
Real SQL Programming
Persistent Stored Modules (PSM)

Ullman-Widom: Adatbázisrendszerek

Alapvetés. Második, átdolgozott kiadás,

Panem, 2009Panem, 2009

9.3. Az SQL és a befogadó nyelv
közötti felület (sormutatók, cursors)

9.4. SQL/PSM Sémában tárolt eljárások

(Jeffrey D. Ullman, 2007 EA alapján)

1

SQL in Real Programs

�We have seen only how SQL is used at
the generic query interface --- an
environment where we sit at a terminal

2

environment where we sit at a terminal
and ask queries of a database.

�Reality is almost always different:
conventional programs interacting with
SQL.

Options

1. Code in a specialized language is
stored in the database itself (e.g.,
PSM, PL/SQL).

3

PSM, PL/SQL).

2. SQL statements are embedded in a
host language (e.g., C).

3. Connection tools are used to allow a
conventional language to access a
database (e.g., CLI, JDBC, PHP/DB).

Stored Procedures

�PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements.

4

database schema elements.

�PSM = a mixture of conventional
statements (if, while, etc.) and SQL.

�Lets us do things we cannot do in SQL
alone.

Basic PSM Form

CREATE PROCEDURE <name> (

<parameter list>)

<optional local declarations>

5

<optional local declarations>

<body>;

�Function alternative:

CREATE FUNCTION <name> (

<parameter list>) RETURNS <type>

Parameters in PSM

�Unlike the usual name-type pairs in
languages like C, PSM uses mode-
name-type triples, where the mode can

6

name-type triples, where the mode can
be:

� IN = procedure uses value, does not
change value.

� OUT = procedure changes, does not use.

� INOUT = both.

Example: Stored Procedure

�Let’s write a procedure that takes two
arguments b and p, and adds a tuple
to Sells(bar, beer, price) that has bar =

7

to Sells(bar, beer, price) that has bar =
’Joe’’s Bar’, beer = b, and price = p.
� Used by Joe to add to his menu more
easily.

The Procedure

CREATE PROCEDURE JoeMenu (

IN b CHAR(20),

IN p REAL
-- Parameters are both
-- read-only, not changed

8

IN p REAL

)

INSERT INTO Sells

VALUES(’Joe’’s Bar’, b, p);

-- read-only, not changed

-- The body ---
-- a single insertion

Invoking Procedures

�Use SQL/PSM statement CALL, with the name
of the desired procedure and arguments.

�Example:

9

�Example:

CALL JoeMenu(’Moosedrool’, 5.00);

�Functions used in SQL expressions wherever
a value of their return type is appropriate.

Kinds of PSM statements – (1)

�RETURN <expression> sets the return
value of a function.

� Unlike C, etc., RETURN does not terminate

10

� Unlike C, etc., RETURN does not terminate
function execution.

�DECLARE <name> <type> used to
declare local variables.

�BEGIN . . . END for groups of statements.

� Separate statements by semicolons.

Kinds of PSM Statements – (2)

�Assignment statements:
SET <variable> = <expression>;

� Example: SET b = ’Bud’;

11

� Example: SET b = ’Bud’;

�Statement labels: give a statement a
label by prefixing a name and a colon.

IF Statements

�Simplest form:
IF <condition> THEN

<statements(s)>
END IF;

12

END IF;

�Add ELSE <statement(s)> if desired, as
IF . . . THEN . . . ELSE . . . END IF;

�Add additional cases by ELSEIF
<statements(s)>: IF … THEN … ELSEIF …
THEN … ELSEIF … THEN … ELSE … END IF;

Example: IF

�Let’s rate bars by how many customers they
have, based on Frequents(drinker,bar).

� <100 customers: ‘unpopular’.

13

� <100 customers: ‘unpopular’.

� 100-199 customers: ‘average’.

� >= 200 customers: ‘popular’.

�Function Rate(b) rates bar b.

Example: IF (continued)
CREATE FUNCTION Rate (IN b CHAR(20))

RETURNS CHAR(10)

DECLARE cust INTEGER;

BEGIN

-- Number of
-- customers of
-- bar b

14

BEGIN

SET cust = (SELECT COUNT(*) FROM Frequents

WHERE bar = b);

IF cust < 100 THEN RETURN ’unpopular’

ELSEIF cust < 200 THEN RETURN ’average’

ELSE RETURN ’popular’

END IF;

END;

-- Return occurs here,
-- not at one of the RETURN
-- statements

-- Nested
-- IF statement

Loops

�Basic form:

<loop name>: LOOP <statements>
END LOOP;

15

END LOOP;

�Exit from a loop by:

LEAVE <loop name>

Example: Exiting a Loop

loop1: LOOP

. . .

