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Matchings

In this lecture we are going to talk about matching problems. Matching problems arise in
numerous applications. For example, dating services want to pair up compatible couples.
Interns need to be matched to hospital residency programs. Other assignment problems
involving resource allocation arise frequently, including balancing the traffic load among
servers on the Internet. In the simplest form of a matching problem, you are given a graph
where the edges represent compatibility and the goal is to create the maximum number
of compatible pairs.

Definition. Given a graph G = (V,E), a matching is a subgraph of G where every node
has degree 1. In particular, the matching consists of edges that do not share nodes.

v1 v2
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v4v7
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In this graph, {{v1, v6}, {v2, v5}} is a matching of size two. But there is a larger
matching – namely, {{v1, v8}, {v2, v6}, {v4, v5}} is a matching of size three. Can there be
a larger matching? Well, that would mean that every node is paired. But each of v7
and v8 can only be paired with v1, and v1 can only be paired with one other node in a
matching. So, the answer is no!

Let’s now define a matching that includes every node:

Definition. A matching of a graph G = (V,E) is perfect if it has |V |/2 edges.

There is no perfect matching for the previous graph. Matching problems often arise
in the context of the bipartite graphs – for example, the scenario where you want to pair
boys with girls.
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For example, the above graph has a perfect matching, namely {{b1, g2}, {b2, g3},
{b3, g1}, {b4, g4}}.

In many applications, not all matchings are equally desirable. For example, maybe b1
and g2 like each other a lot more than b1 and g1. Often, we can represent the desirability
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of a matching with a weight on the edge. For example b1 and g2 get weight 5 while b1 and
g1 get weight 10. The goal then is to find a perfect matching with minimum weight.

Definition. The weight of matching M is the sum of the weights on the edges in M .
A minimum weight matching for a graph G is a perfect matching for G with minimum
weight (if it exists).

For example, a minimum weight matching for the following graph is 20 (Bob gets
matched with Alice, and Brad with Angeline).

Bob

Brad

Alice

Angelina10
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10

It turns out that there are fast algorithms for finding maximum matchings in un-
weighted graphs and minimum weight matchings in weighted graphs, but they are com-
plicated and we don’t cover them in this course (in particular, the greedy algorithm
doesn’t work in general).

Stable Marriage

Instead, we are going to talk about a different variant of the matching problem that does
have an elegant solution and that is frequently used in practice. In this version of the
problem, every node has a preference order of the possible mates. The preferences don’t
have to be symmetric. For example, maybe Alice really likes Brad but Brad has the hots
for Angelina. Suppose Angelina also likes Brad more than Bob but that Bob really likes
Angelina.

Bob

Brad
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Angelina11
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In the above figure, suppose we were to pair Brad with Alice and Bob with Angelina.
Well, that would lead to a very dicey situation! Suffice it to say that pretty soon, Brad and
Angelina are likely to start spending late nights doing discrete mathematics homework
together. The main problem is that Brad and Angelina each prefer each other to their
mates in the matching. In such a circumstance we say that Brad and Angelina form a
rogue couple. More precisely, we’ll say that given a matching M , boy b and girl g are a
rogue couple for M if b and g prefer each other to their mates in M .

Obviously, the existence of rogue couples is not a good thing if you are making match-
ings, since they lead to instability. So, we’ll say that a matching is stable if there are no
rogue couples.

We are going to assume that preferences do not change with time. So we are not
modeling the situation where you get tired. Preferences are known at the start and never
change.

Our main goal is to find a perfect matching that is stable. In this example, a possible
stable perfect matching is to pair Brad with Angelina, and Bob with Alice. Bob and
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Alice may not be so happy, but no rogue couple is possible and so it is a stable matching.
That’s because neither Brad nor Angelina like anyone better than each other, so even
though Alice and Bob are not happy with each other, no one else will form a rogue couple
with either of them.

In general, it isn’t so clear that there is always a stable matching for any number of
people and set of preference orders. In fact, if you allow boys to prefer boys and girls to
prefer girls, then there are examples where there is no stable matching. But the strange
thing is that in the special case where boys only get pairs with girls, then you can always
find a stable matching.

We’re going to show how to find such a stable matching shortly. But first, let’s look
at a unisex example where a stable matching is not possible. The idea is to create a love
triangle with a fourth person who is everyone’s last choice:

1
2 1

2 1

2

Brian

Bill

Bob Brad

3

3 3

It turns out the fourth person’s preferences don’t even matter. Let’s see why there is
no stable matching. We’ll prove this by contradiction. Assume, for contradiction, that
there is a stable matching. Then there are two members of the love triangle that are
matched. Without loss of generality, (by symmetry) assume that Bill is matched to Bob.
Then the other pair must be Brad matched with Brian. But then there is a rogue couple
since Bill likes Brad best and Brad prefers Bill to Brian. So, Bill and Brad form a rogue
couple. Thus, there cannot be a stable matching.

This proposition is not very surprising. Getting a stable matching is a hard thing to
do. What is surprising is that you can always do it in bipartite graphs – that is, where
boys are only allowed to pair with girls and vice versa.

Let’s formalize the statement of the problem that we are discussing here.

The setting:

� There are n boys and n girls. We assume the number of boys and girls is the same.

� Each boy has his own ranked preference list of girls.

� Each girl has her own ranked preference list of boys.

� The lists are complete and have no ties. Each boy ranks every girl and vice versa.

The goal:

Pair each boy with a unique girl so that there are no rogue couples. That is, find a perfect
matching so that every boy and girl are paired up one to one, with no potential funny
business.
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Let’s see if we can figure out a method for finding a stable matching by looking at an
example:

b1 → (g3, g2, g5, g1, g4)

b2 → (g1, g2, g5, g3, g4)

b3 → (g4, g3, g2, g1, g5)

b4 → (g1, g3, g4, g2, g5)

b5 → (g1, g2, g4, g5, g3)

g1 → (b3, b5, b2, b1, b4)

g2 → (b5, b2, b1, b4, b3)

g3 → (b4, b3, b5, b1, b2)

g4 → (b1, b2, b3, b4, b5)

g5 → (b2, b3, b4, b1, b5)

Let’s try to use a greedy algorithm to find the matching. In this case, the greedy
algorithm will have each boy pick his favorite girl that remains by the time his turn
comes up.

Running the greedy algorithm on our example, boy b1 picks his favorite, which is g3,
boy b2 picks his favorite, which is g1, boy b3 picks his favorite, which is g4, boy b4 picks his
favorite remaining girl, which is g2 (since his top 3 choices are already taken), and finally,
boy b5 picks his favorite remaining girl (which at this point, is the only remaining girl),
which is g5.

Let’s see – is there a rogue couple? Well, boys b1, b2, and b3 are matched up with
the loves of their lives, so they are too happy to be thinking of running off. However,
boy b4 is not so happy with g2, who is his fourth choice. He approaches g1, but she isn’t
interested in him, since she prefers boy b2 – in fact, she ranked b4 last so she wouldn’t be
caught dead in an affair with him. However, he runs into his love of his life, that is g3,
and she definitely prefers him to b1, who is way down on her list. So we have a situation
here. Both b4 and g3 prefer each other to their own mates. We could try to patch things
up and pair b4 with g3 and then g2 with b1, but it’s not clear that we would reduce the
number of rogue couples. It happens that in this case pairing up b4 and g3 is an ok thing
to do. But, this is getting more and more complicated.

