
Oracle SQL Tuning
An Introduction

Toon Koppelaars

Sr. IT Architect

Central Bookhouse

Execution

CB fact sheet

 TX database, R8.1.7.1
 Distribution for 500 publishers and 1200 bookstores

 Daily >150K books distributed

 800 sessions, 40+ application areas

 80 (60) Gbyte, 1700 tables

 1M source lines, 7000 stored objects

 1500 Forms (Designer 1.3.2)

 DWH database, R8.1.7.1
 50 sessions, 5 application areas

 100 (80) Gbyte, 350 tables

 300K source lines, 1500 stored objects

 100 html reports (Webserver 3)

 Business Objects

Overview

• Foundation
– Optimizer, cost vs. rule, data storage,

SQL-execution phases, …

• Creating & reading execution plans
– Access paths, single table, joins, …

• Utilities
– Tracefiles, SQL hints, analyze/dbms_stat

• Warehouse specifics
– Star queries & bitmap indexing

– ETL

• Availability in 7, 8, 8i, 9i?

Goals

• Read execution plans
• Table access

• Index access

• Joins

• Subqueries

• Understand execution plans
• Understand performance

• Basic understanding of SQL optimization

• Start thinking how you should have
executed it

Next…

• Basic Concepts (13)

– Background information

• SQL-Execution (50)

– Read + understand

Optimizer Overview

Check syntax +

semantics

Generate plan

description

Transform plan

into

“executable”

Execute the

plan

Cost vs. Rule

• Rule
– Hardcoded heuristic rules determine plan

• “Access via index is better than full table scan”

• “Fully matched index is better than partially matched
index”

• …

• Cost (2 modes)
– Statistics of data play role in plan determination

• Best throughput mode: retrieve all rows asap

– First compute, then return fast

• Best response mode: retrieve first row asap

– Start returning while computing (if possible)

How to set which one?

• Instance level: Optimizer_Mode parameter
– Rule

– Choose

• if statistics then CBO (all_rows), else RBO

– First_rows, First_rows_n (1, 10, 100, 1000)

– All_rows

• Session level:
– Alter session set optimizer_mode=<mode>;

• Statement level:
– Hints inside SQL text specify mode to be used

SQL Execution: DML vs. Queries

Describe&define

Bind

Fetch

DML vs. Queries

• Open => Parse => Execute (=> Fetchn)

SELECT ename,salary

FROM emp

WHERE salary>100000

UPDATE emp

SET commission=‘N’

WHERE salary>100000

CLIENT SERVER

Same SQL optimization

All fetches done internally

by SQL-Executor

Fetches done

By client

=> SQL =>

<= Data or Returncode<=

Data Storage: Tables

• Oracle stores all data inside datafiles
– Location & size determined by DBA

– Logically grouped in tablespaces

– Each file is identified by a relative file number (fno)

• Datafile consists of data-blocks
– Size equals value of db_block_size parameter

– Each block is identified by its offset in the file

• Data-blocks contain rows
– Each row is identified by its sequence in the block

 ROWID: <Block>.<Row>.<File>

Data Storage: Tables

File x

Block 1

Block 5

Block 2 Block 3 Block 4

Block … <Rec1><Rec2><Rec3>

<Rec4><Rec5><Rec6>

<Rec7><Rec8><Rec9>

…

Rowid: 00000006.0000.000X

Data Storage: Indexes

• Balanced trees
– Indexed column(s) sorted and stored seperately

• NULL values are excluded (not added to the index)

– Pointer structure enables logarithmic search

• Access index first, find pointer to table, then access table

• B-trees consist of
– Node blocks

• Contain pointers to other node, or leaf blocks

– Leaf blocks

• Contain actual indexed values

• Contain rowids (pointer to rows)

• Also stored in blocks in datafiles
– Proprietary format

Data Storage: Indexes
B-tree Create index on emp(empno)