LEAVE loop1; If this statement is executed . . .

16

LEAVE loop1;

. . .

END LOOP;

If this statement is executed . . .

Control winds up here

Other Loop Forms

�WHILE <condition>
DO <statements>

END WHILE;

17

END WHILE;

�REPEAT <statements>
UNTIL <condition>

END REPEAT;

Queries

� General SELECT-FROM-WHERE
queries are not permitted in PSM.

� There are three ways to get the effect

18

� There are three ways to get the effect
of a query:

1. Queries producing one value can be the
expression in an assignment.

2. Single-row SELECT . . . INTO.

3. Cursors.

Example: Assignment/Query

�Using local variable p and Sells(bar, beer,
price), we can get the price Joe charges for
Bud by:

19

Bud by:

SET p = (SELECT price FROM Sells

WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’);

SELECT . . . INTO

�Another way to get the value of a query
that returns one tuple is by placing INTO
<variable> after the SELECT clause.

20

<variable> after the SELECT clause.

�Example:

SELECT price INTO p FROM Sells

WHERE bar = ’Joe’’s Bar’ AND

beer = ’Bud’;

Cursors

�A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query.

21

of some query.

�Declare a cursor c by:

DECLARE c CURSOR FOR <query>;

Opening and Closing Cursors

�To use cursor c, we must issue the
command:

OPEN c;

22

OPEN c;

� The query of c is evaluated, and c is set
to point to the first tuple of the result.

�When finished with c, issue command:

CLOSE c;

Fetching Tuples From a Cursor

�To get the next tuple from cursor c,
issue command:

FETCH FROM c INTO x1, x2,…,xn ;

23

FETCH FROM c INTO x1, x2,…,xn ;

�The x ’s are a list of variables, one for
each component of the tuples referred
to by c.

�c is moved automatically to the next
tuple.

Breaking Cursor Loops – (1)

�The usual way to use a cursor is to
create a loop with a FETCH statement,
and do something with each tuple

24

and do something with each tuple
fetched.

�A tricky point is how we get out of the
loop when the cursor has no more
tuples to deliver.

Breaking Cursor Loops – (2)

�Each SQL operation returns a status,
which is a 5-digit character string.

� For example, 00000 = “Everything OK,”

25

� For example, 00000 = “Everything OK,”
and 02000 = “Failed to find a tuple.”

�In PSM, we can get the value of the
status in a variable called SQLSTATE.

Breaking Cursor Loops – (3)

�We may declare a condition, which is a
boolean variable that is true if and only
if SQLSTATE has a particular value.

26

if SQLSTATE has a particular value.

�Example: We can declare condition
NotFound to represent 02000 by:

DECLARE NotFound CONDITION FOR

SQLSTATE ’02000’;

Breaking Cursor Loops – (4)

� The structure of a cursor loop is thus:

cursorLoop: LOOP

…

27

…

FETCH c INTO … ;

IF NotFound THEN LEAVE cursorLoop;

END IF;

…

END LOOP;

Example: Cursor

�Let’s write a procedure that examines
Sells(bar, beer, price), and raises by $1
the price of all beers at Joe’s Bar that

28

the price of all beers at Joe’s Bar that
are under $3.

� Yes, we could write this as a simple
UPDATE, but the details are instructive
anyway.

The Needed Declarations

CREATE PROCEDURE JoeGouge()

DECLARE theBeer CHAR(20);

DECLARE thePrice REAL;

-- Used to hold
-- beer-price pairs
-- when fetching
-- through cursor c

29

DECLARE thePrice REAL;

DECLARE NotFound CONDITION FOR

SQLSTATE ’02000’;

DECLARE c CURSOR FOR

(SELECT beer, price FROM Sells

WHERE bar = ’Joe’’s Bar’);

-- through cursor c

-- Returns Joe’s menu

The Procedure Body
BEGIN

OPEN c;

menuLoop: LOOP

FETCH c INTO theBeer, thePrice;

IF NotFound THEN LEAVE menuLoop END IF;

Check if the recent
FETCH failed to
get a tuple

30

IF NotFound THEN LEAVE menuLoop END IF;

IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice + 1.00

WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

END IF;

END LOOP;

CLOSE c;

END;

If Joe charges less than $3 for
the beer, raise its price at
Joe’s Bar by $1.

PL/SQL

�Oracle uses a variant of SQL/PSM which it
calls PL/SQL.

�PL/SQL not only allows you to create and

31

�PL/SQL not only allows you to create and
store procedures or functions, but it can
be run from the generic query interface
(sqlplus), like any SQL statement.