How about using an algorithm that is based on induction (or recursion)? Pair boy b1
with girl g3 and solve the rest by induction. By the induction hypothesis, the only rogue
couples would involve b1 or g3. But, they can’t involve b1, since he got his first choice.
On the other hand, they might well involve g3 since b1 might be her last but one choice!
Induction would work if there were some boy and some girl who each ranked the other
first. If there were such a boy and girl, then they have to get paired to each other, or they
would be a rogue couple. But, there might not be such a boy and girl. Too often people
do not like those that like them!

Gale-Shapley algorithm

It turns out that finding a good way of pairing up the boys and girls is a tricky problem.
The best approach is to use the Gale-Shapley algorithm named after the mathematicians
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David Gale and Lloyd Shapley who devised it in 1962. Note that, in 2012, the Nobel
Prize in Economics was awarded to Lloyd Shapley and Alvin Roth ”for the theory of
stable allocations and the practice of market design.”

Here is the method for getting everyone paired up. The mating ritual takes place over
several days. The idea is that each of the boys go after the girls one by one, in order of
preference, crossing off girls from their list as they get rejected. Here is a more detailed
specification:

Initial Condition:

Each of the n boys has an ordered list of the n girls according to his preferences. Each of
the girls has an ordered list of the boys according to her preferences.

Each Day

� Morning:

– Each girl stands on her balcony.

– Each boy stands under the balcony of his favorite girl whom he has not yet
crossed off his list and serenades. If there are no girls left on his list, he stays
home and does discrete mathematics homework.

� Afternoon:

– Girls who have at least one suitor say to their favorite from among the suitors
that day: ”Maybe, come back tomorrow.”

– To the others, they say ”No, I will never marry you!”

� Evening:

– Any boy who hears ”No” crosses that girl off his list.

Termination Condition:

If there is a day when every girl has at most one suitor, we stop and each girl marries her
current suitor (if any).

Let’s run the Gale-Shapley algorithm on the example from before. On the first morn-
ing, boy b1 serenades girl g3, boy b2 serenades girl g1, boy b3 serenades girl g4, boy b4
serenades girl g1, and boy b5 serenades girl g1. In the afternoon, girls g1, g3, and g4 say
”Maybe, come back tomorrow” to boys b5, b1, and b3, respectively. Girl g1 says ”No!” to
boys b2 and b4, who cross g1 off their lists that evening.

On the second morning, boy b1 serenades girl g3, boy b2 serenades girl g2, boy b3
serenades girl g4, boy b4 serenades girl g3, and boy b5 serenades girl g1. In the afternoon,
girls g1, g2, g3, and g4 say ”Maybe, come back tomorrow” to boys b5, b2, b4, and b3,
respectively. Girl g3 says ”No!” to boy b1, who crosses g3 off his list in the evening.

On the third morning, boy b1 serenades girl g2, boy b2 serenades girl g2, boy b3 serenades
girl g4, boy b4 serenades girl g3, and boy b5 serenades girl g1. In the afternoon, girls g1,
g2, g3, and g4 say ”Maybe, come back tomorrow” to boys b5, b2, b4, and b3, respectively.
Girl g2 says ”No!” to boy b1, who crosses g2 off his list in the evening.

On the fourth morning, boy b1 serenades girl g5, boy b2 serenades girl g2, boy b3
serenades girl g4, boy b4 serenades girl g3, and boy b5 serenades girl g1. In the afternoon,
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the girls realize that each of them has at most one suitor, so all five couples start planning
their weddings.

Now let’s show that the algorithm works. We need to show that

� the Gale-Shapley algorithm terminates,

� the Gale-Shapley algorithm terminates quickly,

� at termination, there are no rogue couples,

� everyone is married.

We will also analyze the fairness of the protocol. It is better for boys or for girls?

Let’s start by showing that this algorithm terminates:

Theorem 1. The Gale-Shapley algorithm terminates within n2 + 1 days.

Proof. We’ll prove this theorem by contradiction. Suppose, for contradiction, that the
Gale-Shapley algorithm does not terminate in n2 + 1 days. Well, let’s notice something
that must happen on a day in which the Gale-Shapley algorithm doesn’t terminate – it
must be that some boy crosses a girl off his list that evening! Why is this? If the Gale-
Shapley algorithm doesn’t terminate, then some girl must have had at least 2 suitors. If
a girl has at least 2 suitors then at least one gets rejected, and that boy crosses that girl
off his list. So if the Gale-Shapley algorithm doesn’t terminate in n2 + 1 days, there are
at least n2 + 1 names crossed off in total. But at the start, each list is of size n, so the
total size of all the lists put together is n2. So we couldn’t have crossed off n2 + 1 names,
and thus we have our contradiction.

This is a typical proof technique in Computer Science used to bound the running
time of an algorithm. We show that the algorithm is always making progress by some
measure. Then, since there is only a finite amount of progress to make, it must eventually
terminate. Here the measure is the number of names on the union of the lists.

For the sake of completeness we give a lower bound as well on the number of days
needed the Gale-Shapley algorithm to terminate. Assume we have n boys b1, b2, . . . , bn
and n girls g1, g2, . . . , gn with preferences as given below.

b1 → (g1, g2, g3, g4, g5, . . . , gn−3, gn−2, gn−1, gn)

b2 → (g2, g3, g4, g5, g6, . . . , gn−2, gn−1, g1, gn)

b3 → (g3, g4, g5, g6, g7, . . . , gn−1, g1, g2, gn)

b4 → (g4, g5, g6, g7, g8, . . . , g1, g2, g3, gn)

...

bn−2 → (gn−2, gn−1, g1, g2, g3, . . . , gn−5, gn−4, gn−3, gn)

bn−1 → (gn−1, g1, g2, g3, g4, . . . , gn−4, gn−3, gn−2, gn)

bn → (g1, g2, g3, g4, g5, . . . , gn−3, gn−2, gn−1, gn)
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g1 → (b2, b1, bn, bn−1, bn−2, . . . , b6, b5, b4, b3)

g2 → (b3, b2, b1, bn, bn−1, . . . , b7, b6, b5, b4)

g3 → (b4, b3, b2, b1, bn, . . . , b8, b7, b6, b5)

g4 → (b5, b4, b3, b2, b1, . . . , b9, b8, b7, b6)

...

gn−2 → (bn−1, bn−2, bn−3, bn−4, bn−5, . . . , b2, b1, bn)

gn−1 → (bn, bn−1, bn−2, bn−3, bn−4, . . . , b3, b2, b1)

gn → (b1, b2, b3, b4, b5 . . . , bn−3, bn−2, bn−1, bn)

Let’s run the Gale-Shapley algorithm on this example. First, there are n− 2 days when
bn is the only boy who hears ”No” from the girls, first from girl g1, next from girl g2, and
so on, finally from girl gn−2. Next, there are n − 2 days when bn−1 is the only boy who
hears ”No” from the girls, first from girl gn−1, next from girl g1, and so on, finally from
girl gn−3. Next, again there are n − 2 days when bn−2 is the only boy who hears ”No”
from the girls, first day from girl gn−2, next from girl gn−1, and so on, finally from girl
gn−4. Continuing this manner, there are n − 2 days when b2 is the only boy who hears
”No” from the girls, first from girl g2, next from girl g3, and so on, finally from girl gn−1.
Finally, there are n− 1 days when b1 is the only boy who hears ”No” from the girls, first
from girl g1, next from girl g2, and so on, finally from girl gn−1. Next day each girl has
exactly one suitor, boy b1 serenades girl gn, boy b2 serenades girl g1, boy b3 serenades girl
g2, boy b4 serenades girl g3, and so on, boy bn−1 serenades girl gn−2 and boy bn serenades
girl gn−1, we stop, and all n couples start planning their weddings. The total number of
days is

(n− 1)(n− 2) + (n− 1) + 1 = (n− 1)2 + 1

which implies that the Gale-Shapley algorithm terminates in Ω(n2) days in the worst case.

