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Abstract or code), for example that certain covariate groups are se-
lected jointly. Numerous works point to the advantages if
We develop a dictionary learning method which is (i) such structure could be taken into account. The Lasso for-
online, (ii) enables overlapping group structures with)(ii  mulation is improved from this point of view in the group
non-convex sparsity-inducing regularization and (iv) han Lasso framework usingroup1.2-norm, where the coordi-
dles the partially observable case. Structured sparsity an nates of the hidden representation may form distinct groups
the related group norms have recently gained widespread[33]. Recently, [9] presented a general theoretical frame-
attention in group-sparsity regularized problems in theea work underpinning the advantages of such a group based
when the dictionary is assumed to be known and xed. Lasso assumption. Among the broad spectrum of success-
However, when the dictionary also needs to be learned, theful applications of group norms, one nds multi-task feaur
problem is much more dif cult. Only a few methods have learning [2], joint subspace/covariate selection for silas
been proposed to solve this problem, and they can handlecation [22], and structure learning in log-linear modeB][2
two of these four desirable properties at most. To the besttoo.
of our knOWledge, our proposed method is the rst one that Recent research Ogtructured-sparsimas shown that
possesses all of these properties. We investigate seweral i more general structures than sparse disjunct groups, such
teresting special cases of our framework, such as the on-as trees or general groups with possible overlaps may help

line, structured, sparse npn-negative matri>_< factoriaati in many applicationse.g, in multiple kernel learning and
and demonstrate the ef ciency of our algorithm with sev- multi-task regression [15]. For more information on tree-
eral numerical experiments. structured group Lasso, and structured sparsity regatariz

tion see [18, 11, 24, 21, 34].
All the above Lasso-like problems assume, however, that
the dictionary is xed and known. This is not the case in
Sparse signal representation and signal processing are ifmany tasks, and learning a dictionary that leads to sparse
the focus of machine learning research. Insparse cod- ~ codes can be important. This is thiéctionary learning
ing framework one approximates the observations with the task [32] (also called matrix factorization [31]), whichrca
linear combination of a few vectors (basis elements) from be traced back to [23]. Dictionary learning is a general
a xed dictionary. This principle has been successful in a problem class that containsg, (sparse) Principal Compo-
number of applications including the processing of natural Nent Analysis (PCA) [36], Independent Component Analy-

images, bio-informatics and many others. For a recent re-sis (ICA) [10], and (sparse) Non-negative Matrix Factoriza
view see [29]. tion (NMF) [17, 27, 8], among many others. Considerable

The general task, namely thg-norm solution that research efforts have been devoted to these problems and
searches for the least number of basis elements is NPled to state-of-the-art methods, seeg, the image process-
hard, and thus one often considers the relaxed and conveXg application in [1].

"1 variant of this task, the so-called Lasso problem [28].  Although both dictionary learning and structured sparse
The " 1-norm based approach leads to sparse models, but icoding (when the dictionary is given) are very popular, in-
does not take into account any prior information about the terestingly, very few works focused on the combination of
structure of hidden representation (also called covasjate these two tasks.e., on the learning o$tructured dictionar-
2011 IEEE. IEEE Computer Vision and Patten Recogni- iesb_y pre-assuming certain ;tructures onthe repre_sentation.
tion (CVPR 2011), pages 2865-2872, Colorado Springs, COA.US Ve list a few notable exceptions. Groups are considered on
http://dx.doi.org/10.1109/CVPR.2011.5995712 . the observations in [4] with alternating minimization oéth

1. Introduction
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dictionary and the hidden representations subject to grouptive humbe

“1.2 and group 1.1 Or " 1.2 regularization, respectively. Tree

based group structure is assumed in [12], and dictionarytor is kakp;q = k[kap, Kq

learning is accomplished by means of the so-called prox-
imal methods [6]. The ef ciency ohon-convex sparsity-
inducing normsn the dictionary has recently been demon-
strated in structured sparse PCA [13]. Geneagedup-
structured but convex sparsity-inducing regularizer is ap-
plied in [20] for the learning of the dictionary by taking
advantage of network ow algorithms. In [25], the authors
take partition (special group structure) on the hidden deva
ates and explicitly limit the number of non-zero elements in
each group in the dictionary learning problem.

