
Copyright © 2004, Oracle. All rights reserved.

Oracle Database

SQL Basics

Kerepes Tamás, Webváltó Kft.
tamas.kerepes@webvalto.hu

2015. február 26.

Copyright © 2004, Oracle. All rights reserved.

SQL – a history in brief

• The relational database stores data in tables: rows and

columns. The idea was suggested by Codd in 1970. Four years

later, in 1974 the SQL language was proposed for managing

data stored in relational database management systems.

• This form of storing data needs a special language for:

– Retrieving data

– Manipulating data (inserting, deleting and updating)

– Defining and modifying table structures (creating tables,

dropping and modifying them). We need commands to define

other structures also: indexes, views, synonyms, and so on.

• SQL – Structured Query Language is used nowadays by the

vast majority of relational database management systems as

this language.

1-3 Copyright © 2004, Oracle. All rights reserved.

SQL Basics

• Operators

Relational: <,>,=,!=,<>

SQL: IN, LIKE, BETWEEN, IS NULL (NOT can be used)

• Functions

Numeric: ROUND,TRUNC, FLOOR,CEIL,SQRT,SIN,etc.

Character: SUBSTR, INSTR,REPLACE, UPPER, LOWER

Date: SYSDATE,SYSTIMESTAMP, ADD_MONTHS

Converson:TO_CHAR,TO_DATE, TO_NUMBER,TO_LOB

Aggregate: MIN, MAX, SUM, AVG, COUNT, LISTAGG,COV

Analytic: LAG, LEAD, WITH_BUCKET,NTILE,

Other: XML, REGEXP, CHR,ASCII, DECODE, DUMP

• Statements

DML: SELECT, INSERT, UPDATE,DELETE

DDL: CREATE, DROP, ALTER, RENAME, TRUNCATE

DCL: GRANT, REVOKE

1-4 Copyright © 2004, Oracle. All rights reserved.

• You must have:

– CREATE TABLE system privilege

– A storage area

• You specify:

– Table name

– Column name, column data type, and column size

CREATE TABLE Statement

CREATE TABLE [schema.]table

 (column datatype [DEFAULT expr][, ...]);

1-5 Copyright © 2004, Oracle. All rights reserved.

Creating Tables

• Create the table.

• Confirm table creation.

DESCRIBE dept

CREATE TABLE dept

 (deptno NUMBER(2),

 dname VARCHAR2(14),

 loc VARCHAR2(13),

 create_date DATE DEFAULT SYSDATE);

Table created.

1-6 Copyright © 2004, Oracle. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:

– Add new rows to a table

– Modify existing rows in a table

– Remove existing rows from a table

– Merge rows into a table from source tables

• A transaction consists of a collection of DML

statements that form a logical unit of work.

1-7 Copyright © 2004, Oracle. All rights reserved.

INSERT Statement Syntax

• Add new rows to a table by using the INSERT

statement:

• With this syntax, only one row can be inserted at a

time.

• Insert values into the table in the following order

of the columns:

INSERT INTO table [(column [, column...])]

VALUES (value [, value...]);

INSERT INTO departments(department_id,

 department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);

1 row created.

1-8 Copyright © 2004, Oracle. All rights reserved.

Copying Rows

from Another Table

• Write your INSERT statement with a subquery:

• Do not use the VALUES clause.

• Match the number of columns in the INSERT

clause with the number of columns in the

subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)

 SELECT employee_id, last_name, salary, commission_pct

 FROM employees

 WHERE job_id LIKE '%REP%';

4 rows created.

1-9 Copyright © 2004, Oracle. All rights reserved.

• Modify existing rows with the UPDATE statement:

• Update more than one row at a time (if required).

UPDATE table

SET column = value [, column = value, ...]

[WHERE condition];

UPDATE Statement Syntax

UPDATE employees

SET department_id = 70

WHERE employee_id = 113;

1 row updated.

UPDATE copy_emp

SET department_id = 110;

22 rows updated.

1-10 Copyright © 2004, Oracle. All rights reserved.

UPDATE employees

SET (job_id, salary) =

 (SELECT job_id, salary

 FROM employees

 WHERE employee_id = 205)

WHERE employee_id = 206;

1 row updated.

Updating Two Columns with a Subquery

Update employee 206’s job id and salary to match that

of employee 205.

1-11 Copyright © 2004, Oracle. All rights reserved.

DELETE Statement

You can remove existing rows from a table by using
the DELETE statement:

DELETE [FROM] table

[WHERE condition];

 DELETE FROM departments

 WHERE department_name = 'Finance';

1 row deleted.

DELETE FROM employees

WHERE department_id =

(SELECT department_id FROM departments

 WHERE department_name LIKE '%Public%');

1 row deleted.

1-12 Copyright © 2004, Oracle. All rights reserved.

