
Query processing and optimization

Definitions

• Query processing

– translation of query into low-level activities

– evaluation of query

– data extraction

• Query optimization

– selecting the most efficient query evaluation

Advanced Databases Query processing and optimization 2

– selecting the most efficient query evaluation

Query Processing (1/2)

• SELECT * FROM student WHERE name=Paul

• Parse query and translate

– check syntax, verify names, etc

– translate into relational algebra (RDBMS)

– create evaluation plans

• Find best plan (optimization)

Advanced Databases Query processing and optimization 3

• Find best plan (optimization)

• Execute plan

student

cid name

00112233 Paul

00112238 Rob

00112235 Matt

takes

cid courseid

00112233 312

00112233 395

00112235 312

course

courseid coursename

312 Advanced DBs

395 Machine Learning

Query Processing (2/2)

query
parser and

translator

relational algebra

expression

optimizer

Advanced Databases Query processing and optimization 4

optimizer

evaluation plan
evaluation

engine
output

data data
data

statistics

Relational Algebra (1/2)

• Query language

• Operations:

– select: σ

– project: π

– union: ∪

– difference: -

Advanced Databases Query processing and optimization 5

– difference: -

– product: x

– join:

Relational Algebra (2/2)

• SELECT * FROM student WHERE name=Paul

– σname=Paul(student)

• πname(σcid<00112235(student))

• πname(σcoursename=Advanced DBs((student cid takes) courseid course))

Advanced Databases Query processing and optimization 6

student

cid name

00112233 Paul

00112238 Rob

00112235 Matt

takes

cid courseid

00112233 312

00112233 395

00112235 312

course

courseid coursename

312 Advanced DBs

395 Machine Learning

Why Optimize?

• Many alternative options to evaluate a query

– πname(σcoursename=Advanced DBs((student cid takes) courseid course))

– πname((student cid takes) courseid σcoursename=Advanced DBs(course)))

• Several options to evaluate a single operation

– σname=Paul(student)

• scan file

Advanced Databases Query processing and optimization 7

• scan file

• use secondary index on student.name

• Multiple access paths

– access path: how can records be accessed

Evaluation plans

• Specify which access path to follow

• Specify which algorithm to use to evaluate operator

• Specify how operators interleave

• Optimization:

– estimate the cost of each plan (not all plans)

– select plan with lowest estimated cost σcoursename=Advanced DBs l

πname

Advanced Databases Query processing and optimization 8

– select plan with lowest estimated cost

σname=Paul ; use index i

student
σname=Paul

student

σcoursename=Advanced DBs l

student takes

cid; hash join

courseid; index-

nested loop

course

Estimating Cost

• What needs to be considered:

– Disk I/Os

• sequential

• random

– CPU time

– Network communication

Advanced Databases Query processing and optimization 9

– Network communication

• What are we going to consider:

– Disk I/Os

• page reads/writes

– Ignoring cost of writing final output

Operations and Costs

Operations and Costs (1/2)

• Operations: σ, π, ∪, ∩, -, x,

• Costs:

– NR: number of records in R

– LR: size of record in R

– FR: blocking factor

• number of records in page

Advanced Databases Query processing and optimization 11

• number of records in page

– BR: number of pages to store relation R

– V(A,R): number of distinct values of attribute A in R

– SC(A,R): selection cardinality of A in R

• A key: S(A,R)=1

• A nonkey: S(A,R)= NR / V(A,R)

– HTi: number of levels in index I

– rounding up fractions and logarithms

Operations and Costs (2/2)

• relation takes

– 700 tuples

– student cid 8 bytes

– course id 4 bytes

– 9 courses

– 100 students

Advanced Databases Query processing and optimization 12

– 100 students

– page size 512 bytes

– output size (in pages) of query: which students take the Advanced

DBs course?

