I Databases 1

| SQL/PSM and Oracle PL/SQL

SQL DDL (Data Definition Language)

Defining a Database Schema
Primary Keys, Foreign Keys
_ocal and Global Constraints
Defining Views

» Triggers

vV v v Vv

> 2 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

SQL DML (Database Modifications)

» A modification command does not return a
result as a query does, but it changes the
database in some way.

» There are three kinds of modifications:
1. Insert atuple or tuples.
2. Delete atuple or tuples.

3. Update the value(s) of an existing tuple or
tuples.

» 3 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

SQL 1n Real Programs

» We have seen only how SQL is used at the
generic query interface --- an environment where
we sit at a terminal and ask queries of a
database.

» Reality i1s almost always different. conventional
programs interacting with SQL.

» Persistent Stored Modules (PSM)
» PL/SQL
» Embedded SQL

» 4 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

Optons

1. Code In a specialized language is stored In
the database itself (e.g., PSM, PL/SQL).

2. SQL statements are embedded in a host
language (e.g., C).
3. Connection tools are used to allow a

conventional language to access a
database (e.g., CLI, JDBC, PHP/DB).

» 5 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

Stored Procedures

» PSM, or “persistent stored modules,” allows
us to store procedures as database schema
elements.

» PSM = a mixture of conventional statements
(if, while, etc.) and SQL.

» Lets us do things we cannot do in SQL alone.

» 6 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

Basic PSM Form

CREATE PROCEDURE <name> (
<parameter list>)
<optional local declarations>
<body>;

» Function alternative:
CREATE FUNCTION <name> (
<parameter list>) RETURNS <type>

» 7 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

Parameters in PSM

» Unlike the usual name-type pairs in languages
like C, PSM uses mode-name-type triples, where
the mode can be:

» IN = procedure uses value, does not change
value.

» OUT = procedure changes, does not use.
» INOUT = both.

» 8 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

Hxample: Stored Procedure

» Let's write a procedure that takes two arguments
0 and p, and adds a tuple to Sells(bar, beer,
orice) that has bar = 'Joe”s Bar’, beer = b, and
orice = .

» Used by Joe to add to his menu more easily.

» 9 DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

The Procedure
CREATE PROCEDURE JoeMenu (

\
Parameters are both
N b CHAR(ZO)’ read-only, not changed
N p REAL

)
INSERT INTO Sells . The body ---

VALUES(’Joe”s Bar’, b, p); a single insertion

p 10 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Invoking Procedures

» Use SQL/PSM statement CALL, with the name of
the desired procedure and arguments.

4 i
CALL JoeMenu (' Moosedrool’, 5.00);

» Functions used in SQL expressions wherever a
value of their return type Is appropriate.

p 1 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

» RETURN <expression> sets the return value of
a function.

» Unlike C, etc., RETURN does not terminate
function execution.

» DECLARE <name> <type> used to declare local
variables.

» BEGIN . .. END for groups of statements.
» Separate statements by semicolons.

p 12 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Kinds ot PSM Statements — (2)

» Assignment statements:
SET <variable> = <expression>;
» Example: SET b = ’Bud’;

» Statement labels: give a statement a label by
prefixing a name and a colon.

p 13 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

IF Statements

» Simplest form:
IF <condition> THEN
<statements(s)>

END IF;

» Add ELSE <statement(s)> If desired, as
IF... THEN...ELSE ... ENDIF;

» Add additional cases by ELSEIF <statements(s)>:
IF ... THEN ... ELSEIF ... THEN ... ELSEIF ...
THEN ... ELSE ... END IF;

p 14 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Example: IF

» Let's rate bars by how many customers they have,
based on Frequents(drinker,bar).

» <100 customers: ‘unpopular’.
» 100-199 customers: ‘average’.
» >= 200 customers: ‘popular’.

» Function Rate(b) rates bar b.

p 15 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

. IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20))
RETURNS CHAR(10)

DECLARE cust INTEGER: Nurpber of :
BEGIN g‘;‘j gmers 0

SET cust = (SELECT COUNT((*) FROM Frequents
WHERE bar = b);

IF cust < 100 THEN RETURN "unpopular’

ELSEIF cust < 200 THEN RETURN ’average’

ELSE RETURN ’popular’

END IF; \

END; Nested
IF statement

p 16 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

» Basic form:

<loop name>: LOOP <statements>
END LOOP;

» Exit from a loop by:
LEAVE <loop name>

p 17 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Example: Exiting a Loop

loopl: LOOP

LEAVE loopl; «—— If this statement is executed . . .

END LOOP; - Control winds up here

p 18 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Other Loop Forms

» WHILE <condition> DO
<statements> END WHILE;

» REPEAT <statements> UNTIL
<condition> END REPEAT;

p 19 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Queries

» General SELECT-FROM-WHERE queries are
not permitted in PSM.

