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Abstract. Structured sparse coding and the related structured dictio-
nary learning problems are novel research areas in machine learning. In
this paper we present a new application of structured dictionary learn-
ing for collaborative filtering based recommender systems. Our extensive
numerical experiments demonstrate that the presented method outper-
forms its state-of-the-art competitors and has several advantages over
approaches that do not put structured constraints on the dictionary el-
ements.
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1 Introduction

The proliferation of online services and the thriving electronic commerce over-
whelms us with alternatives in our daily lives. To handle this information over-
load and to help users in efficient decision making, recommender systems (RS)
have been designed. The goal of RSs is to recommend personalized items for
online users when they need to choose among several items. Typical problems
include recommendations for which movie to watch, which jokes/books/news to
read, which hotel to stay at, or which songs to listen to.

One of the most popular approaches in the field of recommender systems
is collaborative filtering (CF). The underlying idea of CF is very simple: Users
generally express their tastes in an explicit way by rating the items. CF tries to
estimate the users’ preferences based on the ratings they have already made on
items and based on the ratings of other, similar users. For a recent review on
recommender systems and collaborative filtering, see e.g., [1].

Novel advances on CF show that dictionary learning based approaches can
be efficient for making predictions about users’ preferences [2]. The dictionary
learning based approach assumes that (i) there is a latent, unstructured feature
space (hidden representation/code) behind the users’ ratings, and (ii) a rating
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of an item is equal to the product of the item and the user’s feature. To increase
the generalization capability, usually ℓ2 regularization is introduced both for the
dictionary and for the users’ representation.

Recently it has been shown both theoretically and via numerous applica-
tions (e.g., automatic image annotation, feature selection for microarray data,
multi-task learning, multiple kernel learning, face recognition, structure learn-
ing in graphical models) that it can be advantageous to force different kind of
structures (e.g., disjunct groups, trees) on the hidden representation. This regu-
larization approach is called structured sparsity [3]. The structured sparse coding
problem assumes that the dictionary is already given. A more interesting (and
challenging) problem is the combination of these tasks, i.e., learning the best
structured dictionary and structured representation. This is the structured dic-

tionary learning (SDL) problem. SDL is more difficult than structured sparse
coding; one can only find few results in the literature [4–8]. This novel field is
appealing for (i) transformation invariant feature extraction [8], (ii) image de-
noising/inpainting [4, 6], (iii) background subtraction [6], (iv) analysis of text
corpora [4], and (v) face recognition [5].

Several successful applications show the importance of the SDL problem fam-
ily. Interestingly, however, to the best of our knowledge, it has not been used
for the collaborative filtering problem yet. The goal of our paper is to extend
the application domain of SDL to CF. In CF further constraints appear for SDL
since (i) online learning is desired, and (ii) missing information is typical. There
are good reasons for them: novel items/users may appear and user preferences
may change over time. Adaptation to users also motivate online methods. Online
methods have the additional advantage with respect to offline ones that they can
process more instances in the same amount of time, and in many cases this can
lead to increased performance. For a theoretical proof of this claim, see [9]. Usu-
ally users can evaluate only a small portion of the available items, which leads
to incomplete observations, missing rating values. In order to cope with these
constraints of the collaborative filtering problem, we will use a novel extension of
the structured dictionary learning problem, the so-called online group-structured
dictionary learning (OSDL) [10]. OSDL allows (i) overlapping group structures
with (ii) non-convex sparsity inducing regularization, (iii) partial observation
(iv) in an online framework.

Our paper is structured as follows: We briefly review the OSDL technique in
Section 2. We cast the CF problem as an OSDL task in Section 3. Numerical
results are presented in Section 4. Conclusions are drawn in Section 5.

Notations. Vectors have bold faces (a), matrices are written by capital
letters (A). For a set, | · | denotes the number of elements in the set. For set
O ⊆ {1, . . . , d}, aO ∈ R

|O| (AO ∈ R
|O|×D) denotes the coordinates (columns) of

vector a ∈ R
d (matrix A ∈ R

d×D) in O. The ℓp (quasi-) norm of vector a ∈ R
d

is ‖a‖p = (
∑d

i=1 |ai|p)
1

p (p > 0). Sd
p = {a ∈ R

d : ‖a‖p ≤ 1} denotes the ℓp unit

sphere in R
d. The point-wise product of a,b ∈ R

d is a◦b = [a1b1; . . . ; adbd]. For
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a set system3 G, the coordinates of vector a ∈ R
|G| are denoted by aG (G ∈ G),

that is, a = (aG)G∈G.