�Triggers are a part of PL/SQL.

Trigger Differences

� Compared with SQL standard triggers,
Oracle has the following differences:

1. Action is a PL/SQL statement.

32

1. Action is a PL/SQL statement.

2. New/old tuples referenced automatically.

3. Strong constraints on trigger actions
designed to make certain you can’t fire
off an infinite sequence of triggers.

� See on-line or-triggers.html document.

SQLPlus

�In addition to stored procedures, one
can write a PL/SQL statement that looks
like the body of a procedure, but is

33

like the body of a procedure, but is
executed once, like any SQL statement
typed to the generic interface.

� Oracle calls the generic interface “sqlplus.”

� PL/SQL is really the “plus.”

Form of PL/SQL Statements

DECLARE

<declarations>

BEGIN

34

BEGIN

<statements>

END;

.

run

� The DECLARE section is optional.

Form of PL/SQL Procedure

CREATE OR REPLACE PROCEDURE

<name> (<arguments>) AS

<optional declarations>

Notice AS
needed here

35

<optional declarations>

BEGIN

<PL/SQL statements>

END;

.

run

Needed to store
procedure in database;
does not really run it.

PL/SQL Declarations and
Assignments

�The word DECLARE does not appear in
front of each local declaration.

� Just use the variable name and its type.

36

� Just use the variable name and its type.

�There is no word SET in assignments,
and := is used in place of =.

� Example: x := y;

PL/SQL Procedure Parameters

� There are several differences in the
forms of PL/SQL argument or local-
variable declarations, compared with

37

variable declarations, compared with
the SQL/PSM standard:

1. Order is name-mode-type, not mode-
name-type.

2. INOUT is replaced by IN OUT in PL/SQL.

3. Several new types.

PL/SQL Types

�In addition to the SQL types, NUMBER
can be used to mean INT or REAL, as
appropriate.

38

appropriate.

�You can refer to the type of attribute x
of relation R by R.x%TYPE.

� Useful to avoid type mismatches.

� Also, R%ROWTYPE is a tuple whose
components have the types of R’s attributes.

Example:JoeMenu

�Recall the procedure JoeMenu(b,p) that
adds beer b at price p to the beers
sold by Joe (in relation Sells).

39

sold by Joe (in relation Sells).

�Here is the PL/SQL version.

Procedure JoeMenu in PL/SQL

CREATE OR REPLACE PROCEDURE JoeMenu (

b IN Sells.beer%TYPE,

p IN Sells.price%TYPE

) AS
Notice these types

40

) AS

BEGIN

INSERT INTO Sells

VALUES (’Joe’’s Bar’, b, p);

END;

.

run

Notice these types
will be suitable
for the intended
uses of b and p.

PL/SQL Branching Statements

�Like IF … in SQL/PSM, but:

�Use ELSIF in place of ELSEIF.

�Viz.: IF … THEN … ELSIF … THEN …

41

�Viz.: IF … THEN … ELSIF … THEN …
ELSIF … THEN … ELSE … END IF;

PL/SQL Loops

�LOOP … END LOOP as in SQL/PSM.

�Instead of LEAVE … , PL/SQL uses
EXIT WHEN <condition>

42

EXIT WHEN <condition>

�And when the condition is that cursor c
has found no tuple, we can write
c%NOTFOUND as the condition.

PL/SQL Cursors

�The form of a PL/SQL cursor declaration
is: CURSOR
<name> IS <query>;

43

<name> IS <query>;

�To fetch from cursor c, say:
FETCH c INTO <variable(s)>;

Example: JoeGouge() in PL/SQL

�Recall JoeGouge() sends a cursor
through the Joe’s-Bar portion of Sells,
and raises by $1 the price of each beer

44

and raises by $1 the price of each beer
Joe’s Bar sells, if that price was initially
under $3.

Example: JoeGouge() Declarations

CREATE OR REPLACE PROCEDURE

JoeGouge() AS

theBeer Sells.beer%TYPE;

45

theBeer Sells.beer%TYPE;

thePrice Sells.price%TYPE;

CURSOR c IS

SELECT beer, price FROM Sells

WHERE bar = ’Joe’’s Bar’;

Example: JoeGouge() Body
BEGIN

OPEN c;

LOOP

FETCH c INTO theBeer, thePrice;

EXIT WHEN c%NOTFOUND;

How PL/SQL
breaks a cursor
loop

46

EXIT WHEN c%NOTFOUND;

IF thePrice < 3.00 THEN

UPDATE Sells SET price = thePrice + 1.00;

WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

END IF;

END LOOP;

CLOSE c;

END;

loop

Note this is a SET clause
in an UPDATE, not an assignment.
PL/SQL uses := for assignments.