Next, we’ll prove that everyone gets married by the Gale-Shapley algorithm, but first
we’ll need a couple of lemmas.

Lemma 1. If a boy marries, then he courted every girl he liked better.

Proof. In the Gale-Shapley algorithm, boys cross girls off their lists one at a time in
preference order, starting with the girl he likes most. A boy marries the girl (if any) that
he is courting at termination. So if a boy marries, he marries his least favorite girl among
those he courted. Tough luck for the boy, but at least he likes her better than all the girls
he never courted.

Lemma 2. If a boy never marries, then he courted every girl.

Proof. By Theorem 1, the Gale-Shapley algorithm terminates. At the time of termi-
nation, the boy is not courting. How can that be? If he is home doing his discrete
mathematics homework, then he must have crossed off every girl on his list. So, he has
courted every girl.

Lemma 3. A girl marries her favorite among her suitors.
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Proof. A girl only rejects a boy when a better one comes along and always keeps stringing
along her favorite among those seen so far.

This also means that:

Lemma 4. If a girl is ever courted, she gets married.

Proof. Once a girl has a suitor, she keeps him until she trades up.

Now we can prove that everyone gets married:

Theorem 2. Everyone is married in the Gale-Shapley algorithm.

Proof. We’ll show this one by contradiction. Assume, for contradiction, that some boy
b is not married. But then, by Lemma 2, boy b has courted every girl. So, every girl has
been courted. But then, every girl is married by Lemma 4. But since there are an equal
number of boys and girls, it must be the case that every boy (including b) is married. So
the theorem is true by contradiction.

Next we’ll prove the main result, namely that the Gale-Shapley algorithm always
produces stable marriages.

Theorem 3. The Gale-Shapley algorithm produces stable marriages.

Proof. Assume, for contradiction, that there is a rogue couple (b, g). Suppose b married
g′ and g married b′ in the Gale-Shapley algorithm. If b married g′, but likes g better,
then b visited g first by Lemma 1, and g said ”no” to b. But then, g must have married
someone that she likes better than b by Lemma 3. So, g likes b′ better than b, which
means that (b, g) is not a rogue couple.

Well, who do you think is better off in the Gale-Shapley algorithm? In other words,
who has the power, the proposers or the acceptors? Since the girls marry their favorite
from among their suitors, and the boys get the worst girls that they court, it seems
reasonable to assume that the girls do best. It seems hard to answer this question formally,
especially since it isn’t even clear what we mean by ”doing better”. But, in fact, we can
show in a very precise and formal way that the algorithm is heavily biased toward the
boys. To formalize this, we need to define the set of realistic potential mates.

Let S be the set of all stable matchings. Since the Gale-Shapley algorithm gives a
stable matching, we know that S 6= ∅. For each person p, we define the realm of possibility
for p to be {q | ∃M ∈ S, (p, q) ∈M}. That is, q is within the realm of possibility for p if
and only if there is a stable matching where p marries q.

Some mates just might be out of the question, since no stable pairings are possible if
you married them. For example, Brad is just not realistic for Alice since if you ever pair
them, Brad and Angelina will form a rogue couple – so there is no stable matching with
Brad paired to Alice.

Definition. A person’s optimal mate is his/her favorite from the realm of possibility.

An optimal mate must exist, since we know there is at least one stable matching,
namely the one produced by the Gale-Shapley algorithm.
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Definition. A person’s pessimal mate is his/her least favorite from the realm of possi-
bility.

Ok, now here is a pair of shocking results:

Theorem 4. The Gale-Shapley algorithm pairs every boy with his optimal mate!

Theorem 5. The Gale-Shapley algorithm pairs every girl with her pessimal mate!

This is too hard to believe, so let’s do the proof.

Proof of Theorem 4. Assume, for contradiction, that some boy does not get his optimal
girl (that is, his favorite girl within the realm of possibility). Let b be the first (in time)
boy who gets rejected by his optimal girl g (resolving ties arbitrarily). Define b′ to be the
boy who caused g to reject b in the Gale-Shapley algorithm. Then g prefers b′ to b.

Since b is the first to be rejected by the optimal mate in the Gale-Shapley algorithm,
b′ has not (yet) been rejected by the optimal mate when he is courting g. So, b′ likes g at
least as much as he likes his optimal mate g∗ (g and g∗ might be the same person).

Let M be a stable matching where b marries g. M exists since g is in the realm of
possibility of b. M is not produced by the Gale-Shapley algorithm by assumption. Let
g′ be the spouse of b′ in M . By definition, b′ likes g∗ at least as much as g′ (again, they
might be the same person), so b′ prefers g to g′ since b′ likes g at least as much as g∗,
whom he likes at least as much as g′. (Note that g can’t be the same person as g′.) So b′

and g are a rogue couple, which contradicts the fact that M is a stable matching!

Now let’s show that the girls get their pessimal mate.

Proof of Theorem 5. Suppose, for contradiction, that there is a stable matching M
where there is a girl g who fares worse than in the Gale-Shapley algorithm. Let b be the
mate of g in the Gale-Shapley algorithm. Let b′ be the mate of g in M . Then g likes b
better than b′ since she fared worse in M than in the Gale-Shapley algorithm. Let g′ be
the mate of b in M .

We know that b likes g better than g′ since (by Theorem 4) the Gale-Shapley algo-
rithm gives an optimal mate for b. Then b and g form a rogue couple in M , which is a
contradiction.

Implementation

How can we implement efficiently the Gale-Shapley algorithm? As a first step, we serialize
the algorithm as follows.

� Initially, everyone is unmarried. Suppose an unmarried boy b chooses the girl g who
ranks highest on his preference list and proposes to her and the pair (b, g) enter an
intermediate state — engagement.

� Suppose we are now at a state in which some boys and girls are free — not engaged
— and some are engaged. The next step could look like this. An arbitrary free
boy b chooses the highest-ranked girl g to whom he has not yet proposed, and he
proposes to her. If g is also free, then b and g become engaged. Otherwise, g is
already engaged to some other boy b′. In this case, she determines which of b or b′
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ranks higher on her preference list; this boy becomes engaged to g and the other
becomes free.

� Finally, the algorithm will terminate when no one is free; at this moment, all en-
gagements are declared final, and the resulting perfect matching is returned.

initially all boys and girls are free

while there is a boy b who is free and hasn’t proposed to every girl

choose such a boy b

let g be the highest-ranked girl in b’s preference list to whom b

has not yet proposed

if g is free

then

(b,g) become engaged

else /* g is currently engaged to b’ */

if g prefers b’ to b

then

b remains free

else /* g prefers b to b’ */

(b,g) become engaged

b’ becomes free

return the set S of engaged pairs

Each iteration of the while loop consists of some boy proposing (for the only time)
to a girl he has never proposed to before. So if we let P (t) denote the set of pairs (b, g)
such that b has proposed to g by the end of iteration t, we see that for all t, the size of
P (t + 1) is strictly greater than the size of P (t). But there are only n2 possible pairs of
boys and girls in total, so the value of P (·) can increase at most n2 times over the course
of the algorithm. It follows that there can be at most n2 iterations.

