
Copyright © 2004, Oracle. All rights reserved.

Creating Triggers

10-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do

the following:

• Describe the different types of triggers

• Describe database triggers and their uses

• Create database triggers

• Describe database trigger-firing rules

• Remove database triggers

10-3 Copyright © 2004, Oracle. All rights reserved.

Types of Triggers

A trigger:

• Is a PL/SQL block or a PL/SQL procedure

associated with a table, view, schema, or database

• Executes implicitly whenever a particular event

takes place

• Can be either of the following:

– Application trigger: Fires whenever an event occurs

with a particular application

– Database trigger: Fires whenever a data event (such

as DML) or system event (such as logon or

shutdown) occurs on a schema or database

10-4 Copyright © 2004, Oracle. All rights reserved.

Guidelines for Designing Triggers

• You can design triggers to:

– Perform related actions

– Centralize global operations

• You must not design triggers:

– Where functionality is already built into the Oracle

server

– That duplicate other triggers

• You can create stored procedures and invoke

them in a trigger, if the PL/SQL code is very

lengthy.

• The excessive use of triggers can result in

complex interdependencies, which may be difficult

to maintain in large applications.

10-5 Copyright © 2004, Oracle. All rights reserved.

Creating DML Triggers

Create DML statement or row type triggers by using:

• A statement trigger fires once for a DML

statement.

• A row trigger fires once for each row affected.

Note: Trigger names must be unique with respect to

other triggers in the same schema.

CREATE [OR REPLACE] TRIGGER trigger_name
timing

event1 [OR event2 OR event3]
ON object_name

[[REFERENCING OLD AS old | NEW AS new]
FOR EACH ROW
[WHEN (condition)]]

trigger_body

10-6 Copyright © 2004, Oracle. All rights reserved.

Types of DML Triggers

The trigger type determines if the body executes for

each row or only once for the triggering statement.

• A statement trigger:

– Executes once for the triggering event

– Is the default type of trigger

– Fires once even if no rows are affected at all

• A row trigger:

– Executes once for each row affected by the

triggering event

– Is not executed if the triggering event does not

affect any rows

– Is indicated by specifying the FOR EACH ROW clause

10-7 Copyright © 2004, Oracle. All rights reserved.

Trigger Timing

When should the trigger fire?

• BEFORE: Execute the trigger body before the

triggering DML event on a table.

• AFTER: Execute the trigger body after the

triggering DML event on a table.

• INSTEAD OF: Execute the trigger body instead of

the triggering statement. This is used for views

that are not otherwise modifiable.

Note: If multiple triggers are defined for the same

object, then the order of firing triggers is arbitrary.

10-8 Copyright © 2004, Oracle. All rights reserved.

6

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a

table when a single row is manipulated:

BEFORE statement

trigger

BEFORE row trigger

AFTER row trigger
AFTER statement trigger

DML statement

INSERT INTO departments
(department_id,department_name, location_id)

VALUES (400, 'CONSULTING', 2400);

Triggering action

10-9 Copyright © 2004, Oracle. All rights reserved.

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 30;

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a

table when many rows are manipulated:

BEFORE statement trigger

BEFORE row trigger

AFTER row trigger...

BEFORE row trigger

AFTER row trigger...
AFTER statement trigger

10-10 Copyright © 2004, Oracle. All rights reserved.

Trigger Event Types and Body

A trigger event:

• Determines which DML statement causes the

trigger to execute

• Types are:

– INSERT

– UPDATE [OF column]

– DELETE

A trigger body:

• Determines what action is performed

• Is a PL/SQL block or a CALL to a procedure

10-11 Copyright © 2004, Oracle. All rights reserved.

Application

INSERT INTO EMPLOYEES...;
EMPLOYEES table

SECURE_EMP trigger

Creating a DML Statement Trigger

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR(SYSDATE,'HH24:MI')
NOT BETWEEN '08:00' AND '18:00') THEN

RAISE_APPLICATION_ERROR(-20500, 'You may insert'
||' into EMPLOYEES table only during '
||' business hours.');

END IF;
END;

10-12 Copyright © 2004, Oracle. All rights reserved.

