
Joins, Nested Loops (3.1)

• Full Cartesian Product via Nested Loop Join (NLJ)

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS full emp

SELECT *

FROM dept, emp;

• Full Cartesian Product via Nested Loop Join (NLJ)

– Init(RowSource1);

While not eof(RowSource1)

Loop Init(RowSource2);

While not eof(RowSource2)

Loop return(CurRec(RowSource1)+CurRec(RowSource2));

NxtRec(RowSource2);

End Loop;

NxtRec(RowSource1);

End Loop;

Two loops,

nested

Joins, Sort Merge (3.2)

>.SELECT STATEMENT

>...MERGE JOIN

>.....SORT join

>.......TABLE ACCESS full emp

>.....SORT join

>.......TABLE ACCESS full dept

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#;

• Inner Join, no indexes: Sort Merge Join (SMJ)

Tmp1 := Sort(RowSource1,JoinColumn);

Tmp2 := Sort(RowSource2,JoinColumn);

Init(Tmp1); Init(Tmp2);

While Sync(Tmp1,Tmp2,JoinColumn)

Loop return(CurRec(Tmp1)+CurRec(Tmp2));

End Loop;

Sync

advances

pointer(s) to

next match

Joins (3.3)

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan e_emp_fk

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#;

Emp(d#)

• Inner Join, only one side indexed

– NLJ starts with full scan of non-indexed table

– Per row retrieved use index to find matching rows

• Within 2nd loop a (current) value for d# is available!

• And used to perform a range scan

Emp(d#)

Joins (3.4)

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan e_emp_fk

Or,

>.SELECT STATEMENT

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#

Emp(d#)

• Inner Join, both sides indexed
– RBO: NLJ, start with FTS of last table in FROM-clause

– CBO: NLJ, start with FTS of biggest table in FROM-clause

• Best multi-block I/O benefit in FTS

• More likely smaller table will be in buffer cache

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full emp

>.....TABLE ACCESS by rowid dept

>.......INDEX unique scan e_dept_pk

Emp(d#)

Unique Dept(d#)

Joins (3.5)

>.SELECT STATEMENT

>...NESTED LOOPS

>.....TABLE ACCESS full dept

>.....TABLE ACCESS by rowid emp

>.......INDEX range scan e_emp_fk

SELECT *

FROM emp, dept

WHERE emp.d# = dept.d#

AND dept.loc = ‘DALLAS’

• Inner Join with additional conditions

– Nested Loops

– Always starts with table thas has extra condition(s)

Emp(d#)

Unique Dept(d#)

Hashing

Table

Buckets

Hash Function
Eg. Mod(cv,3)

Equality search in

where clause

Buckets
Domain =

Column Values

(cv)
Range =

Hash Values

(offset)

SELECT *

FROM table

WHERE column = <value>
Card. of range

determines size

of bucket

Joins, Hash (3.6)

>.SELECT STATEMENT

>...HASH JOIN

>.....TABLE ACCESS full dept

>.....TABLE ACCESS full emp

SELECT *

FROM dept, emp

WHERE dept.d# = emp.d#

Emp(d#), Unique Dept(d#)

– Tmp1 := Hash(RowSource1,JoinColumn); -- In memory

Init(RowSource2);

While not eof(RowSource2)

Loop HashInit(Tmp1,JoinValue); -- Locate bucket

While not eof(Tmp1)

Loop return(CurRec(RowSource2)+CurRec(Tmp1));

NxtHashRec(Tmp1,JoinValue);

End Loop; NxtRec(RowSource2);

End Loop;

Emp(d#), Unique Dept(d#)

Joins, Hash (3.6)

• Must be explicitely enabled via init.ora file:

– Hash_Join_Enabled = True

– Hash_Area_Size = <bytes>

• If hashed table does not fit in memory

– 1st rowsource: temporary hash cluster is built

• And written to disk (I/O’s) in partitions

– 2nd rowsource also converted using same hash-function

– Per ‘bucket’ rows are matched and returned

• One bucket must fit in memory, else very bad performance

