
Copyright © 2004, Oracle. All rights reserved.

Alkérdések II.

6-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do

the following:

• Write a multiple-column subquery

• Use scalar subqueries in SQL

• Solve problems with correlated subqueries

• Update and delete rows using correlated

subqueries

• Use the EXISTS and NOT EXISTS operators

• Use the WITH clause

6-3 Copyright © 2004, Oracle. All rights reserved.

Multiple-Column Subqueries

Main query

WHERE (MANAGER_ID, DEPARTMENT_ID) IN

Subquery

100 90

102 60

124 50

Each row of the main query is compared to values
from a multiple-row and multiple-column subquery.

6-4 Copyright © 2004, Oracle. All rights reserved.

Column Comparisons

Column comparisons in a multiple-column subquery

can be:

• Pairwise comparisons

• Nonpairwise comparisons

6-5 Copyright © 2004, Oracle. All rights reserved.

Pairwise Comparison Subquery

Display the details of the employees who are managed

by the same manager and work in the same
department as the employees with EMPLOYEE_ID 199

or 174.

SELECT employee_id, manager_id, department_id
FROM employees
WHERE (manager_id, department_id) IN

(SELECT manager_id, department_id
FROM employees
WHERE employee_id IN (199,174))

AND employee_id NOT IN (199,174);

6-6 Copyright © 2004, Oracle. All rights reserved.

Nonpairwise Comparison Subquery

Display the details of the employees who are managed

by the same manager as the employees with
EMPLOYEE_ID 174 or 199 and work in the same

department as the employees with EMPLOYEE_ID 174

or 199.

SELECT employee_id, manager_id, department_id
FROM employees
WHERE manager_id IN

(SELECT manager_id
FROM employees
WHERE employee_id IN (174,199))

AND department_id IN
(SELECT department_id
FROM employees
WHERE employee_id IN (174,199))

AND employee_id NOT IN(174,199);

6-7 Copyright © 2004, Oracle. All rights reserved.

Scalar Subquery Expressions

• A scalar subquery expression is a subquery that

returns exactly one column value from one row.

• Scalar subqueries can be used in:

– Condition and expression part of DECODE and CASE

– All clauses of SELECT except GROUP BY

6-8 Copyright © 2004, Oracle. All rights reserved.

Scalar Subqueries: Examples

• Scalar subqueries in CASE expressions

SELECT employee_id, last_name,

(CASE

WHEN department_id =

(SELECT department_id

FROM departments

WHERE location_id = 1800)

THEN 'Canada' ELSE 'USA' END) location

FROM employees;

SELECT employee_id, last_name

FROM employees e

ORDER BY (SELECT department_name

FROM departments d

WHERE e.department_id = d.department_id);

20

• Scalar subqueries in ORDER BY clause

6-9 Copyright © 2004, Oracle. All rights reserved.

Correlated Subqueries

Correlated subqueries are used for row-by-row

processing. Each subquery is executed once for every

row of the outer query.

GET

candidate row from outer query

EXECUTE

inner query using candidate row value

USE

values from inner query to qualify or

disqualify candidate row

6-10 Copyright © 2004, Oracle. All rights reserved.

Correlated Subqueries

The subquery references a column from a table in the

parent query.

SELECT column1, column2, ...
FROM table1
WHERE column1 operator

(SELECT column1, column2
FROM table2
WHERE expr1 =

.expr2);

outer

outer

6-11 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, department_id
FROM employees outer
WHERE salary >

(SELECT AVG(salary)
FROM employees
WHERE department_id =
outer.department_id);

Using Correlated Subqueries

Find all employees who earn more than the average

salary in their department.

Each time a row from

the outer query

is processed, the

inner query is

evaluated.

6-12 Copyright © 2004, Oracle. All rights reserved.

Using Correlated Subqueries

Display details of those employees who have changed
jobs at least twice.

SELECT e.employee_id, last_name,e.job_id

FROM employees e

WHERE 2 <= (SELECT COUNT(*)

FROM job_history

WHERE employee_id = e.employee_id);

6-13 Copyright © 2004, Oracle. All rights reserved.

Using the EXISTS Operator

• The EXISTS operator tests for existence of rows in

the results set of the subquery.

• If a subquery row value is found:

– The search does not continue in the inner query

– The condition is flagged TRUE

• If a subquery row value is not found:

– The condition is flagged FALSE

– The search continues in the inner query

6-14 Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, department_id
FROM employees outer
WHERE EXISTS (SELECT 'X'

FROM employees
WHERE manager_id =

outer.employee_id);

Find Employees Who Have at Least One

Person Reporting to Them

6-15 Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, department_name
FROM departments d
WHERE NOT EXISTS (SELECT 'X'

FROM employees
WHERE department_id = d.department_id);

Find All Departments That Do Not Have

Any Employees

…

6-16 Copyright © 2004, Oracle. All rights reserved.

The WITH Clause

• Using the WITH clause, you can use the same

query block in a SELECT statement when it occurs

more than once within a complex query.

• The WITH clause retrieves the results of a query

block and stores it in the user’s temporary

tablespace.

• The WITH clause improves performance.

6-17 Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

Using the WITH clause, write a query to display the

department name and total salaries for those

departments whose total salary is greater than the

average salary across departments.

6-18 Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

WITH
dept_costs AS (

SELECT d.department_name, SUM(e.salary) AS dept_total
FROM employees e JOIN departments d
ON e.department_id = d.department_id
GROUP BY d.department_name),

avg_cost AS (
SELECT SUM(dept_total)/COUNT(*) AS dept_avg
FROM dept_costs)

SELECT *
FROM dept_costs
WHERE dept_total >

(SELECT dept_avg
FROM avg_cost)

ORDER BY department_name;

6-19 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:

• A multiple-column subquery returns more than

one column.

• Multiple-column comparisons can be pairwise or

nonpairwise.

• A multiple-column subquery can also be used in
the FROM clause of a SELECT statement.

6-20 Copyright © 2004, Oracle. All rights reserved.

Summary

• Correlated subqueries are useful whenever a

subquery must return a different result for each

candidate row.

• The EXISTS operator is a Boolean operator that

tests the presence of a value.

• Correlated subqueries can be used with SELECT,

UPDATE, and DELETE statements.

• You can use the WITH clause to use the same

query block in a SELECT statement when it occurs

more than once.

