I said that "given an infinite amount of 
time, all lines of code can be tested." Obviously, no software team has the 
luxury of an infinite amount of time. However, if one reduces the goal of 
white box testing to finding memory leaks and application crashes 
throughout the code base, then the time needed for white box testing 
becomes much more manageable. By putting a common tool set on both 
the developer's and the QA analyst's desktops, Rational has not only 
brought black box testing and white box testing a step closer together -- 
but it has also brought developers and QA analysts closer together. This 
more unified team may be the greatest benefit of all. 

1You may access Kruchten's white paper here. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 

Copyright Rational Software 2000 | Privacy/Legal Information



Keys to Successful Tool Adoption: Techniques 
and Training

by Marsha Sheahen
Director of Education and Training
Rational University

How does a development team successfully adopt new tools and use them 
to the best advantage? By combining the 
technical adoption with training in new 
development techniques. After all, the two go 
hand in hand. You can't really use the tools 
effectively without understanding the 
techniques for which they were designed. Just 
as important, when everything is new, the 

organization is more likely to recognize the value of investing time and 
resources in professional training. And there's no doubt about it: A serious 
investment in tools demands an equally serious investment in training to 
ensure the greatest benefit from those tools. 

Too often, organizations put sophisticated tools in the hands of developers 
without giving these people any understanding of why they are being 
asked to perform new functions. Trying to use a visual modeling tool, for 
example, without knowing the modeling notation, object interactions, and 
the tool's way of depicting these interactions, is a time consuming and 
challenging proposition for any programmer. And the problem gets 
compounded when he or she must lead team members, who also do not 
understand the tool's basic concepts or language, in creating the design 
for a complex system. Without a common language for interpreting 
models and designs, the team will have great difficulty meeting the 
project's component delivery schedule. 

It doesn't have to be that way. A well-designed training program can help 
the whole team learn the methodology, techniques, language, and tools 
for the project and ensure its success. Additional consulting, project and 
skills assessments, and services can also be valuable in kickstarting a 
project that's using new tools. 

Of course, it's most important to pick the right project for your 
introduction. Be realistic. Even with the best training, a team probably 
can't learn a whole new set of tools and techniques and deliver high-
quality software in a tighter-than-usual timeframe. 
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One of our large customers, an organization with about 750 software 
developers, offers an example of good strategic planning for new tool 
adoption. They recently selected a suite of new tools and decided to roll 
them out to their development teams over a 12 month period rather than 
give them to all the developers at once for use in multiple projects. 
Initially, they gave the tools to a project team that recently completed a 
successful release and was planning to develop several new subsystems as 
product enhancements. The team was eager to move over to object-
oriented design and knew they needed development process 
improvements. Along with training for the new tools, the company 
provided education in two new techniques: writing use cases to find 
requirements with Rational RequisitePro, and object-oriented analysis and 
design with UML notation to provide the foundation for visual modeling 
with Rational Rose. Then, team members were allowed to adopt these new 
techniques and tools in a protected environment, while the rest of the 
organization continued to use traditional development methods. 

Later, as other company teams were ready to transition to the new 
methods, each one received training to get them started. They also had 
opportunities to learn from the experiences of earlier adopters. This kind 
of knowledge transfer helps teams become self-sufficient, and therefore 
more efficient, as they work to bring quality products to market quickly. 

For this company, a comprehensive training plan-along with a sound 
strategy of not biting off more than they could chew -- helped the 
organization transition smoothly to new, more efficient development 
methods, and empowered their teams for success. Many companies have 
also recognized that a commitment to training not only enhances the 
chances for successful tool adoption, but also demonstrates the company's 
commitment to employee development and ultimately helps to reduce 
attrition. 

At Rational University, we urge our customers to think about these 
strategic benefits when they consider a training investment. A software 
development team armed with a good education and great development 
tools will clearly have a greater chance of success than a team with the 
same tools and no education. In addition, a company that recognizes the 
value of training and invests in its employees will see higher productivity, 
better products, and lower turnover among their most valuable 
employees.

About Rational University

Rational University, a business unit of Rational Software Corporation, 
creates educational materials with the big picture in mind, showing people 
how and why to use new techniques before teaching them how to use 
their new tools. In addition to developing courseware that maps to 
Rational’s tools, we address tool integrations and keep pace with the latest 
thinking from Rational on software development best practices. Rational’s 
top thought leaders--Ivar Jacobson, Grady Booch, Jim Rumbaugh, Philippe 



Kruchten and others were charter members of Rational University. Their 
continued involvement ensures continuity and consistency between the 
thinking embodied in the Rational Unified Process and our curricula. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 
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Managing an Integrated RUP/SDE 
Implementation

by Gayl Lepore
European Director
Strategic Services Organization
Rational Software

This article introduces a process for managing a project that involves the 
implementation of the Rational Unified Process (RUP) in conjunction with a 
software development environment (SDE). The process should be of 
particular interest to customers who are considering a full implementation 
of RUP and are looking for additional implementation guidance to 
complement the Environment Workflow in RUP. 

This approach offers the customer a more comprehensive strategy for 
planning the numerous organizational and technical aspects associated 
with such a technology implementation effort. For this strategy to succeed, 
however, the consulting team must ensure that the customer and Rational 
agree on a joint implementation plan, and that the plan is adaptable to the 
evolving needs of the project as it progresses through the development 
lifecycle. 

Overall Implementation Strategy

Implementing a software development process change is a substantial 
undertaking that requires planning and organizational commitment to be 
successful. A key to success at the organizational level is to break the 
implementation effort down into three main parts for planning and 
execution. 

1.  Managing the SDE Implementation -- with a focus on planning 
and control of the overall SDE implementation effort 

2.  Developing an SDE Solution -- with a focus on creating a RUP 
adaptation and appropriately configured tooling environment 
specific to the needs of the project 

3.  Deploying the Resulting SDE -- with a focus on the rollout of the 
process and tools to project members

Separating the overall undertaking into distinct parts is an effective way to 
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focus organizational responsibility and apply structure to the myriad 
technical activities associated with implementing an integrated RUP/SDE. 

1.  Managing the SDE Implementation 

It goes without saying that adopting new technology requires 
commitment to goals and investment of resources to achieve 
results. Before you invest resources in the tangible development 
and deployment of the SDE, you must first define the full context 
for the integrated RUP/SDE implementation. By defining the overall 
purpose, goals, scope, and appropriate means for implementation, 
you clearly define a scope within which to address detailed planning 
and execution concerns. 

The first step in managing the overall solution, therefore, should 
focus on addressing the following planning concerns: 

●     Vision 

●     Strategy 

●     Steering 

●     Means of execution 

The vision is used as a project blueprint for explaining and 
reiterating, as necessary, the organizational priorities, technical 
goals, cost/benefit rationale, and implementation success criteria. 
The strategy defines how the vision will be realized appropriately 
within the scope and timeframe of the project. Steering addresses 
the participants and functions needed to monitor and control the 
SDE implementation. And means of execution covers the allocation 
of resources and day-to-day coordination -- such as an SDE project 
or Software Productivity Improvement effort -- that will be used to 
plan, manage, and execute the RUP/SDE initiative. 

2.  Developing an SDE Solution 

Regardless of how well suited to your requirements a given 
technology may be "out of the box," the needs of a given project 
will always require configuration and integration. The scope of the 
activities involved can be quite substantial when you consider that 
the integration of RUP and a tool environment will affect an entire 
software development lifecycle. 

On the process side, the key factors to address in adapting RUP to 
the project situation are: 

●     Defining which of the RUP artifacts the project will use and 
the content of each artifact. In addition, if the project is 
evolving an existing system or application that was 
developed with a different process, the form and content of 
existing information will need to be related, and possibly 



 

migrated, to the form and content defined by the RUP 
artifacts. 

●     Defining which of the RUP roles will be implemented by the 
project and how to staff each role. 

●     Defining which activities of the RUP workflows will be 
performed and what modifications are required to 
accommodate project organizational needs and technical 
considerations of the software being developed. 

On the tooling side, the key factors to consider in configuring the 
tools for the project are: 

●     Implementing a schema for each tool that best supports the 
artifacts and activities defined by the process. 

●     Implementing physical interconnections among tools to 
support the process activities that require information 
consistency across artifacts, and to support the controlled 
exchange of artifacts among project members. 

●     Determining what's required to provision and administer a 
hardware and networking environment with sufficient 
performance to run the tools and exchange artifacts among 
users. 

●     Determining administrative needs for project members who 
will use the tools and how these people will be supported 
when they encounter problems. 

