
Contemporary SOA, Part I

605.702 Service Oriented Architecture
Johns-Hopkins University

Lecture 3 Goals

Part one of two to become familiar with the
concepts behind Contemporary SOA

More then Web Services
Message Exchange Patterns (MEP’s)
Linking business processes to services and SOA
Control Services: Coordination, Orchestration,
Choreography
Developing a Developing a …….. (.. (PracticePractice session)session)

Session #3 Today’s Agenda

Required Reading (to be read before class)
Erl Chapter 6: Web Services and Contemporary SOA I

Activity Management and Composition

Today’s Lecture
Questions about Lecture 2, review sections 5.3 Questions about Lecture 2, review sections 5.3
and 5.4and 5.4
Ch 6: Web Services, Activity Management and
Composition

Review Last Week’s Material

An opportunity to ask questions
Chapter 4: The Evolution of SOA
Chapter 5:Web Services and Primitive SOA

Review Last Week’s Material

Primitive SOA (simplistic definition)
SOAP, WSDL, UDDI

Roles { Service Provider, Requestor,
Intermediator}

Initial Sender and Utimate Receiver
Models

Business Service Model, Utility Service Model,
Controller Service Model

The Web services framework

The Web services framework

an abstract (vendor-neutral) existence defined by standards
organizations and implemented by (proprietary) technology platforms
core building blocks that include Web services, service descriptions,
and messages
a communications agreement centered around service descriptions
based on WSDL
a messaging framework comprised of SOAP technology and concepts
a service description registration and discovery architecture sometimes
realized through UDDI
a well-defined architecture that supports messaging patterns and
compositions (covered in Chapter 6)
a second generation of Web services extensions (also known as the
WS-* specifications) continually broadening its underlying feature-set
(covered in Chapters 6 and 7)

Coupling

http://en.wikipedia.org/wiki/Coupling_%28co
mputer_science%29

Types of coupling

Types of coupling

Conceptual model of coupling
Coupling can be "low" (also "loose" and "weak") or "high" (also "tight"
and "strong"). Some types of coupling, in order of highest to lowest
coupling, are as follows:
Content coupling (high)

Content coupling is when one module modifies or relies on the internal
workings of another module (e.g., accessing local data of another module).
Therefore changing the way the second module produces data (location,
type, timing) will lead to changing the dependent module.

Common coupling
Common coupling is when two modules share the same global data (e.g., a
global variable).
Changing the shared resource implies changing all the modules using it.

External coupling
External coupling occurs when two modules share an externally imposed
data format, communication protocol, or device interface.

Types of coupling

Control coupling
Control coupling is one module controlling the flow of another, by passing it
information on what to do (e.g., passing a what-to-do flag).

Stamp coupling (Data-structured coupling)
Stamp coupling is when modules share a composite data structure and use
only a part of it, possibly a different part (e.g., passing a whole record to a
function that only needs one field of it).
This may lead to changing the way a module reads a record because a field
that the module doesn't need has been modified.

Data coupling
Data coupling is when modules share data through, for example,
parameters. Each datum is an elementary piece, and these are the only data
shared (e.g., passing an integer to a function that computes a square root).

Message coupling (low)
This is the loosest type of coupling. It can be achieved by state
decentralization (as in objects) and component communication is done via
parameters or message passing No coupling
Modules do not communicate at all with one another.

Cohesion

http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29
The types of cohesion, in order of the worst to the best type, are as
follows:
Coincidental cohesion (worst)

Coincidental cohesion is when parts of a module are grouped arbitrarily; the
only relationship between the parts is that they have been grouped together
(e.g. a "Utilities" class).

Logical cohesion
Logical cohesion is when parts of a module are grouped because they
logically are categorized to do the same thing, even if they are different by
nature (e.g. grouping all mouse and keyboard input handling routines).

Temporal cohesion
Temporal cohesion is when parts of a module are grouped by when they are
processed - the parts are processed at a particular time in program
execution (e.g. a function which is called after catching an exception which
closes open files, creates an error log, and notifies the user).

Cohesion

Procedural cohesion
Procedural cohesion is when parts of a module are grouped because they
always follow a certain sequence of execution (e.g. a function which checks
file permissions and then opens the file).

Communicational cohesion
Communicational cohesion is when parts of a module are grouped because
they operate on the same data (e.g. a module which operates on the same
record of information).

Sequential cohesion
Sequential cohesion is when parts of a module are grouped because the
output from one part is the input to another part like an assembly line (e.g. a
function which reads data from a file and processes the data).

Functional cohesion (best)
Functional cohesion is when parts of a module are grouped because they all
contribute to a single well-defined task of the module (e.g. tokenizing a string
of XML).

Services (as Web services)

every Web service can be associated with:
a temporary classification based on the roles it assumes
during the runtime processing of a message
a permanent classification based on the application logic it
provides and the roles it assumes within a solution
environment

We explore both of these design classifications in
the following two sections:

service roles (temporary classifications)
service models (permanent classifications)

Service roles
The Web service is
invoked via an
external source,
such as a service
requestor (Figure
5.2).
The Web service
provides a
published service
description offering
information about
its features and
behavior. (Service
descriptions are
explained later in
this chapter.)

