
Rod Stephens

C# Graphics
Programming

Updates, source code, and Wrox technical support at www.wrox.com

Wiley Publishing, Inc.

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Contents

Section 1: Using Graphics, Pens, and Brushes 2
Getting a Graphics Object 3
Using a Graphics Object 5
Creating Pens	 8
Creating Brushes 11
Section 1 Wrap-up 14

Section 2: Using Advanced Pens and Brushes 15
Custom Dash Patterns 15
Longitudinal Stripes 16
Custom End Caps 18
Linear Gradient Brushes 19
Path Gradient Brushes 21
Section 2 Wrap-up 22

Section 3: Drawing Text 23
Drawing Simple Text 23
Using Layout Rectangles 24
Section 3 Wrap-up 28

Section 4: Manipulating Images 28
Creating and Loading Bitmaps 29
Manipulating Bitmaps 31
Saving Image Files 33
Section 4 Wrap-up 35

Section 5: Using Transformations 35
Basic Transformations 35
World Coordinate Mapping 38
Section 5 Wrap-up 42

Section 6: Printing 42
Using PrintPage	 43
Using Other Event Handlers 46
Printing Transformations 48
Section 6 Wrap-up 51

Section 7: Using WPF Graphics 51
Decorative Controls 51
Shape Controls 52
Brushes 56
Section 7 Wrap-up 60

Section 8: Building FlowDocuments 60
BlockUIContainer	 61
List	 61
Paragraph	 61
Section	 61
Table 61
Section 8 Wrap-up 63

Conclusion 64
About Rod Stephens 65

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

C# Graphics Programming

When my editor Bob Elliott asked me if I wanted to write a Wrox Blox about .NET graphics, I felt
like a kid in a candy shop! Where should I start? Should I gorge myself on image processing? Or
pace myself and work slowly through an assortment of chocolate-covered pens and brushes?
Perhaps the metaphor is a bit strained, but .NET provides so many graphics tools that it’s hard to
decide where to start and where to stop. There are so many interesting tools and techniques that
there’s no way to cover everything in depth in a single Wrox Blox.

To make this as useful as possible to you, I’ll cover an assortment of the topics that are most useful
in Visual Studio applications. I’ll provide enough information to get you going, and I’ll even
describe some of the more advanced tools such as PathGradientBrushes and custom line end
caps. Since I won’t be able to cover every tool and technique in as much depth as I would like, at
some point you’ll need to strike out on your own and do some additional research on the Web.
If you get stuck on an advanced topic, or if you have questions or comments about the material in
this Wrox Blox, e-mail me at RodStephens@vb-helper.com, and I’ll try to give you some pointers.

Section 1 starts the discussion by describing the basic building blocks of graphics programming in
C#: the Graphics, Pen, and Brush classes. You can use these classes to draw and fill lines, curves,
ellipses — just about everything except images and text.

Section 2 describes advanced Pen and Brush objects that let you produce more advanced effects
such as lines with custom end caps and areas filled with color gradients that follow a path.

Section 3 finishes the discussion of fundamental graphical techniques by explaining how to
draw text.

Section 4 tells how to draw and manipulate bitmapped images. It shows how to modify or draw
images and save the results in a variety of formats such as BMP, GIF, and JPG files.

mailto:RodStephens@vb-helper.com

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Section 5 explains an extremely powerful feature provided by .NET graphics: transformations. With a
little practice, you can use transformations to build extremely complex graphics relatively simply using
the coordinate systems that are easiest for you.

Section 6 shows how to add printouts and print previews to C# applications. Many books don’t cover
this topic very well, but printing plays an important role in many applications.

Section 7 describes the new Graphics objects that you can use in Windows Presentation Foundation
(WPF) applications. By using these objects, you can create graphics declaratively at design time in
addition to procedural run time.

Section 8 describes a particularly useful object provided by WPF (Windows Presentation Foundation)
graphics: FlowDocument. A FlowDocument object can contain text, images, graphical objects, controls,
and other visible objects. It then automatically flows those objects across whatever space is available. The
result is a newsletter-like document that is extremely easy to build and view.

It’s a lot of material to cover in not so many pages, so grab your favorite caffeinated beverage and let’s
get started!

Section 1: Using Graphics, Pens,
and Brushes

Whenever you draw in C#, you draw on a Graphics object. You can think of this object as representing
the canvas or piece of paper on which you will draw. There are several occasions when you may want to
draw (when a form refreshes, to update an image, when generating a printout), but they all use the same
kind of Graphics object. That’s great news because it means you only need to learn how to draw in one
way and you can use the same code to draw on just about anything.

