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1. Comitati di calcolo della Citta dei Pari

Nella Citta dei Pari ci sono 32 abitanti. Essi hanno 1’abitudine di

formare comitati con le seguenti regole:

1. In ogni comitato c¢’'é un numero pari di membri.

2. I membri che sono in comune a due comitati distinti sono in numero
pari.

3. Non ci sono due comitati uguali.

Qual’e il massimo numero di comitati nella Citta dei Pari?

(Ci pu¢ essere anche il comitato vuoto tra i comitati, una sola volta.)

Il prossimo esempio mostra che ce ne sono moltissimi.

Per semplicita supponiamo che i 32 abitanti di questa citta siano



formati da 16 coppie sposate e che due coniugi appartengano agli stessi
comitati. Allora ogni comitato si pud rappresentare come una 1B6-upla a
coefficienti in {0,1} (il cosidetto "vettore d’incidenza" avente 1
nella j-esima posizione se e soltanto se la j-esima coppia appartiene
al comitato). Il numero di tali vettori e 218. In questa maniera

possiamo formare 2'® comitati nella Citta dei Pari soddisfacenti alle

richieste 1.,2.,3.

Nella Citta dei Dispari ci sono anche 32 abitanti, e si formano i

comitati con le seguenti modalita:

1. Ogni comitato ha un numero dispari di membri.

2. I membri che sono in comune a due comitati distinti sono in numero
pari.

In tal caso, la modifica e drammatica: a differenza della Citta dei

Pari, qui si possono formare solo 32 comitati.

ESEMPI

per il sistema dei comitati nella Citta dei Dispari:

1. Ogni comitato ha solo un membro.

2. Ogni comitato ha 31 membri.

3. Ricordiamo PG(2,5) (geometria proiettiva su GF(S)EZSL
Abbiamo 1’insieme GF(5)°\{(0,0,0)}.
Introduciamo in esso la relazione di equivalenza:
(xl,xz,x3)~(x;,xé,x;) ® (xl,xz,x3)=(hx;,Ax;,Ax;) per un certo
AeGF(5)\{0}.
Chiamiamo punti le classi di equivalenza di (GF(S)S\{(O,O,O)})/~.
Chiamiamo rette le classi di equivalenza di (GF(S)s\{(0,0,0)))/~.
(Dunque, rette e punti hanno la stessa rappresentazione.)
Allora il punto (xl,xz,x3) appartiene alla retta (ul,uz,ua) se e
soltanto se xlul—x2u2+x3u3=0. (Condizione di incidenza)
Quanti punti distinti abbiamo?
E subito visto che ci sono (53—1)/(5—1)=52?5f1=31 punti, e quindi
anche 31 rette.

Ora se (uw.uq,uﬂ) @ una retta, allora ci sono 5+1=6 punti distinti
-~ [ <

(x ,xﬁ,x3) che soddisfano la condizione d’incidenza con 1la retta

(u ,u ,u ), cioe x u +x u +x u =0.
1 3 T -



Aggiungiamo a PG(2,5) un punto immaginario Q, e postuliamo che tutte
le rette di PG(2,5) passino per Q.

Allora i membri della Citta dei Dispari siano i 31 punti di PG(2,5)
piu il punto Q.

I comitati invece siano tutte le rette di PG(2,5) considerate come

passanti anche per Q e PG(2,5) stesso.

TEOREMA (E. R. Berlekamp, 1969):

Nella Citta dei Dispari con n abitanti si possono formare al piu n
comitati.

DIMOSTRAZIONE:

Supponiamo che siano CI,CZ,...,C m comitati. Consideriamo i vettori di
m

incidenza vie(O,l}n dei comitati C_definiti cosi:
La j-esima coordinata di vl e 1 se il j-esimo abitante appartiene a C1
e O se il j-esimo abitante non appartiene a C{
Allora v.-vT=|C nC |.
i b i j
A causa delle regole della Citta dei Dispari risulta

pari se i#]

dispari se i=j.
In GF(2), cio si scrive
0 se i#]

L4 1 se i=j.
Facciamo ora vedere che vl,vz,...,vm sono linearmente indipendenti su
GF(2). Una volta provato cid, ne conseguira che m=n; infatti in GF(2)"
il massimo numero di vettori linearmente indipendenti e n.

Sia A1v1+A2v2+...+Amvm=O una combinazione lineare dei v, su GF(2).
Moltiplichiamo tutto per vI; Alvl-vI=O poiche vi-v:=0 se i#1.

Allo stesso modo, Ai=0 per tutti gli altri i. Dunque, i v,1 sono linear-
mente indipendenti.

a

2 DIMOSTRAZIONE:

Abbiamo bisogno un risultato dall’algebra lineare:

Siano A,B matrici su un campo arbitrario (moltiplicabili tra loro).
Allora rang(AB)=min{rang(A),rang(B)}.