<100 100..200 >200

<50 50..100 100..150 150..200 200..250 >250

N
O

D
E

S

L
E

A
V

E
S

<
 B

L
E

V
E

L
 >

Data Storage: Indexes

Datafile

Block 1

Block 5

Block 2 Block 3 Block 4

Block … Index

Node

Block

Index

Leaf

Block

Index

Leaf

Block

No particular order of node and leaf blocks

Table & Index I/O

• I/O’s are done at ‘block level’

– LRU list controls who ‘makes place’ in the cache

I/O’s

Disc Memory: SGA -

buffer cache (x blocks)

Data

Access
Datafile

Explain Plan Utility

• “Explain plan for <SQL-statement>”
– Stores plan (row-sources + operations) in Plan_Table

– View on Plan_Table (or 3rd party tool) formats into readable

plan

1

2

3

5

4

6

>Filter

>….NL

>……..TA-full

>……..TA-rowid

>…………Index Uscan

>….TA-full

Explain Plan Utility

create table PLAN_TABLE (

 statement_id varchar2(30), operation varchar2(30),

 options varchar2(30), object_owner varchar2(30),

 object_name varchar2(30), id numeric,

 parent_id numeric, position numeric,

 cost numeric, bytes numeric);

create or replace view PLANS(STATEMENT_ID,PLAN,POSITION) as

select statement_id,

 rpad('>',2*level,'.')||operation||

 decode(options,NULL,'',' (')||nvl(options,' ')||

 decode(options,NULL,'',') ')||

 decode(object_owner,NULL,'',object_owner||'.')||object_name plan,

 position

from plan_table

start with id=0

connect by prior id=parent_id

 and prior nvl(statement_id,'NULL')=nvl(statement_id,'NULL')

Execution Plans

1. Single table without index

2. Single table with index

3. Joins

1. Nested Loop

2. Sort Merge

3. Hash1 (small/large), hash2 (large/large)

4. Special operators

Single Table, no Index (1.1)

• Full table scan (FTS)

– All blocks read sequentially into buffer cache

• Also called “buffer-gets”

• Done via multi-block I/O’s (db_file_multiblock_read_count)

• Till high-water-mark reached (truncate resets, delete not)

– Per block: extract + return all rows

• Then put block at LRU-end of LRU list (!)

• All other operations put block at MRU-end

>.SELECT STATEMENT

>...TABLE ACCESS full emp

SELECT *

FROM emp;

Single Table, no Index (1.2)

• Full table scan with filtering

– Read all blocks

– Per block extract, filter, then return row

• Simple where-clause filters never shown in plan

• FTS with: rows-in < rows-out

>.SELECT STATEMENT

>...TABLE ACCESS full emp
SELECT *

FROM emp

WHERE sal > 100000;

Single Table, no Index (1.3)

• FTS followed by sort on ordered-by column(s)

– “Followed by” Ie. SORT won’t return rows to its parent row-

source till its child row-source fully completed

– SORT order by: rows-in = rows-out

– Small sorts done in memory (SORT_AREA_SIZE)

– Large sorts done via TEMPORARY tablespace

• Potentially many I/O’s

>.SELECT STATEMENT

>...SORT order by

>.....TABLE ACCESS full emp

SELECT *

FROM emp

ORDER BY ename;

Single Table, no Index (1.3)

• If ordered-by column(s) is indexed

– Index Full Scan

– CBO uses index if mode = First_Rows

– If index is used => no sort is necessary

>.SELECT STATEMENT

>...TABLE ACCESS full emp

>.....INDEX full scan i_emp_ename

SELECT *

FROM emp

ORDER BY ename;

Emp(ename)

Single Table, no Index (1.4)

• FTS followed by sort on grouped-by column(s)

– FTS will only retrieve job and sal columns

• Small intermediate rowlength => sort more likely in memory

– SORT group by: rows-in >> rows-out

– Sort also computes aggregates

>.SELECT STATEMENT

>...SORT group by

>.....TABLE ACCESS full emp

SELECT job,sum(sal)

FROM emp

GROUP BY job;

Single Table, no Index (1.5)

• HAVING Filtering

– Only filter rows that comply to having-clause

>.SELECT STATEMENT

>...FILTER

>.....SORT group by

>.......TABLE ACCESS full emp

SELECT job,sum(sal)

