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1. Introduction 

Therefore, a major responsibility of educational systems in the 21st century is to prepare the 

generations to come for the challenges involved with the increasing computerization of our 

everyday lives and to meet the demands of the one of the fastest–growing job markets: 

computing [1, 2]. The current paper describes a method which has as its scope the initiation of 

all students at all levels in computational thinking through algorithmic concepts presented in 

artistically enhanced context. 

The term computational thinking has been the subject of much debate since its introduction 

in 2006 [3]. In this study we will use the term in accordance with its revised definition, i.e. as the 

thought process involved in formulating problems so “their solutions can be represented as 

computational steps and algorithms” [4]. We plan to promote students’ computational thinking 

by inviting them on an inspiring tour of the exciting world of computer algorithms. 

Since computer algorithms are deeply abstract entities, teaching-learning them effectively is a 

challenging task. As Turing [5] stated: “One’s object is then to have a clear mental picture of the 

state of the machine at each moment in the computation. This object can only be achieved with a 

struggle”. In line with this statement, an often used method to illustrate how algorithms work is 

to represent experts’ “clear mental picture” graphically. According to a recent review “while 

many good algorithm visualizations are available, the need for more and higher quality 

visualizations continues” [6,7]. 

Usually, the purpose of algorithm visualizations is to promote students’ understanding 

regarding the procedural behavior of algorithms. A recent survey comparing animation with 

static pictures confirmed the superiority of instructional animations in particular when 

procedural-motor knowledge had to be transmitted [8]. Over the years several methods were 

used to visually illustrate computer algorithms in action: videos, computer-based animations, etc 

[6,7]. Beside these technology-based approaches, animations performed by teachers or students 

are also used to make algorithms more tangible [9,10,11]. In [12] we presented how inviting 

students to play recursive scenarios helps them to imagine how recursion works. 
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Dance is a complex human activity involving the entire person: physically, cognitively and 

affectively. Dance choreographies include movements and structure, and the accompanying 

music is also characterized by repetitive rhythmic patterns. These patterns and structures are the 

key elements for bridging between sciences and arts. In [13] we introduced the notion of danced 

algorithm. In [14] we replaced amateur dancers with professional ones. In this paper we extend 

our collection of algorithmic folk dance choreographies (bubble sort, insertion sort, selection 

sort, merge sort, quick sort, shell sort) with other two algorithm categories: searching and 

backtracking. We also introduce two new dance styles: hip-hop and ballet. We present a 

gradually increasing syllabus for introducing students in the exciting world of computer 

algorithms (searching, sorting, backtracking), and familiarizing them with basic computer 

science concepts like algorithm complexity, optimization, parallel algorithms, etc. 

2. Art and science: a winning combination 

According to Palmer [15] motivation is a ‘necessary prerequisite and co-requisite for learning’. 

Research results in this field emphasize the critical importance intrinsic motivation has in 

promoting effective learning [16,17]. Providing novelty, incongruity and surprise are effective 

ways to promote intrinsic motivation since it has potential to arouse curiosity and combat apathy 

[18,19]. We have proposed to gain such-like impact by combining arts (dances) with science 

(computer algorithms), traditional/classic (folk-dance/ballet) with modern (IT). 

Additionally, science-art combinations could be effective because of the parallel involvement 

of both side of brain. Whereas algorithmics is more closely associated with the left side of the 

brain, artistic expressions are more active in the right hemisphere. Research in this field revealed 

that efficient teaching-learning assumes a balanced involvement of both sides of the brain [20]. 

Gardner’s [21,22] work emphasizes that a mixture of intelligences (musical intelligence, bodily-

kinesthetic intelligence, logical-mathematical intelligence, etc.) characterizes all people. He 

argues that students need to learn in various ways and teachers should not allow them to rely 

only on their most comfortable intelligence. In line with these findings, since 1998 

mathematicians, artists, musicians and scientists have been coming together at the annual 

Bridges Conferences to discuss possible art-science connections [23]. 

Finally, our previous experience with the folk danced sorting algorithms confirmed that the 

presence of arts –beyond the cognitive benefits– gives the class a touch of liveliness. 

2.1. Searching algorithms visualized by hip-hop dance choreographies 

Computational thinking involves pattern recognition, generalization and abstractions [24]. Since 

humans are efficient pattern recognizers, given a few examples we are able to establish whether 

a new object belongs to the same class or not (generalization, classification) [25]. Evidently, 

effective learning from examples assumes that these are selected carefully [26].  