Ora vediamo la dimostrazione. Siano vl,vz,...,vm le righe della matrice

mxn M d’incidenza. Mostriamo che le righe di M sono linearmente indi-



pendenti su GF(2), cioe rang(M)=m.
Consideriamo la matrice mxm A=MMT (a coefficienti in GF(Z)EZZ). Risulta
A=I perche

0 se i#]

1 se i=j.

Chiaro che rang(A)=rang( Im)=m.

Dunque applicando la disuguaglianza di rang
m=rang(A)=rang(MMT)Smin{rang(M),rang(MT))=rang(M)Sm,

quindi rang(M)=m.

TEOREMA (M. Szegedy, 1988):
n(n+2)/8

Sia n=2k. Allora esistono almeno 2 /(n!)2

soluzioni estremali
(con n comitati) non isomorfe del problema dei comitati della Citta dei

Dispari. D’altro canto il numero di soluzioni estremali & al piu
2
2" /nt.

DIMOSTRAZIONE:

Sia AcCE[2)°*,

A+I A
k

Associamo ad A la matrice nxn

A A+Ik
su GF(2).
Se A & simmetrica, cioe A=AT allora BBT=In, quindi B & una matrice di

incidenza della Citta dei Dispari. Il numero di matrici simmetriche kxk

su GF(2) &
(kﬁl) (n+2)/8
2 =2n n+ :

Permutare le righe di B equivale a ribattezzare 1 comitati, mentre

permutare le colonne equivale a ribattezzare gli abitanti. Allora le
. " . . n(n+2)/8 2

soluzioni non isomorfe sono in numero almeno 2 Zlnt Yy .

Per la limitazione superiore, poi & sufficiente notare che il numero di

comitati con n membri e al piu

n 2
{2 ]<2n /nl .
194



2. Famiglie di insiemi con intersezione prescritta

TEOREMA (disuguaglianza di R. A. Fischer):

Siano C1'C2""’Cm sottoinsiemi distinti dell’insieme {1,2,...,n}.
Supponiamo che per ogni i#j IClnCJI=A per un certo 1=A<n.

Allora m=n.

DIMOSTRAZIONE (K. N. Majumdar, 1853 - J. R. Isbell, 1959):

Prima supponiamo che esista un insieme C1 tale che ICII=A per un certo
i. Allora CiSCJ per ogni i#]j, inoltre
Cl\Cl,...,Ci_l\Ci,Ciﬂ\Ci,...,Cm\Ci
sono a due a due disgiunti. Quindi m=1+n-A=n.
Altrimenti, siano 7i=|Ci[-A. Ora 71,72,...,7m sono interi positivi.
Siano le righe della matrice mxn M i vettori d’incidenza degli insiemi
Cx' Allora A=MMT=AJm+C ove C=diag{71,72,...,7m} matrice diagonale.
Facciamo ora vedere che rang(A)=m, poiche in tal caso
m=rang(A)Smin{rang(M),rang(MT)}=rang(M)5n.
Notiamo che AJm ¢ una matrice semidefinita positiva e C e definita
positiva. Infatti

2

x(AJ )xT=A(x X 4. +x )T,
m 1 2 m

X2+ e X2

22 77 7m m

Allora anche A=AJ +C & una matrice definita positiva. Ora rang(A)=m,
m

-
x(C)x =71xf+7

inoltre c¢’é una soluzione non banale X, dell’equazione lineare AxT=O.
Con questo xo, xOAx;=O contraddizione.
2® DIMOSTRAZIONE:

Supponiamo che y >0, altrimenti la dimostrazione & la stessa del primo
1

caso della precedente.
Siano vl,vz,...,v i vettori d’incidenza di CI,CZ,...,C rispettivamen-
m m
te. Facciamo ora vedere che vl,vz,...,v sono linearmente indipendenti.
m

Ovviamente risulta

A se 1#j
- )
v orv o=
i j 2 en
A+y se 1=]j.
1
Sia & v1+a2v2+...+a v =0 una combinazione lineare dei vettori v . Mol-
m m b

tiplichiamo per v
J

AB+a y =0 ove B=Zﬁna_, cicé a =-BA/7 .
i i=1 i j j

Se B3=0, allora tutti gli « sono O.
J



Se B=0, allora B=Z;:aj=-BAZJ:}/7J contraddizione, perché i segni dei

due membri sono diversi.

Siano X un insieme di n elementi e F una famiglia di sottoinsiemi di X.
Sia, poi L un insieme di s interi non negativi. Chiamiamo # una fa-
miglia L-intersecante se |AnB|eL per ogni coppia di elementi distinti

A,B di 7.