Now we show that we are able to implement each iteration in constant time. For
simplicity, assume that the set of boys and girls are both {1, . . . , n}. To ensure this, we
can order the boys and girls (say, alphabetically), and associate number i with the ith
boy bi or the ith girl gi in this order. This assumption (or notation) allows us to define
an array indexed by all boys or all girls. We need to have a preference list for each boy
and for each girl. To do this we will have two arrays, one for the girls’ preference lists and
one for the boys’ preference lists; we will use BoyPref[b, i] to denote the ith girl on boy b’s
preference list, and similarly GirlPref[g, i] to be the ith boy on the preference list of girl
g. Note that the amount of space needed to give the preferences for all 2n individuals is
O(n2), as each person has a list of length n.

We need to consider each step of the algorithm and understand what data structure
allows us to implement it efficiently. Essentially, we need to be able to do each of four
things in constant time.

(1) We need to be able to identify a free boy.

(2) We need, for a boy b, to be able to identify the highest-ranked girl to whom he has
not yet proposed.

(3) For a girl g, we need to decide if g is currently engaged, and if she is, we need to
identify her current partner.
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(4) For a girl g and two boys b and b′, we need to be able to decide, again in constant
time, which of b or b′ is preferred by g.

First, consider selecting a free boy. We will do this by maintaining the set of free boys
as a queue. When we need to select a free boy, we take the first boy b in the queue. We
delete b from the queue if he becomes engaged, and possibly insert a different boy b′, if
some other boy b′ becomes free. In this case, b′ is inserted at the end of the queue, again
in constant time.

Next, consider a boy b. We need to identify the highest-ranked girl to whom he
has not yet proposed. To do this we will need to maintain an extra array Next that
indicates for each boy b the position of the next girl he will propose to on his list. We
initialize Next[b] = 1 for all boys b. If a boy b needs to propose to a girl, he’ll propose to
g = BoyPref[b,Next[b]], and once he proposes to g, we increment the value of Next[b] by
one, regardless of whether or not g accepts the proposal.

Now assume boy b proposes to girl g; we need to be able to identify the boy b′ that g
is engaged to (if there is such a boy). We can do this by maintaining an array Current of
length n, where Current[g] is the girl g’s current partner b′. We set Current[g] to a special
null symbol when we need to indicate that girl g is not currently engaged; at the start of
the algorithm, Current[g] is initialized to this null symbol for all girls g.

To sum up, the data structures we have set up thus far can implement the operations
(1)–(3) in O(1) time each.

Maybe the trickiest question is how to maintain girls’ preferences to keep step (4)
efficient. Consider a step of the algorithm, when boy b proposes to a girl g. Assume g is
already engaged, and her current partner is b′ = Current[g]. We would like to decide in
O(1) time if girl g prefers b or b′.

At the start of the algorithm, we create an n× n array Ranking, where Ranking[g, b]
contains the rank of boy b in the sorted order of g’s preferences. By a single pass through
g’s preference list, we can create this array in linear time for each girl, for a total initial
time investment proportional to n2. Then, to decide which of b or b′ is preferred by g, we
simply compare the values Ranking[g, b] and Ranking[g, b′].

This allows us to execute step (4) in constant time, and hence we have everything we
need to obtain an O(n2) running time.

Number of stable matchings

The following example shows that the systematic search for all stable matchings can lead
us to consider an exponential number of possible cases. Let n be an even number and
assume we have n boys b1, b2, . . . , bn and n girls g1, g2, . . . , gn with preferences as given
below.

b1 → (g1, g2, g3, g4, . . . , gn−1, gn)

b2 → (g2, g1, g3, g4, . . . , gn−1, gn)

b3 → (g3, g4, g5, g6, . . . , g1, g2)

b4 → (g4, g3, g5, g6, . . . , g1, g2)

...

bn−1 → (gn−1, gn, g1, g2, . . . , gn−3, gn−2)

bn → (gn, gn−1, g1, g2, . . . , gn−3, gn−2)
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g1 → (b2, b3, b4, . . . , bn, b1)

g2 → (b3, b4, b5, . . . , b1, b2)

g3 → (b4, b5, b6, . . . , b2, b3)

g4 → (b5, b6, b7, . . . , b3, b4)

...

gn−1 → (bn, b1, b2, . . . , bn−2, bn−1)

gn → (b1, b2, b3, . . . , bn−1, bn)

Suppose that each pair of boys, b1 and b2, b3 and b4, . . . marries their first or second choice.
One can construct 2n/2 different matchings in this way. We claim that each matching so
obtained is stable. Indeed when two boys marry their second choice, they cannot obtain
their first choice because they are least preferred by the girls in question.

Uniqueness

For obvious reason, the stable matching generated by the Gale-Shapley algorithm is called
boy-optimal and girl-pessimal. If the roles of the sexes in the algorithm are interchanged,
i.e., girls court boys, then the resulting stable matching is analogously girl-optimal and
boy-pessimal. It may happen that the boy-oriented and the girl-oriented versions of the
algorithm yield the same stable matching, in which case it is immediate, by combining
the optimality and pessimality properties, that this is the unique stable matching.

Optimality

Recall that the Gale-Shapley algorithm finds a stable matching with an extreme property
that every boy gets his best possible partner among all stable matchings. In this sense, the
matching is boy-optimal. Of course, if we exchange the roles of boys and girls, the resulting
stable matching is girl-optimal. Unfortunately, by the nature of stable matchings, the boy-
optimal stable matching is simultaneously the girl-pessimal stable matching, that is, every
girl gets her worst possible partner, and, vice verse, the girl-optimal stable matching is
simultaneously the boy-pessimal stable matching. Hence, it is natural to try to seek for
a matching which is not only stable but also ”good” in some criterion. There are a lot of
optimization criteria for the quality of stable matchings, here we introduce three of them.

Let pb(g) denote the position of girl g in boy b’s preference list, and, similarly, let pg(b)
denote the position of boy b in girl g’s preference list. For a stable matching M , define
the regret cost r(M) to be

r(M) = max
(b,g)∈M

max{pb(g), pg(b)},

the egalitarian cost c(M) to be

c(M) =
∑

(b,g)∈M

pb(g) +
∑

(b,g)∈M

pg(b),
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and a sex-equalness cost d(M) to be

d(M) =

∣∣∣∣∣∣
∑

(b,g)∈M

pb(g)−
∑

(b,g)∈M

pg(b)

∣∣∣∣∣∣ .
The minimum regret stable marriage problem, the minimum egalitarian stable marriage
problem, and the sex-equal stable marriage problem, respectively, is to find a stable
matching M with minimum r(M), c(M), and d(M), respectively. Note that the number
of stable matchings for one instance grows exponentially in general. Nevertheless, for
the first two problems, Gusfield, and Irving, Leather and Gusfield, respectively, proposed
polynomial time algorithms. In contrast, the sex-equal stable matching problem is NP-
hard.

Forbidden pairs

We can think about a generalization of the Stable Marriage Problem in which certain
boy-girl pairs are explicitly forbidden. In this case we have a set B of n boys, a set G of
n girls, and a set F ⊆ B × G of pairs who are simply not allowed to get married. Each
boy b ranks all the girls g for which (b, g) 6∈ F , and each girl g ranks all the boys b for
which (b, g) 6∈ F .

