Single Table, Index (2.1)

SELECT * >.SELECT STATEMENT
>...TABLE ACCESS by rowid emp
FROM emp > ..., INDEX unique scan i_emp pk

WHERE empno=174;

Unique emp(empno)

* Index Unique Scan
— Traverses the node blocks to locate correct leaf block
— Searches value in leaf block (if not found => done)

— Returns rowid to parent row-source
 Parent: accesses the file+block and returns the row

Index Unique Scan (2.1)

!

Table access
by rowid

Single Table, Index (2.2)

SELECT * >.SELECT STATEMENT
>...TABLE ACCESS by rowid emp
FROM emp > ..., INDEX range scan i_emp job

WHERE job='manager’;

emp(job)

* (Non-unique) Index Range Scan
— Traverses the node blocks to locate most left leaf block
— Searches 15t occurrence of value in leaf block
— Returns rowid to parent row-source
« Parent: accesses the filet+block and returns the row

— Continues on to next occurrence of value in leaf block
* Until no more occurences

Index Range Scan (2.2)

T

Table access
by rowid

Single Table, Index (2.3)

SELECT * >.SELECT STATEMENT

>...TABLE ACCESS by rowid emp
FROM emp > ..., INDEX range scan i_emp pk
WHERE empno>100;

Unique emp(empno)

« Unique Index Range Scan

— Traverses the node blocks to locate most left leaf block with
start value

— Searches 1st occurrence of value-range in leaf block
— Returns rowid to parent row-source
» Parent: accesses the filetblock and returns the row

— Continues on to next valid occurrence in leaf block
» Until no more occurences / no longer in value-range

Concatenated Indexes

Emp(job,hiredate

Multiple levels of Btrees, by column order

Single Table, Index (2.4)

SELECT * >.SELECT STATEMENT
>...TABLE ACCESS by rowid emp
FROM emp > ..., INDEX range scan i_emp j h

WHERE job='manager’
AND hiredate='01-01-2001";

Emp(job,hiredate)

* Full Concatenated Index
— Use job-value to navigate to sub-Btree
— Then search all applicable hiredates

Single Table, Index (2.5)

SELECT * >.SELECT STATEMENT
>...TABLE ACCESS by rowid emp
FROM emp > ..., INDEX range scan i_emp j h

WHERE job='manager’;

Emp(job,hiredate)

* (Leading) Prefix of Concatenated Index
— Scans full sub-Btree inside larger Btree

Index Range Scan (2.5)

emp(job,hiredate)

job-values

hiredate-values

I SELECT *
Table access FROM emp
by rowid WHERE job=‘manager’;

Single Table, Index (2.6)

SELECT * >.SELECT STATEMENT
>...TABLE ACCESS by rowid emp
FROM emp > ..., INDEX range scan i_emp j h

WHERE hiredate=’01-01-2001";

Emp(job,hiredate)

* Index Skip Scan (prior versions did FTS)
— “To use indexes where they’'ve never been used before”
— Predicate on leading column(s) no longer needed
— Views Btree as collection of smaller sub-Btrees
— Works best with low-cardinality leading column(s)

QrRACLE

Index Skip Scan (2.6)

Each node holds
min and max
hiredates

INTERNET

i o

emp(job,hiredate)

job-values

hiredate-values

| |
SELECT *
FROM emp
WHERE hiredate=’01-01-2001";

Single Table, Index (2.7)

SELECT * >.SELECT STATEMENT
>...TABLE ACCESS by rowid emp
FROM emp > ..., INDEX range scan i_emp job

WHERE empno>100
AND job="manager’;

Unique Emp(empno)
Emp(job)

e Multiple Indexes
— Rule: uses heuristic decision list to choose which one
* Avaliable indexes are ‘ranked’

— Cost: computes most selective one (ie. least costing)
« Uses statistics

RBO Heuristics

* Ranking multiple available indexes
1. Equality on single column unique index
2. Equality on concatenated unique index
3. Equality on concatenated index
4. Equality on single column index

3

Bounded range search in index
— Like, Between, Leading-part, ...

6. Unbounded range search in index
— Greater, Smaller (on leading part)

Normally you hint which one to use

CBO Cost Computation

o Statistics at various levels

« Table:
— Num_rows, Blocks, Empty blocks, Avg_space
e Column:
— Num_values, Low_value, High value, Num_nulls

* |Index:

— Distinct_keys, Blevel, Avg _leaf blocks per key,
Avg data_blocks per key, Leaf blocks

— Used to compute selectivity of each index

« Selectivity = percentage of rows returned
— Number of I/O’s plays big role

* FTS is also considered at this time!