2 The OSDL Problem

In this section we formally define the online group-structured dictionary learn-
ing problem (OSDL). Let the dimension of the observations be denoted by dx.
Assume that in each time instant (i = 1, 2, . . .) a set Oi ⊆ {1, . . . , dx} is given,
that is, we know which coordinates are observable at time i, and the observa-
tion is xOi

. Our goal is to find a dictionary D ∈ R
dx×dα that can accurately

approximate the observations xOi
from the linear combinations of the columns

of D. These column vectors are assumed to belong to a closed, convex, and
bounded set D = ×dα

i=1Di. To formulate the cost of dictionary D, first a fixed

time instant i, observation xOi
, and dictionary D are considered, and the hidden

representation αi associated to this (xOi
,D, Oi) triple is defined. Representa-

tion αi is allowed to belong to a closed, convex set A ⊆ R
dα (αi ∈ A) with

certain structural constraints. The structural constraints on αi are expressed by
making use of a given G group structure, which is a set system on {1, . . . , dα}.
Representation α belonging to a triple (xO,D, O) is defined as the solution of
the structured sparse coding task

l(xO,DO) = min
α∈A

[

1

2
‖xO − DOα‖2

2 + κΩ(α)

]

, (1)

where l(xO,DO) denotes the loss, κ > 0, and Ω(y) = ‖(‖yG‖2)G∈G‖η is the
structured regularizer associated to G and η ∈ (0, 1]. Here, the first term of (1)
is responsible for the quality of approximation on the observed coordinates. The
second term constrains the solution according to the group structure G similarly
to the sparsity inducing regularizer Ω in [5], i.e., it eliminates the terms ‖yG‖2

(G ∈ G) by means of ‖·‖η. The OSDL problem is defined as the minimization of
the cost function:

min
D∈D

ft(D) :=
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ

l(xOi
,DOi

). (2)

Here the goal is to minimize the average loss belonging to the dictionary, where
ρ is a non-negative forgetting factor. If ρ = 0, we get the classical average.

As an example, let Di = Sdx

2 (∀i), A = R
dα . In this case, columns of D

are restricted to the Euclidean unit sphere and we have no constraints for α.
Now, let |G| = dα and G = {desc1, . . . , descdα

}, where desci represents the ith

node and its children in a fixed tree. Then the coordinates {αi} are searched
in a hierarchical tree structure and the hierarchical dictionary D is optimized
accordingly.

3 A set system is also called hypergraph or a family of sets.
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Optimization of cost function (2) is equivalent to the joint optimization:

arg min
D∈D,{αi∈A}t

i=1

ft(D, {αi}
t
i=1) =

1
∑t

j=1
(j/t)ρ

t
∑

i=1

(

i

t

)ρ [1

2
‖xOi

− DOi
αi‖

2

2
+ κΩ(αi)

]

.

By using the sequential observations xOi
, one can optimize D online in an al-

ternating manner: The actual dictionary estimation Dt−1 and sample xOt
are

used to optimize (1) for representation αt. After this step, when the estimated
representations {αi}t

i=1 are given, the dictionary estimation Dt is derived from
the quadratic optimization problem

f̂t(Dt) = min
D∈D

ft(D, {αi}t
i=1). (3)

These optimization problems can be tackled by making use of the variational
property [5] of norm η and using the block-coordinate descent method, which
leads to matrix recursions [10].4

3 OSDL Based Collaborative Filtering

Below, we transform the CF task into an OSDL problem. Consider the tth user’s
known ratings as OSDL observations xOt

. Let the optimized group-structured
dictionary on these observations be D. Now, assume that we have a test user
and his/her ratings, i.e., xO ∈ R

|O|. The task is to estimate x{1,...,dx}\O, that
is, the missing coordinates of x (the missing ratings of the user). This can be
accomplished by the following steps (Table 1).

Table 1: Solving CF with OSDL

1. Remove the rows of the non-observed {1, . . . , dx}\O coordinates from D. The ob-
tained |O| × dα sized matrix DO and xO can be used to estimate α by solving the
structured sparse coding problem (1).