• Ntakes = 700

• V(courseid, takes) = 9

• SC(courseid,takes) = ceil(Ntakes/V(courseid, takes)) = ceil(700/9) = 78

• f = floor(512/8) = 64

• B = ceil(78/64) = 2 pages

Selection σ (1/2)

• Linear search

– read all pages, find records that match (assuming equality search)

– average cost:

• nonkey BR, key 0.5*BR

• Binary search

– on ordered field

Advanced Databases Query processing and optimization 13

– on ordered field

– average cost:

• m additional pages to be read

• m = ceil(SC(A,R)/FR) - 1

• Primary/Clustered Index

– average cost:

• single record HTi + 1

• multiple records HTi + ceil(SC(A,R)/FR)

log2 BR + m

Selection σ (2/2)

• Secondary Index

– average cost:

• key field HTi + 1

• nonkey field

– worst case HTi + SC(A,R)

– linear search more desirable if many matching records

Advanced Databases Query processing and optimization 14

Complex selection σexpr

• conjunctive selections:

– perform simple selection using θi with the lowest evaluation cost

• e.g. using an index corresponding to θi

• apply remaining conditions θ on the resulting records

•

• cost: the cost of the simple selection on selected θ

– multiple indices

σθ1∧θ 2 ...∧θ n

σ
cid>00112233∧courseid= 312(takes)

Advanced Databases Query processing and optimization 15

– multiple indices

• select indices that correspond to θis

• scan indices and return RIDs

• answer: intersection of RIDs

• cost: the sum of costs + record retrieval

• disjunctive selections:

– multiple indices

• union of RIDs

– linear search

σθ1∨θ 2 ...∨θ n

Projection and set operations

• SELECT DISTINCT cid FROM takes

– π requires duplicate elimination

– sorting

• set operations require duplicate elimination

– R ∩ S

– R ∪ S

Advanced Databases Query processing and optimization 16

– R ∪ S

– sorting

Sorting

• efficient evaluation for many operations

• required by query:

– SELECT cid,name FROM student ORDER BY name

• implementations

– internal sorting (if records fit in memory)

– external sorting

Advanced Databases Query processing and optimization 17

– external sorting

External Sort-Merge Algorithm (1/3)

• Sort stage: create sorted runs

i=0;

repeat

read M pages of relation R into memory

sort the M pages

Advanced Databases Query processing and optimization 18

sort the M pages

write them into file Ri

increment i

until no more pages

N = i // number of runs

External Sort-Merge Algorithm (2/3)

• Merge stage: merge sorted runs

//assuming N < M

allocate a page for each run file Ri // N pages allocated

read a page Pi of each Ri

repeat

Advanced Databases Query processing and optimization 19

repeat

choose first record (in sort order) among N pages, say from page Pj

write record to output and delete from page Pj

if page is empty read next page Pj’ from Rj

until all pages are empty

External Sort-Merge Algorithm (3/3)

• Merge stage: merge sorted runs

• What if N > M ?

– perform multiple passes

– each pass merges M-1 runs until relation is processed

– in next pass number of runs is reduced

– final pass generated sorted output

Advanced Databases Query processing and optimization 20

– final pass generated sorted output

Sort-Merge Example

d 95

a 12

x 44

s 95

f 12 d 95

a 12

d 95

x 44

R1

f 12

o 73
R

a 12

f 12

a 12

d 95

d 95

a 12

d 95

s 95

f 12

o 73

runpass

a 12

b 38

f 12

d 95

e 87

Advanced Databases Query processing and optimization 21

o 73

t 45

n 67

e 87

z 11

v 22

b 38

file memory

t 45

n 67

e 87

z 11

v 22

b 38

d 95

a 12

x 44

o 73

s 95
R2

e 87

n 67

t 45
R3

b 38

v 22

z 11

R4

x 44 pass

v 22

t 45

s 95

z 11

x 44

o 73

n 67

f 12

Sort-Merge cost

• BR the number of pages of R

• Sort stage: 2 * BR

– read/write relation

• Merge stage:

– initially runs to be merged

– each pass M-1 runs sorted

B
R

M



 


 

Advanced Databases Query processing and optimization 22

– each pass M-1 runs sorted

– thus, total number of passes:

– at each pass 2 * BR pages are read

• read/write relation

• apart from final write

• Total cost:

– 2 * BR + 2 * BR * - BR

log
M −1

B
R

M





















log
M −1

B
R

M





















Projection

• πΑ1,Α2… (R)