In this more general setting, we say that a matching M is stable if it does not exhibit
any of the following types of instability.

(i) There are two pairs (b, g) and (b′, g′) in M with the property that (b, g′) 6∈ F , b
prefers g′ to g, and g′ prefers b to b′. (The usual kind of instability.)

(ii) There is a pair (b, g) ∈ M , and a boy b′, so that b′ is not part of any pair in the
matching, (b′, g) 6∈ F , and g prefers b′ to b. (A single boy is more desirable and not
forbidden.)

(iii) There is a pair (b, g) ∈ M , and a girl g′, so that g′ is not part of any pair in the
matching, (b, g′) 6∈ F , and b prefers g′ to g. (A single girl is more desirable and not
forbidden.)

(iv) There is a boy b and a girl g, neither of whom is part of any pair in the matching,
so that (b, g) 6∈ F . (There are two single people with nothing preventing them from
getting married to each other.)

Note that this definition of stability is based on the assumption that a person prefers
to be married rather than to remain single. Also note that under these more general
definitions, a stable matching need not be a perfect matching. Now we can ask: For every
set of preference lists and every set of forbidden pairs, is there always a stable matching?

The Gale-Shapley algorithm is remarkably robust to variations on the Stable Marriage
Problem. So, if you’re faced with a new variation of the problem and can’t find a coun-
terexample to stability, it’s often a good idea to check whether a direct adaptation of the
Gale-Shapley algorithm will in fact produce stable matchings. That turns out to be the
case here. We will show that there is always a stable matching, even in this more general
model with forbidden pairs, and we will do this by adapting the Gale-Shapley algorithm.
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To begin with, we notice some facts. As in the previous part, if a boy marries, then he
courted every girl he liked better; and a girl marries her favorite among her suitors. Also,
if b is a boy who is not part of a pair in M , then b must have courted every nonforbidden
girl; and if g is a girl who is not part of a pair in M , then it must be that no boy ever
courted g. Finally, the algorithm will terminate in at most n2 + 1 iterations.

We need only to show that there is no instability with respect to the returned matching
M . Our general definition of instability has four parts: This means that we have to make
sure that none of the four bad things happens.

First, suppose there is an instability of type (i), consisting of pairs (b, g) and (b′, g′) in
M with the property that (b, g′) 6∈ F , b prefers g′ to g, and g′ prefers b to b′. It follows
that b must have courted g′; so g′ rejected b, and thus she prefers her final partner to b,
a contradiction.

Next, suppose there is an instability of type (ii), consisting of a pair (b, g) ∈ M , and
a boy b′, so that b′ is not part of any pair in the matching, (b′, g) 6∈ F , and g prefers b′

to b. Then b′ must have courted g and been rejected; again, it follows that g prefers her
final partner to b′, a contradiction.

Third, suppose there is an instability of type (iii), consisting of a pair (b, g) ∈M , and
a girl g′, so that g′ is not part of any pair in the matching, (b, g′) 6∈ F , and b prefers g′ to
g. Then no boy courted g′ at all; in particular, b never courted g′, and so he must prefer
g to g′, a contradiction.

Finally, suppose there is an instability of type (iv), consisting of a boy b and a girl g,
neither of whom is part of any pair in the matching, so that (b, g) 6∈ F . But for b to be
single, he must have courted every nonforbidden girl; in particular, he must have courted
g, which means she would no longer be single, a contradiction.

A natural question that arises in this context concerns the size of the stable matchings
for a given instance. First we establish a preliminary lemma that is of some interest in
its own right. One can extend the notion of preference so that it applies to matchings as
well as to individuals. A person x is said to prefer a matching M to a matching M ′ if
either x has a partner in M but not in M ′ or x has a partner in M and M ′ both, and
he/she strictly prefers his/her partner in M to his/her partner in M ′.

Lemma. Let M and M ′ be stable matchings, and suppose that b and g are partners in
M but not in M ′. Then one of b and g prefers M to M ′, and the other prefers M ′ to M .

Proof. Let X and Y (respectively X ′ and Y ′) denote the sets of boys and girls who prefer
M to M ′ (respectively M ′ to M).

In M there can be no pair (b, g) with b ∈ X and g ∈ Y since such a pair would cause
an instability for M ′. So every boy in X has an M -partner in Y ′, and every girl in Y has
an M -partner in X ′, therefore |X| 6 |Y ′| and |Y | 6 |X ′|.

Likewise, in M ′ there can be no pair (b, g) with b ∈ X ′ and g ∈ Y ′ since such a pair
would cause an instability for M . So every boy in X ′ has an M ′-partner in Y , and every
girl in Y ′ has an M ′-partner in X, therefore |X ′| 6 |Y | and |Y ′| 6 |X|.

Now |X|+ |X ′| 6 |Y |+ |Y ′| and |Y |+ |Y ′| 6 |X|+ |X ′|, i.e., |X|+ |X ′| = |Y |+ |Y ′|,
hence |X ′| = |Y | and |X| = |Y ′|. This implies that every boy in X ′ has an M -partner in
Y and every boy in X has an M -partner in Y ′, from which the assertion follows.

We can use this to prove a fundamental result in the case of forbidden pairs.
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Theorem. In a stable marriage instance that allows forbidden pairs, the boys and the
girls are each partitioned into two sets — those that have partners in all stable matchings
and those that have partners in none.

Proof. For two given distinct stable matchings M and M ′, we define a directed graph
G = G(M,M ′) with one node for each person. For each boy b who has a partner in M
there is a directed edge from b to his partner in M , and for each girl g who has a partner
in M ′ there is a directed edge from g to her partner in M ′. So every node in G has
in-degree at most one, and out-degree at most one.

Now suppose, for a contradiction, that a boy b is matched in M , say with girl g, but
is unmatched in M ′. Then there is a unique directed path in G starting at node b, and
since every node has in-degree at most one, and b has in-degree zero, it follows that this
path cannot cycle. Hence the path must end either with a boy who is matched in M ′ but
not in M (and so who prefers M ′ to M), or with a girl who is matched in M but not in
M ′ (and so who prefers M to M ′).

But, since b prefers M to M ′, it follows from the Lemma that g prefers M ′ to M , and
by successive applications of the Lemma along the path, it follows that each boy on the
path prefers M to M ′ and each girl on the path prefers M ′ to M . So either of the two
ways in which the path can terminate leads to a contradiction.

Corollary. All stable matchings for a given instance have the same size.

Indifference

The Stable Marriage Problem, as discussed before, assumes that all boys and girls have a
fully ordered list of preferences. In this section we will consider a version of the problem
in which boys and girls can be indifferent between certain options. Again we have a set
B of n boys and a set G of n girls. Assume each boy and each girl ranks the members of
the opposite gender, but now we allow ties in the ranking. For example (with n = 4), a
girl could say that b1 is ranked in first place; second place is a tie between b2 and b3 (she
has no preference between them); and b4 is in last place. We will say that g prefers b to b′

if b is ranked higher than b′ on her preference list (they are not tied). With indifferences
in the rankings, there could be two natural notions for stability. And for each, we can ask
about the existence of stable matchings, as follows.

(a) A strong instability in a perfect matching M consists of a boy b and a girl g, such
that each of b and g prefers the other to their partner in M . Does there always exist
a perfect matching with no strong instability?