For the project as a whole, the principal factors to address are: 

●     Ensuring that the process and tooling solution has integrity 
across the whole lifecycle; 

●     Ensuring that appointed users are involved throughout the 
process of developing the project solution so that they 
develop sufficient skills to become mentors during the project 
rollout. 

The end goal of this stage is to create a ready-to-deploy SDE. 

3.  Deploying the Resulting SDE 

Having developed a solution, the perspective shifts toward 
deployment. This part of the implementation effort involves the 
rollout of RUP and the integrated tool environment to project users. 
An important goal at this stage is also to plan the eventual self-
sufficiency of the target organizations regarding usage, 
maintenance, and evolution of the SDE. 

The critical factors to address when rolling out the environment to 
the project organization are: 



●     Physical installation of the SDE for project members. 

●     Both generally applicable and role-specific training and 
mentoring for project members. 

●     Support and maintenance of the process and tooling 
environment during the project's lifetime. 

●     Organizational ownership of the process and longer-term 
evolution of the methods and tools. 

The end goals of deployment are capable project users and 
administrators, and a software organization that is no longer 
dependent on external consulting for its SDE. 

Steps to Successful Project Implementation

Fleshing out each of the above parts associated with SDE implementation 
represents a first big step in planning and organizing an integrated 
RUP/SDE initiative. Too often, organizations think that one SDE fits all 
projects and assume that they can use a master configuration for their 
project without any additional implementation effort. Or, when they do 
recognize that an implementation effort is required, they plan and attempt 
to configure the process and tool environment without sufficient 
understanding of project needs or input from project members. 
Unfortunately, this leads to SDE results that are untimely or insufficient to 
meet the software project's needs. 

Both of these are common mistakes in full RUP implementations and 
mostly relate to a key point alluded to in the introduction: the need to use 
an implementation approach that is flexible enough to adapt to the needs 
of the project as it progresses. To overcome these pitfalls, the suggestions 
below provide further guidance on how to successfully implement an 
integrated SDE for the project. 

Achieving an Effective Implementation

As the project progresses, the team responsible for the SDE must be able 
to incrementally configure and deploy functional pieces of the environment 
into the project. For example, it should be possible to deploy the process 
and tooling environment to manage requirements if need be, prior to 
deploying the environment required to test the system. 

Activities to be performed for the SDE should be planned against a well-
defined set of intermediate and final implementation deliverables agreed 
to up front by the overall project. This allows the project leaders to tell the 
implementation team when certain process and tooling capabilities will be 
required, to plan the lead-time required for training, and to budget 
sufficient resources for mentoring. The deliverables themselves should be 
standardized for each of the functional parts of the environment that the 
project intends to use. This helps significantly in ensuring consistency 
between how the process and tools are configured and the performance of 
the integrated environment once it's deployed. 



Finally, the rollout of the process and tools to the project should be carried 
out by deployment teams who take responsibility to ensure that all 
members of the project team get the necessary support. 

Incremental Configuration Using Standard Deliverables

Planning and execution for incremental SDE configuration is achieved by 
creating a focused effort for each of the RUP workflows to be 
implemented. Each such effort is responsible for the development of an 
integrated process and tool environment to support a given workflow. 
Each workflow development effort, in turn, is responsible for four 
deliverables to the project: 

●     A proof of concept demonstrating the tailored workflow and 
associated tooling solution proposed for the project. 

●     A "reference installation" of the process workflow and associated 
tooling required at each deployment site. A reference installation is 
a working prototype of the SDE deployed to at least one client in all 
participating sites, with servers configured as if they were in live 
use; typically, these servers are connected through the actual 
network and reside on the target machines they intend to use as 
hosts. The reference installation is used to ensure that the 
environment configuration functions as intended in its target 
environment. 

●     A training workshop based on the reference deployment so the 
deployment teams can educate end-users on how to use the 
tailored process and integrated tool environment for their project. 

●     An environment specification covering the technical details of the 
process tailoring and tooling configuration. This is used to facilitate 
administration and maintenance of the SDE.

Rolling Out with Deployment Teams

A final and critical step to effective implementation of an SDE is the 
creation of deployment teams who have responsibility for each of the 
following rollout concerns: 

●     IS/IT administration and first line support: Deliverables include a 
technology installation and administration plan, as well as 
documented support procedures and trouble report handling 
capability. 

●     Training and mentoring: Deliverables include definition of a role-
based training curriculum and schedule for target users and 
organizations, as well as the establishment of a mentoring network 
that supports learning while on the job. 

●     SDE transition and maintenance: Deliverables include a transition 
specification and plan so that responsibility to maintain or evolve 
the SDE after project completion is transitioned to the appropriate 
organization. 



By assigning one or more deployment teams to the rollout, the project 
ensures that all project members get adequate and consistent support in 
their use of the process and tools. How many deployment teams a project 
needs to support a rollout is influenced by the following factors: 

●     The number of users in the project who will use the SDE. A 
deployment team of one process engineer and one tooling engineer 
should be able to support ten active new users in a single location. 
As users in the project become more experienced, the deployment 
team can support up to 15 or 20 users in a single location. 

●     The number of geographic locations associated with the project. 
Deployment teams are needed in each location, as is an IS/IT 
support team for the administration of the physical environment. 

●     A team with responsibility for the maintenance of the RUP/SDE for 
the project as a whole is usually also required 1) to make fixes and 
enhancements as the project progresses, and 2) to transition the 
process and tools to the software organization if future projects 
intend to re-use the environment.

Summary

Providing a RUP-based software development environment for a project 
requires a thought-through strategy and comprehensive implementation 
approach. The approach introduced here has been successfully used for 
this purpose and is well suited to managing incremental implementation of 
RUP in the context of an ongoing project. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 

Copyright Rational Software 2000 | Privacy/Legal Information



Why Use Cases Are Not "Functions"

by Kurt Bittner
General Manager
Rational Unified Process Business Unit

Most people go astray right from the start with use cases. Perhaps it is the 
similarity between use case diagrams and dataflow diagrams which leads 
people to define use cases that are simply functions or menu items. 
Whatever the reason may be, it is notably the most prevalent mistake that 
novices make. 

Figure 1: The wrong way: use cases as menu options 
or functions

What's wrong with 
this picture? In 
simplest terms, I like 
to regard a use case 
as a story about 
some way of using a 
system to do 
something useful. 
Using this definition, 
are all of these "use 
cases" independently 
useful?

The answer, of 
course, is no. In this 
example, the use 
case denotes all 
things that the 
system needs to do, 
but it also represents 
the one single thing 
that the customer 
wants to do on the 
system: place an 
order. All of the 
remaining elements are alternate flows in this one use case. They are 
steps that may be taken when placing an order. Where there is only one 
useful thing being done, there should only be one use case. Figure 1 is an 
example of functional decomposition, or (as one colleague puts it) an 
example of the "circled wagons" formation -- one actor at the center of a 
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circle of use cases.

This problem is a common one. Why do people fall into this trap? We have 
an intrinsic need for order, and where none exists we will impose it if 
necessary. In the case of functional decomposition, we have a natural 
tendency to try to break the problem down into smaller and smaller 
chunks. There is a naive belief that by breaking the use cases into smaller 
and smaller units, we have simplified the problem. This perception is dead 
wrong; when we decompose the use cases, we actually compound the 
problem. 

Here's Why

The purpose of a use case is to describe how someone or some thing will 
use the system to do something that is useful to them. It describes what 
the system does at a conceptual level so that we can understand enough 
about the system to decide if the system will do the right thing or not. It 
enables us to form a conceptual model of the system. 

Again, refer back to Figure 1. Now ask yourself, would I want to use this 
system to inquire into the status of an order if I had never placed an 
order? It's not very likely. Or would I need to change an order if I had 
never placed an order? No, probably not. Individually, these things are 
useful to me only if I have placed an order; all of them are necessary, 
however, to the system's ability to allow me to place an order.

Decomposing the system into smaller use cases actually obscures the real 
purpose of the system; at the extreme, we end up with lots of isolated odd 
bits of behavior. As a result, we can't tell what the system does. It's just 
like looking at a car that's been taken apart -- maybe you can tell that it's 
a car, and you know that the parts must be useful somehow, but you 
really can't tell how they fit together.

When working with use cases, remember that use cases are a way to think 
of the overall system and organize it into manageable chunks of 
functionality -- chunks that do something useful. To get the right set of 
use cases, ask yourself this question: "What are the actors really trying to 
do with this system?"

In case you're wondering what the improved version of Figure 1 would 
look like, the figure below presents the improved version:

Figure 2: A better, simpler approach: combine 
functions to reflect the real value to the actor

This one use case 
encompasses all the 
"functions" that the earlier 
diagram split out as use 
cases. You may ask why 
this is better. The answer is 
simple. It focuses on the 
value that the customer 
wants from the system, not 
on how we subdivide and 
structure the functionality 



within the system. If you split all these functions into separate use cases, 
you force your customer (the one paying for the system) to reassemble 
the decomposed use cases into something meaningful to them in order to 
understand whether the system described is what they want (and are 
willing to pay for).

