
The Ten Essentials of RUP

by Leslee Probasco
Development Manager
Rational Unified Process
Rational Software Canada

To effectively apply the Rational Unified Process
(affectionately known as "RUP"), it is important to
first understand its key objectives, why each is
important, and how they work together to help your

development team produce a quality product that meets your
stakeholders' needs.

Camping Trip? Software Project? Identify
Essentials First

The other evening, my neighbor Randy came over to ask for help: He was
preparing for a weekend camping and hiking trip and trying to determine
what gear to pack. He knows that I often lead and participate in
wilderness trips and was impressed with how I'm able to quickly and
efficiently determine what items to cram into my limited packing space,
while referring to a list of all the equipment and clothing I own. "Do you
think I could borrow that list?" he asked.

"Sure, but I'm afraid it won't be much help," I explained. You see, I have
literally hundreds of items on my outdoor gear list, covering many
different types of outings -- from backpacking and climbing, to skiing,
snow-shoeing, ice-climbing, and kayaking -- and for trip lengths ranging
from simple day trips to multi-day expeditions. I knew that without some
guidance, Randy would probably not be able to wade through the
multitude of items on my list and figure out what he really needed for his
relatively simple outing.

Start With Essentials, Then Add the Extras

Instead, I offered to look through the items Randy had already crammed
into his bulging pack. We could see what he might eliminate to lighten his
load and also whether any necessary items were missing. Within a short
time, I could tell that what he really lacked was an understanding of what
were the "essentials" for any wilderness outing.

jprince
http://www.therationaledge.com/content/dec_00/f_rup.html

jprince
Copyright Rational Software 2001

I pulled out a blank sheet of paper and listed ten items1:

1. Map

2. Compass

3. Sunglasses & sunscreen

4. Extra clothing

5. Extra food & water

6. Headlamp

7. First-aid kit

8. Fire-starter

9. Matches

10. Knife

"Here, Randy. This is the list you really need. If you start with these 'ten
essentials,' then for any trip, the other necessary items will become
obvious." I memorized this list many years ago, when I first started
mountaineering, and I still refer to it -- no matter what type of trip I am
preparing for or how long I'll be gone. Each of these items scales up or
down, depending on the trip, but starting with a "short list" and expanding
it as needed is much easier than starting from a long list and trying to
decide what not to take.

Applying This Lesson to RUP

Often, as I help project teams sort through the many elements in RUP, I
hear questions such as: "How do I sort through all of these items and
determine which ones I need for my project?" "RUP contains so much
information. It must be intended only for big projects -- can I really use it
for my small one?"

What these folks
really need, I've
decided, is a "Ten
Essentials of
RUP," similar to
the simple list I
gave to my friend
Randy -- one that
would serve as a
reasonable
starting point for
any project:
small, medium, or
large. This list
would focus on
what I call "the

For those of you who are unfamiliar with RUP, this diagram
represents the incremental and iterative nature of the Rational
Unified Process, which covers a vast array of disciplines within
the software development lifecycle, including artifacts,
guidelines, team member roles, and activities.

essence" of RUP --
or of any effective
software process,
for that matter.

Often, projects
get bogged down with the details in one particular area before all the
participants understand the key process elements required to fully produce
and deliver a quality product. Then, when the project falls behind, the
blame is placed on some activity that may have been over-emphasized or
whose usefulness they don't understand: "See, I told you that
requirements management (or use cases, or collecting project metrics, or
using configuration management, or using a defect tracking tool, or having
status meetings) would slow us down!"

Having an "Essentials" list allows team members to take a more
systematic and holistic approach to the overall process of developing
software. Once a process framework or "architecture" is in place, then
team members can more effectively focus on individual problem areas
(and often, I'll admit, requirements management is right there at the top
of the list). It is also important to identify and prioritize obvious problems
and their associated risks at the outset, so the team can apply early
mitigation strategies as needed.