All the cited algorithms above woréff-line. However,
online methods t large or slowly varying systems better.
The cost function based on structure inducing regulaopati
in [14] is a special case of [13]. However, as opposed to the
previous works, here in [14] the presented dictionary learn
ing approach isnline Lasso and certain convex regulariz-
ers are used for online dictionary learning in [19] allowing

a continuous ow of observations, but group structures are D

not considered.

All of these methods deal with the fully observable case.
By contrast, [3] develops an online dictionary learninditec
nigque for PCA subject tmissing observation®ut without
group structures.

Our goal is to develop a dictionary learning method ex-
hibiting all the four properties at a timee., it (i) is online,

(ii) enables general overlapping group structures, (i) a
plies non-convex sparsity inducing regularization, anl (i
can deal with missing information. The above methods can
exhibit two of these features at most. We will see that the
derivation of such an algorithm is far from being trivial. We
will reduce the optimization of dictionary learning to con-

vex subtasks and derive online rules for the update of the

dictionary using block-coordinate descent method. This is
the contribution of our current work.

The paper is built as follows: We de ne tloaline group-
structured dictionary learnindOSDL) task in Section 2.
Section 3 is dedicated to our optimization scheme solving
the OSDL problem. Numerical examples are shown in Sec-
tion 4. Conclusions are drawn in Section 5.

Notations. Vectors have bold faces), matrices are
written by capital lettersA). Thei™ coordinate of vec-
tor a is a;, diag(a) denotes the diagonal matrix formed
from vectora. For a set (number), j denotes the num-

ber of elements in the set, (the absolute value of the num-

ao 2 RI% denotes the coordinates of vectarin O,
whereasA o 2 RI® D contains the rows of matriA
in O. AT is the transposed of matri&. | and0 stand
for the identity and the null matrices, respectively. Op-
erationmax acts component-wise on vectors. For posi-

;g (i) (quasi-)norm’4 of vectora 2 R
is kaky = (%, jaij9)d, (ii) "pq-norm of the same vec-
;i kap, Kqlkp, wheref Pigl,
= fa 2 RY :
kak, 1g is the unit sphere associated with in RY.
Pointwise product of vectora;b 2 RY is denoted by

ments of vectoa 2 RI® are denoted by®, whereG 2 G,
thatisa = (a%)g26. c(X) = argmin ,ckx  ck; de-
notes the orthogonal projection to the closed and convex
setC  RY, wherex 2 RY. Partial derivative of func-
tion g with respect to variable at pointxg is %g(xo).

RY = fx 2 RY:x; 0(8i)gstands for the non-negative
ortant inRY.

2. Formal problem de nition

Let us de ne the online group-structured dictionary
learning task starting from the fully observed case. Our
goal in dictionary learning is to nd a dictionary matrix
2 R% 9 that can approximate observations2 RY
by the linear combinations of its columns. We assume that
dictionaryD belongs to a closed, convex and bounded set
D (D 2 D), which is de ned by the direct product of con-
straintsD; of columnsd; (atoms, basis elements) of ma-
trix D (D 4 Di). We assume further that the hid-
den representation (coef cients); 2 RY of observation
Xi belongs to a convex, closed get( ; 2 A) subject to
certain structural constraints. Namely, we assume that (i)
a group structuré&s is given for the hidden representation,
that is, a subset of the power setfdf,:::;d g for which
[ 626G =
(G 2 G are also given. For a given weight vectiff, the
coef cients belonging tds are positive, and the coef cients
not in G are zeros. Forxed D andx, we de ne the rep-
resentation of x to be the vector irA that minimizes the
following structured sparse representation task

I(x;D) = I;; G;fngGZG(X;D) 1)
.1 2 .
= m2|r/1 Ekx D kk+ () @
where > 0, 2 (0;1],and
(¥)=  cirdoge,s(Y) = K(kd® yk2)e2ck  (3)
is the structured regularizer for grougs in G and for
weightsd©.