FROM emp

GROUP BY job

HAVING sum(sal)>200000;

Single Table, no Index (1.6)

• Table access by rowid

– Single row lookup

– Goes straight to the block, and filters the row

– Fastest way to retreive one row

• If you know its rowid

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp
SELECT *

FROM emp

WHERE rowid=

 ‘00004F2A.00A2.000C’

Single Table, Index (2.1)

• Index Unique Scan

– Traverses the node blocks to locate correct leaf block

– Searches value in leaf block (if not found => done)

– Returns rowid to parent row-source

• Parent: accesses the file+block and returns the row

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX unique scan i_emp_pk

SELECT *

FROM emp

WHERE empno=174;

Unique emp(empno)

Index Unique Scan (2.1)

Table access

by rowid

Single Table, Index (2.2)

• (Non-unique) Index Range Scan

– Traverses the node blocks to locate most left leaf block

– Searches 1st occurrence of value in leaf block

– Returns rowid to parent row-source

• Parent: accesses the file+block and returns the row

– Continues on to next occurrence of value in leaf block

• Until no more occurences

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_job

SELECT *

FROM emp

WHERE job=‘manager’;

emp(job)

Index Range Scan (2.2)

Table access

by rowid

Single Table, Index (2.3)

• Unique Index Range Scan
– Traverses the node blocks to locate most left leaf block with

start value

– Searches 1st occurrence of value-range in leaf block

– Returns rowid to parent row-source

• Parent: accesses the file+block and returns the row

– Continues on to next valid occurrence in leaf block

• Until no more occurences / no longer in value-range

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_pk

SELECT *

FROM emp

WHERE empno>100;

Unique emp(empno)

Concatenated Indexes

Emp(job,hiredate)

Job1 Job2 Job3

Hiredates Hiredates Hiredates

Multiple levels of Btrees, by column order

Single Table, Index (2.4)

• Full Concatenated Index

– Use job-value to navigate to sub-Btree

– Then search all applicable hiredates

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_j_h

SELECT *

FROM emp

WHERE job=‘manager’

AND hiredate=’01-01-2001’;

Emp(job,hiredate)

Single Table, Index (2.5)

• (Leading) Prefix of Concatenated Index

– Scans full sub-Btree inside larger Btree

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_j_h

SELECT *

FROM emp

WHERE job=‘manager’;

Emp(job,hiredate)

emp(job,hiredate)

job-values

hiredate-values

SELECT *

FROM emp

WHERE job=‘manager’;

Index Range Scan (2.5)

Table access

by rowid

Single Table, Index (2.6)

• Index Skip Scan (prior versions did FTS)

– “To use indexes where they’ve never been used before”

– Predicate on leading column(s) no longer needed

– Views Btree as collection of smaller sub-Btrees

– Works best with low-cardinality leading column(s)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_j_h

SELECT *

FROM emp

WHERE hiredate=’01-01-2001’;

Emp(job,hiredate)

http://otn.oracle.com/products/

emp(job,hiredate)

job-values

hiredate-values

SELECT *

FROM emp

WHERE hiredate=’01-01-2001’;

Index Skip Scan (2.6)

Each node holds

min and max

hiredates

http://otn.oracle.com/products/

Single Table, Index (2.7)

• Multiple Indexes

– Rule: uses heuristic decision list to choose which one

• Avaliable indexes are ‘ranked’

– Cost: computes most selective one (ie. least costing)

• Uses statistics

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_job

SELECT *

FROM emp

WHERE empno>100

AND job=‘manager’;

Unique Emp(empno)

Emp(job)

RBO Heuristics

• Ranking multiple available indexes
1. Equality on single column unique index

2. Equality on concatenated unique index

3. Equality on concatenated index

4. Equality on single column index

5. Bounded range search in index
– Like, Between, Leading-part, …

6. Unbounded range search in index
– Greater, Smaller (on leading part)

Normally you hint which one to use

CBO Cost Computation

• Statistics at various levels
• Table:

– Num_rows, Blocks, Empty_blocks, Avg_space

• Column:

– Num_values, Low_value, High_value, Num_nulls

• Index:

– Distinct_keys, Blevel, Avg_leaf_blocks_per_key,

Avg_data_blocks_per_key, Leaf_blocks

– Used to compute selectivity of each index

• Selectivity = percentage of rows returned

– Number of I/O’s plays big role

• FTS is also considered at this time!