The Ten Essentials of RUP

So, what should be on the "Ten Essentials of RUP" list? Here are my
choices:

1. Develop a Vision

2. Manage to the Plan

3. Identify and Mitigate Risks

4. Assign and Track Issues

5. Examine the Business Case

6. Design a Component Architecture

7. Incrementally Build and Test the Product

8. Verify and Evaluate Results

9. Manage and Control Changes

10. Provide User Support

Let's look at each of these items individually, see where they fit into RUP,
and find out why each made my "short list."

1. Develop a Vision

Having a clear vision is key to developing a product
that meets your stakeholders' real needs.

The Vision captures the "essence" of the
Requirements Workflow in RUP: analyzing the
problem, understanding stakeholder needs,
defining the system, and managing the

requirements as they change.

The Vision provides a high-level, sometimes contractual, basis for
more detailed technical requirements. As the term implies, it is a
clear, and usually high-level, view of the software project that can
be articulated to any decision maker or implementer during the
process. It captures very high-level requirements and design
constraints, giving the reader an understanding of the system to be
developed. It also provides input for the project-approval process,
and is therefore intimately related to the Business Case. And finally,
because the Vision communicates the fundamental "why's and
what's" of the project, it serves as a means for validating future
decisions.

The Vision statement should answer the following questions, which
can also be broken out as separate, more detailed items:

● What are the key terms? (Glossary)

● What problem are we trying to solve? (Problem Statement)

● Who are the stakeholders? Who are the users? What are their
respective needs?

● What are the product features?

● What are the functional requirements? (Use Cases)

● What are the non-functional requirements?

● What are the design constraints?

2. Manage to the Plan

"The product is only as good as the plan for the product."2

In RUP, the Software Development Plan (SDP) aggregates all
information required to manage the project and may encompass a
number of separate items developed during the Inception phase. It
must be maintained and updated throughout the project.

The SDP defines the project schedule (including
Project Plan and Iteration Plan) and resource needs
(Resources and Tools), and is used to track
progress against the schedule. It also guides
planning for other process components: Project
Organization, Requirements Management Plan,
Configuration Management Plan, Problem

Resolution Plan, QA Plan, Test Plan, Test Cases, Evaluation Plan,
and Product Acceptance Plan.

In a simple project, statements for these plans may consist of only
one or two sentences. A Configuration Management Plan, for
example, may simply state: "At the end of each day, the contents
of the project directory structure will be zipped, copied onto a
dated, labeled zip disk, marked with a version number, and placed
in the central filing cabinet."

The format of the Software Development Plan is not as important as
the activity and thought that go into producing it. As Dwight D.
Eisenhower said, "The plan is nothing; the planning is everything."

"Manage to the Plan" -- together with essentials #3, #4, #5, and
#8 in our list above -- captures the essence of the Project
Management Workflow in RUP, which involves conceiving the
project, evaluating scope and risk, monitoring and controlling the
project, and planning for and evaluating each iteration and phase.

3. Identify and Mitigate Risks

An essential precept of RUP is to identify and attack
the highest risk items early in the project. Each risk
the project team identifies should have a
corresponding mitigation plan. The risk list should
serve both as a planning tool for project activities
and as the basis for specifying iterations.

4. Assign and Track Issues

Continuous analysis of objective data derived
directly from ongoing activities and evolving
product configurations is important in any project.
In RUP, regular status assessments provide the
mechanism for addressing, communicating, and
resolving management issues, technical issues, and
project risks. Once the appropriate team has identified the hurdles,
they assign all of these issues a due date and a person with
responsibility for resolving them. Progress should be tracked
regularly, and updates should be issued as necessary.

These project "snapshots" highlight issues requiring management
attention. While the period may vary, regular assessment enables
managers to capture project history and remove any roadblocks or
bottlenecks that restrict progress.

5. Examine the Business Case

The Business Case provides the necessary
information, from a business standpoint, to
determine whether the project is a worthwhile
investment. The Business Case also helps develop
an economic plan for realizing the project Vision. It
provides justification for the project and establishes
economic constraints. As the project proceeds,
analysts use the Business Case to accurately assess return on
investment (ROI).