TEOREMA (P. Frankl - R. M. Wilson, 1981):
Siano L un insieme di s interi non negativi e ¥ una famiglia L-interse-

cante di sottoinsiemi di un insieme di n elementi. Allora

n n n
) sn ) )
DIMOSTRAZIONE (N. Alon - L. Babai, 1988):

Questo risultato & il migliore possibile in termini dei parametri n e s

come mostrato dalla famiglia di tutti 1 sottoinsiemi di cardinalita =s
di un insieme di n elementi.

Per semplicita supponiamo che L=(11,l
A ,...,Am} ove AiSX e IA115|A2|5...51A

2
Consideriamo i vettori d’incidenza vie{O,l}n degli insiemi A{

yomssd Pe Kot 18w, . g0k @ F={A
2 s 1
.
m
T

Allora v v =|A nA |

i L ] 1, j
Ora consideriamo le funzioni polinomiali

£40, "> R, £ 00=TT] 1, I(leT—lk).
k i

Osserviamo che

#0 se i=]j
£ (v)
¥ =0 se i>j.

Facciamo ora vedere che 1 polinomi f1’f2""‘f sono linearmente indi-
m
pendenti. Consideriamo la combinazione lineare
AT +A T +...+A £ =0.
11 22 m m
Prima valutiamo la combinazione nel punto Vf
AL (v I)+A £ (v )+, .. +A £ (v )=Af (v )=0, quindi A =0.
S 2 2" 1 mom 1 s i
In secondo luogo valutiamo la combinazione nel punto !
AL (v II+A £ (v )+ . .+a £ (v )=A £ (v )+a f (v_)=0.
L1 2 22 m m 1717 2" ae

2 2 2
Poiche A =0, quindi A f (v_)=0. Ora A_f (v _)=0, cioe A _=0.
1 11 2 28" 2

Infine valutiamo la combinazione nel punto v :
m



Af (v I)+A £ (v )+...+A f (v )=0.
11 m 22 m m m m
Poiche A =A =...=A =0 quindi A f (v )=0, otteniamo anche A =0.
1 2 m~1 m m m m
D’altro canto x =x_ per ogni 1=i=n, quindi il numero dei polinomi f,1
1 1

non & maggiore della dimensione dello spazio dei polinomi multilineari
di grado =s, tale spazio & generato dai prodotti di un numero =s di va-

riabili distinti, cioe
s n
msZL:o[k]’

TEOREMA (B. Bollobas, 13965):
Siano A ,A,...,A insiemi di cardinalita r e B ,B,...,B insiemi di
1 2 m 1 2 m
cardinalita s. Supponiamo che
L AinBi=® per ogni 1l=i=m.
2. AlnBJ¢@ per ogni 1=i, j=m, i#]j.
Allora
- [1"] .
s
DIMOSTRAZIONE:

Per semplicita supponiamo che Alquu...uA uBluBzu...uB ={1,2,...,n} per
m m

un certo n intero positivo.

Associamo a ciascun ve{1l,...,n} il vettore p(v)=(po(v),p1(v),...,pr(v))
eRr*l in modo tale che 1’insieme dei vettori ottenuti sia in posizione
generica, cioé r+l1 di essi siano sempre linearmente indipendenti (cfr.
7).

Ora ad ogni insieme W<{1,2,...,n} associamo un polinomio fw(X) nelle
r+1 variabili (xo,xl,...,xr) nel modo seguente

fw(x)=TT;ew(pO(v)xo+pl(v)x1+...+pr(v)xr).

E subito visto che

#0 se x non e ortogonale a nessuno dei p(v) per veW

fw(x)
=0 altrimenti.

Sia fi(x)=18l(x).
1
Allora f (x) & un polinomio omogeneo di grado s in r+1 variabili.
]

I vettori corrispondenti agli elementi di A generano un sottospazio di
j
dimensione r; sia a un vettore non nullo, ortogonale a questo sotto-
j
spazio. Poiché i vettori p(v) sono in posizione generica, aJLp(v) se e

soltanto se veA . Quindi f (a )=0 se e solo se A NB =0, cioe
j L §



20 se i=j
fi(a )
] =0 se i#j.

Ora i polinomi f1 sono linearmente indipendenti. Infatti, consideriamo
la combinazione lineare
AT +AF #, ..+ £ =0.
11 282 m m
Valutiamo la combinazione nel punto ar
Af (a)+A f (a)+...+A f (a )=A f (a )=0, cioe A =0 per ogni 1=j=m.
1 1( J) 2 2( J) mm 33 J 3 & 4
Quindi il numero di questi polinomi non & maggiore della dimensione

dello spazio dei polinomi omogenei di grado s in r+l1 variabili, cioce

[(r+1)+s—1]_[r+s}
m= = .
S S

3. La colorazione di un grafo

Un grafo G & costituito da una coppia ordinata (V,E) dove V. .é& .un-insi-
eme finito di elementi chiamati vertici e E & un insieme finito di
spigoli. Uno spigolo & una coppia non ordinata di due vertici.

