
Databases 1

SQL/PSM and Oracle PL/SQL

SQL DDL (Data Definition Language)

 Defining a Database Schema

 Primary Keys, Foreign Keys

 Local and Global Constraints

 Defining Views

 Triggers

2 DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides

3

SQL DML (Database Modifications)

 A modification command does not return a

result as a query does, but it changes the

database in some way.

 There are three kinds of modifications:

1. Insert a tuple or tuples.

2. Delete a tuple or tuples.

3. Update the value(s) of an existing tuple or

tuples.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides

SQL in Real Programs

 We have seen only how SQL is used at the

generic query interface --- an environment where

we sit at a terminal and ask queries of a

database.

 Reality is almost always different: conventional

programs interacting with SQL.

 Persistent Stored Modules (PSM)

 PL/SQL

 Embedded SQL

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 4

Options

1. Code in a specialized language is stored in

the database itself (e.g., PSM, PL/SQL).

2. SQL statements are embedded in a host

language (e.g., C).

3. Connection tools are used to allow a

conventional language to access a

database (e.g., CLI, JDBC, PHP/DB).

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 5

Stored Procedures

 PSM, or “persistent stored modules,” allows

us to store procedures as database schema

elements.

 PSM = a mixture of conventional statements

(if, while, etc.) and SQL.

 Lets us do things we cannot do in SQL alone.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 6

Basic PSM Form

CREATE PROCEDURE <name> (

 <parameter list>)

 <optional local declarations>

 <body>;

 Function alternative:

CREATE FUNCTION <name> (

 <parameter list>) RETURNS <type>

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 7

Parameters in PSM

 Unlike the usual name-type pairs in languages

like C, PSM uses mode-name-type triples, where

the mode can be:

 IN = procedure uses value, does not change

value.

 OUT = procedure changes, does not use.

 INOUT = both.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 8

Example: Stored Procedure

 Let’s write a procedure that takes two arguments

b and p, and adds a tuple to Sells(bar, beer,

price) that has bar = ’Joe’’s Bar’, beer = b, and

price = p.

 Used by Joe to add to his menu more easily.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 9

The Procedure

CREATE PROCEDURE JoeMenu (

 IN b CHAR(20),

 IN p REAL

)

INSERT INTO Sells

VALUES(’Joe’’s Bar’, b, p);

Parameters are both
read-only, not changed

The body ---
a single insertion

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 10

Invoking Procedures

 Use SQL/PSM statement CALL, with the name of

the desired procedure and arguments.

 Example:

 CALL JoeMenu(’Moosedrool’, 5.00);

 Functions used in SQL expressions wherever a

value of their return type is appropriate.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 11

Kinds of PSM statements – (1)

 RETURN <expression> sets the return value of

a function.

 Unlike C, etc., RETURN does not terminate

function execution.

 DECLARE <name> <type> used to declare local

variables.

 BEGIN . . . END for groups of statements.

 Separate statements by semicolons.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 12

Kinds of PSM Statements – (2)

 Assignment statements:

SET <variable> = <expression>;

 Example: SET b = ’Bud’;

 Statement labels: give a statement a label by

prefixing a name and a colon.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 13

IF Statements

 Simplest form:

 IF <condition> THEN

 <statements(s)>

 END IF;

 Add ELSE <statement(s)> if desired, as

 IF . . . THEN . . . ELSE . . . END IF;

 Add additional cases by ELSEIF <statements(s)>:

IF … THEN … ELSEIF … THEN … ELSEIF …

THEN … ELSE … END IF;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 14

Example: IF

 Let’s rate bars by how many customers they have,

based on Frequents(drinker,bar).

 <100 customers: ‘unpopular’.

 100-199 customers: ‘average’.

 >= 200 customers: ‘popular’.

 Function Rate(b) rates bar b.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 15

Example: IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20))

 RETURNS CHAR(10)

 DECLARE cust INTEGER;

 BEGIN

 SET cust = (SELECT COUNT(*) FROM Frequents

 WHERE bar = b);

 IF cust < 100 THEN RETURN ’unpopular’

 ELSEIF cust < 200 THEN RETURN ’average’

 ELSE RETURN ’popular’

 END IF;

 END;

Number of
customers of
bar b

Nested
IF statement

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 16

Loops

 Basic form:

 <loop name>: LOOP <statements>

 END LOOP;

 Exit from a loop by:

 LEAVE <loop name>

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 17

Example: Exiting a Loop

loop1: LOOP

 . . .

 LEAVE loop1;

 . . .

END LOOP;

If this statement is executed . . .

Control winds up here

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 18

Other Loop Forms

 WHILE <condition> DO

<statements> END WHILE;

 REPEAT <statements> UNTIL

<condition> END REPEAT;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 19

Queries

 General SELECT-FROM-WHERE queries are

not permitted in PSM.