2. Using the estimated representation α, estimate x as x̂ = Dα.

According to the CF literature, neighbor based correction schemes may fur-
ther improve the quality of the estimations [1]. This neighbor correction approach
relies on the assumption that similar items (e.g., jokes/movies) are rated simi-
larly. As we will show below, these schemes can be adapted to OSDL-based CF
estimation too. Assume that the similarities sij ∈ R (i, j ∈ {1, . . . , dx}) between
individual items are given. We shall provide similarity forms in Section 4. Let
dkαt ∈ R be the OSDL estimation for the rating of the kth non-observed item
of the tth user (k 6∈ Ot), where dk ∈ R

1×dα is the kth row of matrix D ∈ R
dx×dα ,

and αt ∈ R
dα is computed as described in Table 1. Let the prediction error on

4 The Matlab code of the method is available at http://nipg.inf.elte.hu/szzoli.
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the observable item neighbors (j) of the kth item of the tth user (j ∈ Ot\{k})
be djαt − xjt ∈ R. These prediction errors can be used for the correction of the
OSDL estimation (dkαt) by taking into account the skj similarities:

x̂kt = γ0(dkαt) + γ1

[
∑

j∈Ot\{k} skj(djαt − xjt)
∑

j∈Ot\{k} skj

]

, (4)

where γ0, γ1 ∈ R are weight parameters, and k 6∈ Ot . Equation (4) is a simple
modification of the corresponding expression in [2]. It modulates the first term
with a separate γ0 weight, which we found beneficial in our experiments.

4 Numerical Results

We have chosen the Jester dataset [11] for the illustration of the OSDL based CF
approach. It is a standard benchmark dataset for CF. It contains 4, 136, 360 rat-
ings from 73, 421 users on 100 jokes. The ratings are in the continuous [−10, 10]
range. The worst and best possible grades are −10 and +10, respectively. A fixed
10 element subset of the jokes is called gauge set, and it was evaluated by all
users. Two third of the users have rated at least 36 jokes, and the remaining
ones have rated between 15 and 35 jokes. The average number of user ratings
per joke is 46.

In the neighbor correction step (4), we need the sij values, which represent
the similarities of the ith and jth items. We define this sij = sij(di,dj) value as
the similarity between the ith and jth rows of the optimized OSDL dictionary
D. We made experiments with the following two similarities (S1, S2):

S1 : sij =

(

max(0,did
T
j )

‖di‖2 ‖dj‖2

)β

, and S2 : sij =

(

‖di − dj‖2
2

‖di‖2 ‖dj‖2

)−β

. (5)

Here β > 0 is the parameter of the similarity measure [2]. Quantities sij are
non-negative. If the value of sij is close to zero (large), then the ith and jth

items are very different (very similar).

In our numerical experiments we used the RMSE (root mean square error)
measure for the evaluation of the quality of the estimation, since this is the
most popular measure in the CF literature. The RMSE is the average squared
difference of the true and the estimated rating values:

RMSE =

√

√

√

√

1

|S|
∑

(i,t)∈S

(xit − x̂it)2, (6)

where S denotes either the validation or the test set. We also performed experi-
ments using the mean absolute error (MAE) and got very similar results.
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4.1 Evaluation

We illustrate the efficiency of the OSDL-based CF estimation on the Jester
dataset using the RMSE performance measure. To the best of our knowledge, the
top results on this database are RMSE = 4.1123 [12] and RMSE = 4.1229 [2]. The
method in the first paper is called item neighbor, and it makes use of neighbor
information only. In [2], the authors used a bridge regression based unstructured
dictionary learning model with a neighbor correction scheme. They optimized
the dictionary by gradient descent and set dα to 100.

To study the capability of the OSDL approach in CF, we focused on the
following questions:

– Is structured dictionary D beneficial for prediction purposes, and how does
it compare to the dictionary of classical (unstructured) sparse dictionary?

– How does the OSDL parameters and the similarity applied affect the effi-
ciency of the prediction?

– How do different group structures G fit to the CF task?

In our numerical studies we chose the Euclidean unit sphere for Di = Sdx

2

(∀i) and A = R
dα . We set η of the structure inducing regularizer Ω to 0.5. Group

structure G was realized (i) either on a
√

dα×
√

dα toroid with |G| = dα applying
r ≥ 0 neighbors to define G,5 or (ii) on a hierarchy with a complete binary
tree structure parameterized by the number of levels l (|G| = dα, dα = 2l − 1).
The forgetting factor (ρ), the weight of Ω (κ), the size of the mini-batches in
D optimization (R), and the parameter of the Si similarities (β) were chosen
from the sets {0, 1

64 , 1
32 , 1

16 , 1
8 , 1

4 , 1
2 , 1}, { 1

2−1 , 1
20 , 1

21 , 1
22 , 1

24 , 1
26 , . . . , 1

214 }, {8, 16},
and {0.2, 1, 1.8, . . . , 14.6}, respectively. We used a 90%−10% (80% training, 10%
validation, 10% test) random split for the observable ratings in our experiments,
similarly to [2].