Tuple-Valued Variables

�PL/SQL allows a variable x to have a
tuple type.

�x R%ROWTYPE gives x the type of R’s

47

�x R%ROWTYPE gives x the type of R’s
tuples.

�R could be either a relation or a cursor.

�x.a gives the value of the component
for attribute a in the tuple x.

Example: Tuple Type

�Repeat of JoeGouge() declarations with
variable bp of type beer-price pairs.

CREATE OR REPLACE PROCEDURE

JoeGouge() AS

48

JoeGouge() AS

CURSOR c IS

SELECT beer, price FROM Sells

WHERE bar = ’Joe’’s Bar’;

bp c%ROWTYPE;

JoeGouge() Body Using bp
BEGIN

OPEN c;

LOOP

FETCH c INTO bp;

EXIT WHEN c%NOTFOUND;

49

EXIT WHEN c%NOTFOUND;

IF bp.price < 3.00 THEN

UPDATE Sells SET price = bp.price + 1.00

WHERE bar = ’Joe’’s Bar’ AND beer =bp.beer;

END IF;

END LOOP;

CLOSE c;

END;

Components of bp are
obtained with a dot and
the attribute name

Embedded SQL

�Key idea: A preprocessor turns SQL
statements into procedure calls that fit
with the surrounding host-language

50

with the surrounding host-language
code.

�All embedded SQL statements begin
with EXEC SQL, so the preprocessor can
find them easily.

Shared Variables

�To connect SQL and the host-language
program, the two parts must share
some variables.

51

some variables.

�Declarations of shared variables are
bracketed by:

EXEC SQL BEGIN DECLARE SECTION;

<host-language declarations>

EXEC SQL END DECLARE SECTION;

Always
needed

Use of Shared Variables

�In SQL, the shared variables must be
preceded by a colon.
� They may be used as constants provided
by the host-language program.

52

by the host-language program.

� They may get values from SQL statements
and pass those values to the host-
language program.

�In the host language, shared variables
behave like any other variable.

Example: Looking Up Prices

�We’ll use C with embedded SQL to
sketch the important parts of a function
that obtains a beer and a bar, and looks

53

that obtains a beer and a bar, and looks
up the price of that beer at that bar.

�Assumes database has our usual
Sells(bar, beer, price) relation.

Example: C Plus SQL

EXEC SQL BEGIN DECLARE SECTION;

char theBar[21], theBeer[21];

float thePrice;

EXEC SQL END DECLARE SECTION;

Note 21-char
arrays needed
for 20 chars +
endmarker

54

EXEC SQL END DECLARE SECTION;

/* obtain values for theBar and theBeer */

EXEC SQL SELECT price INTO :thePrice

FROM Sells

WHERE bar = :theBar AND beer = :theBeer;

/* do something with thePrice */

endmarker

SELECT-INTO
as in PSM

Embedded Queries

�Embedded SQL has the same limitations
as PSM regarding queries:

� SELECT-INTO for a query guaranteed to

55

� SELECT-INTO for a query guaranteed to
produce a single tuple.

� Otherwise, you have to use a cursor.
• Small syntactic differences, but the key ideas
are the same.

Cursor Statements

�Declare a cursor c with:

EXEC SQL DECLARE c CURSOR FOR <query>;

�Open and close cursor c with:

56

�Open and close cursor c with:

EXEC SQL OPEN CURSOR c;

EXEC SQL CLOSE CURSOR c;

� Fetch from c by:

EXEC SQL FETCH c INTO <variable(s)>;
� Macro NOT FOUND is true if and only if the FETCH
fails to find a tuple.

Example: Print Joe’s Menu

�Let’s write C + SQL to print Joe’s menu
– the list of beer-price pairs that we
find in Sells(bar, beer, price) with bar =

57

find in Sells(bar, beer, price) with bar =
Joe’s Bar.

�A cursor will visit each Sells tuple that
has bar = Joe’s Bar.

Example: Declarations

EXEC SQL BEGIN DECLARE SECTION;

char theBeer[21]; float thePrice;

EXEC SQL END DECLARE SECTION;

58

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c CURSOR FOR

SELECT beer, price FROM Sells

WHERE bar = ’Joe’’s Bar’;

The cursor declaration goes
outside the declare-section

Example: Executable Part

EXEC SQL OPEN CURSOR c;

while(1) {

EXEC SQL FETCH c

The C style
of breaking
loops

59

EXEC SQL FETCH c

INTO :theBeer, :thePrice;

if (NOT FOUND) break;

/* format and print theBeer and thePrice */

}

EXEC SQL CLOSE CURSOR c;