 There are three ways to get the effect of a

query:

1. Queries producing one value can be the

expression in an assignment.

2. Single-row SELECT . . . INTO.

3. Cursors.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 20

Example: Assignment/Query

 Using local variable p and Sells(bar, beer, price),

we can get the price Joe charges for Bud by:

 SET p = (SELECT price FROM Sells

 WHERE bar = ’Joe’’s Bar’ AND

 beer = ’Bud’);

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 21

SELECT . . . INTO

 Another way to get the value of a query that

returns one tuple is by placing INTO <variable>

after the SELECT clause.

 Example:

 SELECT price INTO p FROM Sells

 WHERE bar = ’Joe’’s Bar’ AND

 beer = ’Bud’;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 22

Cursors

 A cursor is essentially a tuple-variable that

ranges over all tuples in the result of some query.

 Declare a cursor c by:

DECLARE c CURSOR FOR <query>;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 23

Opening and Closing Cursors

 To use cursor c, we must issue the command:

 OPEN c;

 The query of c is evaluated, and c is set to

point to the first tuple of the result.

 When finished with c, issue command:

 CLOSE c;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 24

Fetching Tuples From a Cursor

 To get the next tuple from cursor c, issue

command:

 FETCH FROM c INTO x1, x2,…,xn ;

 The x ’s are a list of variables, one for each

component of the tuples referred to by c.

 c is moved automatically to the next tuple.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 25

Breaking Cursor Loops – (1)

 The usual way to use a cursor is to create a loop

with a FETCH statement, and do something with

each tuple fetched.

 A tricky point is how we get out of the loop when

the cursor has no more tuples to deliver.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 26

Breaking Cursor Loops – (2)

 Each SQL operation returns a status, which is a

5-digit character string.

 For example, 00000 = “Everything OK,” and

02000 = “Failed to find a tuple.”

 In PSM, we can get the value of the status in a

variable called SQLSTATE.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 27

Breaking Cursor Loops – (3)

 We may declare a condition, which is a boolean

variable that is true if and only if SQLSTATE has

a particular value.

 Example: We can declare condition NotFound to

represent 02000 by:

DECLARE NotFound CONDITION FOR

 SQLSTATE ’02000’;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 28

Breaking Cursor Loops – (4)

 The structure of a cursor loop is thus:

cursorLoop: LOOP

 …

 FETCH c INTO … ;

 IF NotFound THEN LEAVE cursorLoop;

 END IF;

 …

END LOOP;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 29

Example: Cursor

 Let’s write a procedure that examines Sells(bar,

beer, price), and raises by $1 the price of all

beers at Joe’s Bar that are under $3.

 Yes, we could write this as a simple UPDATE,

but the details are instructive anyway.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 30

The Needed Declarations

CREATE PROCEDURE JoeGouge()

 DECLARE theBeer CHAR(20);

 DECLARE thePrice REAL;

 DECLARE NotFound CONDITION FOR

 SQLSTATE ’02000’;

 DECLARE c CURSOR FOR

 (SELECT beer, price FROM Sells

 WHERE bar = ’Joe’’s Bar’);

Used to hold
beer-price pairs
when fetching
through cursor c

Returns Joe’s menu

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 31

The Procedure Body
BEGIN

 OPEN c;

 menuLoop: LOOP

 FETCH c INTO theBeer, thePrice;

 IF NotFound THEN LEAVE menuLoop END IF;

 IF thePrice < 3.00 THEN

 UPDATE Sells SET price = thePrice + 1.00

 WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

 END IF;

 END LOOP;

 CLOSE c;

END;

Check if the recent
FETCH failed to
get a tuple

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 32

PL/SQL

 Oracle uses a variant of SQL/PSM which it calls

PL/SQL.

 PL/SQL not only allows you to create and store

procedures or functions, but it can be run from

the generic query interface (sqlplus), like any

SQL statement.

 Triggers are a part of PL/SQL.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 33

Trigger Differences

 Compared with SQL standard triggers, Oracle

has the following differences:

1. Action is a PL/SQL statement.

2. New/old tuples referenced automatically.

3. Strong constraints on trigger actions

designed to make certain you can’t fire off

an infinite sequence of triggers.

 See on-line or-triggers.html document.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 34

SQLPlus

 In addition to stored procedures, one can write a

PL/SQL statement that looks like the body of a

procedure, but is executed once, like any SQL

statement typed to the generic interface.

 Oracle calls the generic interface “sqlplus.”

 PL/SQL is really the “plus.”