Un grafo si dice completo se due qualsiasi vertici sono collegati da

uno spigolo.

TEOREMA (P. Erddés - Gy. Szekeres, 18935):

Comunque coloriamo gli spigoli di un grafo completo su (5:1%) vertici
con i colori rosso e blu, esistera un sottografo completo su s vertici
con tutti gli spigoli di colore rosso, oppure esistera un sottografo

completo su t vertici con tutti gli spigoli di colore blu.

TEOREMA (2Zs. Nagy, 1972):

. _|E
Sia v—[3}.

Allora si possono colorare gli spigoli di un grafo G completo su v ver-
tici con due colori in modo tale che G non contenga un grafo completo
monocromatico su t vertici.

DIMOSTRAZIONE:

Associamo ai vertici di G i sottoinsiemi di cardinalita 3 di {1,...,t}.

Coloriamo uno spigolo di rosso se le due terne che rappresentano 1 suoi



vertici hanno un unico elemento comune, e di blu altrimenti.

Supponiamo di avere un grafo completo monocromatico su m vertici.

Se questo grafo e rosso, allora applicando la disuguaglianza di Fischer
risulta m=t.

Se questo grafo & blu, allora applicando il teorema della Citta dei

Dispari risulta m=t di nuovo.

4. Quanti grafi bipartiti completi si devono mettere assieme per

ottenere un grafo completo?

Un grafo H=(V,E) dicesi bipartito se esiste una partizione dei vertici
in due insiemi disgiunti X e Y tale che i vertici in ciascuno dei due
insiemi non sono collegati fra loro da spigoli.

Se |X|=n e |Y|=m allora il massimo numero di spigoli di H & nm. Se il
numero di spigoli di H é& massimo, cioé nm allora H dicesi grafo bipar-

tito completo.

TEOREMA (R. L. Graham - H. O. Pollak, 18972):

Sia 1’insieme degli spigoli di un grafo completo su n vertici 1’unione
disgiunta degli insiemi degli spigoli di m grafi bipartiti completi.
Allora mzn-1.

DIMOSTRAZIONE:

Sia {1,2,...,n} 1l’insieme dei vertici del grafo completo. Supponiamo

che questo grafo sia 1’unione disgiunta dei grafi bipartiti completi

B,B,...,B. Sia V(B )=(X,Y) ove X e Y sono le due parti dell’in-
1’72 m k k' k K k
sieme dei vertici del grafo bipartito Bk. Ovviamente Xk e Yk sono
sottoinsiemi disgiunti di {1,2,...,n}.
Consideriamo le matrici nxn Al’Az""'A associate ail grafi 81’82"’”
m
B ove
m
1 se ieX e je¥Y
(k) Kk k
a =
- 0 altrimenti.
Chiaro che rang(A )=1 per ogni k=1,2,...,m.
X
Sia 5=y " A .
%=1 k
Allora per ogni i#j s =1 e s =0 oppure s =0 e s =1.
1) Ji 1) J1

e o
Qundi S-S =J -1
n n



Facciamo ora vedere che rang(S)zn-1. Se per assurdo fosse rang(S)=n-2,

allora esisterebbe una soluzione non banale x=(x1,x2,...,x ) del siste-
n

ma di equazioni lineari
T n
Sx =0 , } ~ x =0.
BT
. i i T
Poiche J x =0, segue S x =-X .
n

T T .
) =xSx =0 contraddizione.

Allora -lIxii%=xS x =(xS x
D’altro canto, dalla subadditivita della funzione di rango

n—lsrang(S)srang(Al)+rang(A2)+...+rang(Am)=m.

Notiamo che n-1 grafi bipartiti completi sono sufficienti. Infatti

siano X1={i} e Yi={i+1,i+2,...,n} (i=1,2,4«.,0~1),

5. La bellezza e rara

Un cammino C in un grafo G € una sequenza di spigoli,(vo,vi),(vl,vz),‘

ve.nkv v ) con v,:vJ per O0=i, j=n, i#j. Diremo che C connette il ver-
n n 1

~1

tice iniziale v, con il vertice finale v e passa attraverso i vertici
n

L'

g io e SN 3
1 fi=1

Un ciclo & un cammino chiuso, ciocé un cammino in cui il vertice inizia-
le e quello finale coincidono. Un ciclo si dice hamiltoniano se passa
attraverso ogni vertice del grafo G esattamente una volta.

I1 grado di un vertice v e il numero di spigoli che incidono v. Denote-
remo con deg(v) il grado di un vertice v.

Un grafo G é regolare se ogni vertice ha lo stesso grado.