Letx; 2 R% (i =1;2;:::) be a sequence of i.i.d. (in-
dependent identically distributed) observations. Theénenl
group-structured dictionary learning (OSDL) problem is de
ned as the minimization of the following cost function:

. 1 X
Ign;gft(D)::P— - I(xi;D); (4

LG L, b
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where is a non-negati]ga forgetting factor. For the case of

=0in(4),f(D)= 1" | I(x;;D) reduces to the em-
pirical average. Note that here the OSDL task is de ned via
the sparsity-inducing regularizer[13] aiming to eliminate
the term&d® yk, (G 2 G) by means ok k . An alter-
native sparsity inducing solution (for xe®) is provided
in [11, 24], it searches for non-zero elements obn the
union of groups irG.

Let us now de ne the OSDL problem for the partially

observable case. Now, at time instante can access only
a certain subsed;
by applying the approach of [31, 3], that is, we use the error
on the observed coordinates:
Do kg +

()

(5)

and we also chandéx;; D) tol(Xo, ; D o, ) in optimization

. 1
I(Xo;;Do;) = ménA 2 kXo,

(4). Inturn, our goal is to solve the following minimization
min f{(D) := P1—XI | [(Xo,;Do,): (6)
D2D | . ;zl(j:t) ot O =01

2.1. Interesting special cases

is recovered. Further special cases of the OSDL model in-
clude the following:
Special cases foG:

assume no dependence between coordinatesnd
the problem reduces to the classical task of learning
“sparse representation dictionaries'. A further special-
ization is whenD is given, =0, =1,d = g,
wheree; is thei™ canonical basis vector. This corre-
sponds to the Lasso task.

If |G =

d , coordinates | make the nodes of a

wheredescendants stands for thé™ node and its de-

D; = S¥\ R% (8i), A = RY : columns of dic-
tionary D are constrained to the non-negatigeunit
sphere, is are non-negative ar@can arbitrary. This

is the structured NMF model.

D; = S¥\ R% (8i), A = RY : columns of dictio-
naryD are constrained to the non-negatiyesphere,

iS are non-negative an@d can arbitrary. This is the
structured mixture-of-topics model.

3. Optimization

We consider the optimization of cost function (6), which
is equivalent to the joined optimization of dictionddyand
coef cientsf igl_; :

argmin f(D;f ig\.,); (7)
D2D;f 2Agl,
where
1 X 1 2
f,= : - skxo, Do, iky+ (i) :
t o (=) Lt 2 i
(8)

Assume that our samples are emitted from an i.i.d.
sourcep(x), and we can observey, . We execute the on-
line optimization of dictionanD (i.e., the minimization of
(7)) through alternations:

1. For the actual sampbey, we optimize hidden repre-
sentation ; belonging tax, using our estimated dic-
tionaryD ; and solving the minimization task

1
¢ = argmin Ekxot (Dt o, Ko+ ()
2A

9)

2. We use hidden representatiohsigl_; and update
D 1 by means of quadratic optimization

fi(Dy) = min f¢(D:f iGi=1): (10)

scendants, then we have a tree-structured, hierarchial

representation.

If jG = d , coordinates ; make the nodes of a grid,

neighbors of theé!" point in radiusr on the grid, then
we obtain a grid representation.

is obtained.
Special cases fob ;A :

D; = S$* (8i), A = RY : columns of dictionanD
are constrained to the Euclidean unit sphere.

In the next subsections, we elaborate on the optimization of
representation in (9) and the dictionar in (10).