Single Table, Index (2.1)

• CBO will use Full Table Scan If,

of I/O’s to do FTS < # of I/O’s to do IRS

– FTS I/O uses db_file_multiblock_read_count (dfmrc)

• Typically 16

– Unique scan uses: (blevel + 1) +1 I/O’s

– FTS uses ceil(#table blocks / dfmrc) I/O’s

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX unique scan i_emp_pk

Or,

>.SELECT STATEMENT

>...TABLE ACCESS full emp

SELECT *

FROM emp

WHERE empno=174;

Unique emp(empno)

CBO: Clustering Factor

• Index level statistic
– How well ordered are the rows in comparison to indexed

values?

– Average number of blocks to access a single value

• 1 means range scans are cheap

• <# of table blocks> means range scans are expensive

– Used to rank multiple available range scans

Blck 1 Blck 2 Blck 3

------ ------ ------

A A A B B B C C C

Blck 1 Blck 2 Blck 3

------ ------ ------

A B C A B C A B C

Clust.fact = 1 Clust.fact = 3

Single Table, Index (2.2)

• Clustering factor comparing IRS against FTS

– If, (#table blocks / dfmrc)

 <

 (#values * clust.factor) + blevel + leafblocks-to-visit

 then, FTS is used

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_job

Or,

>.SELECT STATEMENT

>...TABLE ACCESS full emp

SELECT *

FROM emp

WHERE job=‘manager’;

emp(job)

Single Table, Index (2.7)

• Clust.factor comparing multiple IRS’s

– Suppose FTS is too many I/O’s

– Compare (#values * clust.fact) to decide which index

• Empno-selectivity => #values * 1 => # I/O’s

• Job-selectivity => 1 * clust.fact => # I/O’s

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_job

Or,

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_empno

SELECT *

FROM emp

WHERE empno>100

AND job=‘manager’;

Unique Emp(empno)

Emp(job)

Single Table, Index (2.8)

• Multiple same-rank, single-column indexes

– AND-EQUAL: merge up to 5 single column range scans

– Combines multiple index range scans prior to table access

• Intersects rowid sets from each range scan

– Rarely seen with CBO

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....AND-EQUAL

>.......INDEX range scan i_emp_job

>.......INDEX range scan i_emp_depno

SELECT *

FROM emp

WHERE job=‘manager’

AND depno=10

Emp(job)

Emp(depno)

Single Table, Index (2.9)

• Using indexes to avoid table access

– Depending on columns used in SELECT-list and other places

of WHERE-clause

– No table-access if all used columns present in index

>.SELECT STATEMENT

>...INDEX range scan i_emp_j_e

SELECT ename

FROM emp

WHERE job=‘manager’;

Emp(job,ename)

Single Table, Index (2.10)

• Fast Full Index Scan (CBO only)

– Uses same multiblock I/O as FTS

– Eligible index must have at least one NOT NULL column

– Rows are returned leaf-block order

• Not in indexed-columns-order

>.SELECT STATEMENT

>...INDEX fast full scan i_emp_empno

SELECT count(*)

FROM big_emp;

Big_emp(empno)

Joins, Nested Loops (3.1)

• Full Cartesian Product via Nested Loop Join (NLJ)

– Init(RowSource1);

While not eof(RowSource1)

Loop Init(RowSource2);

 While not eof(RowSource2)

 Loop return(CurRec(RowSource1)+CurRec(RowSource2));

 NxtRec(RowSource2);

 End Loop;

 NxtRec(RowSource1);

End Loop;

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS full emp

SELECT *

FROM dept, emp;

Two loops,

nested

Joins, Sort Merge (3.2)

• Inner Join, no indexes: Sort Merge Join (SMJ)

