
Contemporary SOA, Part I

605.702 Service Oriented Architecture
Johns-Hopkins University

Lecture 3 Goals

Part one of two to become familiar with the
concepts behind Contemporary SOA

Message Exchange Patterns (MEP’s)
Linking business processes to services and SOA
Control Services: Coordination, Orchestration,
Choreography

Session #3 Today’s Agenda

Required Reading (to be read before class)
Erl Chapter 6: Web Services and Contemporary SOA I

Activity Management and Composition

Today’s Lecture
Ch 6: Web Services, Activity Management and
Composition

Chapter 6: Contemporary SOA Part I

6.1 Message Exchange Patterns
6.2 Service Activity
6.3 Coordination
6.4 Atomic Transactions
6.5 Business Activities
6.6 Orchestration
6.7 Choreography

6.1 Message Exchange Patterns (MEP’s)

How services can share and cooperate in
processing messages

Primitive MEP’s
Request response
Fire and forget

Single destination, multi-cast or broadcast

Complex MEP’s
Based on Primitive MEP’s
Example: Publish and subscribe

WSDL & MEP’s:
Request-response, solicit-response, one-way, notification

Message exchange patterns

Message exchange
patterns (MEPs) represent
a set of templates
The most common example
is a request and response
pattern.
Many MEPs have been
developed, each addressing
a common message
exchange requirement.

Request-response

The request-response MEP
(Figure 6.3) establishes a
simple exchange in which a
message is first transmitted
from a source (service
requestor) to a destination
(service provider). Upon
receiving the message, the
destination (service
provider) then responds
with a message back to the
source (service requestor).

Fire-and-forget

A number of variations of
the fire-and-forget MEP
exist, including:

The single-destination
pattern, where a source
sends a message to one
destination only.
The multi-cast pattern,
where a source sends
messages to a predefined
set of destinations.
The broadcast pattern,
which is similar to the multi-
cast pattern, except that the
message is sent out to a
broader range of recipient
destinations.

The fundamental
characteristic of the fire-and-
forget pattern is that a
response to a transmitted
message is not expected.

Complex MEPs

A classic example is the publish-and-subscribe
model..
The publish-and-subscribe pattern introduces
new roles for the services involved with the
message exchange. They now become
publishers and subscribers, and each may be
involved in the transmission and receipt of
messages.

This asynchronous MEP accommodates a
requirement for a publisher to make its messages
available to a number of subscribers interested in
receiving them.

The steps involved are generally similar to the
following:

Step 1. The subscriber sends a message to notify
the publisher that it wants to receive messages on
a particular topic.

Step 2. Upon the availability of the requested
information, the publisher broadcasts messages on
the particular topic to all of that topic's subscribers.

MEPs and WSDL

Request-response operation
Upon receiving a message, the service must respond with
a standard message or a fault message.

Solicit-response operation
Upon submitting a message to a service requestor, the
service expects a standard response message or a fault
message.

One-way operation
The service expects a single message and is not obligated
to respond.

Notification operation
The service sends a message and expects no response.

WSDL specification extends MEP support
to eight patterns

The in-out pattern, comparable to the request-response MEP
(and equivalent to the WSDL 1.1 request-response operation).
The out-in pattern, which is the reverse of the previous pattern
where the service provider initiates the exchange by transmitting
the request. (Equivalent to the WSDL 1.1 solicit-response
operation.)
The in-only pattern, which essentially supports the standard
fire-and-forget MEP. (Equivalent to the WSDL 1.1 one-way
operation.)
The out-only pattern, which is the reverse of the in-only pattern.
It is used primarily in support of event notification. (Equivalent to
the WSDL 1.1 notification operation.)