Cinque e un numero magico, cosi consideriamo grafi regolari in cui la
lunghezza del ciclo minimo & cinque. Qual’e il minimo numero possibile
di vertici che un tale grafo pud avere se il grado di ciascun vertice &
R

Prendiamo un vertice u. Esso ha r vertici vicini. Ciascuno di questi ha
altri r-1 vertiei vieini. Cosi fino ad ora ci sono 1+r+r(r—1)=r2+1 ver-
tici. Devono essere tutti distinti perché altrimenti c¢i sarebbe un
ciclo di lunghezza =4.

E naturale chiedere: Abbiamo bisogno di altri vertici?

10



2. r=3, r°+1=10.

Grafo di Petersen.

o - - At <

3. r=7, r°+1=50.
Situazione complicata.

Non conosciamo altri esempi!

TEOREMA (A. J. Hoffman - R. R. Singleton, 1880):

Sia G un grafo r-regolare con r2+1 vertici. Supponiamo che la lunghezza
del ciclo minimo di G sia cinque. Allora re{2,3,7,57}.

DIMOSTRAZIONE:

Siano u,v vertici distinti di G. Prima calcoliamo il numero di vicini

comuni di u e v.

Se u e v sono adiacenti questo numero e O.

Se u e v non sono adiacenti, allora dal fatto che abbiamo provato che G
5 2 ;

deve avere almeno r +1 vertici, constatiamo anche che u e v devono ave-
re precisamente un vertice vicino in comune.

Ora sia n=r +1 e consideriamo la matrice nxn A di adiacenza di G;

! se i e j sono adiacentli

& 0 se 1 e J non sono adiacenti
T ) )
E subito visto che A=A e diag(A)=(0,0,...,0).

T . 2 . . C .
Consideriamo la matrice B=A". Allora b e uguale al numero di vicini
1]



comuni ai vertici i,j. Inoltre b =deg(i).
11

Sia A la matrice di adiacenza del grafo complementare di G (il grafo
complementare G'=(V’',E’) di G=(V,E) & cosi definito: V’'=V e E’'={((u,v):
u, veV, (u,v)eE}).
Abbiamo J =I +A+A.

n n
I1 numero di vicini comuni di due vertici e 0O se sono adiacenti e 1
altrimenti, quindi A2=r1n+K.
Allora A%+A-(r-1)I =J5

n
La matrice A & simmetrica, quindi dall’algebra lineare sappiamoc che
esiste una base ortogonale formata da autovettori di A.
Sia f=(1,1,..:,1).
Il grafo G e r-regolare, quindi AfT=rfT cioé f €& un autovettore con
autovalore r. Avendo fissato f, noi possiamo ora considerare i vettori
T
e ortogonali a f, cioe fe =0. Allora sara anche J eT=O.
n
—_ T T
Sia e un autovettore, cioé Ae =Ae per un certo AceR. Allora
AzeT+AeT-(r—1)IneT=O.
A%eT+ae - (r-1)e ' =0.
i
(A%+a-(r-1))e ' =0.
AZ+A-(r-1)=0.
A =l(-1iv4r—3).
1,2 2
Siano m e m, le molteplicita di Al e AZ rispettivamente. La somma
delle molteplicita & n, quindi non dimenticando 1’autovettore f, si ha
1+m_+m =n=r2+1.
1 "2
D’altro canto la somma degli autovalori e uguale alla traccia di A cioé
r+m A _+m A _=0.
171 22
Quindi, sostituendo 2r—(m1+m2)+(m1—m2)s=0 ove s=V4r-3.
2r-r+(m -m_)s=0.
12

4r-3 é intero positivo, quindi s & intero positivo oppure s é irrazio-
nale.
Se s e irrazionale, allora m‘—m2=0 e 2r—r2=0, quindi r=2 perche r=0.
Altrimenti s ¢& intero positivo e r=(s°+3)/4. Ora
54—252—16(m1—m2)s—15=0.
Se s & una radice di questo polinomio, allora e subito visto che s|15.
Quindi s=1,3,5, 15.
Allora si ha r=(s°+3)/4=1,3,7,57.

Poiché rz2, i possibili valori per r sono 2,3,7,57.



6. Insieme di punti in R" con due sole distanze

Siano al,az,...,am punti distinti dello spazio euclideo di dimensione
n. Se le distanze di una qualsiasi coppia degli a sono tutte uguali,
allora chiaramente m=n+1, essendo il caso estremo 1l’insieme di vertici
di un simplesso regolare.

Assumiamo ora che le distanze a coppia tra gli ai prendano solo due va-
lori. Un tale insieme si chiama un insieme a due distanze.

Qual’é il massimo numero di punti in un insieme a due distanze in R"?

Denotiamo con m(n) questo massimo.

TEOREMA (D. G. Larman - C. A. Rogers - J. J. Seidel, 1977):
n(n+1)/2=m(n)=(n+1)(n+4)/2.
(Notiamo che queste due limitazioni sono asintoticamente uguali (n-w).)