Tmp1 := Sort(RowSource1,JoinColumn);

Tmp2 := Sort(RowSource2,JoinColumn);

Init(Tmp1); Init(Tmp2);

While Sync(Tmp1,Tmp2,JoinColumn)

Loop return(CurRec(Tmp1)+CurRec(Tmp2));

End Loop;

>.SELECT STATEMENT

>...MERGE JOIN

>.....SORT join

>.......TABLE ACCESS full emp

>.....SORT join

>.......TABLE ACCESS full dept

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#;

Sync

advances

pointer(s) to

next match

Joins (3.3)

• Inner Join, only one side indexed

– NLJ starts with full scan of non-indexed table

– Per row retrieved use index to find matching rows

• Within 2nd loop a (current) value for d# is available!

• And used to perform a range scan

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan e_emp_fk

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#;

Emp(d#)

Joins (3.4)

• Inner Join, both sides indexed
– RBO: NLJ, start with FTS of last table in FROM-clause

– CBO: NLJ, start with FTS of biggest table in FROM-clause

• Best multi-block I/O benefit in FTS

• More likely smaller table will be in buffer cache

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan e_emp_fk

Or,

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full emp

>.....TABLE ACCESS by rowid dept

>.......INDEX unique scan e_dept_pk

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#

Emp(d#)

Unique Dept(d#)

Joins (3.5)

• Inner Join with additional conditions

– Nested Loops

– Always starts with table thas has extra condition(s)

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan e_emp_fk

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#

AND dept.loc = ‘DALLAS’

Emp(d#)

Unique Dept(d#)

Hashing

Table

Equality search in

where clause

Buckets

Hash Function
Eg. Mod(cv,3)

Domain =

Column Values

(cv)
Range =

Hash Values

(offset)

SELECT *

FROM table

WHERE column = <value>
Card. of range

determines size

of bucket

Joins, Hash (3.6)

– Tmp1 := Hash(RowSource1,JoinColumn); -- In memory

Init(RowSource2);

While not eof(RowSource2)

Loop HashInit(Tmp1,JoinValue); -- Locate bucket

 While not eof(Tmp1)

 Loop return(CurRec(RowSource2)+CurRec(Tmp1));

 NxtHashRec(Tmp1,JoinValue);

 End Loop; NxtRec(RowSource2);

End Loop;

>.SELECT STATEMENT

>...HASH JOIN

>.....TABLE ACCESS full dept

>.....TABLE ACCESS full emp

SELECT *

FROM dept, emp

WHERE dept.d# = emp.d#

Emp(d#), Unique Dept(d#)

Joins, Hash (3.6)

• Must be explicitely enabled via init.ora file:

– Hash_Join_Enabled = True

– Hash_Area_Size = <bytes>

• If hashed table does not fit in memory

– 1st rowsource: temporary hash cluster is built

• And written to disk (I/O’s) in partitions

– 2nd rowsource also converted using same hash-function

– Per ‘bucket’ rows are matched and returned

• One bucket must fit in memory, else very bad performance

Subquery (4.1)

• Transformation into join

– Temporary view is built which drives the nested loop

>.SELECT STATEMENT

>...NESTED LOOPS

>.....VIEW

>.......SORT unique

>.........TABLE ACCESS full emp

>.....TABLE ACCESS by rowid dept

>.......INDEX unique scan i_dept_pk

SELECT dname, deptno

FROM dept

WHERE d# IN

 (SELECT d#

 FROM emp);

Subquery, Correlated (4.2)

• “Nested Loops”-like FILTER

– For each row of 1st rowsource, execute 2nd rowsource

and filter on truth of subquery-condition

– Subquery can be re-written as self-join of EMP table

>.SELECT STATEMENT

>...FILTER

>.....TABLE ACCESS full emp

>.....TABLE ACCESS by rowid emp

>.......INDEX unique scan i_emp_pk

SELECT *

FROM emp e

WHERE sal >

 (SELECT sal

 FROM emp m

 WHERE m.e#=e.mgr#)

Subquery, Correlated (4.2)