Since searching algorithms are probably the most directly perceived and intuitive computer 

algorithms by IT users, we propose this category to be analyzed firstly. Search algorithms can be 

classified based on their mechanism of searching. Linear search algorithms check, successively, 

every element of a list (often stored in a one-dimensional array) for the one that equals the value 

we are looking for (target key). Binary searches repeatedly target the middle element of an 

ordered list reducing the search space in half after each step. 

We have chosen to illustrate the linear and binary searching strategies by hip-hop dance 

choreographies. Hip hop is considered by many a worldwide cultural communication 
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style including music, art and dance. Especially youth and hip hop are tied up together. The list 

to be searched could be represented by a hip-hop dancer-sequence, and the target key by an extra 

dancer (the protagonist of the performance). Since each dancer wears the corresponding value on 

his/her back, these are not visible in the case of list-elements, but visible on the back of the 

target key (see Figure 1).  

In the case of linear searching the result of the comparison operation between the target key 

and the current element of the searched list is yes (equal) or no (not equal). These yes/no 

comparisons could be illustrated by pieces of choreographies where the two dancers are 

dancing identically/differently (see Figure 1). Eliminated elements (not equal) from the 

searching space are falling down. 

 

 

 

Figure 1. The target key (representing number 59) and the first element of the list to be searched are 

dancing a “not-equal hip-hop choreography”. 

Figure 2 presents the whole linear searching choreography for the following scenario: we are 

looking for number 59 in the list of values 19, 80, 30, 2, 89, 59, 71, 66, 7, 34. 

In the case of binary searching comparison operations results in one of the following three 

possibilities: less/greater/equal. To illustrate these variants the corresponding dancer-pair could 

follow the same piece of choreography, but in a slower/faster/in-synchrony rhythm. Figure 3 

shows the binary searching choreography we proposed to implement for the following scenario: 

we are looking for number 59 in the list of values 2, 7, 19, 30, 34, 59, 66, 71, 80, 89. 

2.2 Sorting algorithms visualized by folk-dance choreographies 

As a next step we suggest sorting algorithms to be studied. Sorting a list is a common operation 

in many fields of work and is one of the most fundamental problems in computer science. In 

2012 we posted six folk dance choreographies on YouTube illustrating different sorting 

strategies (https://www.youtube.com/user/AlgoRythmics/videos). We selected for our current 

the syllabus four of them: 1) selection-sort with Gipsy folkdance, 2) bubble-sort with “Csángó 

folkdance”, 3) insertion-sort with Romanian folkdance, 4) merge-sort with Transylvanian Saxon 

folkdance. 

2.3 Backtracking algorithm visualized by ballet choreography 

Sudoku is one of the world's most popular brain games. What kind of computer algorithms is 

mostly related to this number game? Backtracking! Backtracking is a programming strategy for 

finding all solutions to a given computational problem that incrementally builds solutions, and 

immediately abandons all those partial solutions that evidently cannot be completed to a valid 

final solution. The classic backtracking example is the so-called “eight queens puzzle”, that asks 

59 

https://www.youtube.com/user/AlgoRythmics/videos
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for all valid arrangements of eight chess queens on a chessboard (no queen attacks any other). 

We plan to illustrate the recursive version of the four-queen variant of this classic backtracking 

algorithm by classic ballet choreography. Figure 5 presents the order and the rows where the 15 

ballerinas (corresponding to the 15 calls of the backtracking recursive function) are going to 

dance. The following pieces of choreographies are attached to each ballerina: 

 The queen comes to life at cell 0 of her row (new recursive call) 

 The queen dies at cell 5 of her row (the current recursive call ends) 

 The queen goes into “hibernation mode” (the current call is suspended; a new one begins at 

the next row) 

 The queen comes back from the “hibernation mode” (the suspended call from the previous 

row continues) 

 The current queen moves to the next cell of her row 

 The current queen successively considers those queens that hibernates at previous rows 

 These ones temporally wake up for a “pair of mutually attacking” / “pair of mutually non-

attacking” dance 

Additionally, four-queen “victory dances” illustrate the two valid solutions (see Figure 6). 

Figure 7 shows our backtracking ballet choreography draft .
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Figure 2. Linear searching choreography: we are looking for the value of X in the number sequence stored 

in array H[0..9]. 