Testing SECURE_EMP

INSERT INTO employees (employee_id, last_name,
first_name, email, hire_date,
job_id, salary, department_id)

VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,
'IT_PROG', 4500, 60);

10-13 Copyright © 2004, Oracle. All rights reserved.

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp BEFORE
INSERT OR UPDATE OR DELETE ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR
(TO_CHAR(SYSDATE,'HH24')

NOT BETWEEN '08' AND '18') THEN
IF DELETING THEN RAISE_APPLICATION_ERROR(
-20502,'You may delete from EMPLOYEES table'||

'only during business hours.');
ELSIF INSERTING THEN RAISE_APPLICATION_ERROR(
-20500,'You may insert into EMPLOYEES table'||

'only during business hours.');
ELSIF UPDATING('SALARY') THEN
RAISE_APPLICATION_ERROR(-20503, 'You may '||
'update SALARY only during business hours.');

ELSE RAISE_APPLICATION_ERROR(-20504,'You may'||
' update EMPLOYEES table only during'||
' normal hours.');

END IF;
END IF;

END;

10-14 Copyright © 2004, Oracle. All rights reserved.

Creating a DML Row Trigger

CREATE OR REPLACE TRIGGER restrict_salary
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
BEGIN
IF NOT (:NEW.job_id IN ('AD_PRES', 'AD_VP'))

AND :NEW.salary > 15000 THEN
RAISE_APPLICATION_ERROR (-20202,
'Employee cannot earn more than $15,000.');

END IF;
END;
/

10-15 Copyright © 2004, Oracle. All rights reserved.

Using OLD and NEW Qualifiers

CREATE OR REPLACE TRIGGER audit_emp_values

AFTER DELETE OR INSERT OR UPDATE ON employees

FOR EACH ROW

BEGIN

INSERT INTO audit_emp(user_name, time_stamp, id,

old_last_name, new_last_name, old_title,

new_title, old_salary, new_salary)

VALUES (USER, SYSDATE, :OLD.employee_id,

:OLD.last_name, :NEW.last_name, :OLD.job_id,

:NEW.job_id, :OLD.salary, :NEW.salary);

END;

/

10-16 Copyright © 2004, Oracle. All rights reserved.

Using OLD and NEW Qualifiers:

Example Using audit_emp

INSERT INTO employees
(employee_id, last_name, job_id, salary, ...)

VALUES (999, 'Temp emp', 'SA_REP', 6000,...);

UPDATE employees
SET salary = 7000, last_name = 'Smith'
WHERE employee_id = 999;

SELECT user_name, timestamp, ...
FROM audit_emp;

10-17 Copyright © 2004, Oracle. All rights reserved.

Restricting a Row Trigger: Example

CREATE OR REPLACE TRIGGER derive_commission_pct
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.job_id = 'SA_REP')
BEGIN
IF INSERTING THEN
:NEW.commission_pct := 0;

ELSIF :OLD.commission_pct IS NULL THEN
:NEW.commission_pct := 0;

ELSE
:NEW.commission_pct := :OLD.commission_pct+0.05;

END IF;
END;
/

10-18 Copyright © 2004, Oracle. All rights reserved.

Summary of Trigger Execution Model

1. Execute all BEFORE STATEMENT triggers.

2. Loop for each row affected:

a. Execute all BEFORE ROW triggers.

b. Execute the DML statement and perform integrity

constraint checking.

c. Execute all AFTER ROW triggers.

3. Execute all AFTER STATEMENT triggers.

Note: Integrity checking can be deferred until the
COMMIT operation is performed.

10-19 Copyright © 2004, Oracle. All rights reserved.

