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1 . Comitati di calcolo della Città dei Pari 

Ne ll a Città dei Par i c i s ono 32 abitant i. Essi hanno l'abitudine di 

fo rmare comit a ti co n l e seguent i regole : 

l . In ogni comitato c'è un numero par i di me mbri . 

2 . I memb r i che s ono in co mune a due co mitati d is ti nti s ono i n numero 

par i. 

3. Non ci sono due co mit a ti ugual i. 

Qual'è il mass imo numero di co mi tati ne ll a Cit t à dei Par i ? 

(Ci può es sere anche il comitato vuoto t r a i comitati, una s o la volt a .) 

Il pr oss imo esempio mo s t r a che ce ne s ono mo lti ss imi . 

Per semp l l ci tà supponiamo che 32 abit an ti d i ques t a ci t t à s iano 
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forma ti da 16 co pp i e sposa t e e che due c oniugi appar t engano agli stessi 

comitati. Al lo ra ogn i c om i tato s i può rappresentare come una 16-upla a 

coeffic i ent i in {O , l} (il c osi de t t o ;'vettore d'inc i denza" avente l 

nella j -esima posizi one se e so l tanto se la j-esima coppia appartiene 

al comi tato ) . I l numero di tal i vet tori è 2
16

. In questa maniera 

possiamo formare 2
16 

comitati nella Città dei Pari soddisfacenti alle 

richieste l. ,2. ,3. 

Nella Città dei Dispari ci sono anche 32 abitanti, e si formano i 

comitati con le seguenti modalità: 

l. Ogni comitato ha un numero dispari di membri. 

2 . I membri che sono in comune a due comi tat i dist int i sono in numero 

pari. 

In tal caso, la modifica è drammatica: a differenza della Città dei 

Pari, qui si possono formare solo 32 comitati . 

ESEMPI 

per il sistema dei comitati nella Città dei Dispari : 

1. Ogni comitato ha solo un membro. 

2. Ogni comitato ha 31 membri . 

3. Ricordiamo PG(2,S) (geometria proiettiva su GF(S)=l l . 
5 

Abbiamo l'insieme GF (S l 3\{( O,0,0)}. 

Introduciamo in esso la re l azione di equivalenza: 

(x ,x , x l - (x' ,x ' ,x ') ~ (x ,x ,x )= (ìl.x' ,ìl.x' ,ìl.x ' ) per un certo 
1 2312 3 1 23 123 

ìl.eGF(Sl \ {O} . 

Chiamiamo punti l e classi d i equivalenza d i (GF (S)3\ { (0,0,Ol}) / -. 

Chiam i amo re tt e l e c l ass i d i equi valenza di (GF (S )3\ {(0,0,0)} l/-. 

( Dunque , re tt e e punti hanno l a stessa rappresentazione . l 

Allo r a il punto (x ,x ,x l appar t iene alla re tt a ( u ,u , u) se e 
123' 12 3 

s olt an to se x u +x u +x u =0. (Co nd i zi one di incide nza ) 
11 22 33 

Quanti punti distinti abb iamo? 

t sub i to vi s to che ci s ono (S3- 1)/( 5- 1) =S2+5+1=31 punti, e qu ind i 

anche 31 rette. 

Ora se ( u ,u ,u ) è una retta, allo r a ci s ono 5 ~1 =6 punt i di s ti nti 
123 

(x , x , x ) che s oddi s fano l a condiz io ne d'incidenza co n la ret t a 
123 

( u , u ,u ) , c i oè x u +x U +x U =0. 
12 3 1 1 2233 
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Aggiungiamo a PG (2,5 ) un punto immaginario Q, e postuliamo che tutte 

le ret t e di PG(2,5) passino per Q. 

Allora membri della Città dei Dispari siano i 31 punti di PG(2,5) 

più il punto Q. 

I comitati invece siano tutte le rette di PG(2,5) considerate come 

passanti anche per Q e PG(2,5l stesso. 

TEOREMA (E. R. Berlekamp, 1969): 

Nella Città dei Dispari con n abitanti si possono formare al più n 

comi tat i. 

D I MOSTRAZ IONE: 

Supponiamo che siano C ,C , ... ,C m comitati . Consideriamo i vettori di 
l 2 nl 

incidenza v e{O, l}n dei comitati C definiti così: 
i i 

La j-esima coordinata di v è 1 se il j-esimo abitante appartiene a C 
i 1 

e O se il j-esimo abitante non appartiene a C . 
i 

T 
Allora v ·v =IC ~C I. 

i j i j 

A causa delle regole della Città dei Dispari risulta 

T 
v ·v = 

{

pari 

i j dispari 

In GF(2l, ciò si 

se i;ej 

se i=j . 

scrive 

se i=j. 

Facciamo ora vedere che v ,v , ... ,v sono linearmente indipendent i su 
12m 

GF(2). Una volta provato ciò, ne conseguirà che m~n; infatti in GF(2)n 

il massimo numero di vettori linearmente indipendenti è n. 

Sia À. v +À. v + . " +À. v =0 una combinazione lineare dei v su Gf(2 l. 
1122 mm 

Moltiplichiamo tutto per v
T

; À. v ·vT=O poichè 
l l l l 

Allo s t esso modo, À. =0 per tutti gli altri i . 
i 

mente indipe ndenti. 

2
3 

DIMOSTRAZIONE: 

T 
V • V =0 se i;;:l. 

i l 

Dunque, i v sono l inear-

Abbiamo bisogno un risultato dall ' algebra l ineare: 

Siano A,B matrici su un campo arbitrario (moltiplicabili tra loro). 