• Subquery rewrite to join

– Subquery can also be rewritten to EXISTS-subquery

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full emp

>.....TABLE ACCESS by rowid emp

>.......INDEX unique scan i_emp_pk

SELECT *

FROM emp e, emp m

WHERE m.e#=e.mgr#

AND e.sal > m.sal;

Subquery, Correlated (4.2)

• Subquery rewrite to EXISTS query

– For each row of 1st rowsource, execute 2nd rowsource

And filter on retrieval of rows by 2nd rowsource

>.SELECT STATEMENT

>...FILTER

>.....TABLE ACCESS full emp

>.....TABLE ACCESS by rowid emp

>.......INDEX unique scan i_emp_pk

SELECT *

FROM emp e

WHERE exists

 (SELECT ‘less salary'

 FROM emp m

 WHERE e.mgr# = m.e#

 and m.sal < e.sal);

Concatenation (4.3)

• Concatenation (OR-processing)

– Similar to query rewrite into 2 seperate queries

– Which are then ‘concatenated’

– If one index was missing => Full Table Scan

>.SELECT STATEMENT

>...CONCATENATION

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan i_emp_m

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan i_emp_j

SELECT *

FROM emp

WHERE mgr# = 100

OR job = ‘CLERK’;

Emp(mgr#)

Emp(job)

Inlist Iterator (4.4)

• Iteration over enumerated value-list

– Every value executed seperately

• Same as concatenation of 3 “OR-red” values

>.SELECT STATEMENT

>...INLIST ITERATOR

>.....TABLE ACCESS by rowid dept

>.......INDEX unique scan i_dept_pk

SELECT *

FROM dept

WHERE d# in (10,20,30);

Unique Dept(d#)

Union (4.5)

• Union followed by Sort-Unique

– Sub rowsources are all executed/optimized individually

– Rows retrieved are ‘concatenated’

– Set theory demands unique elements (Sort)

>.SELECT STATEMENT

>...SORT unique

>.....UNION

>.......TABLE ACCESS full emp

>.......TABLE ACCESS full dept

SELECT empno

FROM emp

UNION

SELECT deptno

FROM dept;

UNION

3

3

5

4

2

1

Union All (4.6)

• Union-All: result is a ‘bag’, not a set

– (expensive) Sort-operator not necessary

 Use UNION-ALL if you know the bag is a set.

 (saving an expensive sort)

>.SELECT STATEMENT

>...UNION-ALL

>.....TABLE ACCESS full emp

>.....TABLE ACCESS full dept

SELECT empno

FROM emp

UNION ALL

SELECT deptno

FROM dept;

UNION ALL

3

3

5

4

2

1

Intersect (4.7)

• INTERSECT

– Sub rowsources are all executed/optimized individually

– Very similar to Sort-Merge-Join processing

– Full rows are sorted and matched

>.SELECT STATEMENT

>...INTERSECTION

>.....SORT unique

>.......TABLE ACCESS full emp

>.....SORT unique

>.......TABLE ACCESS full dept

SELECT empno

FROM emp

INTERSECT

SELECT deptno

FROM dept;

INTERSECT

3

3

5

4

2

1

Minus (4.8)

• MINUS

– Sub rowsources are all executed/optimized individually

– Similar to INTERSECT processing

• Instead of match-and-return, match-and-exclude

>.SELECT STATEMENT

>...MINUS

>.....SORT unique

>.......TABLE ACCESS full emp

>.....SORT unique

>.......TABLE ACCESS full dept

SELECT empno

FROM emp

MINUS

SELECT deptno

FROM dept;

MINUS

3

3

5

4

2

1

Break

http://servlet.java.sun.com/logRedirect/frontpage-head-logo/http://java.sun.com/

Utilities

• Tracing

• SQL Hints

• Analyze command

• Dbms_Stats package

Trace Files

• Explain-plan: give insight before execution

• Tracing: give insight in actual execution
• CPU-time spent

• Elapsed-time

• # of physical block-I/O’s

• # of cached block-I/O’s

• Rows-processed per row-source

• Session must be put in trace-mode
• Alter session set sql_trace=true;