First, we provide results using toroid group structure. The size of the toroid
was 10 × 10 (dα = 100). In the first experiment we study how the size of neigh-
borhood (r) affects the results. To this end, we set the neighborhood size to
r = 0 (no structure), and then increased it to 1, 2, 3, 4, and 5. For each (κ, ρ, β),
the minimum of the validation/test surface w.r.t. β is illustrated in Fig. 1(a)-(b).
According to our experiences, the validation and test surfaces are very similar
for a fixed neighborhood parameter r. It implies that the validation surfaces
are good indicators for the test errors. For the best r, κ and ρ parameters, we
can also observe that the validation and test curves (as functions of β) are very
similar [Fig. 1(c)]. Note that (i) both curves have only one local minimum, and
(ii) these minimum points are close to each other. The quality of the estimation
depends mostly on the κ regularization parameter. The estimation is robust to
the different choices of forgetting factor ρ (see Fig. 1(a)-(b)), and this parameter
can only help in fine-tuning the results.

From our results (Table 2), we can see that structured dictionaries (r > 0) are
advantageous over those methods that do not impose structure on the dictionary

5 For r = 0 (G = {{1}, . . . , {dα}}) one gets the classical sparse code based dictionary.
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elements (r = 0). Based on this table we can also conclude that the estimation is
robust to the selection of the similarity (S) and the mini-batch size (R). We got
the best results using similarity S1 and R = 8. Similarly to the role of parameter
ρ, adjusting S and R can only be used for fine-tuning. When we increase r up
to r = 4, the results improve. However, for r = 5, the RMSE values do not
improve anymore; they are about the same when using r = 4. The smallest
RMSE we could achieve was 4.0774, and the best known result so far was RMSE
= 4.1123 [12]. This proves the efficiency of our OSDL based collaborative filtering
algorithm. We note that our RMSE result seems to be significantly better than
that of the competitors: we repeated this experiment 5 more times with different
randomly selected training, test, and validation sets, and our RMSE results have
never been worse than 4.08.
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Fig. 1: (a)-(b): validation and test surface as a function of forgetting factor (ρ) and
regularization (κ). For a fixed (κ, ρ) parameter pair, the surfaces show the best RMSE
values optimized in the β similarity parameter. (c): validation and test curves for the
optimal parameters (κ = 1

210 , ρ = 1

25 , mini-batch size R = 8). (a)-(c): neighbor size:
r = 4, group structure (G): toroid, similarity: S1.

Table 2: Performance of the OSDL prediction using toroid group structure (G) with
different neighbor sizes r (r = 0: unstructured case). Left: mini-batch size R = 8, right:
R = 16. First row: S1, second row: S2 similarity. For fixed R, the best performance is
highlighted with boldface typesetting.

R = 8 R = 16

r = 0 r = 1 r = 2 r = 3 r = 4 r = 0 r = 1 r = 2 r = 3 r = 4
S1 4.1594 4.1326 4.1274 4.0792 4.0774 4.1611 4.1321 4.1255 4.0804 4.0777
S2 4.1765 4.1496 4.1374 4.0815 4.0802 4.1797 4.1487 4.1367 4.0826 4.0802

In our second experiment, we studied how the hierarchical group structure G

affects the results. Our obtained results are similar to that of the toroid structure.
We experimented with hierarchy level l = 3, 4, 5, 6 (i.e, dα = 7, 15, 31, 63),
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and achieved the best result for l = 4. The RMSE values decrease until l = 4,
and then increase for l > 4. Our best obtained RMSE value is 4.1220, and
it was achieved for dimension dα = 15. We note that this small dimensional,
hierarchical group structure based result is also better than that of [2], which
makes use of unstructured dictionaries with dα = 100 and has RMSE = 4.1229.
Our result is also competitive with the RMSE = 4.1123 value of [12].

To sum up, in the studied CF problem on the Jester dataset we found that
(i) the application of group structured dictionaries has several advantages and
the proposed algorithm can outperform its state-of-the-art competitors. (ii) The
toroid structure provides better results than the hierarchical structure, (iii) the
quality of the estimation mostly depends on the structure inducing Ω regular-
ization (κ, G, r or l), and (iv) it is robust to the other parameters (ρ forgetting
factor, Si similarity, R mini-batch size).

5 Conclusions

We have proposed an online group-structured dictionary learning (OSDL) ap-
proach to solve the collaborative filtering (CF) problem. We casted the CF es-
timation task as an OSDL problem, and demonstrated the applicability of our
novel approach on joke recommendations. Our extensive numerical experiments
show that structured dictionaries have several advantages over the state-of-the-
art CF methods: more precise estimation can be obtained, and smaller dimen-
sional feature representation can be sufficient by applying group structured dic-
tionaries.
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