Focus on Value

Lots of small use cases are a common problem, especially among teams 
with a strong background in (or covert sympathies for) functional 
decomposition. Their use case names read like a list of functions that the 
system will perform: "Enter Order," "Review Order," "Cancel Order," 
"Fulfill Order." These may not sound so bad at first, but there are more. 
For even a small order entry system, use case lists can run well into the 
hundreds. If one stays on this path, they are soon drowning in a sea of 
use cases, especially if it is a "really big" system. In this case, you would 
end up with many hundreds, maybe thousands, of use cases.

So What's So Wrong With This?

The value of these use cases would be lost. A use case's sole purpose is to 
result in some sort of value to the actor, and at one level being able to 
enter an order is something of value. But if the order could never be 
fulfilled, would it still have value? Probably not. 

Or what about entering an order and modifying the order, or perhaps 
canceling the order -- all of these things are related to the real thing a 
customer wants to do, which is to receive the goods being ordered. These 
actions are also all necessary to what the company wants, which is to 
receive payment for the goods shipped.

Another problem with a set of functions that appear to be disconnected, 
without any apparent relationship, is that they result in a hard-to-use 
system. Too many systems are like this -- they are just jumbles of 
features. Remember, use cases help us focus on what is really important -- 
the things that have real value -- and enable us to define a system around 
those elements. Use cases do not present a functionally decomposed 
picture of the system.

Example 

Consider an e-commerce system that you have used on the 
Web. When you go to the site, your goal may be to find 
information about products, select products to buy, and 
arrange payment and shipping terms for those products. In the 
course of doing those things, you may change your mind, enter 
incorrect information and have to change it, change your 
mailing or shipping address, and a number of other things. If 
the site does not allow you to find products and order them in 
an appealing way, you probably won't even complete your 
order, let alone return to the site again. 



When building systems, always refer back to the core definition of a use 
case: a story about some way of using the system to do something useful. 
If you can implement this definition to display the value that users expect 
to obtain from the system, and then create use cases that reflect these 
values, your system will better meet user expectations.

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 
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Features, Use Cases, Requirements, Oh My!

by Dean Leffingwell
Senior Vice President of Process and Project Management
Rational Software

As a follower and proponent of object-oriented (OO) technology in the 
BU (Before UML) days, I must admit to a certain fascination with the 
various methods and notations spread by the industry thought leaders 
at the time. At about two to four years BU, if we had walked into a 
room full of OO advocates and asked the following question: 

I think this OO technology shows great promise; but tell me, 
since the object shares behavior and data, what do you call 
this thing an object does to fulfill its behavioral obligations?

We might have gotten the following answers:

"It's a responsibility!" (Wirfs-Brock) 

"It's an operation!" (Booch) 

"It's a service!" (Coad/Yourdon) 

"It's a (virtual) function!" (Stroustrup) 

"It's a method!" (many others)

And if this array of answers seems confusing, don't even think about 
the range of responses we would have elicited by asking how you would 
graphically represent that thing we call an object and a class (e.g., "It's 
a rectangle," "It's a cloud," "It's a. . . whatever."). While these 
differences might seem inconsequential, the reality is that some of the 
most significant shared concepts among our software engineering 
leaders -- inheritance, relationships, encapsulation -- were obscured by 
minor differences in terminology and notation. In other words, neither 
the science of OO engineering nor the benefits to be gained could 
advance further because the language to describe the science had not 
yet been invented. Of course, gaining agreement among these authors, 
methodologists1, and independent thinkers was not a trivial matter, but 
eventually, along came the UML, and the science of software 
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engineering marched forward again. 

While it's perhaps not as bad as the Tower of Babel wrought by the pre-
UML competing OO methodologies, the methodology of requirements 
management suffers from some of the same issues -- specifically, the 
prevalence of ambiguous, inconsistent, and overloaded usage of 
common terms. These terms, including such seminal constructs as "Use 
Cases," "Features," and "Requirements," we assume are common, 
everyday terms that "everyone understands." In truth, however, each 
individual attaches his or her own meaning to these terms within a 
given context. The result is often ineffective communication. And this 
occurs in a domain wherein success is defined simply by having 
achieved a common understanding. 

Booch [Booch 1994] points out that Stepp observed: 

. . .an omnipresent problem in science is to construct 
meaningful classifications of observed objects and situations. 
Such classifications facilitate human comprehension of the 
observations and subsequent development of a scientific 
theory.

In order to advance the "scientific theory" of requirements, we have to 
come to terms with terms! 

The purpose of this article is to take a small step forward in the 
discipline of software engineering by defining and describing some of 
the most common terms and concepts used in describing requirements 
for systems that contain software. In doing so, we hope to provide a 
basis for common understanding among the many stakeholders 
involved: users, managers, developers, and others. Certainly if we 
communicate more effectively and establish a common view, it will be 
possible to more quickly develop and deliver higher quality systems. 

This article is not an overview of the requirements management 
discipline -- for that we refer you to a number of books on the topic 
listed under the heading "Suggested Reading." The goal of this article is 
simply to help practitioners in the field improve their ability to answer 
the following, fundamental question: 

"What, exactly, is this system supposed to do?"

The Problem Domain vs. the Solution Domain

Before we start describing specific terms, however, it's important to 
recognize that we will need to define terms from two quite different 
worlds -- the world of the problem and the world of the solution. We'll 
call these the problem domain and solution domain, respectively. 

The Problem Domain

If we were to fly over the problem domain at a fairly low level, we 
would see things that look very much like the world around us. If we 



flew over the HR department, we might see employees, payroll clerks, 
and paychecks. If we flew over a heavy equipment fabricator, we might 
see welders, welding controllers, welding robots, and electrodes. If we 
flew over the World Wide Web, we'd see routers and server farms, and 
users with browsers, telephones, and modems. In other words, in any 
particular problem domain we can most readily identify the things 
(entities) that we can see and touch. Occasionally, we can even see 
relationships among those things; for example, there seems to be a one-
to-one relationship between Web users and browsers. We might even 
see messages being passed from thing to thing -- e.g., "That welder 
appears to be programming a sequence into a welding robot's 'brain.'" 

If we were really observant, we might see things that look like problems 
just waiting to be resolved: "The welder seems really frustrated with his 
inability to get the sequence right," or "Notice that nasty time delay 
between the time that employee enters her payroll data and the day 
she receives her check!" 

Some of the problems seem to just beg for a solution. So we say: 
"Perhaps we can build a system (a better programmable controller, a 
more efficient payroll processing) to help those poor users down there 
fix those problems." 

On User and Stakeholder Needs 
Before we build that new system, however, we need to make sure that 
we understand the real needs of the users in that problem domain. If 
we don't, then we may discover that the welder was grimacing only 
because he was suffering from a painful corn on his toe, so neither he 
nor his manager is interested in purchasing our brand new "SmartBot" 
automated welding control unit. We might also notice that when we try 

to sell the SmartBot, the manager seems 
to emerge as a key stakeholder in the 
purchasing decision. We don't remember 
seeing her in our fly-over. (Perhaps she 
was in the smoking lounge; our cameras 
don't work as well in there.) In other 
words, not all stakeholders are users, and 
we have to understand the needs of both 

communities (stakeholders and users) if we hope to have a chance to 
sell the SmartBot. To keep things simple, we call all of these needs 
stakeholder needs, but we'll constantly remind ourselves that the 
potential users of the system appear to represent a very important 
class of stakeholders indeed. 

We'll define a stakeholder need as: 

. . .a reflection of the business, personal, or operational 
problem (or opportunity) that must be addressed to justify 
consideration, purchase, or use of a new system.

Stakeholder needs, then, are an expression of the issues associated 
with the problem domain. They don't define a solution, but they provide 
our first perspective on what any viable solution would need to 
accomplish. For example, if we interview the plant manager for a heavy 



equipment fabricator, we may discover that welding large, repetitive 
weldments consumes a significant amount of manufacturing time and 
cost. In addition, welders don't seem to like these particular jobs, and 
they are constantly in danger of burnout. Worse still, the physical 
aspects of the job -- repetition, awkward manual positions, danger to 
eyesight, and so on -- present personal safety issues and long-term 
healthcare concerns. 

With these insights, we could start defining some stakeholder needs: 

We need an automated way to fabricate large, repetitive 
weldments without the welder having to manually control the 
electrode. 