(b) A weak instability in a perfect matching M consists of a boy b and a girl g, such
that their partners in M are g′ and b′, respectively, and one of the following holds:

– b prefers g to g′, and g either prefers b to b′ or is indifferent between these two
choices; or

– g prefers b to b′, and b either prefers g to g′ or is indifferent between these two
choices.

In other words, the pairing between b and g is either preferred by both, or preferred
by one while the other is indifferent. Does there always exist a perfect matching
with no weak instability?
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(a) The answer is yes. A simple way to think about it is to break ties in some
fashion (e.g., lexicographically) and then run the Gale-Shapley algorithm on the resulting
preference lists. We claim that the matching produced would have no strong instability.
But this is true because any strong instability would be an instability for the matching
produced by the algorithm, yet we know that the algorithm produced a stable matching
— a matching with no instabilities.

(b) The following is a simple counterexample. Let n = 2 and b1, b2 be the two boys,
and g1, g2 be the two girls. Let b1 be indifferent between g1 and g2, and let both of the
girls prefer b1 to b2. The choices of b2 are insignificant. There is no matching without
weak instability in this example, since regardless of who was matched with b1, the other
girl together with b1 would form a weak instability.

Truthfulness

Now we will explore the issue of truthfulness in the Stable Marriage Problem and specif-
ically in the Gale-Shapley algorithm. The basic question is: Can a boy or a girl end up
better off by lying about his or her preferences?

Assume we have three boys b1, b2, b3 and three girls g1, g2, g3 with preferences as given
below.

b1 → (g3, g1, g2)

b2 → (g1, g3, g2)

b3 → (g3, g1, g2)

g1 → (b1, b2, b3)

g2 → (b1, b2, b3)

g3 → (b2, b1, b3)

Let’s run the Gale-Shapley algorithm on this example.
On the first morning, boy b1 serenades girl g3, boy b2 serenades girl g1, and boy b3

serenades girl g3. In the afternoon, girls g1 and g3 say ”Maybe, come back tomorrow”
to boys b2, b1, respectively. Girl g3 says ”No!” to boy b3, who crosses g3 off his list that
evening.

On the second morning, boy b1 serenades girl g3, boy b2 serenades girl g1, and boy b3
serenades girl g1. In the afternoon, girls g1 and g3 say ”Maybe, come back tomorrow”
to boys b2, b1, respectively. Girl g1 says ”No!” to boy b3, who crosses g1 off his list that
evening.

On the third morning, boy b1 serenades girl g3, boy b2 serenades girl g1, and boy b3
serenades girl g2. In the afternoon, the girls realize that each girl has at most one suitor,
so all three couples start planning their weddings.

Now consider execution of the Gale-Shapley algorithm when g3 pretends she prefers
b3 to b1.

On the first morning, boy b1 serenades girl g3, boy b2 serenades girl g1, and boy b3
serenades girl g3. In the afternoon, girls g1 and g3 say ”Maybe, come back tomorrow”

16



to boys b2, b3, respectively. Girl g3 says ”No!” to boy b1, who crosses g3 off his list that
evening.

On the second morning, boy b1 serenades girl g1, boy b2 serenades girl g1, and boy b3
serenades girl g3. In the afternoon, girls g1 and g3 say ”Maybe, come back tomorrow”
to boys b1, b3, respectively. Girl g1 says ”No!” to boy b2, who crosses g1 off his list that
evening.

On the third morning, boy b1 serenades girl g1, boy b2 serenades girl g3, and boy b3
serenades girl g3. In the afternoon, girls g1 and g3 say ”Maybe, come back tomorrow”
to boys b1, b2, respectively. Girl g3 says ”No!” to boy b3, who crosses g3 off his list that
evening.

On the fourth morning, boy b1 serenades girl g1, boy b2 serenades girl g3, and boy b3
serenades girl g1. In the afternoon, girls g1 and g3 say ”Maybe, come back tomorrow”
to boys b1, b2, respectively. Girl g1 says ”No!” to boy b3, who crosses g1 off his list that
evening.

On the fifth morning, boy b1 serenades girl g1, boy b2 serenades girl g3, and boy b3
serenades girl g2. In the afternoon, the girls realize that each girl has at most one suitor,
so all three couples start planning their weddings.

As we see, girl g3 ends up with the boy b2, who is her true favorite. Thus we conclude
that by falsely switching order of her preferences, a girl may be able to get a more desirable
partner in the Gale-Shapley algorithm. Note that the matching is stable with respect to
the true preferences as well.

Turning to boys assume we have three boys b1, b2, b3 and three girls g1, g2, g3 again
with preferences as given below.

b1 → (g1, g2, g3)

b2 → (g2, g1, g3)

b3 → (g2, g3, g1)

g1 → (b2, b1, b3)

g2 → (b1, b3, b2)

g3 → (b2, b1, b3)

Let’s run the Gale-Shapley algorithm on this example.
On the first morning, boy b1 serenades girl g1, boy b2 serenades girl g2, and boy b3

serenades girl g2. In the afternoon, girls g1 and g2 say ”Maybe, come back tomorrow”
to boys b1, b3, respectively. Girl g2 says ”No!” to boy b2, who crosses g2 off his list that
evening.

On the second morning, boy b1 serenades girl g1, boy b2 serenades girl g1, and boy b3
serenades girl g2. In the afternoon, girls g1 and g2 say ”Maybe, come back tomorrow”
to boys b2, b3, respectively. Girl g1 says ”No!” to boy b1, who crosses g1 off his list that
evening.

On the third morning, boy b1 serenades girl g2, boy b2 serenades girl g1, and boy b3
serenades girl g2. In the afternoon, girls g1 and g2 say ”Maybe, come back tomorrow”
to boys b2, b1, respectively. Girl g2 says ”No!” to boy b3, who crosses g2 off his list that
evening.

On the fourth morning, boy b1 serenades girl g2, boy b2 serenades girl g1, and boy b3
serenades girl g3. In the afternoon, the girls realize that each girl has at most one suitor,
so all three couples start planning their weddings.
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Now consider execution of the Gale-Shapley algorithm when b3 pretends he prefers g3
to g2.

On the first morning, boy b1 serenades girl g1, boy b2 serenades girl g2, and boy b3
serenades girl g3. In the afternoon, the girls realize that each girl has at most one suitor,
so all three couples start planning their weddings.

As we see, boy b3 ends up with the same girl g3 as before, but boys b1 and b2 end up
with girls g1 and g2, respectively, who are their true favorites (the matching is not stable
with respect to the true preference lists, of course).

However, one can prove the following

Theorem. Suppose several boys collude in a Gale-Shapley algorithm, each using a true
or false preference list. Then they cannot all end up better off, relative to each boy’s true
preference list.

We first prove the following

Lemma. Suppose M is a matching and that the set B′ of boys who strictly prefer their
partners in M to their partners in the boy-optimal matching M0 produced by the Gale-
Shapley algorithm is nonempty. Then there is a boy b 6∈ B′ and a girl g such that b and
g form a rogue couple in M .

Proof. Matching M is clearly unstable, since there is at least one boy who strictly prefers
his M -partner to his M0-partner. We want to show that some boy not in B′ is part of
a rogue couple. Define G′ to be the set of girls who are partners of the boys in B′ in
matching M0. The proof is divided into two cases.