Allo r a rang ( AB ) ~min{rang(A),rang ( B)}. 

Or a vediamo l a d imostrazione . Siano v ,v , ... , v le righe della matrice 
12m 

mxn M d ' incidenza. Mostr i amo che le righe di M sono linearmente indi-
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pendenti su GF (2), cioè rang ( M)=mo 
T 

Consideriamo la matrice mxm A=MM (a coefficienti in GF(2)=l )0 Risulta 
2 

A=I perchè 
m 

a =v o vT ={ O 
l J l J 1 

se i;tj 

se i=j o 

Chiaro che rang(A)=rang(I )=mo 
m 

Dunque applicando la disuguaglianza di rang 

m=rang(A)=rang(MMT)~min{rang(M),rang(MT)}=rang(M)~m, 

quindi rang(M)=mo 

TEOREMA ( Mo Szegedy, 1988): 

Sia n=2ko Allora esistono almeno 2n(n+2)/8/ (n!)2 soluzioni estremali 

(con n comitati) non isomorfe del problema dei comitati della Città dei 

Dispari o D'al tro canto i l numero di soluzioni estremal i è al più 
2 

2
n 

I n! o 

DIMOSTRAZIONE: 

Sia AeGF(2)kXk o Associamo ad A la matrice nxn 

B= [ 

A+I 
k 

A 

su GF(2) o 

Se A è simmetrica, cioè A=A
T 

allora BBT=I , quindi B è una matrice di 
n 

incidenza della Città dei Dispari. Il numero di matrici simmetriche kxk 

su GF(2 ) è 
k+l 

2( 2 )=2n(n+2)/8 

Permutare le righe di B equivale a ribattezzare comi tat i, mentre 

permutare le colonne equivale a ribattezzare gli abitanti. Allora le 
n(n+2)/8 2 

soluz io ni non isomorfe sono in numero almeno 2 I( n!) o 

Per la li mitaz io ne superiore, poi è sufficiente notare che il numero d i 

comitati con n membr i è al più 

[
2n] 2 
n <2

n 
I n! o 
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2. Famiglie di insiemi con intersezione prescritta 

TEOREMA (di suguaglianza di R. A. Fischer); 

Siano e ,e , .. . ,e sottoinsiemi distinti dell' insieme {l,2, ... , n}. 
12m 

Supponiamo che per ogni i~j le ne I=A per un certo l~A<n. 
l J 

Allora m~n. 

DIMOSTRAZIONE (K. N. Majurndar, 1953 - J. R. Isbell, 1959): 

Prima supponiamo che esista un insieme e tale che IC I=A per un certo 
l 1 

i. Allora e s:;C per ogni i~j, inoltre 
l J 

C \ C , . . . , C \C, e \C,..., e \C 
l l i-l i i+1 i m i 

sono a due a due disgiunti. Quindi m~l+n-A~n. 

Altrimenti, siano 'O.=le.I-A. Ora 'O ,'O , ... ,'0 sono interi positivi. 
l l 12m 

Siano le righe della matrice mxn M i vettori d'incidenza degli insiemi 

C. Allora A=MMT=AJ +C ove C=diag{'O ,'O , .. . ,'O} matrice diagonale . 
1 m 12m 

Facciamo ora vedere che rang(A)=m, poichè in tal caso 

m=rang (A) ~min{rang(M) , rang(MT)}=rang(M)~n. 

Notiamo che AJ è una matrice semidefinita positiva e C è definita 
m 

positiva . Infatti 
T 2 

X (AJ ) x =A (x +x + ... +x ) , 
m 12m 

T 2 2 2 
X(C)X ='0 X +'0 X + .. . +'0 X . 

1122 mm 

Allora anche A=AJ +C è una matrice defini ta posi t i va. Ora rang( A)=m, 
m 

inol tre c'è una soluzione non banale 
T 

Con questo X , X Ax =0 contraddizione. 
o o o 

2a 
DIMOSTRAZIONE: 

X del l ' equazione lineare Ax T =0. 
o 

Supponiamo che 'O >0, altrimenti la dimostrazione è la stessa del primo 
i 

caso della precedente. 

Siano v ,v , . .. , v i vettori d'incidenza di e ,e , .. . ,C rispet t i vamen-
12m 12 m 

te. Facciamo ora vedere che v ,v , ... ,v sono linearmente indipendenti. 
12m 

Ovviamente risulta 

se i = j 

se i=j . 

Sia o: v +0: V + . . . +0: V =0 una combinazione lineare dei vettori v. Mol-
1122 mm 

ti p l ic hiamo per v . 
J 

>..[3+0:'y =0 ove [3 ='[ m 0: . , C ioè o: =- [3AI'O . 
J J 1 = 1 l j j 

Se [3=0. allora tutti g li o: sono O. 
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Se {3:;tO, al lo ra (3='[. m et =- (3 ì\'[. m 1/';) contraddizione, 
J= l J J=l J 

perchè segni de i 

due membri sono divers i. 

Siano X un insieme di n elementi e ~ una famiglia di sottoinsiemi di X. 

Sia, poi L un insieme di s interi non negativi. Chiamiamo ~ una fa­

miglia L- intersecante se I AIìB I EL per ogni coppia di element i dist int i 

A, B di ~ . 