TRUNCATE Statement

• Removes all rows from a table, leaving the table

empty and the table structure intact

• It is a data definition language (DDL) statement

rather than a DML statement; cannot be easily

undone

• Syntax:

• Example:

TRUNCATE TABLE table_name;

TRUNCATE TABLE copy_emp;

1-13 Copyright © 2004, Oracle. All rights reserved.

Selecting All and specific Columns

SELECT * FROM departments;

SELECT department_id, location_id

FROM departments;

1-14 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, 12*salary*commission_pct

FROM employees;

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value

evaluate to null. Use the NVL function!

… …

SELECT last_name, salary,commission_pct,

12*salary*(1+NVL(commission_pct,0))

FROM employees;

1-15 Copyright © 2004, Oracle. All rights reserved.

Limiting the Rows That Are Selected

SELECT employee_id, last_name, salary

FROM employees

ORDER BY salary DESC

FETCH first 5 ROWS ONLY ;

SELECT employee_id, last_name,

 job_id, department_id

FROM employees

WHERE department_id = 90 ;

SQL Row Limiting Clause in Oracle 12c

Restrict the rows that are returned by using

the WHERE clause:

1-16 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, department_id

FROM employees

WHERE last_name = 'Whalen' ;

Using Comparison operators

SELECT * FROM employees

WHERE hire_date >= '31-dec-98' ;

SELECT * FROM employees

WHERE hire_date >= DATE '1998-12-31' ;

SELECT last_name, salary

FROM employees

WHERE salary <= 3000 ;

SELECT last_name, salary

FROM employees

WHERE salary BETWEEN 2500 AND 3500;

1-17 Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, salary, manager_id

FROM employees

WHERE manager_id IN (100, 101, 201) ;

Using the IN, LIKE and IS NULL operator

SELECT last_name

FROM employees

WHERE last_name LIKE '_o%' ;

SELECT last_name, manager_id

FROM employees

WHERE manager_id IS NULL ;

1-18 Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, salary

FROM employees

WHERE salary >=10000

AND job_id LIKE '%MAN%' ;

Using logical operators

SELECT employee_id, last_name, job_id, salary

FROM employees

WHERE salary >= 10000

OR job_id LIKE '%MAN%' ;

SELECT last_name, job_id

FROM employees

WHERE job_id

 NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP');

1-19 Copyright © 2004, Oracle. All rights reserved.

Using the ORDER BY Clause

• Sort the retrieved rows with the ORDER BY clause:

– ASC: ascending order, default

– DESC: descending order

• The ORDER BY clause comes last in the SELECT

statement:

SELECT last_name, job_id,

 department_id, hire_date

FROM employees

ORDER BY hire_date ;

…

1-20 Copyright © 2004, Oracle. All rights reserved.

Two Types of SQL Functions

Single-row

functions

Multiple-row

functions

Return one result

per row

Return one result

per set of rows

Functions

1-21 Copyright © 2004, Oracle. All rights reserved.

Case-Manipulation Functions

These functions convert case for character strings:

Function Result

LOWER('SQL Course') sql course

UPPER('SQL Course') SQL COURSE

INITCAP('SQL Course') Sql Course

SELECT employee_id, last_name, department_id

FROM employees

WHERE last_name = 'higgins';

no rows selected

SELECT employee_id, last_name, department_id

FROM employees

WHERE LOWER(last_name) = 'higgins';

1-22 Copyright © 2004, Oracle. All rights reserved.

Character-Manipulation Functions

These functions manipulate character strings:

Function Result

CONCAT('Hello', 'World') HelloWorld

SUBSTR('HelloWorld',1,5) Hello

LENGTH('HelloWorld') 10

INSTR('HelloWorld', 'W') 6

LPAD(salary,10,'*') *****24000

RPAD(salary, 10, '*') 24000*****

REPLACE

('JACK and JUE','J','BL')

BLACK and BLUE

TRIM('H' FROM 'HelloWorld') elloWorld

1-23 Copyright © 2004, Oracle. All rights reserved.

Number Functions

Function Result

POWER(10,0.3010) 2

SQRT(121) 11

ROUND(45.926, 2) 45.93

TRUNC(45.926, 2) 45.92

CEIL, FLOOR

POWER(10,2) 100

MOD(1600, 300) 100

SIN,COS,TAN

LN,SINH,COSH

SELECT SIN(1.57),COS(0),TAN(3.14/4),

POWER(10,0.301),CEIL(1.1),FLOOR(1.9), LN(2.718282)

FROM dual;

1-24 Copyright © 2004, Oracle. All rights reserved.

