
Single Table, Index (2.1)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX unique scan i_emp_pk

SELECT *

FROM emp

WHERE empno=174;

Unique emp(empno)

• Index Unique Scan

– Traverses the node blocks to locate correct leaf block

– Searches value in leaf block (if not found => done)

– Returns rowid to parent row-source

• Parent: accesses the file+block and returns the row

Unique emp(empno)

Index Unique Scan (2.1)

Table access

by rowid

Single Table, Index (2.2)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_job

SELECT *

FROM emp

WHERE job=‘manager’;

emp(job)

• (Non-unique) Index Range Scan

– Traverses the node blocks to locate most left leaf block

– Searches 1st occurrence of value in leaf block

– Returns rowid to parent row-source

• Parent: accesses the file+block and returns the row

– Continues on to next occurrence of value in leaf block

• Until no more occurences

emp(job)

Index Range Scan (2.2)

Table access

by rowid

Single Table, Index (2.3)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_pk

SELECT *

FROM emp

WHERE empno>100;

Unique emp(empno)

• Unique Index Range Scan
– Traverses the node blocks to locate most left leaf block with

start value

– Searches 1st occurrence of value-range in leaf block

– Returns rowid to parent row-source

• Parent: accesses the file+block and returns the row

– Continues on to next valid occurrence in leaf block

• Until no more occurences / no longer in value-range

Unique emp(empno)

Concatenated Indexes

Emp(job,hiredate)

Job1 Job2 Job3

Hiredates Hiredates Hiredates

Multiple levels of Btrees, by column order

Single Table, Index (2.4)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_j_h

SELECT *

FROM emp

WHERE job=‘manager’

AND hiredate=’01-01-2001’;

• Full Concatenated Index

– Use job-value to navigate to sub-Btree

– Then search all applicable hiredates

Emp(job,hiredate)

Single Table, Index (2.5)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_j_h

SELECT *

FROM emp

WHERE job=‘manager’;

Emp(job,hiredate)

• (Leading) Prefix of Concatenated Index

– Scans full sub-Btree inside larger Btree

Emp(job,hiredate)

emp(job,hiredate)

Index Range Scan (2.5)

job-values

hiredate-values

SELECT *

FROM emp

WHERE job=‘manager’;

Table access

by rowid

Single Table, Index (2.6)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_j_h

SELECT *

FROM emp

WHERE hiredate=’01-01-2001’;

Emp(job,hiredate)

• Index Skip Scan (prior versions did FTS)

– “To use indexes where they’ve never been used before”

– Predicate on leading column(s) no longer needed

– Views Btree as collection of smaller sub-Btrees

– Works best with low-cardinality leading column(s)

Emp(job,hiredate)

emp(job,hiredate)

Index Skip Scan (2.6)

Each node holds

min and max

hiredates

job-values

hiredate-values

SELECT *

FROM emp

WHERE hiredate=’01-01-2001’;

Single Table, Index (2.7)

>.SELECT STATEMENT

>...TABLE ACCESS by rowid emp

>.....INDEX range scan i_emp_job

SELECT *

FROM emp

WHERE empno>100

AND job=‘manager’;

• Multiple Indexes

– Rule: uses heuristic decision list to choose which one

• Avaliable indexes are ‘ranked’

– Cost: computes most selective one (ie. least costing)

• Uses statistics

Unique Emp(empno)

Emp(job)

RBO Heuristics

• Ranking multiple available indexes
1. Equality on single column unique index

2. Equality on concatenated unique index

3. Equality on concatenated index

4. Equality on single column index4. Equality on single column index

5. Bounded range search in index
– Like, Between, Leading-part, …

6. Unbounded range search in index
– Greater, Smaller (on leading part)

Normally you hint which one to use

CBO Cost Computation

• Statistics at various levels
• Table:

– Num_rows, Blocks, Empty_blocks, Avg_space

• Column:

– Num_values, Low_value, High_value, Num_nulls

• Index:• Index:

– Distinct_keys, Blevel, Avg_leaf_blocks_per_key,

Avg_data_blocks_per_key, Leaf_blocks

– Used to compute selectivity of each index

• Selectivity = percentage of rows returned

– Number of I/O’s plays big role

• FTS is also considered at this time!