TEOREMA (P. Frankl - R. M. Wilson, 1981): 

Siano L un insieme di s interi non negativi e ~ una famiglia L-interse­

cante di sottoinsiemi di un insieme di n elementi. Allora 

DIMOSTRAZIONE (N. Alon - L. Babai, 1988): 

Questo risultato è il migliore possibile in termini dei parametri n e s 

come mostrato dalla famiglia di tutti i sottoinsiemi di cardinalità ~s 

di un insieme di n elementi. 

Per semplicità supponiamo che L={l , l , ... , l }, X={1,2, ... ,n} e ~={A , 
1 2 s 1 

A , .. . , A } ove A S;X e I A I ~ I A I ~ .. . ~ I A I. 
2 m i 12m 

Consideriamo i vettori d'incidenza v E{O, l}n degli insiemi A . 
i i 

T 
Allora v ·V =IA nA I. 

i j i j 

Ora consideriamo le funzioni polinomiali 

fi :{ O , l}n~ IR , fi(x)=TIl <l A l(vtxT-l
k

)· 

k t 

Osserviamo che 

se i =j 

se i> j. 

Facciamo ora vedere che i polinomi f ,f , ... ,f sono linearmente i ndi-
12m 

pendenti. Consideriamo la combinazione lineare 

ì\ f + ì\ f + . . . + Ì\. f =0. 
1122 mm 

Prima valutiamo la combinazione nel punto v : 
1 

Ì\. f (v )+ì\ f (v ) + . .. +Ì\. f (v )=ì\ f (v )=0, quindi ì\ =0 . 
111221 mm 1111 1 

In secondo luogo valut i amo la combinazione nel punto 

ì\ f ( v ) +,\ f ( v ) + ... + ,\ f ( v ) =ì\ f (v ) +,\ f (v )=0 . 
112222 mm2 112222 

v : 
2 

Poichè ,\ =0, qu indi ì\ f (v )=0. Ora Ì\. f (v )=0, cioè ì\ =0. 
l 112 222 2 

Infine valutiamo l a combinazi one nel punto v : 
m 
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À f ( v ) +À f ( v ) + . .. +À f ( v )=0. 
1 1m 22m mmm 

Poichè À =À = ... =À =0 quindi À f ( v )=0, otteniamo anche À =0 . 
. 1 2 m-l m m m m 

2 
D'al tro canto x =x per ogni 1::n~n, quindi i l numero de i po l inomi f 

i 

non è maggiore della dimensione dello spazio dei polinomi multi lineari 

di grado ~s, tale spazio è generato dai prodotti di un numero ~s di va­

riabili distinti, cioè 

TEOREMA (B. Bo llobas, 1965): 

Siano A ,A , .. . ,A insiemi di cardinalita r e B ,8 , .. . ,B insiemi di 
12m 12m 

cardinalita s. Supponiamo che 

l. A lìB =0 per ogni 1:$i~m. 
i i 

2. A lìB ;:0 per ogni 1:$i, j~m, i;:j. 
i j 

Allora 

< [r+sJ m- . s 

DIMOSTRAZIONE: 

Per semplicita supponiamo che AuAu ... uAuBuBu ... uB={1,2, ... ,n} per 
12m 12m 

un certo n intero positivo. 

Associamo a ciascun ve{1, ... ,n} il vettore p(v)=(p (v),p (v), ... ,p (v)) 
o l r 

E~r+l in modo tale che l'insieme dei vettori ottenuti sia in posizione 

generica, cioè r+1 di essi siano sempre linearmente indipendenti (cfr . 

7). 

Ora ad ogni insieme t,./S;;{ 1, 2, ... , n} associamo un polinomio f (x) nelle 
\01 

r+1 variabili (x ,x , . . . ,x ) nel modo seguente 
o 1 r 

f (x)=n (p ( v )x +p (v)x + ... +p (v)x ). 
w vEW o o 1 1 r r 

t subito visto che 

{ 

~O se x non è ortogonale 
f (x) 

w =0 altrimenti . 

a nessuno dei p(v) per VEt,./ 

Allora f ( x ) è un po l i nom i o omogeneo di grado 5 in r+1 variabili. 
i 

I ve tto ri co rrispondent i agli elementi di A. generano un sottospazio di 
J 

dimens i one r; sia a un vettore non nullo, ortogonale a questo sotto-: 
j 

spazio . Poichè i vettor i p ( v ) sono in posizione generica, a .Lp(v ) 
J 

s olt an to se vEA . 
j 

Quindi f (a )=0 se e solo se A nE ;:0, cioè 
. j j i 
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f Ca ) 
l J {

",O 

=0 

se i=j 

Ora polinomi f sono li nearmente indipendenti. Infatti, consideriamo 
l 

la combinazione lineare 

À f +À f + ... +À f =0. 
1122 mm 

Valutiamo la combinazione nel punto a : 
J 

À f Ca )+À f Ca )+ ... +À f Ca )=À f Ca )=0, cioè À =0 per ogni 1~j~m. 
11J 22J mmJ JJJ J 

Quindi il numero di questi polinomi non è maggiore della dimensione 

dello spazio dei polinomi omogenei di grado s in r+1 variabili, cioè 

m~ [( r+ l ~ +s -1 ] = [r:s] . 

3. La colorazione di un grafo 

Un grafo G è cost i t ui to da una coppia ordinata CV, E) · dove V. è -un - i-ps i-: . 

eme finito di elementi chiamati vertici e E è un insieme finito di 

spigoli. Uno spigolo è una coppia non ordinata di due vertici. 

Un grafo si dice completo se due qualsiasi vert ici sono collegat i da 

uno spigolo. 