3.1. Representation update ()

Objective function (9) is not convex in. We use a vari-
ational method to nd a solution: (i) we rewrite the term
by introducing an auxiliary variable] that converts the
expression to a quadratic one in and then (ii) we use an
explicit solution toz and continue by iteration. Namely, we

use Lemma 3.1 of [13]: forany 2 R% and 2 (0;2)

I R
kyk = min Ei —_+§kzk,

2 (11)

z2RdY
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where , and it takes its minimum value at =

jvii> kyk . We apply this relation for the term in (9)
(see Eq. (3)), and have that
" N , 4
2( ) = min =2 + kzk
Z:[(ZG)GZG]ZRLGJ G2G .
i
= min  Tdiag( ) +kzk ; (12)
z2RIC
where = (z) 2 RY ,and
X ds 2
i= ]G (13)
G2G;G3]

Inserting (12) into (9) we get the optimization task:

argmin J( ;z); where
2A;z2RC

(14)

J( 2 (15)

Tdiag( ) + kzk

1 2
= -k D ks +
5 KXo, (Dt 1)o, k5 5

One can solve the minimization 8{ ;z) by alternations:

1. For giverz: we can use least mean square solver for
whenA = RY in (15), and non-negative least square
solver whermA = Rf . For the general case, the cost
functionJ( ;z) is quadratic in and is subject to
convex and closed constraints (2 A). There are
standard solvers for this case [16, 5], too.

. For given : According to (11), the minimunz =
()26 can be found as

78 = kd® k5 k(kd®  ka)c2ck (16)

Note that for numerical stability smoothing,
max(z;") (0<" 1), is suggested in practice.

3.2. Dictionary update ©)

We use block-coordinate descent (BCD) [5] for the op-
timization of (10). This optimization is not in uenced by
the regularizer( ), since itis independent & . Thus the
task (10) issimilar to the fully observable case [19], where

method can work without storing all of the vectors |

(i t). Instead, itis suf cient to keep certain statistics that
characteriz€}, which can be updated online. This way, op-
timization of f; in (10) becomes online, too. As it will be
elaborated below, (i) certain statistics describ‘f‘ngan also

be derived for the partially observed case, which (ii) can
be updated online with a single exception, and (iii) a good
approximation exists for that exception (see Section 4).

During the BCD optimization, columns @ are min-
imized sequentially: other columns than the actually up-
datedd; (i.e., d;;i 6 j) are kept xed. The functiorf
is quadratic ind; . During minimization we search for its
minimum (denoted by; ) and project the result to the con-
straint setD ; (d; p; (uj)). To nd this u;, we solve
the equation%(uj) = 0, which leads (as we show it in
the supplementary material) to the following linear ecuati
system

Cje Uj = b

€t + Cj;t dj ; (17)

whereCj; 2 R% d is a diagonal coef cient matrix, and

X )
Cit = t i (18)
i=1
[
B: = ¢ X =[byiiiibg 1]i19)
i=1
[
et = 0 iD i (20)
i=1
Here i represents a diagonal matrix correspondin@®io

(elementj in the diagonal isl if j 2 O;, and O other-
wise). Cjy$s 2 R% % andB; 2 R% ¢ take the form
of M = it:l {— N matrix series/statistics, and thus

(as we detall it in the supplementary material) they can be

updated as

Cit = Cjt 1+ ¢ ’[Zj; (21)
Bi= By 1+ Xt {; (22)
with initialization C;;o = 0, B = 0 for the case of

= 0, and with arbitrary initialization for > 0, where
¢ = 1 1 . Forthe fully observed case ( = I, 8i),
one can pull ouD fromej; 2 RY% , the remaining part is
of the formM ¢, and thus it can be updated online giving
rise to the update rules in [19], see the supplementary ma-
terial. In the general case this procedure can not be applied
(matrixD changes during the BCD updates). According to
our numerical experiences (see Section 4) an ef cient on-
line approximation foe;; is

€t = €t 1+ Dt ¢ ¢ (23)

with the actual estimation foD; and with initialization
e;0 = 0(8j). We note that

1. convergence is often speeded up if the updates
of statisticsff Cj; g, ;B ey g’y g are made in

(in R-tuple

mini-batches). The pseudocode of this OSDL method

is presented in the supplementary material.
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2. Projectionst@\ andD ;: For many convex and closed
setsC (A or D), the computation of projectionc
can be done ef ciently. For example, f@ = RY,
c(x) = max(x;0), whereas for theC = S,
c(x) = m Similarly, the projection to the
*1-sphere §¢) can be done easily, even when we have
extra non-negativity constraints, too. Other famous ex-

amples where this projection can be done efciently Figure 1: lllustration of the used natural image datasgt. (a
include the elastic net constraints, the fused Lasso con-12 images of similar kind were used to select trainig,

straints, and the group-sphere as well. For more de-  yalidationX vz , and tesX s sets. (b): testimage used for
tails, seeg.g, [7, 30, 19] and references therein. We the jllustration of full image inpainting.