The Pen class determines the characteristics of line-like graphics. This includes straight lines as well
as the edges of ellipses, rectangles, arcs, Bezier curves, and other drawn lines. The Pen object determines
the line’s color, thickness, dash style, lengthwise style (e.g., the line may consist of thin stripes), end
caps (the shape of the line’s end points), dash caps (the shape of the ends of dashes), and join style.

The Brush class determines the characteristics of filled areas. This includes such items as filled ellipses,
rectangles, arcs, and other closed curves. The Brush class also determines how text is filled. The Brush
object determines the filled area’s color, hatch pattern, color gradient, or fill pattern.

For example, the following code draws on a Graphics object named gr. First the code uses a solid, light
blue brush to fill an ellipse that has its upper-left corner at (10, 10), width 200, and height 100. (All units
are pixels.) It then draws the same ellipse with a 1-pixel-wide, solid, stock red pen.

gr.FillEllipse(Brushes.LightBlue,	10,	10,	200,	100)
gr.DrawEllipse(Pens.Red,	10,	10,	200,	100)

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The following sections describe simple uses of the Graphics, Pen, and Brush classes. Section 2, “Using
Advanced Pens and Brushes,” explains how to use more complicated Pen and Brush objects to produce
more sophisticated images.

Getting a Graphics Object
The most common methods for obtaining a Graphics object on which to draw are by:

q	 Calling a form or other control’s CreateGraphics method.

q	 Calling the Graphics class’s FromImage method.

q	 Using the e.Graphics parameter in a Paint event handler.

q	 Using the e.Graphics parameter in a PrintDocument object’s PrintPage event handler.

The following sections describe each of these methods in some detail.

Using CreateGraphics
The CreateGraphics method returns a Graphics object that you can use to draw immediately on a
form or control. Unfortunately, whatever you draw is only safe until that object is refreshed. The
UseCreateGraphics example program uses the following code to draw an ellipse on a form:

Graphics	gr	=	this.CreateGraphics();
gr.FillEllipse(Brushes.Yellow,	10,	30,	200,	150);
gr.DrawEllipse(Pens.Orange,	10,	30,	200,	150);

If you cover part of the form with another form and then expose that part again, the part of the ellipse
that was covered disappears. Similarly, if you minimize the form and restore it, the entire ellipse
disappears. To produce graphics that don’t go away like this, you should use some other drawing
method such as the Paint event handler described shortly.

Using Graphics.FromImage
The Graphics class provides a static FromImage method that lets you create a Graphics object
associated with an image, typically a bitmap. You can then use that object to draw on the bitmap.

The EllipseOnBitmap example program uses the following code. It creates a bitmap and then gets a
Graphics object associated with it. It uses that object to draw an ellipse and then displays the bitmap in
a PictureBox.

//	Create	the	Bitmap.
Bitmap	bm	=	new	Bitmap(200,	100);
										
//	Get	a	Graphics	object	associated	with	the	Bitmap.
Graphics	gr	=	Graphics.FromImage(bm);
										
//	Draw	on	the	Bitmap.
gr.FillEllipse(Brushes.Pink,	10,	10,	180,	80);

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

gr.DrawEllipse(Pens.Black,	10,	10,	180,	80);
										
//	Display	the	Bitmap	in	the	PictureBox.
picEllipse.Image	=	bm;

The PictureBox automatically re-displays its image whenever it is refreshed. That means the image
doesn’t disappear when the control is refreshed as it would be if you used the CreateGraphics method
described above. Similarly, you could draw on a bitmap and assign it to a form’s BackgroundImage
property to tile the form with the image.

Building a bitmap by using the FromImage method is usually the best method for drawing permanent
images.

Using e.Graphics in Paint Event Handlers
When a form or other control needs to be refreshed, it raises a Paint event. The event handler takes a
parameter e that has a Graphics property. The event handler’s code can use that property to draw on
the control.

The PaintDrawX example program uses the following code to draw an X on its form:

//	Draw	an	X	that	fills	the	form.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				e.Graphics.Clear(this.BackColor);
				e.Graphics.DrawLine(Pens.Blue,	0,	0,
								this.ClientSize.Width,	this.ClientSize.Height);
				e.Graphics.DrawLine(Pens.Blue,
								this.ClientSize.Width,	0,	0,	this.ClientSize.Height);
}

This approach is simple and works well if the drawing appears quickly. If it takes several seconds to
produce the image, the user may see annoying flickering and re-drawing when the form is refreshed or
resized. In that situation, it would be better to draw the image onto a bitmap and display the result in a
PictureBox as described in the above section.

Using a Paint event handler leads to two fairly confusing situations. First, if the drawing appears at different
sizes based on the form size, as is the case in the above code, you need to handle form resizing specially.