TEOREMA (P. Erdos - Gy. Szekeres, 1935): 
s+t-2 

Comunque coloriamo gli spigoli di un grafo completo su ( s-l ) vertici 

con i colori rosso e blu, esisterà un sot t ografo completo su s vertici 

con tutti gli spigoli di colore rosso, oppure esisterà un sottografo 

completo su t vertici con tutti gli spigoli di colore blu. 

TEOREMA (Zs. Nagy, 1972): 

Sia v= [~]. 
Allo ra si possono colorare gli sp igoli di un grafo G completo su v ver­

t ici con due co lo ri in modo tale che G non contenga un grafo completo 

monocromatico su t vert ici. 

DIMOSTRAZIONE: 

Associamo ai ver tici di G i sottoinsiemi di cardinalità 3 di {l, .. . , t}. 

Coloriamo uno spigolo di rosso se le due te rne che rappresentano i suoi 
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vertici hanno un unico elemento comune, e di blu altrimenti. 

Supponiamo di avere un grafo completo monocromatico su m vert i ci. 

Se questo grafo è r osso, allora applicando l a disuguaglianza di Fischer 

risul ta m~ t. 

Se questo grafo è blu , allora applicando il teorema della Città dei 

Dispari r i sulta m~t di nuovo . 

4 . Quanti grafi bipartiti completi si devono mettere assieme per 

ottenere un grafo completo? 

Un grafo H=(V,E) dicesi bipart i to se esiste una partizione dei vertici 

in due insiemi disgiunti X e Y tale che i vertici in ciascuno dei due 

insiemi non sono collegati fra loro da spigoli. 

Se IXI=n e IYI=m allora il massimo numero di spigoli di H è nm. Se il 

numero di spigoli di H è massimo, cioè nm allora H dicesi grafo bipar­

tito completo . 

TEOREMA ( R. L. Graham - H. O. Pollak, 1972): 

Sia l'insieme degli spigoli d i un grafo completo su n vertici l'unione 

disgiunta degli insiemi degli spigoli di m graf i bipartiti completi. 

Allora m?:n-l. 

DIMOSTRAZIONE: 

Sia {1,2, . .. , n} l'insieme dei vertici del grafo completo. Supponiamo 

che questo grafo sia l'unione disgiunta dei grafi bipartiti completi 

8 , 8 , ... ,8. Sia V(8 )=(X ,Y) ave X e Y sono le due parti dell'in-
12 m k kk k k 

sieme dei vert i ci del grafo bipar t ito 8 Ovviamente X e Y sono 
k k k 

so ttoins iemi disgiunti di {1,2, . .. ,n} . 

Consi deriamo le matrici nxn A ,A , .. . ,A associate ai grafi 8 ,B , . .. , 
12m 1 2 

8 ove 
m 

se iEX e jEY 
k k 

altriment i . 

Chiaro che rang ( A )=1 per ogni k=I.2, . . . ,m . 
K 

Sia S=[ m A . 
;<=1 k 

Qundi S.,.ST=J - I 

Allora per ogni i ;:: j s =1 es =0 oppure s =0 e s =1 . 
i j j i i j j i 

n n 
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Facciamo ora vedere che rang ( S ) ~n-l. Se per assurdo fosse rang(S ):::n-2, 

allora esis t erebbe una soluzione non bana l e x=(x , x , ... ,x ) del siste-
1 2 n 

ma di equazioni li neari 

Sx T =0 , L n X =0 . 
I =1 l 

T T T T 
Poichè J X =0, segue S x =-x . 

n 2 T T T T T T 
Allora - llxll =xS x =(xS x ) =xSx =0 contraddizione. 

D'altro canto, dalla subadditività della funzione di rango 

n-1:::rang(S):::rang(A )+rang(A )+ ... +rang(A )=m. 
12m 

Notiamo che n-l grafi bipartiti completi sono sufficienti. Infatti 

siano X={i} e Y={i+l,i+2, .. . ,n} (i=1,2, ... ,n-1l . 
l l 

5. La bellezza è rara 

Un cammino C in un grafo G è una sequenza di spigOli -'(v
O
,v

1
)'(v

1
' v

z
L ____ _ 

...• (v .v) con v~v per O:::i,j:::n. i~j. Diremo che C connette il ver-
n-l n J 

tice iniziale v con il vertice finale v e passa attraverso i vertici o n 

v , ... , V 
1 n-l 

Un ciclo è un cammino chiuso, cioè un cammino in cui il vertice inizia-

le e quello finale coincidono. Un ciclo si dice hamiltoniano se passa 

attraverso ogni vertice del grafo G esattamente una volta. 

Il grado di un vertice v è il numero di spigoli che incidono v. Denote­

remo con deg(v) il grado di un vertice v. 

Un grafo G è regolare se ogni vertice ha lo stesso grado. 

Cinque è un numero magico. così consideriamo grafi regolari in cui la 

lunghezza del ciclo minimo è cinque. Qual'è il minimo numero possibile 

di vertici che un tale grafo può avere se il grado di c i ascun ver ti ce è 

Pr endiamo un ve rt ice u. Esso ha r ver ti c i vicini. Ciascuno di questi ha 

altri r - l vert ici vi cini. Così fino ad ora ci sono 1+r+r ( r-1 )=r2+1 ver-

ti c i. De vono esse re tut ti di s tinti perchè altrimenti ci sarebbe un 

ciclo di lunghe zza :::4 . 

t naturale chiedere: Abbiamo bisogno di altri vertici? 

lO 



ESEMP I: 

l. r=2, r 2 + 1 =5. 