• remove unwanted attributes

– scan and drop attributes

• remove duplicate records

– sort resulting records using all attributes as sort order

– scan sorted result, eliminate duplicates (adjucent)

Advanced Databases Query processing and optimization 23

– scan sorted result, eliminate duplicates (adjucent)

• cost

– initial scan + sorting + final scan

Join

• πname(σcoursename=Advanced DBs((student cid takes) courseid course))

• implementations

– nested loop join

– block-nested loop join

– indexed nested loop join

– sort-merge join

Advanced Databases Query processing and optimization 24

– sort-merge join

– hash join

Nested loop join (1/2)

• R S

for each tuple tR of R

for each tS of S

if (tR tS match) output tR.tS

end

Advanced Databases Query processing and optimization 25

end

end

• Works for any join condition

• S inner relation

• R outer relation

Nested loop join (2/2)

• Costs:

– best case when smaller relation fits in memory

• use it as inner relation

• BR+BS

– worst case when memory holds one page of each relation

• S scanned for each tuple in R

Advanced Databases Query processing and optimization 26

• NR * Bs + BR

Block nested loop join (1/2)

for each page XR of R

foreach page XS of S

for each tuple tR in XR

for each tS in XS

if (t t match) output t .t

Advanced Databases Query processing and optimization 27

if (tR tS match) output tR.tS

end

end

end

end

Block nested loop join (2/2)

• Costs:

– best case when smaller relation fits in memory

• use it as inner relation

• BR+BS

– worst case when memory holds one page of each relation

• S scanned for each page in R

Advanced Databases Query processing and optimization 28

• BR * Bs + BR

Indexed nested loop join

• R S

• Index on inner relation (S)

• for each tuple in outer relation (R) probe index of inner relation

• Costs:

– BR + NR * c

• c the cost of index-based selection of inner relation

Advanced Databases Query processing and optimization 29

• c the cost of index-based selection of inner relation

– relation with fewer records as outer relation

Sort-merge join

• R S

• Relations sorted on the join attribute

• Merge sorted relations

– pointers to first record in each relation

– read in a group of records of S with the same values in the join

attribute

Advanced Databases Query processing and optimization 30

attribute

– read records of R and process

• Relations in sorted order to be read once

• Cost:

– cost of sorting + BS + BR

d D

e E

x X

v V

e 67

e 87

n 11

v 22

z 38

Hash join

• R S

• use h1 on joining attribute to map records to partitions that fit in memory

– records of R are partitioned into R0… Rn-1

– records of S are partitioned into S0… Sn-1

• join records in corresponding partitions

– using a hash-based indexed block nested loop join

• Cost: 2*(BR+BS) + (BR+BS)

Advanced Databases Query processing and optimization 31

• Cost: 2*(BR+BS) + (BR+BS)

R

R0

R1

Rn-1

.

.

.

S

S0

S1

Sn-1

.

.

.

Exercise: joins

• R S

• NR=215

• BR = 100

• NS=26

• BS = 30

• B+ index on S

Advanced Databases Query processing and optimization 32

• B+ index on S

– order 4

– full nodes

• nested loop join: best case - worst case

• block nested loop join: best case - worst case

• indexed nested loop join

Evaluation

• evaluate multiple operations in a plan

• materialization

• pipelining

σcoursename=Advanced DBs

πname

Advanced Databases Query processing and optimization 33

σcoursename=Advanced DBs

student takes

cid; hash join

courseid; index-

nested loop

course

Materialization

• create and read temporary relations

• create implies writing to disk

– more page writes

σcoursename=Advanced DBs

πname

Advanced Databases Query processing and optimization 34

σcoursename=Advanced DBs

student takes

cid; hash join

courseid; index-

nested loop

course

Pipelining (1/2)

• creating a pipeline of operations

• reduces number of read-write operations

• implementations

– demand-driven - data pull

– producer-driven - data push

σcoursename=Advanced DBs

πname

Advanced Databases Query processing and optimization 35

σcoursename=Advanced DBs

student takes

cid; hash join

ccourseid; index-

nested loop

course

Pipelining (2/2)

• can pipelining always be used?