Implementing an Integrity Constraint

with a Trigger

CREATE OR REPLACE TRIGGER employee_dept_fk_trg
AFTER UPDATE OF department_id
ON employees FOR EACH ROW
BEGIN
INSERT INTO departments VALUES(:new.department_id,

'Dept '||:new.department_id, NULL, NULL);
EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN
NULL; -- mask exception if department exists

END;
/

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Successful after trigger is fired

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Integrity constraint violation error

10-20 Copyright © 2004, Oracle. All rights reserved.

INSTEAD OF Triggers

Application

INSERT INTO my_view
. . .;

MY_VIEW

INSTEAD OF trigger

INSERT

TABLE1

UPDATE

TABLE2

10-21 Copyright © 2004, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Perform the INSERT into EMP_DETAILS that is based

on EMPLOYEES and DEPARTMENTS tables:

INSTEAD OF INSERT
into EMP_DETAILS

INSERT into NEW_EMPS UPDATE NEW_DEPTS

6
6

1

2 3

INSERT INTO emp_details
VALUES (9001,'ABBOTT',3000, 10, 'Administration');

10-22 Copyright © 2004, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Use INSTEAD OF to perform DML on complex views:

CREATE TABLE new_emps AS
SELECT employee_id,last_name,salary,department_id
FROM employees;

CREATE TABLE new_depts AS
SELECT d.department_id,d.department_name,

sum(e.salary) dept_sal
FROM employees e, departments d
WHERE e.department_id = d.department_id;

CREATE VIEW emp_details AS
SELECT e.employee_id, e.last_name, e.salary,

e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_id,d.department_name;

10-23 Copyright © 2004, Oracle. All rights reserved.

Comparison of Database Triggers and

Stored Procedures

Triggers

Defined with CREATE TRIGGER

Data dictionary contains source
code in USER_TRIGGERS.

Implicitly invoked by DML

COMMIT, SAVEPOINT, and

ROLLBACK are not allowed.

Procedures

Defined with CREATE PROCEDURE

Data dictionary contains source
code in USER_SOURCE.

Explicitly invoked

COMMIT, SAVEPOINT, and

ROLLBACK are allowed.

10-24 Copyright © 2004, Oracle. All rights reserved.

Comparison of Database Triggers

and Oracle Forms Triggers

INSERT INTO EMPLOYEES
. . .;

EMPLOYEES table CHECK_SAL trigger

BEFORE
INSERT

row6

10-25 Copyright © 2004, Oracle. All rights reserved.

Managing Triggers

• Disable or reenable a database trigger:

• Disable or reenable all triggers for a table:

• Recompile a trigger for a table:

ALTER TRIGGER trigger_name DISABLE | ENABLE

ALTER TABLE table_name DISABLE | ENABLE
ALL TRIGGERS

ALTER TRIGGER trigger_name COMPILE

10-26 Copyright © 2004, Oracle. All rights reserved.

Removing Triggers

To remove a trigger from the database, use the DROP
TRIGGER statement:

Example:

Note: All triggers on a table are removed when the

table is removed.

DROP TRIGGER secure_emp;

DROP TRIGGER trigger_name;

10-27 Copyright © 2004, Oracle. All rights reserved.

Testing Triggers

• Test each triggering data operation, as well as

nontriggering data operations.

• Test each case of the WHEN clause.

• Cause the trigger to fire directly from a basic data

operation, as well as indirectly from a procedure.

• Test the effect of the trigger on other triggers.

• Test the effect of other triggers on the trigger.

10-28 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Create database triggers that are invoked by DML

operations

• Create statement and row trigger types

• Use database trigger-firing rules

• Enable, disable, and manage database triggers

• Develop a strategy for testing triggers

• Remove database triggers

10-29 Copyright © 2004, Oracle. All rights reserved.

Practice 10: Overview

This practice covers the following topics:

• Creating row triggers

• Creating a statement trigger

• Calling procedures from a trigger