note that since group norm projections can be com-
puted ef ciently, by choosingD; to a group-norm

sphere, one can obtain a double-structured (groupof the dataset to study the rst two questions above (see
structure on andD) dictionary learning scheme as a Fig. 1(a)), and used th&3" picture for studying the third
special case of our presented OSDL framework. question (Fig. 1(b)). For each of the 12 images, we sampled
131072 = 27 pieces of8 8 disjunct image patches ran-
domly (without replacement). This patch set was divided to
a training seX ; made 0%65536pieces, and to a validation
(Xva ) and test X st ) Set with set size82768 Each patch
was normalized to zero average and ugihorm.

(a) (b)

3. Thetrick in the representation update (Section 3.1) was
that the auxiliary variable “replaced' the term with
a quadratic one in . One could use furtheg( ) reg-
ularizers augmenting in (8) provided that the corre-
spondingd ( ;z) + g( ) cost function (see Eq. (15))

can be ef ciently optimizedin 2 A. In the rst experiment x;s were fully observed (; =
I) and thus the update of their statistics was precise. This is
4. Numerical experiments called the BCD case inthe gures. Matrix was learned on

the setX , columnsd; were initialized by using a uniform

We illustrate our OSDL method on inpainting of natural distribution on the surface of the-sphere. Pixels of the
images (Section 4.1) and on structured non-negative matrixy patches in the validation and test sets were removed with
factorization of faces (Section 4.2). probability py2, . For a given noise-free image patehlet
Xo denote its observed version, whéestands for the in-
dices of the available coordinates. The task was the inpaint

We studied the following issues on natural images: ing of the missing pixels of by means of the pixels present

1. Is structured dictionar bene cial for inpainting of ~ (Xo) and by the learned matrix. After removing the rows

patches of natural images, and how does it compare to°f D corresponding to missing pixels xf the resultind o

the dictionary of classical sparse representation? Dur-andXo were used to estimate. The nal estimation of

ing learning ofD, training samples; were fully ob- X wWas® = D . According to preliminary experiments,
servedie, ;=1). learning rate and mini-batch siz& were set t82 and64

respectively (the estimation was robust as a function of
andR). In the updates of and (14) only minor changes
were experienced after 2-3 iterations, thus the number of it
erationsT was set tdb. Concerning the other parameters,

4.1. Inpainting of natural images

2. Inthisimage patches inpainting problem, we also stud-
ied the case when the training sampigswere par-
tially observed ( i 6 1).

3. We also show results for inpaintingfofl imagesusing we used =0:5and 2 f2 19,2 18:::::2 0g The
a dictionary learned from partially observed( 6 1) smoothing parameter was) °, and the iteration num-
patches. ber for the update oD wasTp = 5. Values ofp!d,

were chosen from sé0:3; 0:5; 0:7; 0:9g, so for the case of
pra, =0:9, only 10%o0f the pixels ofx were observed. For
each xed neighborhood sizeand parametgn2,, was
chosen as the minimum of mean squared error (MSE) using
D trained on patch sét and evaluated oKX 4 . Having
found this optimal on the validation set, we used its value
0 compute the MSE oK st . Then we changed the roles

f X va andX gt , thatis, validated oiX st , and tested on
Xval - This procedure was repeated for four random initial-
1See http://www.cis.hut. /projects/ica/data/images/. izations Do) and different corruptionsq{ a1 , X test ). The

In our numerical experiments we usBd = S;* (8i),
A = RY without additional weighingd® = ¢,8G 2 G
where is the indicator function). Group structuf& of
vector was realizedon 46 16torusd = 256) with
jG = d applyingr = 0;1;2, or 3 neighbors to de ne

representation is recovered. Our test database was the IC
natural image databadeWe chose 12 of the 13 images
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(b)