DIMOSTRAZIONE:

Siano 51 e 62 le due distanze distinte.

Usando la notazione
2,1/2

Hxﬂ=(§;=1xk)

per la norma euclidea di xeR", la distanza tra due punti x,yeRn e
%=yl .
E naturale considerare il polinomio
F(x,y)=(I x-yuz—af) i x—yllz—éz)
in 2n variabili reali. Risulta
0 se i#]

22 £ Lo
8 3 #0 se 1i#]j.
12

Fla ,a i=
i
Consideriamo ora i polinomi f (x)=F(x,a ) di n variabili xeR"
o 1
Prima facciamo vedere che i polinomi ff...,f sono linearmente indi-
m
pendenti su R. Sia
Alfl+A2f2+...+A f =0 una combinazione lineare dei polinomi f su R.
m m 1
Valutiamo la combinazione nel punto ar
Af (a)+x f (a)+...+a f (a )=A f (a )=0, cioé A =0 per ogni 1=j=m.
11 3 22 mom ] g3 3 j
D’altro canto ogni polinomio f appartiene al sottospazio vettoriale
1
generato dal polinomi
A 242 n_2 P
p g X )%, ; s 100 =i, j=n).
(2;=l<kJ (Zk:lxk)xj XX 0 X (1=i, j=n)
Il numero di questi polinomi e

l+n+n(n+1)/2+n+1=(n+1)(n+4)/2,

13



quindi il numero di polinomi fx""’fm é al piu (n+1)(n+4)/2.

Ora vediamo la dimostrazione della limitazione inferiore.

Consideriamo 1 vettori d’incidenza di tutti 1 2-sottoinsiemi di un
insieme di n+l1 elementi. Essi formano un insieme a due distanze di car-
dinalita ("2')=n(n+1)/2 in R™'. (Le due distanze sono VZ e 2.)

Ora questo insieme e sull’iperpiano definito dall’equazione X?:ixl=2 =

z . . . . n
percid pud essere riguardato come un sottoinsieme di R.

La sfera unitaria di dimensione n-1 & definita come 1’ insieme

n-1

S" T ={xeR™: lxl=1}.

Un insieme a due distanze sferico € un sottoinsieme a due distanze di

n-1 3 P . % 5 s . .
S . Denotiamo con m (n) il massimo numero di punti di un tale insie-
=1

me.

TEOREMA (P. Delsarte - J. M. Goethals - J. J. Seidel, 1877):
n(n+1)/25ms(n)5n(n+3)/2.
DIMOSTRAZIONE:

Consideriamo ancora i polinomi fizswq—e R, fi(x)=F(x,aiL

Questi polinomi rimarranno linearmente indipendenti. Ora

n_2 2] -1 2
Zxx=1ex=1— X,

=1 k n =1 k
quindi ogni polinomio f appartiene al sottospazio vettoriale generato

1
dai polinomi
X% (1=i<j=n) %% (1=i=n-1) , x, (1si=n) , 1.
1

I1 numero di questi polinomi e
n(n-1)/2+(n-1)+n+1=n(n+3)/2.
Ora vediamo la limitazione inferiore.
Chiaramente non importa il raggio della sfera. Procediamo come nel teo-

rema precedente notando che 1’intersezione di una sfera con un iperpia-

no & una sfera di dimensione piu bassa.

COROLLARIO:
Siano Al’Az""’A sottoinsiemi distinti di {(1,2,...,n}. Assumiamo che
m
le loro differenze simmetriche a coppie A AA =(ANA JU(A \A ) abbiano
1 J 1 J ) 1

soltanto due possibili distinti valori per la cardinalita.

Allora m=n(n+3)/2.

14



DIMOSTRAZIONE:

Rappresentiamo ogni insieme A per mezzo del suo (-1,1) vettore d’inci-
1

denza L (mettere al posto degli zeri dei -1 nella definizione usuale
di vettori d’incidenza).

Tutti questi vettori appartengono ora alla sfera di raggio vn in R".
D’altro canto 4IA1AAJI=Hvi—vJH2, quindi {vl,vz,...,vm) @ un insieme a
due distanze sferico, cioé

m=n(n+3)/2.

PROPOSIZIONE:
m=1+n(n+1)/2.
DIMOSTRAZIONE:

Consideriamo ancora i polinomi fi:(—l,l}n—e R. Questi polinomi di nuovo

sono linearmente indipendenti e appartengono al sottospazio vettoriale
generato dai polinomi

xixj (1=i<j=n) , X, (1=i=n) , 1

perche ora x?=1 per ogni i=1,2,...,n.

Il numero di questi polinomi e

n(n-1)/2+n+1=1+n(n+1)/2,

quindi m=1+n(n+1)/2.