Rather than delve deeply into the specifics of a problem, the
Business Case should create a brief but compelling justification for
the product that all project team members can easily understand
and remember. At critical milestones, managers should return to
the Business Case to measure actual costs and returns against
projections and decide whether to continue the project.

6. Design a Component Architecture

In the Rational Unified Process, a software system's architecture (at
a given point in time) is defined as the organization or structure of
the system's significant components interacting, through interfaces,
with components composed of successively smaller components and
interfaces. What are the main pieces? And how do they fit together?

RUP provides a methodical, systematic way to
design, develop, and validate such an architecture.
The steps involved in the Analysis and Design
Workflow include defining a candidate architecture,
refining the architecture, analyzing behavior, and
designing components of the system.

To speak and reason about software architecture, you must first
create an architectural representation that describes important
aspects of the architecture. In RUP, this is captured in the Software
Architecture Document, which presents multiple views of the
architecture. Each view addresses a set of concerns specific to a set
of stakeholders in the development process: end users, designers,
managers, system engineers, system administrators, and so on.
The document enables system architects and other project team
members to communicate effectively about architecturally
significant project decisions.

7. Incrementally Build and Test the Product

The essence of the Implementation and Test
workflows in RUP is to incrementally code, build,
and test system components throughout the
project lifecycle, producing executable releases at
the end of each iteration after inception.

At the end of the elaboration phase, an architectural prototype is

available for evaluation; this might also include a user-interface
prototype, if necessary. Then throughout each iteration of the
construction phase, components are integrated into executable,
tested builds that evolve into the final product. Also key to this
essential process element are ongoing Configuration Management
and review activities.

8. Verify and Evaluate Results

As the name implies, the Iteration Assessment in
RUP captures the results of an iteration. It
determines to what degree the iteration met the
evaluation criteria, including lessons learned and
process changes to be implemented.

Depending on the scope and risk of the project and
the nature of the iteration, the assessment ranges

from a simple record of a demonstration and its outcomes to a
complete, formal test review record.

The key here is to focus on process problems as well as product
problems. The sooner you fall behind, the more time you will have
to catch up.

9. Manage and Control Changes

The "essence" of RUP's Configuration and Change Management
Workflow is to manage and control the scope of the project as
changes occur throughout the project lifecycle. The goal is to
consider all stakeholder needs and meet them to whatever extent
possible, while still delivering a quality product, on time.

As soon as users get the first prototype of a product (and often
even before that!), they will request changes. It is important that
these changes be proposed and managed through a consistent
process.

In RUP, Change Requests are used to document
and track defects, enhancement requests, and any
other type of request for a change to the product.
They provide an instrument for assessing the
impact of a potential change as well as a record of
decisions made about that change. They also help
ensure that all project team members understand
the potential impact of a proposed change.

10. Provide User Support

In RUP, the "essence" of the Deployment Workflow is to
wrap up and deliver the product, along with whatever
materials are necessary to assist the end-user in learning,
using, and maintaining the product.

At a minimum, a project should supply users with a User's
Guide -- perhaps implemented through online Help -- and
possibly an Installation Guide and Release Notes.
Depending on the complexity of the product, users may

also need training materials. Finally, a Bill of Materials clearly
documents what should be shipped with the product.

What about Requirements?

Some of you may look at my list of essentials and vehemently disagree
with my choices. You may ask, for example, where "requirements" fit into
this picture. Aren't they essential? I'll tell you why I have not included
them on my list. Sometimes I'll ask a project team (especially a team for
an internal project), "What are your requirements?" and receive the
response, "We don't really have any requirements."

This amazed me at first (since I come from a military-aerospace
development background). How could they not have any requirements? As
I talked to these teams further, I found out that to them, "requirements"
meant a set of externally imposed "shall" statements about what they
must have or the project will be rejected -- and they really don't have any
of those! Especially if a team is involved in research and development, the
product requirements may evolve throughout the project.