19 80 33 2 89 59 71 66 7 34 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 

H0 is dancing a different 
solo-choreography than X 

i 

59 

≠ 

X 

19 80 33 2 89 59 71 66 7 34 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 

H1 is dancing a different 
solo-choreography than X 

i 

59 

≠ 

X 

19 80 33 2 89 59 71 66 7 34 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 

H2 is dancing a different 
solo-choreography than X 

i 

59 

≠ 

X 

19 80 33 2 89 59 71 66 7 34 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 

H5 is dancing the same solo-
choreography as X 

i 

59 

= 

X 

o o o 



 Zoltán KÁTAI, Erika OSZTIÁN, Géza Károly VEKOV 

 

6 

Figure 3. Binary searching choreography: we are looking for the value of X in the ordered number 

2 7 19 33 34 59 66 71 90 89 

59 59 

> 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 

X X 
X is dancing the same 

solo-choreography as H4, 
but faster 

a b (a+b)/
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2 7 19 33 34 59 66 71 90 89 

59 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 

X 
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solo-choreography as 

H7, but slower 

a b (a+b)/2 

59 

< 

X 

2 7 19 33 34 59 66 71 90 89 

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 

X and H5 are dancing 
the same solo-

choreography in 
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a b 

(a+b)/2 

59 

X 

59 
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sequence stored in array H[0..9]. 

 

Figure 4.a. Selection sort with Gipsy folkdance 

 

Figure 4.b. Bubble sort with “Csángó” folkdance 

 

Figure 4.c. Insertion sort with Romanian folkdance. 

 

Figure 4.d. Merge sort with Transylvanian Saxon folkdance. 
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Figure 5. The order and the rows where the 15 ballerinas (representing the queens) are going to dance (traversing 

the chessboard from left to right). 

 

Figure 6. The two valid solutions. 

 

Figure 7. Backtracking ballet choreography (first four scenes). The numbers represent consecutive piece of 

choreographies for the current ballerina: double arrow with stealth heads – mutually attacking dance, double 

arrow with circle heads – mutually non-attacking dance. 

 

D1 

D15D13D10D7D4

D3 

D14D11D8

D5 

D12D9D6D

2 D1 

D3D4D7D10D13D

15 

D5D8D11D14 

D2D6D9D1

2 

1 2 3 4 5 0 

D1 

D7 

D6 

D8 

D1 

D10 

D9 

D11 

D

1 
D

1 

D

2 
D

2 
D

2 
D

1 

D

3 
D

3 
D

2 

D

3 
D

3 

D

1 

D

2 
1 

1 

2 3 4 

1 

2 3 

4 

5 

6 

7 

8 

1 



Promoting computational thinking by artistically enhanced algorithm visualization 

9 

3. Familiarizing students with basic computer science concepts 

Based on the above presented dance choreographies we propose the following questions to be 

analyzed for introducing students with some basic computer science concepts. 

Algorithm complexity concepts  

Searching algorithms 

 How many comparison operations does the linear search algorithm imply for the sample 

presented in figure 2? 

 How many comparison operations does the binary search algorithm imply for the sample 

presented in figure 3? 

 What is the “best case” with respect to the linear search algorithm? 

 What is the “worst case” with respect to the linear search algorithm? 

 What is the “best case” with respect to the binary search algorithm? 

 What is the “worst case” with respect to the binary search algorithm? 

 How many comparison operations does the linear search algorithm imply (for a list with n 

elements) in the “best case”? 

 How many comparison operations does the linear search algorithm imply (for a list with n 

elements) in the “worst case”? 

 The (worst case) time complexity of the linear search algorithm is O(n). Why? 

 How many comparison operations does the binary search algorithm imply (for a list with n 

elements) in the “best case”? 

 How many comparison operations does the binary search algorithm imply (for a list with n 

elements) in the “worst case”? 

 The (worst case) time complexity of the binary search algorithm is O(log n). Why? 

 

Sorting algorithms 

 How many comparison and swapping operations does the selection sort algorithm imply for 

the sample presented in the video from figure 4.a? 

 How many comparison and swapping operations does the bubble sort algorithm imply for the 

sample presented in the video from figure 4.b? 

 How many comparison and swapping operations does the insertion sort algorithm imply for 

the sample presented in the video from figure 4.c? 

 How many comparison operations does the merge sort algorithm imply for the sample 

presented in the video from figure 4.d? 

 What is the “best case” with respect to a sorting algorithm? 