We are happy to have a welder present, but we need to 
remove him to a safety zone outside of the welding area and 
away from any moving machinery. 

We need an easy-to-use "training mode" so that average 
welders can "train" the machine to do the majority of the 
welding for them. 

We need to allow more flexibility in the training mode and 
recognize that this may contradict some aspects of the need 
for user-friendliness. 

As we understand these various aspects of the system, we'll mentally 
"stack" these discoveries in a little pile called "stakeholder needs." 

The Solution Domain

Fortunately, our fly-over of the problem domain doesn't take very long, 
and (usually) what we find there is not too complicated. We start to 
appreciate the problem when we leave the airplane, and set off to build 
a solution to the problems and needs we have observed. Yes, we've 
reached the beginning of the hard part: forming a solution to the 
problem. We consider the set of activities (system definition, design, 
and so on), the "things" we find and build to solve the problem 
(computers, robot arms, and the like), and the artifacts we create in the 
process (such as source code, use cases, and tests) part of the 
solution domain. 

In the solution domain, there are many steps and activities we must 
successfully execute to define, build, and eventually deploy a successful 
solution to the problem. They include: 

1.  Understand the user's needs 

2.  Define the system 

3.  Manage the scope and manage change 

4.  Refine the system definition 

5.  Build the right system



In a nutshell, the steps above define a simplified process for 
requirements management. This paper won't discuss these steps in 
much detail; for this we refer you to the Bibliography and Suggested 
Reading, including the text, Managing Software Requirements 
[Leffingwell, 1999]. The ideas in this paper are consistent with those in 
that text, and most of the definitions provided here are taken from it. 

The text defines requirements management as: 

. . .a systematic approach to eliciting, organizing, and 
documenting the requirements of the system, and a process 
that establishes and maintains agreement between the 
customer and the project team on the changing requirements 
of the system.

But let's move on to discovering and defining more of the requirements 
management terms we'll need to describe the system we are about to 
build. 

Common Requirements Terms in the Solution 
Domain

Features of a Product or System

As we start thinking about solutions to the problems we've identified, 
it's very natural to start jotting down the features of a system. Features 
occupy an interesting place in the development of a system. They fit 
somewhere between an expression of the user's real needs and a 
detailed description of exactly how the system fulfills those needs. As 
such, they provide a handy construct -- a "shorthand", if you will -- for 
describing the system in an abstract way. Since there are many 
possible solutions for the problem that needs to be solved, in a sense 
features provide the initial bounds of a particular system solution; they 
describe what the system is going to do and, by omission, what it will 
not do. 

We'll define a feature as: 

. . .a service that the system provides to fulfill one or more 
stakeholder needs.

Features are easily represented in natural language, using terms 
familiar to the user. For example: 

The system runs off standard North American power. 

The tree browser provides a means to organize the defect 
information. 

The home lighting control system has interfaces to standard 
home automation systems. 



Since features are derived from 
stakeholder needs, we position them at the 
next layer of the pyramid, below needs. 
Note that we've also moved from the 
problem domain (needs) to the first level 
of the solution domain (features). 

It's important to notice that features are 
NOT just a refinement (with increasing 
detail) of the stakeholder needs. Instead, 
they are a direct response to the problem 
offered by the user, and they provide us 
with a top-level solution to the problem. 

Typically, we should be able to describe a system by defining 25-50 
features that characterize the behavior of that system. If we find 
ourselves with more than 50 features on our hands, it's likely that 
we've insufficiently abstracted the true features of the system. Or the 
system may be too large to understand, and we may need to consider 
dividing it into smaller pieces. 

Features are described in natural language so that any stakeholder who 
reads the list can immediately gain a basic understanding of what the 
system is going to do. A features list usually lacks fine-grained detail. 
That's all right. Its purpose is simply to communicate the intent and, 
since many stakeholders are likely to be non-technical, too much detail 
can be confusing and may even interfere with understanding. For 
example, a partial list of features for our SmartBot automated welding 
robot might include: 

A "lead through path" training mode that allows the welder to 
teach the robot what paths will be welded. 

A "step-and-repeat" feature that supports repetitive welding 
sequences. 

Use Cases

As we think further about the way in which the system needs to do its 
job for the user, we might find it beneficial to employ the Use Case 
Technique for further describing system behavior. This technique has 
been well developed in a number of books [Jacobson 1992] and is also 
an integral technique in the industry-standard Unified Modeling 
Language (UML) [Booch 1999]. 

Technically, a use case: 

. . .describes a sequence of actions, performed by a system, 
that yields a result of value to the user. 

In other words, the use case describes a series of user and system 
interactions that help users accomplish something they wanted to 
accomplish. Stated differently, the use case describes HOW users and 



the system work together to realize the identified feature. 

Use cases also introduce the construct of an actor, which is simply a 
label for someone who is using the system at a given time. In UML, a 
use case is represented by a simple oval; an actor is represented by a 
stick figure with a name. So we can illustrate both with a simple 
diagram like the one below.

The use case technique prescribes a simple, step-by-step procedure for 
how the actor accomplishes the use case. For example, a use case for 
Step and Repeat might start out as follows: 

Step 1: The welder presses the "Step and Repeat" 
button to initiate the sequence. 

Step 2: The welding system releases power to the 
drive motors so that the robot's arms can be moved 
manually. 

Step 3: The welder grabs the trigger, moves the arm 
to the weldment, and holds down the "Weld Here" 
button for each path to be welded. 

The use case technique provides a number of other useful constructs, 
such as pre and post descriptions, alternate flows, and so on. We'll talk 
about these later as we examine the use case in more detail. For now, 
we simply need to know that use cases provide an excellent way to 
describe how the features of the system are achieved. 

For planning purposes, it's likely that more than use cases will be 
necessary to describe how a particular feature is implemented. A small 
number of use cases (perhaps 3-10) may well be necessary for each 
feature. In describing the use cases, we are elaborating on the behavior 
of the system. Detail increases as we achieve additional specificity. 

Vision Document



Many development projects use a Vision document that 
defines the problem, identifies key stakeholders and user 
needs, lists system features, and perhaps includes example 
use cases. This document may be called by a variety of other 
names: Project Charter, Product Requirements Document, 

Marketing Requirements Document, and so forth. No matter what it's 
called, the Vision document highlights the overall intent and purpose of 
the system being built. It captures the "gestalt" of the system, using 
stakeholder needs, features, and use cases to communicate the intent. 

We cannot, however, simply dump features and initial use cases into 
the hands of the development team and expect them to rush off and 
develop a system that really satisfies stakeholder needs. We need to be 
a lot more definitive about what we want the system to do, and we'll 
probably have to add a lot of new stakeholders, including developers, 
testers, and the like. That's what happens in the next layer of the 
system definition -- the software requirements. 

Software Requirements

Software requirements provide the next 
level of specificity in the requirements 
definition process. At this level, we specify 
requirements and use cases sufficiently for 
developers to write code and testers to see 
whether the code meets the requirements. 
In our graphical representation, software 
requirements are at the base of our 
pyramid. 

What is a software requirement? Although 
many definitions have been used 
throughout the years, we find the 
definition provided by requirements 
engineering authors Dorfmann and Thayer 
[Dorfmann 1990] to be quite workable. 
They say that a software requirement is: 

. . .a software capability needed by the user to solve a 
problem that will achieve an objective 

OR 

a software capability that must be met or possessed by a 
system or system component to satisfy a contract, standard, 
specification or other formally imposed documentation. 

Applying this definition, the team can develop a more specific set of 
requirements to refine, or elaborate, the features list discussed earlier. 
Each requirement serves some feature and vice versa. Notice the 
simplicity of this approach. We have a list of features, and we then 
elaborate those features by writing a set of requirements that serve 
those features. We don't write any other requirements. We avoid the 



temptation to sit down, stare at the ceiling, and "think up some 
requirements for this system." 

The process is straightforward but not necessarily easy. Each feature is 
reviewed, and then requirements are written to support it. Inevitably, 
writing the requirements for one feature will spur ideas for new 
requirements or revised requirements for a feature that has already 
been examined. 

Of course, as we know, it's not easy to write down requirements -- and 
there may be a large number of them. It's helpful to think about three 
types or categories of software requirements: functional requirements, 
nonfunctional requirements, and design constraints. 

We find these three categories helpful in 
thinking about the requirement and what 
role we expect it to fill. Let's look at these 
different types of requirements and see 
how we can use them to define different 
aspects of the proposed system. 