7. Punti in posizione generica. La curva dei momenti

Sia W uno spazio vettoriale di dimensione n. Si dice che ScSW e in posi-
zione generica se, comunque presi n elementi di S, questi risultano
linearmente indipendenti.

Sia F un campo arbitrario. Allora l’insieme

M={m (a)=(1,a,a2,...,an_1): aceF}

n n
si dice la curva dei momenti.

LEMMA

I punti della curva del momenti sono in posizione generica.

DIMOSTRAZIONE:

Siano al,a7 ,,,,, a €F a due a dus distinti. Ora consideriamo il deter-

minante

15



det(m (« )T,m (o JT,...,m (« )T).

n 1 n 2 n n
Questo determinante & un determinante di Vandermonde, il cui valore &

1T _ (a —a )=0.
1=2i<j=n J i

Quindi le colonne sono linearmente indipendenti.

TEOREMA:
Siano d=1, 0=k=d/2 e al,az,...,akeﬁ numeri distinti. Allora esiste un

iperpiano pcr?*? tale che tutti i1 punti della curva dei momenti Md1g
+
d+1

R sono nello stesso semispazio chiuso delimitato da P e inoltre sol-
tanto i punti md+1(a1),...,md+1(ak) appartengono a P.
DIMOSTRAZIONE:

L’ iperpiano P sara definito dall’equazione lineare omogenea cx' =0 per
un certo ceR%TN\{0}. Vogliamo scegliere il vettore c in modo tale che
valgano le relazioni

1. cm(&)T>O se EER\{al,az,...,ak},

2 cm(&)T=O se Ee{al,az,...,ak}. S Al B
Consideriamo il polinomio

£(8)=TT, - (&-a ).

Siano 7, i coefficienti del polinomio f2(€), cioe

f2(6)=70+y15+...+7d6d (2k=d).

Posto c=(7o,yl,...,7d) abbiamo cm(S)T=f2(§) per ogni £<R e quindi 1. e

2. seguono banalmente.

COROLLARIO:

Siano 1=d=n-1 e O0=k=d/2. Allora esiste una matrice AeR™ %"

con la
proprieta seguente.
Le righe di A sono in posizione generica (cioé comunque prese d+1 righe

di A queste sono linearmente indipendenti) e inoltre per ogni I<{1,...,

3 : : d+1 T
ny con |I|=k esiste un vettore c appartenente a R tale che cA =(f3
1
BD,...,B ) ove B =0 se i€l e B >0 se izl.
< n 1 1

DIMOSTRAZIONE:
Siano le righe di Am (x),...,m (a) con «,x,...,x numeri reali

d+1 1 d+1 n 1 2 n
distinti, e sia ¢ il vettore normale dell’iperpiano corrispondente
all’ insieme {m4 l(a_): iel} secondo il teorema precedente.

ad+ 1



8. Distribuzione di punti sulla sfera

i3 5 I r+1 s < % o

L’insieme S ={xeR : lIxll=1} si dice una r-sfera. Possiamo definire una
. £ B 52 " r T

semisfera aperta di S come 1’insieme {xeS : ax >0} per un certo ae

r+l

B sAQF.

TEOREMA (D. Gale, 18586):

Per ogni m,rzl1 possiamo distribuire 2m+r punti sulla sfera s” in modo
tale che ogni semisfera aperta ne contenga almeno m.

DIMOSTRAZIONE:

Se m=1 allora consideriamo i vertici di un simplesso regolare di dimen-

sione r+1 inscritto in S".

Ora supponiamo che m=2.

Per semplicita siano n=2m+r e d=2m-2.

Consideriamo la matrice nx(d+1) A ottenuta dal corollario precedente.
Allora il rango per colonne di A & massimo. ]

Sia U il sottospazio generato dalle colonne di A.

Sia B una matrice nx(n-d-1) le cui colonne formino una base per lo
spazio ortogonale Ul. Siano vl,vz,...,vn i vettori riga di B. Ora
n-d-1=r+1, cioé ciascun vettore ¥, ha r+1 componenti.

Poiche il rango per colonne di B & massimo, risulta BxTzo per ogni xe
R"*'\{0}. Dimostriamo che ciascun vettore Bx ' (xeR™"™\{0}) ha almeno m
componenti positive. Quindi i wvettori v1/”v1”’v2/”v2“""’vn/”le sod-
disfano l’enunciato del teorema.

Supponiamo per assurdo che BxT=zT=(C1,C2,...,Cn)T abbia al piu m-1 co-
efficienti positivi. Sia I<{1,2,...,n} l’insieme degli indici corris-
pondenti alle posizioni di questi coefficienti. Allora k:=|I|=m-1=d/2 e

inoltre

S il vettore costruito come nel corollario precedente a parti-
re da I. Ora sia b=(61,82,...,8 )=cA'. Allora
n
1. B =0 se iel,
1

2. B >0 se iegl.
1
Poiche le colonne di A sono ortogonali alle colonne di B risulta A' B=0.

Pertanto sz=cATBxT=O.
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D’altro canto bz —erIB C Z1e1

Tutti gli addendi della prima somma sono zero poiche 31=O; nella secon-
da ciascun addendo e il prodotto di 81>O per clso, quindi ne segue ne-

cessariamente C1=O per igl.