» There are three ways to get the effect of a
query:
1. Queries producing one value can be the
expression in an assignment.

2. Single-row SELECT ... INTO.
3. Cursors.

» 20 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Example: Assignment/Query

» Using local variable p and Sells(bar, beer, price),
we can get the price Joe charges for Bud by:

SET p = (SELECT price FROM Sells
WHERE bar = "Joe’’s Bar’ AND
beer = "Bud’) ;

p 21 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

SELECT ...INTO

» Another way to get the value of a query that
returns one tuple is by placing INTO <variable>
after the SELECT clause.

» Example:
SELECT price INTO p FROM Sells
WHERE bar = "Joe’’s Bar’ AND

beer = "Bud’;

p 22 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Cursofrs

» A cursor Is essentially a tuple-variable that
ranges over all tuples in the result of some query.

» Declare a cursor ¢ by:
DECLARE ¢ CURSOR FOR <query>;

p 23 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Opening and Closing Cursors

» TO use cursor ¢, we must issue the command:
OPEN c;:

» The query of ¢ Is evaluated, and c Is set to
point to the first tuple of the result.

» When finished with ¢, iIssue command:
CLOSE c;

p 24 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Fetching Tuples From a Cursor

» To get the next tuple from cursor c, issue
command:

FETCH FROM c INTO x1, x2,...,xn ;

» The x’s are a list of variables, one for each
component of the tuples referred to by c.

» C IS moved automatically to the next tuple.

» 25 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Breaking Cursor Loops — (1)

» The usual way to use a cursor is to create a loop
with a FETCH statement, and do something with
each tuple fetched.

» A tricky point is how we get out of the loop when
the cursor has no more tuples to deliver.

» 26 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Breaking Cursor Loops — (2)

» Each SQL operation returns a status, which is a
5-digit character string.

» For example, 00000 = “Everything OK,” and
02000 = “Failed to find a tuple.”

» In PSM, we can get the value of the status in a
variable called SQLSTATE.

p 27 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Breaking Cursor Loops — (3)

» We may declare a condition, which is a boolean

variable that is true if and only if SQLSTATE has
a particular value.

» Example: We can declare condition NotFound to
represent 02000 by:

DECLARE NotFound CONDITION FOR
SQLSTATE 020007 ;

» 28 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Breaking Cursor Loops — (4)

» The structure of a cursor loop Is thus:
cursorLoop: LOOP

FETCH ¢ INTO ..

IF NotFound THEN LEAVE cursorLoop;
END IF;

END LOOP;

DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

FExample: Cursor

» Let’s write a procedure that examines Sells(bar,
beer, price), and raises by $1 the price of all
beers at Joe’s Bar that are under $3.

» Yes, we could write this as a simple UPDATE,
but the detalls are instructive anyway.

» 30 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

The Needed Declarations

CREATE
DECLA
DECLA
DECLA

SQ
DECLA

PROCEDURE JoeGouge()
Used to hold
RE theBeer CHAR(20); . beer-price pairs
RE thePrice REAL; when fetching
rough cursor ¢
RE NotFound CONDITION FOR
LSTATE '02000’;

RE ¢ CURSOR FOR / Returns Joe’s menu

(SELECT beer, price FROM Sells
WHERE bar = "Joe’’s Bar’);

DBlLect 07_SQL/PSM (Hajas, ELTE) --- based on Uliman‘s book and slides

The Procedure Body

BEGIN Check if the recent
OPEN c; FETCH failed to
menuLoop: LOOP get a tuple

FETCH c INTO theBeer, thePrice; «~
IF NotFound THEN LEAVE menuLoop END IF;
IF thePrice < 3.00 THEN
UPDATE Sells SET price = thePrice + 1.00
WHERE bar = 'Joe”s Bar’ AND beer = theBeer;
END IF;
END LOOP;
CLOSE c;
END:;

p 32 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

» Oracle uses a variant of SQL/PSM which it calls
PL/SQL.

» PL/SQL not only allows you to create and store
orocedures or functions, but it can be run from
the generic query interface (sqlplus), like any
SQL statement.

» Triggers are a part of PL/SQL.

p 33 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Trigger Ditterences

» Compared with SQL standard triggers, Oracle
has the following differences:

1. Action is a PL/SQL statement.
2. Newl/old tuples referenced automatically.

3. Strong constraints on trigger actions
designed to make certain you can't fire off
an infinite sequence of triggers.

» See on-line or-triggers.html document.

p 34 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

SQLPlus

» In addition to stored procedures, one can write a
PL/SQL statement that looks like the body of a
procedure, but is executed once, like any SQL
statement typed to the generic interface.

» Oracle calls the generic interface “sqlplus.”
» PL/SQL is really the “plus.”

» 35 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Form of PL/SQL Statements

DECLARE
<declarations>
BEGIN
<statements>
END;

run
» The DECLARE section is optional.