So for these projects, I follow up their response with another question:
"Okay, then what is the vision for the product?" Then their eyes light up.
We move easily through each of the questions listed as bullet points under
RUP essential #1 above ("Develop a Vision"), and the requirements just
flow naturally.

For teams working on contracts with specified requirements, it may be
useful to have "Meet Requirements" on their essentials list. Remember,
my list is meant only as a starting point for further discussion.

Summary: Applying the Ten Essentials

So, how can discovery of the "Ten Essentials of RUP" make a difference in
my life? Here are a few ways that these recommendations can help me
work with projects of varying sizes.

For Very Small Projects

First of all, if someone asks me how they might use RUP and the Rational
development tools for building a simple product with a very small,
inexperienced team that is just learning about process, I can share my
"Ten Essentials" list and avoid overwhelming the project team with all the
details in RUP and the full power of the Rational Suites of tools.

In fact, these ten essentials can be implemented without any automated
tool support! A project notebook with one section devoted to each of the
ten essentials is actually a very good starting point for managing a small
project. (And I have found Post-It Notes invaluable for managing,
prioritizing, and tracking change requests on small projects!)

For Growing Projects

Of course, as a project's size and complexity grow, these simple means of
applying the ten essentials soon become unmanageable, and the need for
automated tools will become more obvious. Nevertheless, I would still
encourage team leaders to start with the "Ten Essentials" and "Best
Practices" of RUP and incrementally add tool support as needed, rather
than immediately attempt to fully utilize the complete set of tools in the
Rational Suites.

For Mature Project Teams

For more mature project teams that may already be applying a software
process and using development tools, the "Ten Essentials" can help
provide a quick method for assessing the balance of key process elements
and identify and prioritize areas for improvement.

For All Projects

Of course, each project is different, and it may seem that some projects
don't really need all of these "essentials." In these cases, it is also
important to consider what will happen if your team ignores any of these
essentials. For example:

● No vision? You may lose track of where you are going and wind up
taking unproductive detours.

● No plan? You will not be able to track progress.

● No risk list? Your project is in danger of focusing on the wrong
issues now and may get blown up by an undetected "land mine" five
months from now.

● No issues list? Without timely analysis and problem solving, small
issues often evolve into major roadblocks.

● No business case? You risk losing time and money on the project.
Eventually it may run out of funds and be cancelled.

● No architecture? You may be unable to handle communication,
synchronization, and data access issues as they arise. You may also
have problems with scaling and performance.

● No product (prototype)? You won't be able to test effectively and
will also lose credibility with customers.

● No evaluation? You'll have no way of knowing how close you really
are to meeting your deadlines, project goals, and budget.

● No change requests? You'll have no way to assess the potential
impact of changes, prioritize competing demands, and update the

whole team when changes are implemented.

● No user support? Users will not be able to use the product to best
advantage, and tech support may be overwhelmed with requests for
help.

So, there you have it -- it's very risky to live without
knowledge of the "Ten Essentials." I encourage you
to use these as a starting point for your project
group. Decide what you want to add, change, or
take away. Then, decide what else is really
"essential" for your project -- no matter what size it
may be -- to deliver a product on time, within
budget, that meets your stakeholders' real needs!

Other Essentials

Other organizations have published similar lists of software project
essentials. IEEE Software Magazine, March/April 1997, included an article
by Steve McConnell, "Software's Ten Essentials." The Software Project
Manager's Network includes a listing of "16 Critical Software
Practices," available at www.spmn.com. And the Software Engineering
Institute's (SEI) Capability Maturity Model (CMM) contains Key Process
Areas (KPAs) which might also be considered "essentials" (see
www.sei.cmu.edu).

1For a complete analysis of this "Ten Essentials" list, see pages 35-41 of Mountaineering: The
Freedom of the Hills, 6th edition, published by The Mountaineers of Seattle, WA in 1997.

2From the Johnson Space Center Shuttle Software Group. Quoted in "They Write the Right
Stuff," by Charles Fishman, Fast Company, Issue 6, p. 95, December 1996.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2000 | Privacy/Legal Information