WSDL specification extends MEP support
to eight patterns

The robust in-only pattern, a variation of the in-only pattern
that provides the option of launching a fault response message
as a result of a transmission or processing error.
The robust out-only pattern, which, like the out-only pattern,
has an outbound message initiating the transmission. The
difference here is that a fault message can be issued in response
to the receipt of this message.
The in-optional-out pattern, which is similar to the in-out
pattern with one exception. This variation introduces a rule
stating that the delivery of a response message is optional and
should therefore not be expected by the service requestor that
originated the communication. This pattern also supports the
generation of a fault message.
The out-optional-in pattern is the reverse of the in-optional-out
pattern, where the incoming message is optional. Fault message
generation is again supported.

6.2 Service Activity

Interaction of group of services to complete a
task

Sort of a MEP plus the pattern of messages
exchanged to perform a specific task

One MEP can perform multiple tasks
Primitive activity ~= Simple MEP
Complex Activity~= Multiple MEP’s or a large
complex MEP

Service Activity

The
interaction
of a group
of services
working
together to
complete a
task can be
referred to
as a
service
activity

Simple activity

A simple or
primitive activity
is typified by
synchronous
communication
and therefore
often consists
of two services
exchanging
information
using a
standard
request-
response MEP

Complex activities

Complex activities,
on the other hand,
can involve many
services (and
MEPs) that
collaborate to
complete multiple
processing steps
over a long period
of time

6.3 Coordination

Coordination establishes a framework for
complex activities to be managed and
distributed to activity participants
Can be extended to the concepts of
choreography and orchestration
Usually requires context state (information
about the state of the complex activity) to be
retained

Coordination

The complexity of an activity can relate to a number
of factors, including:

the amount of services that participate in the activity
the duration of the activity
the frequency with which the nature of the activity changes
whether or not multiple instances of the activity can
concurrently exist

A framework is required to provide a means for
context information in complex activities to be
managed, preserved and/or updated, and
distributed to activity participants.

Coordinator composition

WS-Coordination

WS-Coordination establishes a framework that introduces a
generic service based on the coordinator service model

Activation service
Responsible for the creation of a new context and for associating this
context to a particular activity.

Registration service
Allows participating services to use context information received from
the activation service to register for a supported context protocol.

Protocol-specific services
These services represent the protocols supported by the
coordinator's coordination type.

Coordinator
The controller service of this composition, also known as the
coordination service.

6.4 Atomic Transaction

WAKE UP – this section is complicated,
boring and important
ACID

Atomic - All or nothing, you can’t do part of a
transaction
Consistent – system data models must remain so
Isolated – transactions can’t interfere with each
other
Durable – Changes made by a transaction can
survive subsequent system failures

6.5 Business Activities

Long running, complex service activities
Do not offer rollback capabilities

Not ACID-type transaction functionality
6.5.2 Business Activity States

Active state
Completed state
Cancelled state

Business activities

Business activities
govern long-running, complex service activities.
Hours, days, or even weeks can pass before a business activity
is able to complete.
During this period, the activity can perform numerous tasks that
involve many participants.

required to follow specific rules defined by protocols.
Business activities primarily differ from the also protocol-based
atomic transactions
exceptions
the constraints introduced.

business activity protocols do not offer rollback capabilities.
not ACID-type transaction functionality.
optional compensation process

Business activities

6.6 Orchestration

6.6.4 Sequences, flows and links
6.6.7 Orchestration and SOA

Sequences, flows, and links

Flows also contain
groups of related activities, but they introduce different execution
requirements.

Pieces of application logic can execute concurrently within a flow, meaning
that there is not necessarily a requirement for one set of activities to wait
before another finishes.
However, the flow itself does not finish until all encapsulated activities have
completed processing.
This ensures a form of synchronization among application logic residing in
individual flows.

Links are used to establish formal dependencies between activities that
are part of flows.

Before an activity fully can complete, it must ensure that any requirements
established in outgoing links first are met.
Similarly, before any linked activity can begin, requirements contained within
any incoming links first must be satisfied.
Rules provided by links are also referred to as synchronization
dependencies.