• Exec

dbms_system.set_sql_trace_in_session(sid,s#,T/F);

Trace Files

• Tracefile is generated on database server

– Needs to be formatted with TKPROF-utility

 tkprof <tracefile> <tkp-file> <un>/<pw>

– Two sections per SQL-statement:

call count cpu elapsed disk query current rows

------- ----- ------ -------- -------- -------- -------- --------

Parse 1 0.06 0.07 0 0 0 0

Execute 1 0.01 0.01 0 0 0 0

Fetch 1 0.11 0.13 0 37 2 2

------- ----- ------ -------- -------- -------- -------- --------

total 3 0.18 0.21 0 37 2 2

Trace Files

– 2nd section: extended explain plan:
• Example 4.2 (emp with more sal than mgr),

#R Plan .

 2 SELECT STATEMENT

14 FILTER

14 TABLE ACCESS (FULL) OF 'EMP‘

11 TABLE ACCESS (BY ROWID) OF 'EMP‘

12 INDEX (UNIQUE SCAN) OF 'I_EMP_PK' (UNIQUE)

– Emp has 14 records

– Two of them have no manager (NULL mgr column value)

– One of them points to non-existing employee

– Two actually earn more than their manager

Hints

• Force optimizer to pick specific alternative
– Implemented via embedded comment

SELECT /*+ <hint> */ ….
FROM ….
WHERE ….

UPDATE /*+ <hint> */ ….
WHERE ….

DELETE /*+ <hint> */ ….
WHERE ….

INSERT (see SELECT)

Hints

– Common hints

• Full(<tab>)

• Index(<tab> <ind>)

• Index_asc(<tab> <ind>)

• Index_desc(<tab> <ind>)

• Ordered

• Use_NL(<tab> <tab>)

• Use_Merge(<tab> <tab>)

• Use_Hash(<tab> <tab>)

• Leading(<tab>)

• First_rows, All_rows, Rule

Analyze command

• Statistics need to be periodically generated
– Done via ‘ANALYZE’ command

Analyze <Table | Index> <x>
<compute | estimate | delete> statistics
 <sample <x> <Rows | Percent>>

Analyze table emp estimate statistics sample 30 percent;

ANALYZE will be de-supported

Dbms_Stats Package

• Successor of Analyze command

• Dbms_stats.gather_index_stats(<owner>,<index>,

 <blocksample>,<est.percent>)

• Dbms_stats.gather_table_stats(<owner>,<table>,

 <blocksample>,<est.percent>)

• Dbms_stats.delete_index_stats(<owner>,<index>)

• Dbms_stats.delete_table_stats(<owner>,<table>)

SQL>exec dbms_stats.gather_table_status(‘scott’,’emp’,null,30);

Warehouse Specifics

• Traditional Star Query

• Bitmap Indexes

– Bitmap merge, and, conversion-to-rowid

– Single table query

• Star Queries

– Multiple tables

Traditional Star Query

• Double nested loops

– Pick one table as start (A or B)

– Then follow join-conditions using Nested_Loops

 Too complex for AND-EQUAL

>.SELECT STATEMENT

>...NESTED LOOPS

>.....NESTED LOOPS

>.......TABLE ACCESS full b

>.......TABLE ACCESS by rowid fact

>.........INDEX range scan i_fact_b

>.....TABLE ACCESS by rowid a

>.......INDEX unique scan a_pk

SELECT f.*

FROM a,b,f

WHERE a.pk = f.a_fk

AND b.pk = f.b_fk

AND a.t = … AND b.s = …

A(pk), B(pk)

F(a_fk), F(b_fk)

Traditional Star Query

Dim1 Dim2

Fact

Four access-order alternatives!