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 35

Form of PL/SQL Statements

DECLARE

 <declarations>

BEGIN

 <statements>

END;

.

run

 The DECLARE section is optional.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 36

Form of PL/SQL Procedure

CREATE OR REPLACE PROCEDURE

 <name> (<arguments>) AS

 <optional declarations>

 BEGIN

 <PL/SQL statements>

 END;

/

run

Notice AS
needed here

Needed to store
procedure in database;
does not really run it.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 37

PL/SQL Declarations and Assignments

 The word DECLARE does not appear in front of

each local declaration.

 Just use the variable name and its type.

 There is no word SET in assignments, and := is

used in place of =.

 Example: x := y;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 38

PL/SQL Procedure Parameters

 There are several differences in the forms of

PL/SQL argument or local-variable

declarations, compared with the SQL/PSM

standard:

1. Order is name-mode-type, not mode-name-

type.

2. INOUT is replaced by IN OUT in PL/SQL.

3. Several new types.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 39

PL/SQL Types

 In addition to the SQL types, NUMBER can be

used to mean INT or REAL, as appropriate.

 You can refer to the type of attribute x of

relation R by R.x%TYPE.

 Useful to avoid type mismatches.

 Also, R%ROWTYPE is a tuple whose

components have the types of R’s attributes.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 40

Example:JoeMenu

 Recall the procedure JoeMenu(b,p) that adds

beer b at price p to the beers sold by Joe (in

relation Sells).

 Here is the PL/SQL version.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 41

Procedure JoeMenu in PL/SQL

CREATE OR REPLACE PROCEDURE JoeMenu (

 b IN Sells.beer%TYPE,

 p IN Sells.price%TYPE

) AS

 BEGIN

 INSERT INTO Sells

 VALUES (’Joe’’s Bar’, b, p);

 END;

/

run

Notice these types
will be suitable
for the intended
uses of b and p.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 42

PL/SQL Branching Statements

 Like IF … in SQL/PSM, but:

 Use ELSIF in place of ELSEIF.

 Viz.: IF … THEN … ELSIF … THEN … ELSIF …

THEN … ELSE … END IF;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 43

PL/SQL Loops

 LOOP … END LOOP as in SQL/PSM.

 Instead of LEAVE … , PL/SQL uses

 EXIT WHEN <condition>

 And when the condition is that cursor c has

found no tuple, we can write c%NOTFOUND as

the condition.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 44

PL/SQL Cursors

 The form of a PL/SQL cursor declaration is:

 CURSOR <name> IS <query>;

 To fetch from cursor c, say:

 FETCH c INTO <variable(s)>;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 45

Example: JoeGouge() in PL/SQL

 Recall JoeGouge() sends a cursor through the

Joe’s-Bar portion of Sells, and raises by $1 the

price of each beer Joe’s Bar sells, if that price

was initially under $3.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 46

Example: JoeGouge() Declarations

CREATE OR REPLACE PROCEDURE

 JoeGouge() AS

 theBeer Sells.beer%TYPE;

 thePrice Sells.price%TYPE;

 CURSOR c IS

 SELECT beer, price FROM Sells

 WHERE bar = ’Joe’’s Bar’;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 47

Example: JoeGouge() Body

BEGIN

 OPEN c;

 LOOP

 FETCH c INTO theBeer, thePrice;

 EXIT WHEN c%NOTFOUND;

 IF thePrice < 3.00 THEN

 UPDATE Sells SET price = thePrice + 1.00;

 WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

 END IF;

 END LOOP;

 CLOSE c;

END;

How PL/SQL
breaks a cursor
loop

Note this is a SET clause
in an UPDATE, not an assignment.
PL/SQL uses := for assignments.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 48

Tuple-Valued Variables

 PL/SQL allows a variable x to have a tuple type.

 x R%ROWTYPE gives x the type of R’s tuples.

 R could be either a relation or a cursor.

 x.a gives the value of the component for attribute

a in the tuple x.

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 49

Example: Tuple Type

 Repeat of JoeGouge() declarations with
variable bp of type beer-price pairs.

CREATE OR REPLACE PROCEDURE

 JoeGouge() AS

 CURSOR c IS

 SELECT beer, price FROM Sells

 WHERE bar = ’Joe’’s Bar’;

 bp c%ROWTYPE;

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 50

JoeGouge() Body Using bp

BEGIN

 OPEN c;

 LOOP

 FETCH c INTO bp;

 EXIT WHEN c%NOTFOUND;

 IF bp.price < 3.00 THEN

 UPDATE Sells SET price = bp.price + 1.00

 WHERE bar = ’Joe’’s Bar’ AND beer =bp.beer;

 END IF;

 END LOOP;

 CLOSE c;

END;

Components of bp are
obtained with a dot and
the attribute name

DB1Lect_07_SQL/PSM (Hajas, ELTE) --- based on Ullman‘s book and slides 51