• any algorithm?

• cost of R S

– materialization and hash join: BR + 3(BR+BS)

– pipelining and indexed nested loop join: NR * HTi

Advanced Databases Query processing and optimization 36

σcoursename=Advanced DBs

student takes

cid

courseid

course

pipelined materialized

R S

Query Optimization

Choosing evaluation plans

• cost based optimization

• enumeration of plans

– R S T, 12 possible orders

• cost estimation of each plan

• overall cost

– cannot optimize operation independently

Advanced Databases Query processing and optimization 38

– cannot optimize operation independently

Cost estimation

• operation (σ, π, …)

• implementation

• size of inputs

• size of outputs

• sorting
σcoursename=Advanced DBs

πname

Advanced Databases Query processing and optimization 39

σcoursename=Advanced DBs

student takes

cid; hash join

courseid; index-

nested loop

course

Size Estimation (1/2)

•

– SC(A,R)

•

–

•

– multiplying probabilities

σ
A= v(R)

σ
A≤v(R)

N
R
*

v −min(A,R)

max(A,R) −min(A,R)
σθ1∧θ 2∧...∧θ n

(R)

Advanced Databases Query processing and optimization 40

– multiplying probabilities

–

•

– probability that a record satisfy none of θ:

–

N
R
*[(s1 NR) *(s2 NR)*...(sn NR)]

σθ1∨θ 2v...∨θ n
(R)

[(1− s1 NR)*(1− s2 NR) *...* (1− s
n
N
R
)]

N
R
*(1− [(1− s1 NR) *(1− s2 NR) *...* (1− s

n
N
R
)])

Size Estimation (2/2)

• R x S

– NR * NS

• R S

– R ∩ S = ∅: NR* NS

– R ∩ S key for R: maximum output size is Ns

– R ∩ S foreign key for R: NS

Advanced Databases Query processing and optimization 41

– R ∩ S foreign key for R: NS

– R ∩ S = {A}, neither key of R nor S

• NR*NS / V(A,S)

• NS*NR / V(A,R)

Expression Equivalence

• conjunctive selection decomposition

–

• commutativity of selection

–

• combining selection with join and product

– σ (R x S) = R S

σθ1∧θ 2
(R) = σθ1

(σθ 2
(R))

σθ1
(σθ 2

(R)) = σθ 2
(σθ1

(R))

Advanced Databases Query processing and optimization 42

– σθ1(R x S) = R θ1 S

• commutativity of joins

– R θ1 S = S θ1 R

• distribution of selection over join

– σθ1^θ2(R S) = σθ1(R) σθ2 (S)

• distribution of projection over join

– πA1,A2(R S) = πA1(R) πA2 (S)

• associativity of joins: R (S T) = (R S) T

Cost Optimizer (1/2)

• transforms expressions

– equivalent expressions

– heuristics, rules of thumb

• perform selections early

• perform projections early

• replace products followed by selection σ (R x S) with joins R S

Advanced Databases Query processing and optimization 43

• start with joins, selections with smallest result

– create left-deep join trees

Cost Optimizer (2/2)

πnameσcoursename=Advanced DBs

πname

Advanced Databases Query processing and optimization 44

σcoursenam =

Advanced DBs

student takes

cid; hash join

ccourseid; index-

nested loop

course

σcoursename=Advanced DBs

student takes

cid; hash join

ccourseid; index-

nested loop

course

Cost Evaluation Exercise

• πname(σcoursename=Advanced DBs((student cid takes) courseid course))

• R = student cid takes

• S = course

• NS = 10 records

• assume that on average there are 50 students taking each

course

Advanced Databases Query processing and optimization 45

course

• blocking factor: 2 records/page

• what is the cost of σcoursename=Advanced DBs (R courseid S)

• what is the cost of R σcoursename=Advanced DBsS

• assume relations can fit in memory

Summary

• Estimating the cost of a single operation

• Estimating the cost of a query plan

• Optimization

– choose the most efficient plan

Advanced Databases Query processing and optimization 46