Service requestor

The Web service
invokes a service
provider by sending it a
message (Figure 5.3).
The Web service
searches for and
assesses the most
suitable service provider
by studying available
service descriptions.
(Service descriptions
and service registries
are covered in the
Service descriptions
(with WSDL) section.)
service requestor entity
(the organization or
individual requesting the
Web service)
service requestor agent
(the Web service itself,
acting as an agent on
behalf of its owner)

Service compositions

Service-orientation principles
place an emphasis on
composability,
allowing some Web services to
be designed in such a manner
that they can be pulled into future
service compositions without a
foreknowledge of how they will
be utilized.
The concept of service
composability is very important to
service-oriented environments
In fact, service composition is
frequently governed by WS-*
composition extensions, such as
WS-BPEL and WS-CDL, which
introduce the related concepts of
orchestration and choreography,
respectively

Service models

Business services are used within SOAs as
follows:

as fundamental building blocks for the
representation of business logic
to represent a corporate entity or information set
to represent business process logic
as service composition members

Utility service model

Utility services are used within SOAs as
follows:

as services that enable the characteristic of reuse
within SOA
as solution-agnostic intermediary services
as services that promote the intrinsic
interoperability characteristic of SOA
as the services with the highest degree of
autonomy

Controller service model

Controller services are used within SOAs as
follows:

to support and implement the principle of
composability
to leverage reuse opportunities
to support autonomy in other services

Sect. 5.3 Service Descriptions (with WSDL)
Web Service sLanguage (WSDL)

Abstract Description:
API-like interface definition

Concrete Description:
Service end points: protocol and physical location of
service

XML Schema Definition (XSD)
Data type definitions

Policy Statement (e.g. Service Level
Agreements SLA)

More in chapter 7

Service descriptions (with WSDL)

WSDL

Metadata and service contracts

Semantic descriptions

Service semantics include:
how a service behaves under certain conditions
how a service will respond to a specific condition
what specific tasks the service is most suited for

Service description advertisement and
discovery

Central directories and registries become an
option to keep track of the many service
descriptions that become available. These
repositories allow humans (and even service
requestors) to:

locate the latest versions of known service
descriptions
discover new Web services that meet certain
criteria

UDDI provides us with a registry model

Private and public registries

Public registries accept
registrations from any
organizations, regardless
of whether they have Web
services to offer. Once
signed up, organizations
acting as service provider
entities can register their
services.
Private registries can be
implemented within
organization boundaries to
provide a central
repository for descriptions
of all services the
organization develops,
leases, or purchases.

Business entities and business services

Each public registry record consists of a
business entity containing basic profile
information about the organization (or service
provider entity). Included in this record are
one or more business service areas, each of
which provides a description of the services
offered by the business entity. Business
services may or may not be related to the use
of Web services.

Section 5.4 Messaging with SOAP

Messages
Header Block
Message Styles (page 146)

RPC style
Document style

Attachments
Message Paths

Static
Dynamic

Messages

Simple Object Access Protocol, the SOAP
a standard message format.
The structure of this format is quite simple,
to be extended and customized
driving force behind many of the most significant
features of contemporary SOAs.

Envelope, header, and body

Header Blocks

include:
processing instructions that may be executed by service
intermediaries or the ultimate receiver
routing or workflow information associated with the
message
security measures implemented in the message
reliability rules related to the delivery of the message
context and transaction management information
correlation information (typically an identifier used to
associate a request message with a response message)

Message styles

The SOAP specification was originally designed to
replace proprietary RPC protocols by allowing calls
between distributed components to be serialized
into XML documents, transported, and then de-
serialized into the native component format upon
arrival.
This RPC-style message runs contrary to the
emphasis SOA places on independent, intelligence-
heavy messages.
SOA relies on document-style messages to enable
larger payloads, coarser interface operations, and
reduced message transmission volumes between
services.

Attachments

To facilitate requirements for the delivery of
data not so easily formatted into an XML
document,
SOAP attachment technologies exist.
Each provides a different encoding
mechanism used to bundle data in its native
format with a SOAP message.
SOAP attachments are commonly employed
to transport binary files, such as images.

Message paths

A message path refers to the
route taken by a message from
when it is first sent until it arrives
at its ultimate destination.
Therefore, a message path
consists of at least one initial
sender, one ultimate receiver, and
zero or more intermediaries
(Figure 5.26).
Mapping and modeling message
paths becomes an increasingly
important exercise in SOAs, as
the amount of intermediary
services tends to grow along with
the expansion of a service-
oriented solution.
Design considerations relating to
the path a message is required to
travel often center around
performance, security, context
management, and reliable
messaging concerns.

	Contemporary SOA, Part I
	Lecture 3 Goals
	Session #3 Today’s Agenda
	Review Last Week’s Material
	Review Last Week’s Material
	The Web services framework
	The Web services framework
	Coupling
	Types of coupling
	Types of coupling
	Types of coupling
	Cohesion
	Cohesion
	Services (as Web services)
	Service roles
	Service requestor
	Service compositions
	Service models
	Utility service model
	Controller service model
	Sect. 5.3 Service Descriptions (with WSDL)
	Service descriptions (with WSDL)
	WSDL
	Metadata and service contracts
	Semantic descriptions
	Service description advertisement and discovery
	Private and public registries
	Business entities and business services
	Section 5.4 Messaging with SOAP
	Messages
	Envelope, header, and body
	Header Blocks
	Message styles
	Attachments
	Message paths