2 2. r=J, r +1=10. 

Grafo di Petersen. 

J. r=7, r 2+1=50. 

Situazione complicata. 

Non conosciamo altri esempi! 

TEOREMA (A. J. Hoffman - R. R. Singleton, 1960): 

Sia G un grafo r-regolare con r 2+1 vertici. Supponiamo che la lunghezza 

del ciclo minimo di G sia cinque. Allo ra re{2,J,7,57}. 

DIMOSTRAZIONE: 

Siano u, v vertici distinti di G. Prima calcoliamo il numero di vicini 

comuni di u e v . 

Se u e v sono adiacenti questo numero è O. 

Se u e v non sono adiacenti, allora dal fatto che abbiamo provato che G 

deve avere almeno r 2+1 ver tici , constatiamo anche che u e v devono ave-

re precisamente un ve rt ice vicino in comune. 

Ora sia n=r2+1 e consideriamo la matrice nxn A di adiacenza di G; 

{

l 
a = 

i j O 

se e j sono adiacenti 

se e j non sono adiacenti. 

t subit o v isto che A=A
T 

e diag(A)= (O,O, . .. ,O). 

Consideriamo la matrice 8=..;2 Allora b è uguale al numero di vicini 
i j 
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comuni ai ver tici i,j. I no ltre b.=deg(i). 
1 1 

Sia A l a matrice di adiacenza del grafo complementare di G (il grafo 

comp l ementare G'= (V' ,E' ) di G= (V ,E ) è così def i nito: V'=V e E'= {( u,v): 

U,VEV, (u,v)r;:E}). 

Abbiamo J =1 +A+A . 
n n 

Il numero di vicini comuni di due vertici è O se sono adiacenti e 1 

altrimenti, quindi A2=rI +A. 
n 

2 Allora A +A-(r-l)I =J . 
n n 

La matrice A è simmetrica , quindi dall'algebra l ineare sappiamo che 

esiste una base ortogonale formata da autovettori di A. 

S i a f= ( 1, 1, .. . , 1) . 

Il grafo G è r-regolare, quindi AfT=rf
T 

cioè f è un autovettore con 

autovalore r. Avendo fissato f, noi possiamo ora considerare i vettori 

e ortogonali a f, cioè feT=O. Allora sarà anche J eT=O. 
n 

S · t t t . . A T '\ T t '\ IR AlI la e un au ove ore, c loe e =I\e per un cer o I\E. ora 

A2eT+Ae T-(r-l)I eT=O . 
n 

À2eT+Àe T_ (r-l)e T=0. 

(À 2+À- ( r-1J)e
T

=0. 

À2+À-(r-1)=0. 

71. =.!(-1±v'4r-3'J. 
1,2 2 

Siano m e m le molteplicità di 71. e 71. rispettivamente. La somma 
1 2 1 2 

delle molteplicità è n, quindi non dimenticando l'autovettore f, si ha 

l+m +m =n=r2+l. 
1 2 

D'altro canto la somma degli autovalori è uguale alla traccia di A cioè 

r+m 71. +m 71. =0 . 
1 1 2 2 

Quindi, sostituendo 
2 

2r-(m +m )+(m -m )s=O ove s=v'4r-3'. 
1 2 1 2 

2r-r +(m -m )s=O. 
1 2 

4r-3 è inte ro positivo, quindi s è intero posit ivo oppure s è irrazio­

nale. 
2 Se s è i rrazionale, allo ra m -m =0 e 2r-r =0, quindi r=2 perchè r~O . 

1 2 

Alt r imenti s è intero positi vo e r= (s2+3 )/4. Or a 

s4_2s 2- 16 (m -m )s-15=0. 
l 2 

Se 5 è una radice di ques to polino mio, a llora è subito visto che s115. 

Quindi 5= 1,3,5 , 15 . 

Allora si ha r= (s 2+3 )/4=I,3, 7 ,57 . 

Poiché r ~2, possibili valo ri per r sono 2,3,7,57. 
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6 . Insieme di punti in ~n con due sole distanze 

Siano a ,a , ... ,a punti distinti dello spazio euclideo di dimensione 
12m 

n . Se le distanze di una qualsiasi coppia degli a sono tutte uguali, 
l 

allora chiaramente m~n+1, essendo il caso estremo l'insieme di vertici 

di un simplesso regolare. 

Assumiamo ora che le distanze a coppia tra gli a prendano solo due va-
l 

lori. Un tale insieme si chiama un insieme a due distanze. 

Qual'è il massimo numero di punti in un insieme a due distanze in ~n? 

Denotiamo con m(n) questo massimo. 

TEOREMA (D. G. Larman - C. A. Rogers - J . J. Seidel, 1977): 

n(n+1)/2~m(n)~(n+1)(n+4)/2. 

(Notiamo che queste due limitazioni sono asintoticamente uguali (n~).) 

DIMOSTRAZIONE: 

Siano o e o le due distanze distinte. 
1 2 

Usando la notazione 

Il xll=( 1: n x 2 ) 1/2 
K=l k 

per la norma euclidea di XE~n, la distanza tra due punti n 
X, yE~ è 

IIx-yll. ! . 

È naturale considerare il polinomio 
2 2 2 2 

F(x,y)=(lIx-yll -o )(lIx-yll -o ) 
1 2 

in 2n variabil i real i. Risulta 

F(a , a )={ O 
i j 0202~0 

1 2 

se i~j 

se i;t:j. 