Functional Requirements 
Functional requirements express what the 
system does. More specifically, they 
describe the inputs and outputs, and how it 
is that specific inputs are converted to 
specific outputs at various times. Most 

business software applications are rich with functional requirements. 
When specifying these requirements, it's important to strike a balance 
between being too vague ("When you push the 'On' button, the system 
turns on") and being too specific about the functionality. It's important 
to give designers and implementers as wide a range of design and 
implementation choices as possible. If we're too wishy-washy, the team 
won't know what the system is supposed to achieve; if we're too 
specific, we may impose too many constraints on them. 

There isn't one right way to specify requirements. One technique is 
simply to take a declarative approach and write down each detailed 
thing the system needs to do. For example: 

During the time in which the "Weld Here" input is active, the 
system digitizes the position of the electrode tip by reading 
the optical encoders every 100 msec. 

Elaborating the Use Case 
In many systems, it's helpful to organize the specification activity by 
refining the use cases defined earlier and developing additional use 
cases to fully elaborate the system. Using this technique, we refine the 
steps of the use case into more and more detailed system interactions. 
We'll also need to define pre-conditions and post-conditions (states the 
system assumes before and after the use case), alternative actions due 
to exception conditions, and so on. 

Since use cases are semantically well defined, they provide a structure 



into which we can organize and capture the system behavior. Here is a 
representative use case for the Smartbot.

Use Case Name Teach Weld Path

Actor Welder 

Brief Description 
This use case prescribes the way in 
which the welder teaches the robot a 
single weldment path operation. 

Flow of Events 

Basic flow for the use case begins 
when the welder presses the "Teach" 
button on the control console. 

The system turns off the power to the 
robot arms. 

The welder grabs the teaching 
electrode and positions the teaching 
tip at the start of the first weld. 

The welder presses the "Weld Here" 
trigger and simultaneously moves the 
teaching tip across the exact path to 
be welded. 

At the end of the path, the welder 
releases the "Weld Here" trigger and 
then returns the robot's arm to the 
rest position. 

Alternative Flow of Events 

At any time during the motion, the 
welder can press the "Pause" button; 
then the robot will turn on power to 
the motors and hold the arms and 
teaching tip in the last known 
position. 

Pre-conditions 
The robot must have performed a 
successful auto-calibrate procedure. 

Post-conditions 
The traverse path and weld paths are 
remembered by the system. 

Special Requirements 

The welder cannot move the tip at a 
rate faster than 10cm/second. If 
faster motion is detected, the system 
will add resistance to the arms until 
the welder returns to the acceptable 
lead-through speed. 

Nonfunctional Requirements 
In addition to functional requirements such as inputs translating to 



outputs, most systems also require the definition of a set of 
nonfunctional requirements that focus on specifying additional system 
"attributes," such as performance requirements, throughput, usability, 
reliability, and supportability. These requirements are just as important 
as the input-output oriented functional requirements. Typically, 
nonfunctional requirements are stated declaratively, using expressions 
such as "The system should have a mean time between failure of 2,000 
hours;" "The system shall have a mean time to repair of 0.5 hours;" 
and "The Smartbot shall be able to store and retrieve a maximum of 
100 weld paths." 

Design Constraints 
As opposed to defining the behaviors of the system, this third class of 
requirements typically imposes limitations on the design of the system 
or process we use to build the system. We'll define a design constraint 
as: 

. . .a restriction upon the design of a system, or the process 
by which a system is developed, that does not affect the 
external behavior of the system, but must be fulfilled to meet 
technical, business, or contractual obligations. 

A typical design constraint might be expressed as "Program the welder 
control unit in Java." In general, we should treat any reasonable design 
constraints just like any other requirements, although testing 
compliance to such constraints may require different techniques. Just 
like functional and nonfunctional requirements, these constraints can 
play an integral role in designing and testing the system. 

Hierarchical Requirements 
Many projects benefit from expressing requirements in a hierarchical or 
parent-child structure. A parent-child requirement amplifies the 
specificity expressed in a parent requirement. Parent-child requirements 
give us both a flexible way to enhance and augment a specification, and 
a means to organize levels of detail. The parent, or top-level 
specification, is easily understandable to all users; implementers can 
inspect the more detailed "child" specification to make sure that they 
understand all of the implementation details. Note that hierarchical 
requirements consist of the standard three types of requirements: 
functional, non-functional, and design constraints. The hierarchical 
approach simply defines the elaboration relationship among 
requirements. 

Traceability

In addition to defining the terms we use for things that describe system 
requirements, we should now turn to a key relationship, traceability, 
which may exist among these things. 

A significant factor in quality software is the ability to understand, or 
trace, requirements through the stages of specification, architecture, 
design, implementation, and test. Historical data shows that the impact 
of change is often missed, and small changes to a system can create 



significant reliability problems. Therefore, the ability to track 
relationships, and relate these relationships when change occurs, is key 
in software quality assurance processes. This is particularly the case for 
mission critical activities, including safety-critical systems (medical and 
transportation products), systems with high economic costs of failure 
(online trading), and so on. Here's how we define requirements 
traceability: 

A traceability relationship is a dependency in which the entity 
(feature, use case, requirement) "traced to" is in some way 
dependent on the entity it is "traced from." 

For example, we've described how one or more Software Requirements 
are created to support a given feature or use case specified in the 
Vision document. Therefore, we can say that these Software 
Requirements have a traceability relationship with one or more 
Features. 

Impact Analysis and Suspectness 
A traceability relationship goes beyond a simple dependency 
relationship because it provides the ability to do impact analysis using a 
concept that we call "suspectness." A traceability relationship goes 
"suspect" whenever a change occurs in the "traced from" (independent) 
requirement, and therefore the "traced to" (dependent requirement) 
must be checked to ensure that it remains consistent with the 
requirement from which it is traced. 

For example, if we use traceability to relate requirements to specific 
tests, and if a requirement such as "The Smartbot shall be able to store 
and retrieve a maximum of 100 weld paths" becomes "The Smartbot 
shall be able to store and retrieve a maximum of 200 weld paths," then 
the test traced from this requirement is suspect. It is unlikely any test 
devised for the first requirement will be adequate to test the second 
one. 

Change Requests and the Change Management 
System

Finally, change is inevitable. For a project to have any hope of 
succeeding, a process for managing all changes -- including requests 
that affect features and requirements -- in an orderly manner is 
essential. The key element of any change management system is the 
Change Request itself. We'll define a Change Request as: 

. . .an official request to make a revision or addition to the 
features and/or requirements of a system. 

Change Requests need to enter the system as structured, formalized 
statements of proposed changes and any particulars surrounding those 
changes. In order to manage these changes, it's important that each 
one have its own identity in the system. A simple Change Request form 
might look something like this:



Change Request 

Change Request Item Value 

Change Request ID CR001

Change Request Name Safety Feature on "Power On" Button 

Brief Description of Change 

Add hold time to "Power On" button 
that requires user to hold button 
for xx seconds before system turns 
on.

Requested by... Safety Supervisor 

A change management system should be used to capture all inputs and 
transmit them to the authority of a Change Control Board (CCB) for 
resolution. The CCB should consist of no more than three to five people 
who represent the key stakeholders for the project (customers, 
marketing, and project management). They administer and control 
changes to the system, and thereby play a key role in helping the 
project succeed. 

Summary

At the beginning, we noted that a goal of this article was to help 
practitioners in the field improve their ability to answer the fundamental 
question: 

"What, exactly, is this system supposed to do?"

As a step toward this goal, we defined and described some of the 
common terms -- such as stakeholder needs, features, use cases, 
software requirements, and more -- used by analysts and others who 
have responsibility for describing issues in the problem domain, and for 
expressing the requirements to be imposed upon any prospective 
solution. In so doing, we also illustrated some of the key concepts of 
effective requirements management. By using the terms and 
approaches outlined in this article, you can better understand your 
user's needs and communicate requirements for proposed solutions to 
developers, testers, and other technical team members. 

The Unified Modeling Language (UML) is an important technique for 
further defining and communicating additional key aspects of software 
solutions. A language for visualizing, specifying, and documenting the 
artifacts of a software-intensive system, it provides a means for 
expressing these technical constructs in a more semantically precise 
manner. The User Guide and Reference Manual for UML listed below 
provide practical advice on its use. 
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Fault Tolerance Techniques for Distributed 
Systems

by Bran Selic
Principal Engineer
Rational Software Canada

As our high-tech society becomes increasingly dependent on computers, the 
demand for more dependable software will increase and likely become the 
norm. In the past, fault-tolerant computing was the exclusive domain of 
very specialized organizations such as telecom companies and financial 
institutions. With business-to-business transactions taking place over the 
Internet, however, we are interested not only in making sure that things 
work as intended, but also, when the inevitable failures do occur, that the 
damage is minimal. (None of us would be happy to lose money because a 
fault occurred during the transfer of funds from one account to another, for 
instance.) 