Orchestration

Basic activities and structured activities

WS-BPEL breaks down workflow logic into a
series of predefined primitive activities.
Basic activities

receive, invoke, reply, throw, wait
represent fundamental workflow actions which
can be assembled using the logic supplied by
structured activities

sequence, switch, while, flow, pick.

Orchestration and SOA

6.7 Choreography

6.7.1 Collaboration
6.7.4 Interaction and work units
6.7.5 Reusability, composability and
modularity
6.7.7 Choreography and SOA

Choreography

Web Services Choreography Description
Language (WS-CDL) is one of several
specifications that attempts to organize
information exchange between multiple
organizations (or even multiple applications
within organizations), with an emphasis on
public collaboration

Collaboration

Collaboration
An important characteristic of choreographies is that they are
intended for public message exchanges. The goal is to establish
a kind of organized collaboration between services representing
different service entities, only no one entity (organization)
necessarily controls the collaboration logic. Choreographies
therefore provide the potential for establishing universal
interoperability patterns for common inter-organization business
tasks.
While the emphasis on choreography is B2B interaction, it also
can be applied to enable collaboration between applications
belonging to a single organization. The use of orchestration,
though, is far more common for this requirement.

Roles and participants

Roles and participants
predefined roles.

This establishes what the service does and what the service can
do within the context of a particular business task.
Roles can be bound to WSDL definitions, and those related are
grouped accordingly, categorized as participants (services).

Relationships and channels
message exchanges between two services.
Each potential exchange between two roles in a choreography is
therefore defined individually as a relationship. Every relationship
consequently consists of exactly two roles.
Channels do exactly that by defining the characteristics of the
message exchange between two specific roles.

Roles and participants

Further, to facilitate more complex exchanges
involving multiple participants, channel information
can actually be passed around in a message.

This allows one service to send another the information
required for it to be communicated with by other services.

This is a significant feature of the WS-CDL
specification, as it fosters dynamic discovery and
increases the number of potential participants within
large-scale collaborative tasks.

Interactions and work units

Finally, the actual logic behind a message exchange
is encapsulated within an interaction.
Interactions are the fundamental building blocks of
choreographies because the completion of an
interaction represents actual progress within a
choreography.
Related to interactions are work units.

These impose rules and constraints that must be adhered
to for an interaction to successfully complete.

Reusability, composability, and
modularity

Each choreography can be designed in a
reusable manner, allowing it to be applied to
different business tasks comprised of the
same fundamental actions.
Further, using an import facility, a
choreography can be assembled from
independent modules.
These modules can represent distinct sub-
tasks and can be reused by numerous
different parent choreographies

Choreography and SOA

Realization of SOA across organization boundaries
Composability, reusability, and extensibility,
choreography also can increase organizational
agility and discovery.
Organizations are able to join into multiple online
collaborations, which can dynamically extend or
even alter related business processes that integrate
with the choreographies.
By being able to pass around channel information,
participating services can make third-party
organizations aware of other organizations with
which they already have had contact.

Choreography and SOA

	Contemporary SOA, Part I
	Lecture 3 Goals
	Session #3 Today’s Agenda
	Chapter 6: Contemporary SOA Part I
	6.1 Message Exchange Patterns (MEP’s)
	Message exchange patterns
	Request-response
	Fire-and-forget
	Complex MEPs
	MEPs and WSDL
	WSDL specification extends MEP support to eight patterns
	WSDL specification extends MEP support to eight patterns
	6.2 Service Activity
	Service Activity
	Simple activity
	Complex activities
	6.3 Coordination
	Coordination
	Coordinator composition
	WS-Coordination
	6.4 Atomic Transaction
	6.5 Business Activities
	Business activities
	Business activities
	6.6 Orchestration
	Sequences, flows, and links
	Orchestration
	Basic activities and structured activities
	Orchestration and SOA
	6.7 Choreography
	Choreography
	Collaboration
	Roles and participants
	Roles and participants
	Interactions and work units
	Reusability, composability, and modularity
	Choreography and SOA
	Choreography and SOA

