
Hierarchical Retrieval

Objectives

• After completing this lesson, you should be

able to do the following:

– Interpret the concept of a hierarchical query

– Create a tree-structured report

– Format hierarchical data

– Exclude branches from the tree structure

Sample Data from the EMPLOYEES Table

…

Using hierarchical queries, you can retrieve data

based on a natural hierarchical relationship between

rows in a table.

A relational database does not store records in a

hierarchical way.

However, where a hierarchical relationship exists

between the rows of a single table, a process called

tree walking enables the hierarchy to be

constructed.

A hierarchical query is possible when a relationship

exists between rows in a table

Natural Tree Structure

Natural Tree Structure

De Haan

King

Hunold

EMPLOYEE_ID = 100 (Parent)

MANAGER_ID = 100 (Child)

Whalen

Kochhar

Higgins

Mourgos Zlotkey

Rajs Davies Matos

Gietz Ernst Lorentz

Hartstein

Fay

Abel Taylor Grant

Vargas

The EMPLOYEES table has a tree structure representing the

management reporting line. The hierarchy can be created by

looking at the relationship between equivalent values in the

EMPLOYEE_ID and MANAGER_ID columns. This

relationship can be exploited by joining the table to itself.

The MANAGER_ID column contains the employee number

of the employee’s manager.

The parent-child relationship of a tree structure enables you

to control:

The direction in which the hierarchy is walked.

The starting point inside the hierarchy.

Natural Tree Structure

Hierarchical Queries

WHERE condition:

expr comparison_operator expr

SELECT [LEVEL], column, expr...
FROM table
[WHERE condition(s)]
[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)] ;

SELECT Is the standard SELECT clause.

LEVEL For each row returned by a hierarchical query, the LEVEL
pseudocolumn returns 1 for a root row, 2 for a child of a root, and so on.

FROM table Specifies the table, view, or snapshot containing the columns.

You can select from only one table.

WHERE Restricts the rows returned by the query without affecting other

rows of the hierarchy.

START WITH Specifies the root rows of the hierarchy (where to start).

This clause is required for a true hierarchical query.

CONNECT BY Specifies the columns in which the relationship between

parent and child rows exist.

PRIOR This clause is required for a hierarchical query.

The SELECT statement cannot contain a join or query from a view that

contains a join.

Keywords and Clauses

Walking the Tree

– Specifies the condition that must be met

– Accepts any valid condition

• Using the EMPLOYEES table, start with the
employee whose last name is Kochhar.

Starting Point

...START WITH last_name = 'Kochhar'

START WITH column1 = value

The row or rows to be used as the root of the tree are
determined by the START WITH clause.

A START WITH condition can contain a subquery.
START WITH employee_id =
(SELECT employee_id FROM employees
WHERE last_name = 'Kochhar')

If the START WITH clause is omitted, the tree walk is

started with all of the rows in the table as root rows.

Starting Point(s)

Walking the Tree

Walk from the top down, using the EMPLOYEES table.

Direction

Top down Column1 = Parent Key

Column2 = Child Key

Bottom up Column1 = Child Key

Column2 = Parent Key

CONNECT BY PRIOR column1 = column2

... CONNECT BY PRIOR employee_id = manager_id

The PRIOR operator refers to the parent row. To find the
child rows of a parent row, the Oracle server evaluates
the PRIOR expression for the parent row and the other
expressions for each row in the table. Rows for which
the condition is true are the child rows of the parent.

The Oracle server always selects child rows by
evaluating the CONNECT BY condition with respect to a
current parent row.

The CONNECT BY clause cannot contain a subquery.

Parent-Child relationship

Walking the Tree: From the Bottom Up

SELECT employee_id, last_name, job_id, manager_id
FROM employees
START WITH employee_id = 101
CONNECT BY PRIOR manager_id = employee_id ;

Walking the Tree: From the Top Down

SELECT last_name||' reports to '||
PRIOR last_name "Walk Top Down"
FROM employees
START WITH last_name = 'King'
CONNECT BY PRIOR employee_id = manager_id ;

…

Ranking Rows with the LEVEL
Pseudocolumn

Level 1

root/parent

Level 3

parent/child /leaf

Level 4

leaf

De Haan

King

HunoldWhalen

Kochhar

Higgins

Mourgos Zlotkey

Rajs Davies Matos

Gietz Ernst Lorentz

Hartstein

Fay

Abel Taylor Grant

Vargas

Formatting Hierarchical Reports Using

LEVEL and LPAD

• Create a report displaying company management
levels, beginning with the highest level and indenting
each of the following levels.

COLUMN org_chart FORMAT A12
SELECT LPAD(last_name, LENGTH(last_name)+(LEVEL*2)-2,'_')

AS org_chart
FROM employees
START WITH last_name='King'
CONNECT BY PRIOR employee_id=manager_id

Pruning Branches

Use the WHERE clause

to eliminate a node.

Use the CONNECT BY clause

to eliminate a branch.

WHERE last_name!='Higgins' CONNECT BY PRIOR
employee_id = manager_id
AND last_name != 'Higgins'

Kochhar

Higgins

Gietz

Whalen

Kochhar

HigginsWhalen

Gietz