Unfortunately, fault-tolerant computing is extremely hard, involving 
intricate algorithms for coping with the inherent complexity of the physical 
world. As it turns out, that world conspires against us and is constructed in 
such a way that, generally, it is simply not possible to devise absolutely 
foolproof, 100% reliable software1. No matter how hard we try, there is 
always a possibility that something can go wrong. The best we can do is to 
reduce the probability of failure to an "acceptable" level. Unfortunately, the 
more we strive to reduce this probability, the higher the cost. 

The Concepts Behind Fault-Tolerant Computing

There is much confusion around the terminology used with fault tolerance. 
For example, the terms "reliability" and "availability" are often used 
interchangeably, but do they always mean the same thing? What about 
"faults" and "errors"? In this section, we introduce the basic concepts 
behind fault tolerance2 . 

Fault tolerance is the ability of a system to perform its function correctly 
even in the presence of internal faults. The purpose of fault tolerance is to 
increase the dependability of a system. A complementary but separate 
approach to increasing dependability is fault prevention. This consists of 
techniques, such as inspection, whose intent is to eliminate the 
circumstances by which faults arise. 
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Failures, Errors, and Faults

Implicit in the definition of fault tolerance is the assumption that there is a 
specification of what constitutes correct behavior. A failure occurs when an 
actual running system deviates from this specified behavior. The cause of a 
failure is called an error. An error represents an invalid system state, one 
that is not allowed by the system behavior specification. The error itself is 
the result of a defect in the system or fault. In other words, a fault is the 
root cause of a failure. That means that an error is merely the symptom of 
a fault. A fault may not necessarily result in an error, but the same fault 
may result in multiple errors. Similarly, a single error may lead to multiple 
failures. These basic concepts are illustrated using the Unified Modeling 
Language (UML) class diagram in Figure 1. 

Figure 1: Failures, Errors, and Faults

 

For example, in a software system, an incorrectly written instruction in a 
program may decrement an internal variable instead of incrementing it. 
Clearly, if this statement is executed, it will result in the incorrect value 
being written. If other program statements then use this value, the whole 
system will deviate from its desired behavior. In this case, the erroneous 
statement is the fault, the invalid value is the error, and the failure is the 
behavior that results from the error. Note that if the variable is never read 
after being written, no failure will occur. Or, if the invalid statement is never 
executed, the fault will not lead to an error. Thus, the mere presence of 
errors or faults does not necessarily imply system failure. 

As this example illustrates, the designation of what constitutes a fault -- the 
underlying cause of a failure -- is relative in the sense that it is simply a 
point beyond which we do not choose to delve further. After all, the 



incorrect statement itself is really an error that arose in the process of 
writing the software, and so on. 

At the heart of all fault tolerance techniques is some form of masking 
redundancy. This means that components that are prone to defects are 
replicated in such a way that if a component fails, one or more of the non-
failed replicas will continue to provide service with no appreciable 
disruption. There are many variations on this basic theme. 

Fault Classifications

It is helpful to classify faults in a number of different ways, as shown by the 
UML class diagram in Figure 2. 

Figure 2: Different Classifications of Faults

 

Based on duration, faults can be classified as transient or permanent. A 
transient fault will eventually disappear without any apparent intervention, 
whereas a permanent one will remain unless it is removed by some external 
agency. While it may seem that permanent faults are more severe, from an 
engineering perspective, they are much easier to diagnose and handle. A 
particularly problematic type of transient fault is the intermittent fault that 
recurs, often unpredictably. 

A different way to classify faults is by their underlying cause. Design faults 
are the result of design failures, like our coding example above. While it 
may appear that in a carefully designed system all such faults should be 
eliminated through fault prevention, this is usually not realistic in practice. 
For this reason, many fault-tolerant systems are built with the assumption 
that design faults are inevitable, and theta mechanisms need to be put in 
place to protect the system against them. Operational faults, on the other 
hand, are faults that occur during the lifetime of the system and are 
invariably due to physical causes, such as processor failures or disk crashes. 

Finally, based on how a failed component behaves once it has failed, faults 
can be classified into the following categories: 



●     Crash faults -- the component either completely stops operating or 
never returns to a valid state; 

●     Omission faults -- the component completely fails to perform its 
service; 

●     Timing faults -- the component does not complete its service on 
time; 

●     Byzantine faults -- these are faults of an arbitrary nature.3 

General Fault Tolerance Procedure

In general, the process for dealing with faults can be grouped into a series 
of distinct activities that are typically (although not necessarily) performed 
in sequence, as shown in the UML activity diagram in Figure 3. 

Error detection is the process of identifying that the system is in an invalid 
state. This means that some component in the system has failed. To ensure 
that the effects of the error are limited, it is necessary to isolate the failed 
component so that its effects are not propagated further. This is known as 
damage confinement. In the error recovery phase, the error and -- more 
importantly -- its effects, are removed by restoring the system to a valid 
state. Finally, in fault treatment, we go after the fault that caused the error 
so that it can be isolated. In other words, we first treat the symptoms and 
then go after the underlying cause. While it may seem more appropriate to 
go after the fault immediately, this is often not practical, since diagnosing 
the true cause of an error can be a very complex and lengthy process. In a 
software system, it is typical for a single fault to cause many cascading 
errors that are reported independently. Correlating and tracing through a 
potential multitude of such error reports often requires sophisticated 
reasoning. 

Error Detection

The most common techniques for error detection are:

●     Replication checks -- In this case, multiple 
replicas of a component perform the same 
service simultaneously. The outputs of the 
replicas are compared, and any 
discrepancy is an indication of an error in 
one or more components. A particular form 
of this that is often used in hardware is 
called triple-modular redundancy (TMR), in 
which the output of three independent 
components is compared, and the output of 
the majority of the components is actually 
passed on4. In software, this can be 
achieved by providing multiple 
independently developed realizations of the 
same component. This is called N-version 
programming. 



 

Figure 3: General Fault 
Tolerance Procedure

●     Timing checks -- This is used for detecting 
timing faults. Typically a timer is started, 
set to expire at a point at which a given 
service is expected to be complete. If the 
service terminates successfully before the 
timer expires, the timer is cancelled. 
However, if the timer times out, then a 
timing error has occurred. The problem 
with timers is in cases where there is 
variation in the execution of a function. In 
such cases, it is dangerous to set the timer 
too tightly, since it may indicate false 
positives. However, setting it too loosely 
would delay the detection of the error, 
allowing the effects to be propagated much 
more widely. 

●     Run-time constraints checking -- This 
involves detecting that certain constraints, 
such as boundary values of variables not 
being exceeded, are checked at run time. 
The problem is that such checks introduce 
both code and performance overhead. A 
particular form is robust data structures, which have built-in 
redundancy (e.g., a checksum). Every time these data structures are 
modified, the redundancy checks are performed to detect any 
inconsistencies. Some programming languages also support an 
assertion mechanism. 

●     Diagnostic checks -- These are typically background audits that 
determine whether a component is functioning correctly. In many 
cases, the diagnostic consists of driving a component with a known 
input for which the correct output is also known. 

Damage Confinement

This consists of first determining the extent to which an error has spread 
(because time may have passed between the time the error occurred and 
the time it is detected). It requires understanding the flow of information in 
a system and following it -- starting from a known failed component. Each 
component along such flows is checked for errors, and the boundary is 
determined. Once this boundary is known, that part of the system is 
isolated until it can be fixed. 

To assist with damage confinement, special "firewalls" are often constructed 
between components. This implies a loose coupling between components so 
that components outside of the firewall can be easily de-coupled from the 
faulty components inside and re-coupled to an alternative, error-free 
redundant set. The cost of this is system overhead, both in performance 
(communication through a firewall is typically slower) and memory. 

Error Recovery

To recover from an error, the system needs to be restored to a valid state. 



 

There are two general approaches to achieving this. In backward error 
recovery, the system is restored to a previous known valid state. This often 
requires checkpointing the system state and, once an error is detected, 
rolling back the system state to the last checkpointed state. Clearly, this 
can be a very expensive capability. Not only is it necessary to keep copies 
of previous states, but also it is necessary to stop the operation of the 
system during checkpointing to ensure that the state that is stored is 
consistent. In many cases, this is not viable, since it may not be possible to 
restore the environment in which the system is operating to the state that 
corresponds to the checkpointed state. 

For such cases, forward error recovery is more appropriate. This involves 
driving the system from the erroneous state to a new valid state. It may be 
difficult to do unless the fault that caused the error is known precisely and 
is well isolated, so that it does not keep interfering. Because it is tricky, 
forward error recovery is not used often in practice. 