When a form resizes, it raises its Paint event to re-draw any new areas that have been exposed. That
much makes sense, but the e.Graphics object passed into the Paint event handler only represents the
new areas and not any areas that were already visible. For example, suppose a form’s drawing area is
100 pixels wide and you then widen the form so that the area is 200 pixels wide. In that case, the
e.Graphics parameter only represents the new area on the right half of the form. Any drawing that the
code performs on the left part of the form is ignored. The result can be strange, with pieces of older
images still on the form until the next total refresh.

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The easiest way to fix this problem is to flag the form so that it knows that you will be drawing in the
Paint event handler and that resizing the form should cause a complete re-draw. The program
PaintDrawX does this by placing the following code in its Load event handler:

private	void	Form1_Load(object	sender,	EventArgs	e)
{
				this.SetStyle(ControlStyles.AllPaintingInWmPaint	|	ControlStyles.ResizeRedraw,
								true);
}

Now when the form is resized, it raises a Paint event with an e.Graphics parameter that represents
the whole form. Comment out the call to SetStyle and resize the form a few times to see the difference.

The second confusing situation that can arise when drawing in the Paint event handler occurs if you
use CreateGraphics to create a Graphics object. This code works almost as you would expect, and
you can even draw on that Graphics object. However, when the Paint event handler completes, the
form re-draws itself with the graphics produced by the e.Graphics object so that whatever you drew
on the other Graphics object is immediately lost. You can easily avoid this problem if you don’t
use CreateGraphics inside Paint event handlers. (In fact, you should rarely need to use
CreateGraphics.)

Using e.Graphics in PrintPage Event Handlers
When you use a PrintDocument to generate a printout, that object raises PrintPage events to generate
the pages that it must draw. (This is described in greater detail in Section 6, “Printing.”) Like the Paint
event handler, PrintPage provides an e.Graphics parameter that you can use to draw graphics.

The SimplePrint example program uses the following code to draw an ellipse on a single printout page.
It uses the e.Graphics object’s DrawEllipse method, passing it the page’s margin bounds so that the
ellipse fills the page. It finishes by setting e.HasMorePages to False so that the PrintDocument doesn’t
try to generate any more pages.

private	void	pdEllipse_PrintPage(object	sender,
System.Drawing.Printing.PrintPageEventArgs	e)
{
				e.Graphics.DrawEllipse(Pens.Green,	e.MarginBounds);
				e.HasMorePages	=	false;
}

Using a Graphics Object
The Graphics class provides many methods for drawing and filling shapes. These methods fall into two
categories: those that draw shapes and those that fill areas. Methods that draw shapes all take a Pen as a
parameter to determine the shape’s line characteristics. Methods that fill areas all take a Brush
as a parameter to determine how the area is filled.

Many of the filling methods have corresponding drawing methods. In those cases, the two methods’
parameters are the same except the drawing method takes a Pen and the filling method takes a Brush.
Their names are even the same except “Draw” is replaced with “Fill.”

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Table 1 summarizes the Graphics class’s drawing and filling methods.

Table 1: Graphics Class’s Drawing and Filling Methods

Drawing Method Filling Method Purpose

DrawArc N/A Draws an elliptical arc

DrawBezier N/A Draws a Bezier curve

DrawBeziers N/A Draws a series of connected Bezier curves

DrawClosedCurve FillClosedCurve Draws/fills a smooth closed curve

DrawCurve N/A Draws a smooth curve that is not closed

DrawEllipse FillEllipse Draws/fills an ellipse

N/A DrawIcon Draws an icon image

N/A DrawIconUnstretched Draws an icon image with its original size

N/A DrawImage Draws some or all of an image at a given
location, possibly resized

N/A DrawImageUnscaled Draws an image at a given location at its
original size

N/A DrawImageUnscaledAndC
lipped

Draws an image at a given location at its scale
but possibly clipped to fit an output area

DrawLine N/A Draws a line segment

DrawLines N/A Draws a series of connected line segments

DrawPath FillPath Draws/fills a path defined by a
GraphicsPath object

DrawPie FillPie Draws/fills an elliptical pie slice

DrawPolygon FillPolygon Draws/fills a series of connected line segments
and connects the last to the first to make a
closed shape

DrawRectangle FillRectangle Draws/fills a rectangle

DrawRectangles FillRectangles Draws/fills a series of rectangles

N/A FillRegion Fills an area defined by a Region object

N/A DrawString Draws a text string

Most of the Graphics class’s drawing and filling methods are straightforward.
You can learn more about them in the Help or online at
http://msdn2.microsoft.com/library/system.drawing.graphics_methods.aspx.

http://msdn2.microsoft.com/library/system.drawing.graphics_methods.aspx

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

There are several different versions of the online Help for different versions of the .NET Framework.
Unfortunately, some of those versions are incomplete. You can find information for the .NET Framework 3.5
version of the Graphics class at http://msdn2.microsoft.com//library/system.drawing.graphics_
methods(VS.90).aspx, but you may have to look at older versions to get details for many of the methods.