Consideriamo ora polinomi f (x) =F(x,a ) di n variabili XE~n. 
i i 

Prima facciamo vedere che i polinomi f , ... ,f sono linearmente indi-
1 m 

pendenti su ~. Sia 

À f +À f + . .. +À f =0 una combinazione lineare dei polinomi f su~. 
1122 mm 

Valutiamo la combinazione nel punto a : 
J 

À f (a ) +À f ( a )+ . .. +À f ( a )=À f ( a )=0 , cioè À.=O per ogni lsjsm. 
llj 22 j mm j jjj J 

D'altro canto ogni polinomio f[ appartiene al sottospazio vettof'iale 

generato dai polinomi 
n 2 2 n 2 (r. x ) , ( r. x ) X , X X , X , l (l si, j sn ) . 

K= l k i<= l k j i j i 

Il numero d i questi polinomi è 

1+ n+n ( n+l) /2~n+l = ( n+l)(n+4)/2, 
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quindi i l numero di polinomi f , ... ,f è al più ( n+l)(n+4) / 2. 
l m 

Ora vediamo l a dimostrazione della limitazione i nferiore. 

Consideriamo vettori d'incidenza di tutt i 2 - s o t t o i ns i e m i d i un 

insieme di n+l elementi. Essi formano un insieme a due distanze di car­

dinalità ( n~/)=n(n+1l/2 in ~n+l. (Le due distanze sono yz e 2 . ) 

Ora questo insieme è sull' iperpiano definito dall ' equazione 

perciò può essere riguardato come un sottoinsieme di. ~n. 

La sfera unitaria di dimensione n-l è definità come l'insieme 
n-l n 

S ={XE~ : IIxll=!}. 

~+1 
L. x =2 e 

1=1 i 

Un insieme a due distanze sferico è un sottoinsieme a due distanze di 
n-l S . Denotiamo con m ( n) il massimo numero di punti di un tale insie-

s 

me. 

TEOREMA (P. Delsarte - J. M. Goethals - J. J. Seidel, 1977): 

n(n+1)/2~m (n)~n(n+3)/2. 
s 

D I MOSTRAZ IONE: 

Consideriamo ancora i poI inomi f . : Sn-l~~, f . (x)=F(x, a . ). 
l l l 

Questi polinomi rimarranno linearmente indipendenti. Ora 

)' x =1 e x =1- x, n 2 2 4-1 2 
~=1 k n =1 k 

quindi ogni polinomio f appartiene al sottospazio vettoriale generato 

dai polinomi 
2 X X (l~i<j~n) , x (1~i~n-l) , x (1~i~n) , L 

i J 
Il numero di questi polinomi è 

n(n-1) / 2+(n-1)+n+1=n(n+3) / 2. 

Ora vediamo l a limitazione i nferiore . 

Chiaramente non i mporta i l raggio della sfera . Procediamo come nel teo­

rema precedente notando che l ' intersezione di una sfera con un iperpia­

no è una sfera di dime ns ione più bassa . 

COROLLAP. IO : 

Siano A ,A , . ,A sottoinsiemi di s tinti di {l,2, . .. ,n} . 
12m 

Assumiamo che 

A ~A =( A \ A )u(A \ A ) 
. j . j j ' 

l e l oro d iffere!ìze simmetriche a coppie abbiano 

soltanto due poss ibili distinti valor i per la cardina lità . 

Allora m~n ( n+J )/2. 
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D I MOST RAZ ION E: 

Rappresent i amo ogn i ins i eme A per mezzo de l suo ( - 1,1 ) vet t ore d'i nc i -

denza v 
\ 

( me tt ere al posto deg l i zeri dei -1 nella def i nizione us uale 

di vettori d ' incidenza) . 

Tutti questi vettori appar t engono 
2 

D'al tro canto 4\ A fl.A \ =11 v -v Il , 

ora alla sfera di raggio In in ~n . 

l J l J 
quindi {v,v,oo. , v} 

1 2 In 
é un insieme a 

due distanze sferico, cioè 

m:$n(n+3) / 2. 

PROPOSIZ IONE : 

m:$1 +n(n+ l)/2. 

DI MOSTRAZ I ONE : 

Consideriamo ancora i polinomi f : {-l , l}n~~. Questi polinomi di nuovo 
l 

sono linearmente indipendenti e appartengono al sottospazio vettoriale 

generato dai polinomi 

x .x . (1 :$i <j:$n) , x. (l:$i:$n) ,1 
l J l 

perc hé ora x2= 1 per ogni i=1 , 2 , . . . , n . 
i 

Il numero d i ques t i polinomi è 

n(n- l) / 2+n+l= 1+n ( n+l )/2 , 

quindi m:$1+n(n+l) / 2 . 

7 . Punti in posizione generica. La curva dei momenti 

S i a W uno s paz io vet to r i a l e d i dime ns io ne n . S i d ice che S~W è i n pos i ­

z io ne gener ica s e, co munque pr es i n eleme nti di S , ques ti ri s ultano 

li ne ar mente ind ipe ndenti . 

S ia F un campo arbitrar io . Al lora l ' i ns ie me 
2 n- l 

M = { m (cd = (1, a , a, .. . , a ) : a EF} 
n n 

si d i ce l a curva dei momen ti . 

LEMM~A. : 

I punt i de ll a cur va de i mome nti s ono i n posiz i one gener i ca . 