Fault Treatment

In this phase, the fault is first isolated and then repaired. The repair 
procedure depends on the type of fault. Permanent faults require that the 
failed component be replaced by a non-failed component. This requires a 
standby component. The standby component has to be integrated into the 
system, which means that its state has to be synchronized with the state of 
the rest of the system. There are three general types of standby schemes: 

●     Cold standby -- This means that the standby component is not 
operational, so that its state needs to be changed fully when the 
cutover occurs. This may be a very expensive and lengthy operation. 
For instance, a large database may have to be fully reconstructed 
(e.g., using a log of transactions) on a standby disc. The advantage 
of cold standby schemes is that they do not introduce overhead 
during the normal operation of the system. However, the cost is paid 
in fault recovery time. 

●     Warm standby -- In this case, the standby component is used to 
keep the last checkpoint of the operational component that it is 
backing up. When the principal component fails, the backward error 
recovery can be relatively short. The cost of warm standby schemes 
is the cost of backward recovery discussed earlier (mainly high 
overhead). 

●     Hot standby -- In this approach, the standby component is fully 
active and duplicating the function of the primary component. Thus, 
if an error occurs, recovery can be practically instantaneous. The 
problem with this scheme is that it is difficult to keep two 
components in lock step. In contrast to warm standby schemes, in 
which synchronization is only performed during checkpoints, in this 
case it has to be done on a constant basis. Invariably, this requires 
communications between the primary and the standby, so that the 
overhead of these schemes is often higher than the overhead for 
warm standby. 

Dependability



Dependability means that our system can be trusted to perform the service 
for which it has been designed. Dependability can be decomposed into 
specific aspects. Reliability characterizes the ability of a system to perform 
its service correctly when asked to do so. Availability means that the system 
is available to perform this service when it is asked to do so. Safety is a 
characteristic that quantifies the ability to avoid catastrophic failures that 
might involve risk to human life or excessive costs. Finally, security is the 
ability of a system to prevent unauthorized access. 

Technically, reliability is defined as the probability that a system will 
perform correctly up to a given point in time. A common measure of 
reliability, therefore, is the mean time between failures (MTBF). 

Availability is defined as the probability that a system is operational at a 
given point in time. For a given system, this characteristic is strongly 
dependent on the time it takes to restore it to service once a failure occurs. 
A common way of characterizing this is mean time to repair (MTTR). 

The two measures for reliability (MTBF) and availability (MTBR) can be used 
to show the relationship between these two important measures. It is 
important to distinguish these two technical terms, since they are often 
used interchangeably in everyday communications. This can lead to 
confusion. The availability of a system can be calculated from these two 
measures according to the formula:

Availability = (MTBF) / (MTTR + MTBF) 

Note that for systems that never fail, availability is equal to reliability. 

Distributed Systems

We define a distributed software system (Figure 4) as: a system with two or 
more independent processing sites that communicate with each other over 
a medium whose transmission delays may exceed the time between 
successive state changes. 

 

Figure 4: A Distributed System

From a fault-tolerance perspective, distributed systems have a major 
advantage: They can easily be made redundant, which, as we have seen, is 



at the core of all fault-tolerance techniques. Unfortunately, distribution also 
means that the imperfect and fault-prone physical world cannot be ignored, 
so that as much as they help in supporting fault-tolerance, distributed 
systems may also be the source of many failures. In this section we briefly 
review these problems. 

Processing Site Failures

The fact that the processing sites of a distributed system are independent of 
each other means that they are independent points of failure. While this is 
an advantage from the viewpoint of the user of the system, it presents a 
complex problem for developers. In a centralized system, the failure of a 
processing site implies the failure of all the software as well. In contrast, in 
a fault-tolerant distributed system, a processing site failure means that the 
software on the remaining sites needs to detect and handle that failure in 
some way. This may involve redistributing the functionality from the failed 
site to other, operational, sites, or it may mean switching to some 
emergency mode of operation. 

Communication Media Failures

Another kind of failure that is inherent in most distributed systems comes 
from the communication medium. The most obvious, of course, is a 
permanent hard failure of the entire medium, which makes communication 
between processing sites impossible. In the most severe cases, this type of 
failure can lead to partitioning of the system into multiple parts that are 
completely isolated from each other. The danger here is that the different 
parts will undertake activities that conflict with each other. 

A different type of media failure is an intermittent failure. These are failures 
whereby messages travelling through a communication medium are lost, 
reordered, or duplicated. Note that these are not always due to hardware 
failures. For example, a message may be lost because the system may have 
temporarily run out of memory for buffering it. Message reordering may 
occur due to successive messages taking different paths through the 
communication medium. If the delays incurred on these paths are different, 
they may overtake each other. Duplication can occur in a number of ways. 
For instance, it may result from a retransmission due to an erroneous 
conclusion that the original message was lost in transit. 

One of the central problems with unreliable communication media is that it 
is not always possible to positively ascertain that a message that was sent 
has actually been received by the intended remote destination. A common 
technique for dealing with this is to use some type of positive 
acknowledgement protocol. In such protocols, the receiver notifies the 
sender when it receives a message. Of course, there is the possibility that 
the acknowledgement message itself will be lost, so that such protocols are 
merely an optimization and not a solution. 

The most common technique for detecting lost messages is based on time-
outs. If we do not get a positive acknowledgement within some reasonable 
time interval that our message was received, we conclude that it was 
dropped somewhere along the way. The difficulty of this approach is to 



distinguish situations in which a message (or its acknowledgement) is 
simply slow from those in which a message has actually been lost. If we 
make the time-out interval too short, then we risk duplicating messages 
and also reordering in some cases. If we make the interval too long, then 
the system becomes unresponsive. 

Transmission Delays

While transmission delays are not necessarily failures, they can certainly 
lead to failures. We've already noted that a delay can be misconstrued as a 
message loss. 

There are two different types of problems caused by message delays. One 
type results from variable delays (jitter). That is, the time it takes for a 
message to reach its destination may vary significantly. The delays depend 
on a number of factors, such as the route taken through the communication 
medium, congestion in the medium, congestion at the processing sites 
(e.g., a busy receiver), intermittent hardware failures, etc. If the 
transmission delay is constant, then we can much more easily assess when 
a message has been lost. For this reason, some communication networks 
are designed as synchronous networks, so that delay values are fixed and 
known in advance. 

However, even if the transmission delay is constant, there is still the 
problem of out-of-date information. Since messages are used to convey 
information about state changes between components of the distributed 
system, if the delays experienced are greater than the time required to 
change from one state to the next, the information in these messages will 
be out of date. This can have major repercussions that can lead to unstable 
systems. Just imagine trying to drive a car if visual input to the driver were 
delayed by several seconds. 

Transmission delays also lead to a complex situation that we will refer to as 
the relativistic effect. This is a consequence of the fact that transmission 
delays between different processing sites in a distributed system may be 
different. As a result, different sites may see the same set of messages but 
in a different order. This is illustrated in Figure 5 below: 

Figure 5: The Relativistic Effect

 



In this case, distributed sites NotifierP and NotifierQ each send out a 
notification about an event to the two clients (ClientA and ClientB). Due 
to the different routes taken by the individual messages and the different 
delays along those routes, we see that ClientB sees one sequence (event1 
followed by event2), whereas ClientA sees a different one (event2-
event1). As a consequence, the two clients may reach different conclusions 
about the state of the system. 

Note that the mismatch here is not the result of message overtaking 
(although this effect is compounded if overtaking occurs); it is merely a 
consequence of the different locations of the distributed agents relative to 
each other. 

Distributed Agreement Problems

The various failure scenarios in distributed systems and transmission delays 
in particular have instigated important work on the foundations of 
distributed software.5 Much of this work has focused on the central issue of 
distributed agreement. There are many variations of this problem, including 
time synchronization, consistent distributed state, distributed mutual 
exclusion, distributed transaction commit, distributed termination, 
distributed election, etc. However, all of these reduce to the common 
problem of reaching agreement in a distributed environment in the presence 
of failures. 

A Fault-Tolerant Pattern for Distributed Systems

We now examine a specific pattern that has been successfully used to 
construct complex, fault-tolerant embedded systems in a distributed 
environment. This pattern is suitable for a class of distributed applications 
that is characterized by the star-like topology shown in Figure 6, which 
commonly occurs in practice. 

Figure 6: System Topology

 

The system consists of a set of distributed agents, each on a separate 
processing site, which collaboratively perform some function. The role of the 
controller is to coordinate the operation of the agents. Note that it is not 



necessarily the case that the agents have to communicate through the 
controller. We have simply not shown such connections in our diagram since 
they are not relevant at this point. We make the following assumptions 
about this system: 

●     Soft response time -- The processing times for global functions allow 
for some variability. 