In the first case, suppose there is some boy b′ in B′ who is matched in M to a girl g
not in G′. Since b′ strictly prefers g to his partner in M0, the stability of M0 implies that
g strictly prefers her partner in M0, say b, to b′. But g 6∈ G′ implies that b 6∈ B′, and
(b, g) 6∈ M , so b strictly prefers g to his partner in M . Therefore, in the first case, b and
g form a rogue couple in M , and b 6∈ B′, as desired.

In the second case, suppose that every boy in B′ is matched in M with a girl in G′,
although, of course, the actual matching of the boys in B′ with the girls in G′ is different
in M and M0. Because of the stability of M0, every girl in G′ prefers her partner in M0 to
her partner in M , and so during the execution of the Gale-Shapley algorithm, each such
girl rejects her M -partner on some day.

Suppose that during the execution of the Gale-Shapley algorithm, b′ is the last (in
time) boy in B′ who gets rejected by a girl (resolving ties arbitrarily). After this rejection
b′ visits the girl, say g, who will finally marry him, so g is in G′. Since g rejects her partner
in M during the execution, g must have at least one other suitor when b′ is courting her.
Let b is the last (in time) such a suitor (resolving ties arbitrarily). Boy b is rejected by
g in favor of b′, and then b goes on to court, which implies that b is not in B′. Thus, by
definition of B′, boy b does not prefer his partner in M to his partner in M0, and so b
strictly prefers g to his partner in M .

Similarly, since b 6∈ B′ is the last boy rejected by g during the execution of the Gale-
Shapley algorithm producing M0, and g ∈ G′ rejected her partner in M who belongs to
B′ during this execution, g strictly prefers b to her partner in M . Therefore, b and g form
a rogue couple in M , and b 6∈ B′, as desired.
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We now turn to the question of whether a boy, or a coalition of boys might gain by
falsifying their preferences. Let P denote the set of the true preference lists, let L be
the set of boys who falsify their true preferences, and let P ′ be the set of preference lists
incorporating the falsified preferences.

Corollary 1. There is no stable matching, with respect to P ′, in which every boy in L

gets a partner he strictly prefers (with respect to P ) to his partner in M0.

Proof. Let M be a matching in which some set of boys L′ ⊇ L get partners they prefer
(with respect to P ) to their partners in M0. By the lemma there is a boy b and a girl g
forming a rogue couple in M (with respect to P ) such that b is not in L′. But then, b is
not in L, so P ′ contains the truthful preferences of both b and g, and therefore b and g
must also form a rogue couple in M with respect to P ′. So there is no stable matching in
which every boy in L improves over his partner in M0.

Note that when the coalition consists of a single boy, Corollary 1 says that no boy can
improve over his M0-partner by lying.

Corollary 2. Even if girls, as well as boys, are involved in a coalition, it is not possible
for the members of the coalition to collectively falsify their preferences so that everyone
of them obtains a better partner than in M0.

Proof. First note that girl g in the rogue couple (b, g) from the proof of the lemma prefers
her M0-partner to her M -partner, as does boy b of that couple. Hence, if L is now a set
of boys and girls who falsify their true preferences P , and M is a matching in which some
set of people L′ ⊇ L get improved partners compared to their M0-partners, then neither b
nor g is in L′, and so neither is in L. Therefore, P ′ contains the true preferences of b and
g, and so b and g form a rogue couple in M with respect to P ′, as well as with respect to
P .

College Admission

Next, we are going to talk about a generalization of the stable marriage problem. In
the new problem, there are n students s1, s2, . . . , sn and m universities u1, u2, . . . , um.
University ui has ni slots for students, and we’re guaranteed that

m∑
i=1

ni = n.

Each student ranks all universities (no ties) and each university ranks all students (no
ties). Design an algorithm to assign students to universities with the following properties

1. Every student is assigned to one university.

2. University ui gets assigned ni students.

3. There does not exist si, sj, uk, u` where student si is assigned to university uk,
student sj is assigned to university u`, student sj prefers university uk to university
u`, and university uk prefers student sj to student si.
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4. It is student-optimal. This means that of all possible assignments satisfying the first
three properties, every student gets his/her top choice of university amongst these
assignments.

The algorithm will be a slight modification of the mating algorithm given before.

Each Day

� Morning:

– Each university asks which students are interested in applying.

– Each student applies to his/her favorite university that has not yet rejected
him/her. If there are no universities left on the student’s list, the student
takes some time off to think about life and the future.

� Afternoon:

– Each university ui tells its favorite ni applicants ”Maybe, we are still processing
your application.” If ui has less than ni applicants, it tells all of its applicants
this message.

– If ui has more than ni applicants, it tells the remaining ones ”Sorry, there were
a large number of very qualified students applying this year, yet we can only
accept a very limited number. We regret to inform you that you were not
accepted. Thank you for applying to our university.”

� Evening:

– Any student who hears ”Sorry, . . . ” from some university, crosses off that
university from his/her list.

Termination Condition:

If there is a day when each university ui has at most ni applicants, we stop and each
university accepts all of its applicants (if any).

Before we can say anything about our algorithm, we need to show that it terminates.

Theorem 1. The algorithm terminates within nm + 1 days.

Proof. On each day, if the algorithm has not terminated, then some university ui has
more than ni applicants. It follows that in the afternoon, at least one student sj hears
”Sorry, . . . ”, and thus in the evening sj crosses off ui from his/her list. As there are n
students and m universities, it follows that the algorithm must terminate after nm + 1
days, as otherwise there would be no university left for any student to cross off.

Next, we show that the four properties stated earlier are true for our algorithm. To
start, we show the following:

Lemma 1. If during some day a university uj has at least nj applicants, then when the
algorithm terminates it accepts exactly nj students.

Proof. At this day, each of the students applying to uj has uj as their favorite university
that has not yet rejected him/her. Therefore, if uj tells a student ”Maybe, . . . ”, that
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student will come back the next day. Since there are at least nj applicants, it follows that
uj will tell its favorite nj applicants ”Maybe, . . . ”. It follows by induction that every day
after this day, uj will have at least nj applicants. Thus, this holds when the algorithm
terminates. Since when the algorithm terminates there are at most nj applicants, it
follows that exactly nj students are assigned to uj.

Lemma 2. Every student is assigned to one university.

Proof. It is clear that no student can apply to more than one university at once since
a student applies to at most one university on any given day, so this means the students
can be assigned to at most one university. So we just need to show that each student is
assigned to at least one university.

We argue by contradiction. Suppose not, and let sj be a student not assigned to any
university. Then, since the algorithm terminates, and when the algorithm terminates each
university ui accepts at most ni students, it follows that some university ui accepts less
than ni students. By Lemma 1, it follows that in every day, ui had less than ni applicants.
But then consider the day that sj applied to ui. Since there were less than ni applicants
to ui that day, it follows that ui would have told sj ”Maybe, . . . ” in that day, and thus
in every future day. Thus, sj would be assigned ui when the algorithm terminates. This
is a contradiction.

Theorem 2. For each 1 6 i 6 m university ui gets assigned ni students.

Proof. Since the algorithm terminates, on some day each ui gets assigned at most ni

students. Suppose some ui got assigned strictly less than ni students. Since

m∑
i=1

ni = n,

this means that some student is not assigned which contradicts the previous lemma.

Before continuing, we need to establish the following property. Suppose that on some
day a university uj has at least nj applicants. Define the rank of an applicant si with
respect to a university uj as si’s location on uj’s preference list. So, for example, uj’s
favorite student has rank 1.

Lemma 3. The rank of uj’s least favorite applicant that it says ”Maybe, . . . ” to cannot
increase on any future day.