» 36 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Form of PL/SQL Procedure
CREATE OR REPLACE PROCEDURE
<name> (<arguments>) AS

<optional declarations> Notice AS

needed here

BEGIN
<PL/SQL statements>
END;
/ Needed to store

/ procedure in database;

does not really run it.

p 37 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

PL/SQL Declarations and Assignments

» The word DECLARE does not appear in front of
each local declaration.

» Just use the variable name and its type.

» There is no word SET In assignments, and = IS
used in place of =.

» Example: x :=;

p 38 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

PL/SQL Procedure Parametets

» There are several differences in the forms of
PL/SQL argument or local-variable
declarations, compared with the SQL/PSM
standard:

1. Order iIs name-mode-type, not mode-name-

type.
2. INOUT is replaced by IN OUT in PL/SQL.

3. Several new types.

» 39 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

PL/SQL Types

» In addition to the SQL types, NUMBER can be
used to mean INT or REAL, as appropriate.

» You can refer to the type of attribute x of
relation R by R.x%TYPE.

» Useful to avoid type mismatches.

» Also, RWROWTYPE Is a tuple whose
components have the types of R’s attributes.

p 40 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Example:JoeMenu

» Recall the procedure JoeMenu(b,p) that adds
beer b at price p to the beers sold by Joe (in
relation Sells).

» Here Is the PL/SQL version.

p 41 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Procedure JoeMenu in PL/SQL

CREATE OR REPLACE PROCEDURE JoeMenu (
D IN Sells.beer%TYPE,
0 IN Sells.price%TYPE \

Notice these types

) AS

will be suitable

BEGIN for the intended
INSERT INTO Sells uses of band p.
VALUES ('Joe’”s Bar’, b, p);

END:;

/
run

p 42 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

PL/SQL Branching Statements

» Like IF ... iIn SQL/PSM, but:
» Use ELSIF in place of ELSEIF.

» Viz.: IF ... THEN ... ELSIF ... THEN ... ELSIF ...
THEN ... ELSE ... END IF;

p 43 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

PL/SQL Loops

» LOOP ... END LOOP as in SQL/PSM.

» Instead of LEAVE ... , PL/SQL uses
EXIT WHEN <condition>

» And when the condition iIs that cursor ¢ has

found no tuple, we can write c2NOTFOUND as
the condition.

p 44 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

PL/SQL Cursors

» The form of a PL/SQL cursor declaration Is:
CURSOR <name> IS <query>;

» To fetch from cursor c, say:
FETCH c INTO <variable(s)>;

p 45 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

FExample: JoeGouge() in PL/SQL
» Recall JoeGouge() sends a cursor through the
Joe’s-Bar portion of Sells, and raises by $1 the
price of each beer Joe’s Bar sells, if that price
was initially under $3.

p 46 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

CREATE OR REPLACE PROCEDURE
JoeGouge () AS
theBeer Sells.beersTYPE;
thePrice Sells.price%TYPE;
CURSOR ¢ IS
SELECT beer, price FROM Sells
WHERE bar = "Joe’’s Bar’;

p 47 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

: JoeGouge() Body

BEGIN
OPEN c;
LOOP
FETCH c INTO theBeer, thePrice; How PL/SQL
EXIT WHEN c%NOTFOUND; breaks a cursor
. — loop

IF thePrice < 3.00 THEN
UPDATE Sells SET price = thePrice + 1.00;
WHERE bar = 'Joe”s Bar’ AND beer = theBeer;

END IF: /'

END LOOP; Note this is a SET clause
CLOSE c; in an UPDATE, not an assignment.
END:; PL/SQL uses := for assignments.

p 48 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Tuple-Valued Variables

» PL/SQL allows a variable x to have a tuple type.
» X RWROWTYPE gives x the type of R’s tuples.
» R could be either a relation or a cursor.

» X.a gives the value of the component for attribute
a In the tuple x.

p 49 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

Hxample: Tuple Type

» Repeat of JoeGouge() declarations with
variable bp of type beer-price pairs.

CREATE OR REPLACE PROCEDURE
JoeGouge () AS

CURSOR ¢ IS
SELECT beer, price FROM Sells

WHERE bar = "Joe’’s Rar’;
bp cSROWTYPE;

» 50 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

JoeGouge() Body Using bp

BEGIN
OPEN c;
LOOP
FETCH c INTO bp;
EXIT WHEN c%NOTFOUND;
IF bp.price < 3.00 THEN
UPDATE Sells SET price = bp.price + 1.00
WHERE bar=_Joe’’s Bar’ AND/>eer =bp.beer;

END IF; o
END LOOP;
Components of bp are
CLOSE c; obtained with a dot and
END; the attribute name

p 51 DB1Lect 07 _SQL/PSM (Hajas, ELTE) --- based on Ullman'‘s book and slides