●     Non-critical agents -- The system may still be useful even if one or 
more agents fail permanently. 

In this system, the permanent failure of the central controller would lead to 
the loss of all global functionality. Hence, it is a single point of failure that 
needs to be made fault tolerant. However, we would like to avoid the 
overhead of a full hot standby -- or even a warm standby -- for this 
component. 

The essential feature of this approach is to distribute the state information 
about the system as a whole between the controller and the agents. This is 
done in such a way that (a) the controller holds the global state information 
that comprises the state information for each agent, and (b) each agent 
keeps its own copy of its state information. Every time the local state of an 
agent changes, it informs the controller of the change. The controller caches 
this information. Thus, we have state redundancy. Note that there is no 
need for a centralized consistent checkpoint of the entire system, which, as 
we have mentioned, is a complex and high-overhead operation. 

Obviously, the state redundancy does not protect us from permanent 
failures of the controller. Note however, that any local functions performed 
by the agents are unaffected by the failure of the agents. Global functions, 
on the other hand, may have to be put on hold until the controller recovers. 
Thus, it is critical to be able to recover the controller. 

Controller recovery can be easily achieved by using a simple, low-overhead, 
cold standby scheme. The standby controller can recover the global state 
information of the failed controller simply by querying each agent in turn. 
Once it has the full set, the system can resume its operation; the only effect 
is the delay incurred during the recovery of the controller. Of course, it is 
also possible to use other standby schemes as well with this approach. 

If an agent fails and recovers, it can restore its local state information from 
the controller. One interesting aspect to this topology is that it is not 
necessary for the controller to monitor its agents. A recovering agent needs 
merely to contact its controller to get its state information. This eliminates 
costly polling. 
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Five Days of the Fish

An Allegory by Joe Marasco
Senior Vice President
Rational Software

A dead fish begins to smell bad on the second day after it dies; we say 
something stinks like three-day-old fish. Business problems are a lot like 
dead fish. Typically, people perceive them only when they start to stink -- 
i.e., after they have been incubating for some time. Very often, managers 
like you and me are asked to jump in and "fix" such problems, either 
internally or for our customers. Because in most "rotting-fish" situations 
time is of the essence, I would like to offer some guidance, in allegorical 
form, to help other "fixers" analyze and resolve these crises. 

Let's imagine an exotic fish market, where fish are kept alive in a display 
tank until just before they are sold, so that they can be eaten when fresh. 
Needless to say, the store has high prices, high overhead, and low 
volume, leading to very thin profit margins. 

This market has in its employ a small but very vocal group of Cassandras 
who periodically announce that a fish is about to die, although all the fish 
are cruising around the tank as usual. This group consists of: 

●     Employees who don't have enough to do and are always looking for 
things that are not quite right. Like Nostradamus, they are never 
taken to task if their predictions don't come true. They therefore 
predict all kinds of things with great abandon, hitting it right every 
once in awhile just because of statistical probability. The signal-to-
noise ratio for these people is very low, so usually the owner can 
safely ignore them. 

●     A few individuals who actually can see what's coming and aren't 
afraid to vocalize about it. Provided that the owner can distinguish 
these folks from the first subgroup, they can be useful to him, but 
they are not always right, either. 

Day One: Unaware
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That very week, a fish does die, but very few people take notice. One or 
two clueless employees poke around and discuss what tests they might 
perform to decide if it is normal for fish to float on the top of the tank. 
Later, they will remark that they suspected something was wrong but 
weren't sure. 

Day Two: Avoiding the Issue

The following day, more people perceive that 
something is wrong, although some speculate 
that the fish is just tired. There is not yet 
enough stink in the air to arouse them to 
action. Although customer traffic has dropped 

off a bit, the head clerk delays telling the owner, who is notorious for 
flying into a rage upon receipt of bad news. 

Day Three: Enter "The Fixer"

Some time during the third day, when the dead fish really begins to smell, 
the clerk finally summons the owner, who, in turn, calls in an outside 
specialist. This "fixer" arrives on the scene and pronounces the fish legally 
dead. The owner, in complete denial, scolds the fixer for not employing 
mouth-to-mouth resuscitation. When the fixer points out the futility of 
such an action, citing the fish's odor, the owner then commands him to 
"fix the fish problem." 

What does this mean? Banishing the odor and/or keeping any more fish in 
the tank from dying? Working with suppliers to get healthier fish in the 
first place? Finding someone who wants to buy the dead, putrefying fish? 
All of the above? Knowing that the owner does not yet know what he 
wants -- and that his idea of "fix" will probably change a few times before 
the fixer is done -- the fixer rolls up his sleeves and gets to work. In the 
meantime, business continues to fall off. 

No one can ignore the odor, and customers are 
staying away. Rumors spread throughout the 
store that many fish have died and were 
surreptitiously thrown away. The Cassandras 
are abuzz with "I told you so," and employees 
are putting as much distance as possible between themselves and the 
dead fish. The owner assures everyone that the fixer is working on the 
problem, and will soon have a solution. 

Meanwhile, the fixer is up to his elbows in stinking fish guts, feeling dirty, 
lonely, and desperate. The owner tells him what a prince he is. Aware that 
this is not the first time he has been called in on a "dead fish" problem, 
the fixer is mildly upset and concerned about the extent to which he is 
being "managed," but knows that to be successful he must keep his head 
down and solve the problem. 

Day Four: The Turning Point

By day four, the stench is so bad that the employees are clamoring for the 



fixer's head. Some even blame him for the fish's death. Moreover, the 
health department arrives and threatens to close the store, sending the 
owner into a full panic. 

The fixer is prepared for all of this. He knows 
that day four is his moment of truth -- the get-
rolling-or-smell-horrible-forever day. That is 
why he wasted no time trying to resuscitate 
the dead fish on day three, knowing from 

experience that he would need time to examine the entrails and formulate 
a solution. Today, he can legitimately announce the solution, begin 
implementation, and start calming everyone down. 

He makes no attempt to control the odor (focus on PR) yet, understanding 
that doing so before a true solution is underway would invite catastrophe. 
Privately, the fixer thanks his lucky stars that the remaining fish appear to 
be hanging in there, because another dead fish at this point could push 
the whole thing over the cliff. 

Day Five: Two Critical Paths

Day five is as critical as day four. It has been a long time since the fish 
died. Employees cannot bear the smell any longer, and the fixer knows 
that if it doesn't disappear quickly, things will take a dramatic turn for the 
worse. So he divides his efforts between two tasks: resolving the problem 
and getting rid of the odor. The fixer must balance the two tasks carefully. 
If he neglects his problem-solving work, more fish may die. If he ignores 
the odor, the owner might mistakenly interpret the ongoing stench as a 
lack of progress and jettison the fixer's proposed solution -- tossing the 
baby out with the bathwater, so to speak. 

In addition to working on these tasks, the fixer also urges the owner to 
offer the remaining fish at half price, even though there is absolutely 
nothing wrong with them. With this incentive, many new customers drop 
in and purchase fish, despite the lingering odor. These people leave feeling 
self-satisfied with their business and culinary acumen. Some established 
customers, however, adopt a wait-and-see attitude, wanting to be sure 
that the rest of the fish are not diseased before they eat one. 

If the fixer can survive day five, things will get 
better. Both employees and customers will 
quickly forget about the problem, and he can 
finish resolving it without all the pressure. He 
will succeed by making steady, regular 
progress and ensuring that no new fish die on 
his watch. Until the problem is fully resolved, 
ongoing vigilance is critical. 

Moral of the Story

Fixers of the world, remember that in a crisis you have three days to 
prove yourself: 



●     Fish start to stink on day two, but you will rarely be called that 
early. 

●     Don't waste day three fooling around. Open up the fish and 
conceive a plan. The stink will be bad, and it will get worse. 

●     Announce your plan and begin executing it on day four. 

●     Devote day five to working on the problem and eliminating the 
odor.

Good luck! Work on keeping your fish alive, and may all your dead fish be 
little ones. 

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 

Copyright Rational Software 2000 | Privacy/Legal Information


	Splash Page
	Editor's Notes
	Trends in UML and e-Development
	Next-Generation Software Economics
	The Ten Essentials of RUP
	From Craft to Science
	From Waterfall to Iterative Development
	What Is Real-Time Embedded Software
	Keeping Geographically Distributed Development Teams in Sync
	Bridging the Gap between Black Box and White Box Testing
	Keys to Successful Tool Adoption
	Managing an Integrated RUP/SDE Implementation
	Why Use Cases Are Not "Functions"
	Features, Use Cases, Requirements, Oh My!
	Fault Tolerance Techniques for Distributed Systems
	Five Days of the Fish