Figure 2: lllustration of the online learned group-struetl

D dictionaries with the BCD technique and MSE closest to
the average (see Table 1) apf, = 0:7. (a):r = 0, (b):
r=2,(c).r=3.

average MSE values (multiplied by 100) and their standard

deviations for different neighbor sizesnd corruption rates

pral are summarized in Table 1. This table shows that (i) |

the inpainting error grows with the corruption r@g, , (ii)

compared to sparse representatior(0) small neighbor-
hood sizer = 1 gives rise to similar results, = 2 is better
andr = 3 seems to be the best for all cases wiith 19%

improvement in precision for MSE. Learned and average

quality dictionarie® can be seenin Fig. 2 & 0 no struc-
ture,r = 2;3 with torus structure). Based on this exper-

iment we can conclude that the structured algorithm gives

rise to better results than ordinary sparse represengation

In thesecond experimentthe size of the neighborhood
was xed, settor = 3. We learned dictionarp on par-
tially observedpatches (i 6 1). The probabilityp, of
missing any pixel from the observations in the training set
assumed values from the d; 0:1; 0:3; 0:5; 0:7; 0:9g. In
this case, we updatezlusing the approximation Eq. (23),
hence we call this method Approximate-BCD (or BCDA,
for short). The other experimental details were identioal t
the previous case.€., when | = |). Results and statistics
for MSE are provided for a small€B:3) and for a larger
(0:7) value ofp{&, in Table 2 for different probability val-
uespy . We found that increasing, uptopy = 0:7 MSE
values grow slowly. Note that we kept the number of sam-
plesx; at 65536identical to the previous case { = I),
and thus by increasing, the effective number of observa-
tions/coordinates decreases. Learned average quality-dic
nariesD are shown in Fig. 3 fop/&, = 0:7. Note that the
MSE values are still relatively small for missing pixel prob
ability py =0:9(100 MSE maximum is aboud:96), thus
our proposed method is still ef cient in this case. Recon-
struction with value:92 (100 MSE) is shown in Fig. 4.

In our third illustration we show full image inpainting
using dictionaryD learned withp, = 0:5 and using the
13" image K ) shown in Fig. 1(b). We executed inpainting
consecutively on aB 8 patches of imag& and for each
pixel of imageX, we averaged all estimatios from all

(b)

Figure 3: lllustration of the online learned group-struetl

D dictionaries for the BCDA technique with MSE closest
to the average (see Table 2) gqofdd, = 0:7. (a): py =0,
B):pr =0:1, (c): pyr =0:5.

(©

(d)

Figure 4. Inpainting illustration using the online learned
group-structured dictionaries for the BCDA technique
with MSE closest to the average (see Table 2) ppd=

0:5. (a): measured, (b): estimated, PSNR = 36 dB. (a)-

val

(b): p&: = 0:3. (c)-(d): the same as (a)-(b), but with
pal =0:7,in (d) PSNR = 29 dB.
Fig. 4 forp{&, = 0:3 and0:7 values. We also provide the

PSNR (peak signal-to-noise ratio) values of our estimation
This measure for vectots v 2 RY (i.e., for vectors formed
from the pixels of the image) is de ned as

" #
(max(max; ju;j; ma; jv;j))?
lku vk

PSNR(u;v)=10log;g

(24)
where the higher value is the better. Acceptable values in
wireless transmission (lossy image and video compression)
are around20 25 dB (30 dB). By means oD and for
missing probabilityp}2, = 0:3 we achieved®6 dB PSNR,
whereas for missing probabiligf2, = 0:7 we still have29

8 8 patches that contained the pixel. Results are shown indB PSNR, underlining the ef ciency of our method.
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val

| [P =0:3 Pest =0:5 |pi =0:7 Ploy =0:9 |
=0 [[0:65( 0:002 0:83( 0:003 1.10( 0:002) 1:49( 0:006)