AT T-A Bx =0, cioé la combinazione lineare delle k righe di A con co-

efficienti Cl (iel) & zero. Ma le righe di A sono in posizione generica
e k=m-1=d/2<d+1, quindi z=0, contraddizione.

9. Convessita

Sia W uno spazio vettoriale su R.

Una. combinazione affine dei vettori vl,v?...,vmew e una combinazione
lineare lelkivi (A €R) in cui Zl AL )

Sia aff(vl,vz,... ,vm)—{E¥=1A1vi: AIGR, Ei=1kl=1}.

I vettori vl,vz,...,vm si dicono affinemente indipendenti se per_ogni
scelta di scalari A,...,A €R tali che 21:1A1v1=0 e zlrleo risulta
necessariamente A1=A2=...=Am=0.

E subito visto che

1. I vettori vl,vz,...,vmew sono linearmente indipendenti se e solo se
i vettori O,vl,vz,...,vm sono affinemente indipendenti.

2. I vettori vl,vz,...,vmew sono affinemente indipendenti se e solo se
i vettori v —vl,...,vm—vlew sono linearmente indipendenti.

Un sistema di riferimento affine di un sottospazio affine U & un insie-
me affinemente indipendente S tale che aff(S)=U.
Allora ogni sistema di riferimento affine del sottospazio affine U é&

costituita da 1+dim(U) elementi.

Una combinazione convessa dei vettori vl,vz,...,vmew e una combinazione
lineare 21:A1v1 (AiER) in eui ZiLﬁ&:l e AXEO per ogni i=1,2,...,m.
Se S & un sottoinsieme di W si dice chiusura convessa di S 1’intersezi-
one di tutti i sottoinsiemi convessi di W contenenti S.
Sia conv{v ,v_, ...,V }={Zﬁnk,v4: ~R e Z —1}.

1 2 m 1=l 1 i

Allora canv{vl,vz,...,v }oe la chlusura convessa di {V1’V2""'v >
m m
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TEOREMA (J. Radon, 1821):

Sia S un insieme di mzn+2 punti di R". Allora S ammette due sottoinsie-
mi disgiunti S1 e 52 le cui chiusure convesse hanno intersezione non

vuota.

DIMOSTRAZIONE:

Poiche |[S|>n+i 1’'insieme S e affinemente dipendente. Cid significa che

esiste una relazione non banale tra gli elementi di S in cui la somma
dei coefficienti sia zero. Definiamo S1 e 52 come 1 sottoinsiemi cos-
tituiti rispettivamente da quegli elementi che nella combinazione line-
are hanno coefficiente positivo e negativo. Allora

Z;eslkuu=2;eszuvv L z;esllu=2;eszuv ’ Au’“v>0 - Sl’szxg'

Pertanto dividendo entrambi i membri dell’equazione per la somma dei
rispettivi coefficienti otteniamo un punto appartenente a

conv(Sl)nconv(Szl

TEOREMA (E. Helly, 1923): = LTy N

n . . . . . . .

Se C1’C2""'C SR sono insiemi convessi tali che n+1 qualunque di essi
m

hanno intersezione non vuota, allora 1’intersezione di tutti questi

insiemi € non vuota.

DIMOSTRAZIONE:

Supponiamo in primo luogo m=n+2.
Sia a un punto di n_ C (i=1,...,m) e sia S={a_,...,a }.

i JFL 1 m
Ora S ha due sottoinsiemi disgiunti S1 e 52 le cui chiusure convesse
hanno intersezione non vuota, sia weconv(Sl)nconv(Sz).
Dico che w appartiene a ciascun insieme Ci. 3
Infatti, selezioniamo uno degli elementi i; 1’elemento a appartiene ad
al piu uno degli insiemi S1’Sz
Supponiamo che, per esempio, aiéSI. Ora Slsci poiche ajeC‘1 per ogni i#]j
quindi c:mv(Sl)EC‘1 e weC{
Il caso generale segue ora per induzione su m.
Per m=n+1 non c’e nulla da dimostrare.
Ora assumiamo che m=zn+3. Per 1l caso particolare appena dimostrato, n+2
qualungue degli insiemi C hanno intersezione non vuota. Ne segue che

1

comungue presi n+l degli insiemi Cf...,C ,»C _nC essi hanno inter-
m—c m=1 m
sezione non vuota. Ma allora per 1’ ipotesi induttiva 1’intersezione di

tutti questi insiemi e non vuota.
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