D I MOST RAZ I ON E: 

S i ano a , a, . . ,a EF a due a due d i s tinti. Ora cons ide r iamo il deter -
l 2 n 

minante 
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T T T 
det ( m (a l .m ( a l ... . . m (a l l. 

n l n 2 n n 
Ques t o de t erminan te è un de t ermi nante d i Vand ermonde. i l cui valore è 

TI ( a -a l ;::O. 
1:51 < j:~n J l 

Quindi le colonne sono linearmente indipendenti. 

TEOREMA : 

Siano d~l. 0:5k:5d/ 2 e a.a •.. . • a eiR numeri distinti. Allora esiste un 
1 2 k 

iperpiano pçiR
d

+
1 

tale che tutti i punti della curva dei momenti M ç 
d+l 

iR
d

+
1 

sono nello stesso semispazio chiuso delimitato da P e inoltre sol-

tanto i punti m ( a l .. . . • m ( a) appartengono a P . 
d+l 1 d+l k 

DIMOSTRAZIONE : 
T 

L' iperpiano P sarà defini t o dal l' equazione l ineare omogenea cx =0 per 
d+l 

un cer t o ceiR \{ O} . Vog l i amo scegl iere i l vet tore c in modo tale che 

valgano le relazioni 
T 

1. cm(ç ) >0 se çeiR\{a ,a • .. .• a} . 
1 2 k 

2. cm(ç ) T=O se çe{a . a .... ,a } . 
1 2 k 

Consider i amo il polinomio 

f(ç)=TI k ( ç-a. ). 
1=1 l 

Siano o i coeff i cienti de l pol i no mio f2(ç ). c i o è 
i 

f2 ( ç)=0 +0 ç+ . . . +0 çd (2k:5d). 
o 1 d 

T 2 
Post o c= (o ,o • . . . . 0 ) abbi a mo cm ( ç ) =f ( ç ) per ogni çeiR e quind i 1. e o 1 d 

2 . seguono banalmente . 

COROLLARIO: 

Siano AlI . t t· A iR nx (d+l) o ra eS1S e una ma r l ce e con la 

p r o pr i e tà seguente. 

Le r ighe di A so no in pos i z io ne ge ner ica (cioè co munqu e pres e d+ 1 righe 

d i A queste sono linearme nte indipendenti) e inolt re pe r ogn i r ç {1, .... 
d+l T 

n} con 11 1=1< e s iste un vetto r e c appar t enente a iR tale che cA = ((3 , 
1 

(3 •. . . ,(3 ) ove () . =O se i e 1 e ,8>0 se iEI. 
2 n l l 

o I MOSTR.A.z IONE: 

Siano l e righe di Am (al .... ,m ( a) 
d+l l d+l n 

con a • a •... ,a n ume ri r e al i 
l 2 n 

discint i, e sia c i l vetto r e normale de ll' ipe r piano co rr ispondente 

all'ins ie:ne {m ( a ) : i e I} secondo il teorema p r ecede n te . 
d +l ! 
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8. Distribuzione di punti sulla sfera 

r r+l 
L'insieme S ={XEiR : IlxlI=l} si dice una r-sfera. Possiamo definire una 

semi sfera aperta di Sr come l'insieme {XESr : axT>O} per un certo aE 

IR r
+

1
,\{ O} . 

TEOREMA (D. Gale, 1956): 

Per ogni m,r~l possiamo distribuire 2m+r punti sulla sfera Sr in modo 

tale che ogni semi sfera aperta ne contenga almeno m. 

DIMOSTRAZIONE: 

Se m=l allora consideriamo i vertici di un simplesso regolare di dimen­

sione r+1 inscritto in Sr . 

Ora supponiamo che m~2. 

Per semplicità siano n=2m+r e d=2m-2. 

Consideriamo la matrice nx(d+l) A ottenuta dal corollario precedente. 

Allora il rango per colonne di A è massimo. 

Sia U il sottospazio generato dalle colonne di A. 

Sia B una matrice nx(n-d-1) le cui colonne formino una base per lo 

spazio ortogonale ~ . Siano v ,v ; ... ,v i vettori riga di B. Ora 
1 2 n 

n-d-1=r+1, cioè ciascun vettore v. ha r+1 componenti. 
l 

T Poichè il rango per colonne di B è massimo, risulta Bx ~O per ogni XE 
r+l T r+l 

IR ,\{O}. Dimostriamo che ciascun vettore Bx (XEIR '\{O}) ha almeno m 

componenti positive . Quindi i vettori v / lIv Il,v /lI v Il, ... ,v / lIv Il 
1 1 2 2 n n 

sod-

disfano l 'enunciato del teorema. 
T T T 

Supponiamo per assurdo che Bx =z =U: ,( , ... ,() abbia al più m-l co-
l 2 n 

efficienti posit iv i. Sia rç;{1,2, ... ,n} l'insieme degli indici corris-

pondenti al l e posizi oni di questi coefficienti. Allora k:=III~m-l=d/2 e 

inoltre 

1. (>0 se i e I, 
l 

2 . ç.~O se i E r . 
l 

Sia ceiR
d

+
1 

il vettore co s truito co me nel coro l lar io precedente a par ti ­
T 

re da I . Or a s ia b= ( ~ ,~ , ... ,~ )=cA . Allora 

l . ~ =0 se i e I, 
i 

2 . ~ >0 se i EI. 
i 

l 2 n 

Poichè le colonne di A s ono ortogonali alle colonne di B risulta ATB=O. 