 What is the “worst case” with respect to a sorting algorithm? 

 How many comparison and swapping operations does the selection sort algorithm imply (for 

a list with n elements) in the “best case”? 

 How many comparison and swapping operations does the selection sort algorithm imply (for 

a list with n elements) in the “worst case”? 

 The (best case) time complexity of the selection sort algorithm is O(n2). Why? 

 The (worst case) time complexity of the selection sort algorithm is O(n2). Why? 

 How many comparison and swapping operations does the bubble sort algorithm imply (for a 

list with n elements) in the “best case”? 
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 How many comparison and swapping operations does the bubble sort algorithm imply (for a 

list with n elements) in the “worst case”? 

 The (best case) time complexity of the bubble sort algorithm is O(n). Why? 

 The (worst case) time complexity of the bubble sort algorithm is O(n2). Why? 

 How many comparison and swapping operations does the insertion sort algorithm imply (for 

a list with n elements) in the “best case”? 

 How many comparison and swapping operations does the insertion sort algorithm imply (for 

a list with n elements) in the “worst case”? 

 The (best case) time complexity of the insertion sort algorithm is O(n). Why? 

 The (worst case) time complexity of the insertion sort algorithm is O(n2). Why? 

 How many comparison operations does the merge sort algorithm imply (for a list with n 

elements) in the “best case”? 

 How many comparison operations does the merge sort algorithm imply (for a list with n 

elements) in the “worst case”? 

 In what sense is the merge sort algorithm a divide and conquer strategy?  

 The (best case) time complexity of the merge sort algorithm is O(n log n). Why? 

 The (worst case) time complexity of the merge sort algorithm is O(n log n). Why? 

 What is a limitation (regarding space complexity) of the merge sort algorithm? 

 

Backtracking algorithms 

 How many possibilities are to arrange 4 pawns on a 4x4 chessboard if the only restriction is: 

no pawns in the same row? How many pawn-ballerinas are needed to a four-pawn 

backtracking choreography? 

 How many possibilities are to arrange 4 rooks on a 4x4 chessboard in such a way that no 

rook-pairs attacking each other (no rook-pairs in the same row or column)? How many rook-

ballerinas are needed to a four-rook backtracking choreography? 

 How many possibilities are to arrange 4 queens on a 4x4 chessboard in such a way that no 

queen-pairs attacking each other (no queen-pairs in the same row, column or diagonal)? How 

many queen-ballerinas are needed to a four-queen backtracking choreography? 

 How many possibilities are to arrange n pawns on an nxn chessboard if the only restriction 

is: no pawns in the same row? 

 How many possibilities are to arrange n rooks on an nxn chessboard in such a way that no 

rook-pairs attacking each other? 

 How many possibilities are to arrange n queens on an nxn chessboard in such a way that no 

queen-pairs attacking each other? 

 Usually, backtracking algorithms have exponential time complexity. Why? 

 

Algorithm optimization 

 What is the maximum number of elements that can certainly be eliminated from the 

searching space with one comparison operation in the case of the linear search algorithm? 

 What is the maximum number of elements that can certainly be eliminated from the 

searching space with one comparison operation in the case of the binary search algorithm? 

 Why is binary searching superior to linear searching? What is a limitation of the binary 

search algorithm? 
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 After how many searching operations is the “merge-sort + binary-search” recipe superior to 

linear searching? 

 How many elements reach, certainly, their final positions (in the ordered list) after each 

traverse the bubble sort algorithm performs? 

 Why did two dancers turn back after the first traversed in the bubble sort implementation 

presented in the video from figure 4.b? 

 Why did only one dancer turn back after the second traversed in the bubble sort 

implementation presented in the video from figure 4.b? 

 In what way could the insertion operation be optimized in the insertion sort implementation 

presented in the video from figure 4.c? 

 What parallelization possibility is suggested by the merge sort choreography presented in the 

video from figure 4.d? 

 Although implementing the n-pawns backtracking algorithm is easier than implementing the 

n-queens one, why is “the valid n-queens arrangements are such valid n-pawns arrangements 

where no pawns are in the same column or diagonal” approach inefficient? 

4. Conclusions 

In this paper we have presented a novel approach to promote computational thinking by 

introducing students with common computer algorithms illustrated by hip-hop, folk and ballet 

dance choreographies. We have also suggested question-sequences to familiarize them with 

basic computer science concepts like algorithm complexity and optimization. 
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