Proof. On the next day, there are two cases: uj either says ”Maybe, . . . ” to its least
favorite applicant si from the previous day, or it says ”Sorry, . . . ” to si. In the first case,
this means that all of the nj − 1 applicants uj liked more than si on the previous day
will also be told ”Maybe, . . . ”, and so si will again be uj’s least favorite applicant it did
not reject. Thus, the rank of its least favorite applicant did not increase. In the second
case, this means that there were at least nj applicants that uj preferred to si, and thus
the rank of its least favorite applicant it said ”Maybe, . . . ” to did not increase. As shown
above, on any future day uj has at least nj applicants, and so by applying this analysis
again, we conclude that the rank of uj’s least favore applicant that it says ”Maybe, . . . ”
to cannot increase on any future day.
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Theorem 3. There does not exist si, sj, uk, u` where student si is assigned to university
uk, student sj is assigned to university u`, student sj prefers university uk to university
u`, and university uk prefers student sj to student si. Note that this is analogous to a
”rogue couple” considered before.

Proof. Assume, for contradiction, that such si, sj, uk, and u` existed. Since sj prefers
uk to u`, but is assigned to u`, on some day uk told sj ”Sorry, . . . ”. On that day, there
must have been more than nk applicants to uk. If si was also an applicant to uk on that
day, then si would have also been rejected since uk prefers sj to si, and thus si could not
have been assigned to uk. On the other hand, if at any later day si were to apply to uk,
it would have been rejected since si’s rank is greater than sj’s with respect to uk, and
by Lemma 3 we know that the rank of the least favorite applicant that uk says ”Maybe,
. . . ” to, cannot decrease. Thus, it is impossible for si to be assigned to uk, which is a
contradiction.

Finally, we show that this algorithm is student-optimal. As before, define the realm
of possibility of a student to be the set of all universities u, for which there exists some
assignment satisfying the first three properties above, in which the student is assigned to
u. Of all universities in the realm of possibility of a student we say that the student’s
favorite is optimal for that student.

Theorem 4. Each student is assigned to his/her optimal university.

Proof. We argue by contradiction. Consider the first (in time) student si that gets re-
jected by his/her optimal university uk (resolving ties arbitrarily). On this day university
uk has more than nk applicants. Since uk is in the realm of possibility of si, there is an
assignment M of students to universities assigning si to uk with the properties above.
By the pigeonhole principle, on the day when si was rejected from uk, there was another
student sj which uk preferred to si and M assigns sj to an university u` different from uk.
Suppose uopt is sj’s optimal university. Then, since si was the first student not assigned
to its optimal university, sj prefers uk to uopt, though uk may equal uopt. On the other
hand, sj prefers uopt to u`, since uopt is its favorite university in its realm of possibility,
and u` occurs in its realm of possibility. It follows that sj prefers uk to u`. But then in
the assignment M we have found si, sj, uk, and u` with si assigned to uk, sj assigned to
u`, sj prefers uk to u`, and uk prefers sj to si. This is a contradiction to the property of
M established in Theorem 3.

College Admission Revised

In this version of the problem, there are n students s1, s2, . . . , sn and m universities
u1, u2, . . . , um again. University ui has ni slots for students, but now we’re guaranteed
only that

m∑
i=1

ni 6 n.

Each student ranks all unviersities (no ties) and each university ranks all students (no
ties).

The interest, naturally, is in finding a way of assigning each student to at most one
university, in such a way that all available positions in all universities are filled. (Since we
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are assuming a surplus of students, there would be some students who do not get assigned
to any university.) We say that an assignment of students to universities is stable if neither
of the following situations arises.

� First type of instability: There are students si and sj, and a university uk, so that

– si is assigned to uk,

– sj is assigned to no university,

– uk prefers sj to si.

� Second type of instability: There are students si and sj, and universities uk and u`,
so that

– si is assigned to uk,

– sj is assigned to u`,

– uk prefers sj to si,

– sj prefers uk to u`.

We show that there is always a stable assignment of students to universities, and give an
algorithm to find one.

It is easy to see that the previous algorithm produces a stable assignment in this case
too. Here is an alternate solution, a sequential algorithm again. At any point in time,
a student is either ”committed” to a university or ”free”, and a university either has
available slots, or it is ”full”.

While there is a university ui which has available slots and hasn’t

offered a position to every student

ui offers a position to the next student sj on its preference list

if sj is free

then

sj accepts the offer

else /* sj is already committed to a university uk */

if sj prefers uk to ui

then

sj remains committed to uk

else

sj becomes committed to ui

the number of available slots at uk increases by one

the number of available slots at ui decreases by one

The algorithm terminates in O(mn) steps because each university offers a position to
a student at most once, and in each iteration some university offers a position to some
student.

The algorithm terminates with an assignment in which all available slots are filled, be-
cause any university that did not fill its slots must have offered a position to every student,
but then, all these students would be committed to some university, which contradicts
the assumption that

m∑
i=1

ni 6 n.
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Finally, we argue that the assignment is stable. For the first type of instability, suppose
there are students si and sj, and a university uk as above. If uk prefers sj to si, then uk

would have offered a position to sj before it offered one to si; from then on, sj would have
a position at some university, and hence would not be free at the end — a contradiction.
For the second type of instability, suppose there are students si and sj, and universities
uk and u` as above, and uk and sj form a pair that causes instability. Then uk must
have offered a position to sj, for otherwise it has nk students all of whom it prefers to sj.
Moreover sj must have rejected uk in favor of some university which he/she preferred to
uk. Since sj is finally committed to u`, therefore sj also prefers u` to uk — a contradiction
again.

Concluding remarks

Perhaps the most famous application of the Gale-Shapley algorithm is in matching fresh
MDs to residency programs. Fourth year medical students have to fill out a form with
their top 20 choices for residency programs. Teaching hospitals do the same thing with
their top choices for doctors. Then the data is fed to the algorithm which matches doctors
to hospitals. The doctors find out their assignments on match day, which is a huge event.

An Internet infrastructure company, Akamai, also uses a variation of the Gale-Shapley
algorithm to assign web traffic to its servers. In this case, web requests correspond to
girls and web servers correspond to boys. The web requests have preferences based on
latency and packet loss, and the web servers have preferences based on cost of bandwidth
and co-location.

And, not surprisingly, the Gale-Shapley algorithm is also used by large dating agencies.
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Computer Project

Find all stable matchings between boys A,B,C,D,E, F,G, I and girls L,M,N,O, P ,
R, S, T with preference lists

A→ (P, S, L,M,R, T,O,N)

B → (M,N, S, P,O, L, T,R)

C → (T, P, L,O,R,M,N, S)

D → (N,M,S,O, L,R, T, P )

E → (S,M, P, L,N,R, T,O)

F → (L,R, S, P, T,O,M,N)

G→ (M,P, S,R,N,O, T, L)

I → (N, T,O, P, S,M,R, L)

L→ (E,C,G, F,A,B, I,D)

M → (I, F, C,E,G,B,A,D)

N → (A,E, F,B,D, I,G,C)

O → (I,G,C,B,D,A,E, F )

P → (F,D,G,C, I, A,B,E)

R→ (B, I, E, C,D, F,G,A)

S → (G,E,B,A, I, F,D,C)

T → (G,D,A,E,B,C, F, I)
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Exploration

Show that the Gale-Shapley algorithm terminates within (n− 1)2 + 1 days for n boys and
n girls and this bound is tight.
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