Pertanto bz
T

=cA
T

8x
T

=0. 
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D'al t ra canto bz T =" {3 r +" {3 r . 
L I EI i " i LI':I i "' i 

Tut t i gl i addendi de l la prima somma sono zero poichè {3 =0; nella secon-
1 

da ciascun addendo è il prodotto di {3 >0 per <: ~o, quindi ne segue ne-
l l 

cessariamente <: =0 per i~I. 
l 

ATzT=ATBxT=O, cioè la combinazione lineare delle k righe di A con co-

efficienti <: (iEI) è zero. Ma le righe di A sono in posizione generica 
l 

e kSm-1=d/2<d+1, quindi z=O, contraddizione. 

9 . Convessità 

Sia W uno spazio vettoriale su ~. 

Una combinazione affine dei vettori v , v , ... ,v EW è una combinazione 
1 2 ID 

lineareI:mi\.v (i\.E~) in cui I:
m

i\.=1. 
l =1 l l l 1 =1 1 

S i a aff {v ,v , ... , v } = {I: m i\. v : i\. E~, L m i\. = l} . 
1 2 ID 1 =1 l l i 1 =1 i 

I ve ttor i v, v , . . . , v s i dicono affinemente indipendenti se per ogni 
12m 

scelta di scalar i i\., ... , i\. E~ tali che" m i\. V =0 e \' m i\. =0 risulta 
1 m Li = 1 l l Lo! = l 1 

necessar i amente i\. =i\. = . . . = i\. =0. 
12m 

È subit o v is t o che 

1. I ve t tori v ,V , ... ,V EW sono linearmente indipendenti se e solo se 
12m 

i vettori 0, '1 ,v , . . . , v sono aff i nemente indipendenti . 
1 2m 

2 . I ve ttori v ,V , . . • , v EW sono affinemente indipendenti se e solo se 
1 2 ID 

i ve tto r i v - v , . . . ,v - v EW s ono l i nearmente indipendenti. 
2 l m 1 

Un s i s t e ma d i rifer i mento aff ine d i un so t tospazio aff i ne U è un i nsie-

me aff i nemente indipendente S t ale che aff (S)=U. 

Allo ra ogni s i s te ma d i r i f e r i men t o aff ine de l sottospazio affine U è 

cos tituit a da l +di m(U) e leme nt i. 

Una com bina zi one convessa dei ve t t or i v ,v , ... , v EW è una co mb inazio ne 
12m 

lineare L m i\ V ( i\. ER) in cui L m i\. =1 e i\. ~O per ogn i i =1,2, ... , m. 
i = 1 i i i l = 1 i l 

Se 5 é un s ott o i ns i e me d i W si dice ch i us ur a convessa di 5 l' intersez i -

one d i t ut ti i s ot t o ins iemi convess i di W contenenti S . 

5 i a c o n li {v ,v, , v } = {L m i\. v : i\. E!K · e L m i\ = 1 } . 
1 2 m 1=1 i i i O i=1 i 

Al l ora co nv{ v , 'I , . . . ,v} é l a chius ura convessa di {v,v , . .. ,v }. 
1 2m 12 m 
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TEOREMA ( J. Radon. 1921): 

Sia S un insieme di m~n+2 punti di ~n. Allora S ammette due sottoinsie­

mi disgiunti S e S le cui chiusure convesse hanno intersezione non 
t 2 

vuota. 

DIMOSTRAZIONE: 

Poichè ISI>n+1 l' insieme S è affinemente dipendente. Ciò significa che 

esiste una relazione non banale tra gli elementi di S in cui la , somma 

dei coefficienti sia zero. Definiamo S e S come i sottoinsiemi cos-
t 2 

t itui t i rispet t i vamente da quegl i elementi che nella combinazione line­

are hanno coefficiente positivo e negativo. Allora 

') S À u=') S /..l. v ove ') S À =') S /..l. • À • /..l. >0 eS. S ~0. '-'ue u 4..ye v '-'ue u 4..ye v u v t 2 
t 2 l 2 

Pertanto dividendo entrambi i membri dello equazione per ' la somma dei 

rispettivi coefficienti otteniamo un punto appartenente a 

conv(S )nconv(S ). 
l 2 

TEOREMA (E. Helly. 1923): 

Se C .C •.... C ç~n sono insiemi convessi tali che n+1 qualunque di essi 
12m 

hanno intersezione non vuota. allora l' intersezione di t ut t i quest i 

insiemi è non vuota. 

D I MOSTRAZ IONE: 

Supponiamo in primo luogo m=n+2. 

Sia a un punto di n C (i=l, ... ,m) e sia S={a , ... ,a}. 
i J~! J l m 

Ora S ha due sottoinsiemi disgiunti S e S le cui chiusure convesse 
l 2 

hanno intersezione non vuota. sia weconv(S )nconv(S ). 
l 2 

Dico che w appartiene a ciascun insieme C . 

Infatti, selezioniamo uno degli elementi i; l'elemento a appartiene ad 

al più uno degli insiemi S ,S . 
l 2 

Supponiamo che. per esempio. a ~S . Ora S çC poichè a eC per ogni i~j 
l l j 

quindi conv (S )çC e weC . 
1 i i 

Il caso generale segue ora per induzione su m. 

Per m~nTl non c 'è nulla da dimostrare. 

Ora assumiamo che m~n+3. Per il caso particolare appena dimostrato. n+2 

qual unque degl i insiemi C hanno intersezione non vuota. Ne segue che 

comunque pres i n+ 1 

sezione non vuota . 

degli insiemi C •...• C ,C i\C essi hanno inter-
I m-2 m-l m 

Ma allora per l'ipotesi induttiva l'intersezione di 

tutti questi insiemi è non vuota . 
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