Traditional Star Query

• Concatenated Index Range Scans for Star Query
– At least two dimensions

– Index at least one column more than dimensions used

– Merge-Join-Cartesian gives all applicable dimension
combinations

– Per combination the concatenated index is probed

>.SELECT STATEMENT

>...NESTED LOOPS

>.....MERGE JOIN cartesian

>.......TABLE ACCESS full a

>.......SORT join

>.........TABLE ACCESS full b

>.....TABLE ACCESS by rowid fact

>.......INDEX range scan I_f_abc

SELECT f.*

FROM a,b,f

WHERE a.pk = f.a_fk

AND b.pk = f.b_fk

AND a.t = … AND b.s = …

F(a_fk,b_fk,…)

Bitmap Index

Empno Status Region Gender Info

101 single east male bracket_1

102 married central female bracket_4

103 married west female bracket_2

104 divorced west male bracket_4

105 single central female bracket_2

106 married central female bracket_3

REGION='east' REGION='central' REGION='west'

1 0 0

0 1 0

0 0 1

0 0 1

0 1 0

0 1 0

Bitmap Indexes

SELECT COUNT(*)

FROM CUSTOMER

WHERE MARITAL_STATUS = 'married‘

AND REGION IN ('central','west');

Bitmap Access, Single Table

• Bitmap OR’s, AND’s and CONVERSION

– Find Central and West bitstreams (bitmap key-iteration)

– Perform logical OR on them (bitmap merge)

– Find Married bitstream

– Perform logical AND on region bitstream (bitmap and)

– Convert to actual rowid’s

– Access table

>.......TABLE ACCESS (BY INDEX ROWID) cust

>.........BITMAP CONVERSION to rowids

>...........BITMAP AND

>.............BITMAP INDEX single value cs

>.............BITMAP MERGE

>...............BITMAP KEY ITERATION

>.................BITMAP INDEX range scan cr

SELECT count(*)

FROM customer

WHERE status=‘M’

AND region in (‘C’,’W’);

>.......TABLE ACCESS (BY INDEX ROWID) f

>.........BITMAP CONVERSION (TO ROWIDS)

>...........BITMAP AND

>.............BITMAP MERGE

>...............BITMAP KEY ITERATION

>.................TABLE ACCESS (FULL) d1

>.................BITMAP INDEX (RANGE SCAN) id1

>.............BITMAP MERGE

>...............BITMAP KEY ITERATION

>.................TABLE ACCESS (FULL) d2

>.................BITMAP INDEX (RANGE SCAN) id2

 F(pk, d1fk, d2fk, f)

D1(pk,c1,c2) D2(pk,c1,c2)

SELECT sum(f)

FROM F,D1,D2

WHERE F=D1 and F=D2

AND D1.C1=<…>

AND D2.C2=<…>

Bitmap indexes: id1, id2

Bitmap Access, Star Query

Warehouse Hints

• Specific star-query related hints

– Star

• Traditional: via concat-index range scan

– Star_transformation

• Via single column bitmap index merges/and’s

– Fact(t) / No_fact(t)

• Help star_transformation

– Index_combine(t i1 i2 …)

• Explicitely instruct which indexes to merge/and

ETL options

• New in 9i

– External tables

• Access external ASCII-file from SQL (FTS only)

– Merge (aka UpSert)

• Conditionally do an Insert or an Update

– Multi-Table-Insert (MTI)

• Conditionally insert subquery-result into multiple tables

Availability

– Oracle7
• Cost Based Optimizer

• Hash Join

– Oracle r8.0
• Bitmap indexes (without bugs)

• Star_transformation

• Rowid-format (dbms_rowid)

– Oracle 8i
• Dbms_Stats

– Oracle9i
• Index SkipScans

• First_rows(n)-hint

An Introduction…

• Not covered,
• Distributed SQL

• Nested SQL

• PL/SQL Functions inside SQL

• Anti Joins

• View processing

• Index+hash clusters

• Partitioning / Parallelisation

• Index organised tables

• …

SQL Tuning: Roadmap

• Able to read plan

• Able to translate plan into 3GL program
• Know your row-source operators

• Able to read SQL

• Able to translate SQL into business query
• Know your datamodel

• Able to judge outcome
• Know your business rules / data-statistics

– Better than CBO does

• Experts:
– Optimize SQL while writing SQL…

Questions?

t.koppelaars@centraal.boekhuis.nl