Date Functions

Function Result

MONTHS_BETWEEN Number of months between two dates

ADD_MONTHS Add calendar months to date

NEXT_DAY Next day of the date specified

LAST_DAY Last day of the month

ROUND Round date

TRUNC Truncate date

Function Result

MONTHS_BETWEEN ('01-SEP-95','11-JAN-94') 19.6774194

ADD_MONTHS ('11-JAN-94',6) '11-JUL-94'

NEXT_DAY ('01-SEP-95','FRIDAY') '08-SEP-95'

LAST_DAY ('01-FEB-95') '28-FEB-95'

1-26 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name,

 TO_CHAR(hire_date, 'fmDD Month YYYY')

 AS HIREDATE

FROM employees;

Using the TO_CHAR Function with Dates

…

1-27 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, job_id, salary,

 CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

 WHEN 'ST_CLERK' THEN 1.15*salary

 WHEN 'SA_REP' THEN 1.20*salary

 ELSE salary END "REVISED_SALARY"

FROM employees;

Using the CASE Expression

Facilitates conditional inquiries by doing the work of

an IF-THEN-ELSE statement:

SELECT last_name,salary,

CASE WHEN salary<5000 THEN 'Low'

 WHEN salary<10000 THEN 'Medium'

 WHEN salary<20000 THEN 'Good'

 ELSE 'Excellent' END qualified_salary

FROM employees;

1-28 Copyright © 2004, Oracle. All rights reserved.

What Are Group Functions?

Group functions operate on sets of rows to give one

result per group.

EMPLOYEES

Maximum
salary in the
EMPLOYEES
table

…

1-29 Copyright © 2004, Oracle. All rights reserved.

SELECT AVG(salary), MAX(salary),

 MIN(salary), SUM(salary)

FROM employees

WHERE job_id LIKE '%REP%';

Using the AVG, SUM,MIN and MAX

Functions

You can use the AVG and SUM for numeric data.

SELECT MIN(hire_date), MAX(hire_date)

FROM employees;

1-30 Copyright © 2004, Oracle. All rights reserved.

Creating Groups of Data

EMPLOYEES

…

4400

9500

3500

6400

10033

Average

salary in the
EMPLOYEES

table for each

department

1-31 Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, AVG(salary)

FROM employees

GROUP BY department_id ;

Using the GROUP BY Clause

SELECT department_id dept_id,

 job_id, SUM(salary)

FROM employees

GROUP BY department_id, job_id ;

1-32 Copyright © 2004, Oracle. All rights reserved.

SELECT job_id, SUM(salary) PAYROLL

FROM employees

WHERE job_id NOT LIKE '%REP%'

GROUP BY job_id

HAVING SUM(salary) > 13000

ORDER BY SUM(salary);

Using the HAVING clause and inline view

SELECT T.qualified_salary, COUNT(*), SUM(SALARY)

FROM (SELECT last_name, salary,

 CASE WHEN salary<5000 THEN 'Low'

 WHEN salary<10000 THEN 'Medium'

 WHEN salary<20000 THEN 'Good'

 ELSE 'Excellent' END qualified_salary

 FROM employees) T

GROUP BY T.qualified_salary;

Copyright © 2004, Oracle. All rights reserved.

Displaying Data

from Multiple Tables

1-34 Copyright © 2004, Oracle. All rights reserved.

Joining Column Names

EMPLOYEES DEPARTMENTS

Foreign key Primary key

… …

1-35 Copyright © 2004, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name,

 e.department_id, d.department_id,

 d.location_id

FROM employees e JOIN departments d

ON e.department_id = d.department_id;

Retrieving Records with the ON Clause

…

1-36 Copyright © 2004, Oracle. All rights reserved.

Self-Joins Using the ON Clause

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

… …

SELECT worker.last_name emp, manager.last_name mgr

FROM employees worker JOIN employees manager

ON worker.manager_id = manager.employee_id;

1-37 Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.salary, j.grade_level

FROM employees e JOIN job_grades j

ON e.salary

 BETWEEN j.lowest_sal AND j.highest_sal;

Retrieving Records

with Non-Equijoins

1-38 Copyright © 2004, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name

FROM employees e LEFT OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

LEFT,RIGHT and FULL OUTER JOIN

SELECT e.last_name, e.department_id, d.department_name

FROM employees e RIGHT OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

SELECT e.last_name, d.department_id, d.department_name

FROM employees e FULL OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

1-39 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name

FROM employees

WHERE salary > (SELECT salary FROM employees

 WHERE last_name = 'Abel');

Using a subquery

11000

SELECT last_name, job_id, salary

FROM employees

WHERE salary = (SELECT MIN(salary)FROM employees);

1-40 Copyright © 2004, Oracle. All rights reserved.

Example: IN versus Join

SELECT last_name, department_id, job_id

FROM employees

WHERE department_id IN

 (SELECT department_id

 FROM departments

 WHERE location_id = 1700);

-- Versus (!?)

SELECT last_name, e.department_id, job_id

FROM employees e, departments d

WHERE e.department_id = d.department_id

AND location_id = 1700;

Set serveroutput on

Exec sqlid('location_id = 1700')

1-41 Copyright © 2004, Oracle. All rights reserved.

Examine the execution plans