=1 ||0:60( 0.005 +6:78%) |0:85( 0.017. 225%) |L10( 0.029 +0:27%) |1.45( 0.004 +2:96%)
=2 ||[0:59( 0.005 +10:39%) |0:81( 0.008 +2:67%) |L12( 0.029, 1.09%) |1.46( 0:029 +2:51%)
=3 ||0:56 ( 0:002 +16:38%)|0:71 ( 0:002, + 16:01%)|0:93 ( 0:00L + 18:93%)[1.31 ( 0:002 + 13:87%)

;
;
;
;

Table 1: BCD: 100 the MSE average ( std) as a function of neighbors € 0: sparse representation, no structure) for
differentp!?, corruption rates.

| lpe =0 |pr =0:1 |pr =0:3 |pr =05 |pr =0:7 [pr =0:9 |
pr = 0:3][0:55 ( 0:003)]0:56( 0:001)]0:57( 0:003)0:59( 0:001)]0:61( 0:002)[0:71( 0:007)
pral "= 0:7[[0:91 ( 0:002)[0:91( 0:002]0:91( 0:002)]0:92( 0:003)|0:93( 0:002)]0:96( 0:003)

Table 2: BCDA ¢ = 3): 100 the MSE average ( std) for different for differenp/®, andpy corruption rates.

4.2. Online structured non-negative matrix factor-
ization on faces

It has been shown on the CBCL database that dictio-
nary vectors ;) of the ofine NMF method can be in-
terpreted as face components [17]. However, to the best
of our knowledge, there is no existing NMF algorithm as
of yet, which could handle gener@ group structures in
an online fashion. Our OSDL method is able to do that,
can also cope with only partially observed inputs, and can
be extended with non-convex sparsity-inducing norms. We
illustrate our approach on the color FERE@ataset: we
setD; = S\ R (8i), A = R!, | = 1and

= 0:5. We selected 736facial pictures from this dataset.
Using af ne transformations we positioned the noses and
eyes to the same pixel coordinates, reduced the image sizes
to 140 120, and set theil, norms to be one. These
images were the observations for our ODSL method (
dx =49140 =140 120 3 minus some masking). The

group structuré&was chosen to be hierarchical; we applied Figyre 5: |llustration of the online learned structured NMF

a full, 8-level binary tree. Each node with its correspoigdin dictionary. Upper left corner: training samples.
descendants formed the sets@®@f2 G(d = 255). Ac-

cording to our experiments, the learned dictionBrywas
in uenced mostly by the constant, and similarly to Sec-

tion 4.1, it proved to be quite insensitive to the value of the 5. Conclusions

learning factor , and to the size of the mini-batcheR)( In this paper we proposed a new dictionary learning
Fig. 5 shows {afgw eIements from thle online estimated StruC-method, which is (i) online, (ii) enables overlapping group
tured NMF dictionary (using = o=, =32,R =8, structures on the hidden representation/dictionary, &jir

d®= (862G, T =5Tp =5and" =10 °). We pjies non-convex, sparsity inducing regularization, aay (
can observe that the proposed algorithm is able to naturallycgn nandie the partially observable case, too. We reduced
develop and hierarchically organize the elements of the dic o optimization problem of dictionary learning to convex
tionary: towar(;is the leaves the Igarned Iters reveal more subtasks, and using a block-coordinate descent approach
and more details. We can also notice that the colors are sepapq 3 variational method we derived online update rules for
arated as well. This example demonstrates that our methoghe statistics of the cost of the dictionary. The ef ciendy o
can be used for large problems where the dimension of they,, algorithm was demonstrated by several numerical ex-

observations is abo50000 periments. We have shown that in the inpainting problem
our method can perform better than the traditional sparse
2See http://face.nist.gov/colorferet/. methods. As a special case, we have also shown that our ap-
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proach can be used for the online structured NMF problem,[16] C.L.Lawson and R. J. Hanso8olving Least Squares Prob-

too,

and it is able to hierarchically organize the elemefts o

the dictionary.

One possible extension of our online group-structured
dictionary learning framework may touch the nonparamet- [18]
ric Bayesian dictionary learning approach [35], recently i
troduced for the (traditional, unstructured) sparse diry
learning problem.
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