The image drawing methods are a bit different because, despite the fact that their names begin with
“draw,” they fill an area. They also fill with some sort of image rather than a brush.

The DrawString method’s name also begins with “draw,” but it uses a brush to fill text.

Three other important Graphics methods are Clear, CopyFromScreen, and Dispose. The Clear
method clears the drawing surface with a specified color, and CopyFromScreen copies part of the screen
image onto the drawing surface.

The Dispose method frees resources used by the Graphics object. To make resource recycling more
efficient, you should always call the Graphics object’s Dispose method when you are done drawing
with it. Alternatively, you can build a using block for the Graphics object.

The UseCopyFromScreen example program uses the following code to copy a piece of the screen onto a
bitmap:

int	x	=	int.Parse(txtXmin.Text);
int	y	=	int.Parse(txtYmin.Text);
int	wid	=	int.Parse(txtXmax.Text)	-	x	+	1;
int	hgt	=	int.Parse(txtYmax.Text)	-	y	+	1;
										
Bitmap	bm	=	new	Bitmap(wid,	hgt);
using	(Graphics	gr	=	Graphics.FromImage(bm))
{
				gr.CopyFromScreen(x,	y,	0,	0,	new	Size(wid,	hgt));
}
										
picResult.Image	=	bm;

After getting the location and size of the area to copy from textboxes, the code creates a Bitmap of the
correct size.

It then makes a Graphics object to draw on the Bitmap. It makes the Graphics object in a using
statement so that C# automatically calls the object’s Dispose method when it reaches the end of
the block.

Inside the using block, the program calls the CopyFromScreen method to copy part of the screen’s
image into the Bitmap.

The code finishes by displaying the Bitmap in the picture box named picResult.

While it is important to call the Dispose method when you are finished with a
 Graphics object, don’t do the same thing for a Bitmap as long as the Bitmap is still in
use. In this example, the picture box needs to use the Bitmap to re-draw itself. If you
call bm.Dispose, the picture box will fail to re-draw and the program will crash.

http://msdn2.microsoft.com/library/system.drawing.graphics_methods(VS.90).aspx
http://msdn2.microsoft.com/library/system.drawing.graphics_methods(VS.90).aspx

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The Graphics object provides three properties that determine the quality of the graphics pro-
duced and that deserve special mention.

First, InterpolationMode determines the quality of image operations. When the Graphics object
draws an image at a new scale, this property determines the quality of the new image. Setting this
property to a high-quality value such as High or Bilinear makes drawing take slightly longer but
produces a better result.

Second, TextRenderingHint determines the quality of drawn text. Setting this to a high-quality value
such as AntiAliasGridFit again slows performance somewhat, but the results can be much nicer than
those given by faster settings.

Finally, the SmoothingMode property determines whether the Graphics object smoothes the edges of
drawn lines and shapes.

Check the online Help or just experiment with different values for these properties to see what effects
they have. Unless you are drawing an extremely complicated picture, the higher-quality settings provide
a much better result without a noticeable delay.

Creating Pens
The Pens class defines more than a hundred stock pens that you can use with very little effort. These are
solid pens of various colors with width 0. (A pen with width 0 is always drawn as thinly as possible even
if the Graphics object has been stretched. Section 5, “Using Transformations,” explains transformations
including stretching.)

The following code uses the Pens.Green pen to draw a rectangle with a 1-pixel-wide green border:

e.Graphics.DrawRectangle(Pens.Green,	10,	10,	100,	50)

Stock pens are sufficient for many tasks, and they keep your code simple. Occasionally, however, you
may not want a thin, solid pen. In that case, you can create new Pen objects.

The Pen class provides a couple of useful constructors that you can use to create non-standard pens. You
can pass the constructor a Color to create a pen of that color. You can also pass the constructor the width
that you would like the pen to have.

The following code creates a new Pen that is orange and 10 pixels wide and uses it to draw a line from
the point (30, 30) to the point (200, 30):

using	(Pen	the_pen	=	new	Pen(Color.Orange,	10))
{
				e.Graphics.DrawLine(the_pen,	30,	30,	200,	30);
}

C# Graphics Programming

�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Notice that this code makes its Pen in a using clause so that C# automatically calls the pen’s Dispose
method when the block ends. While you should call Dispose for any pen that you create, do not call
Dispose for a stock pen or your program will crash.

Other versions of the Pen class’s constructor take a Brush instead of a Color as a parameter. C# then fills
the area covered by the pen with the brush.

The following code creates a LinearGradientBrush that shades from red to blue (the following section
says more about this). It then uses the Brush to make a new 10-pixel-wide Pen and uses the Pen to draw
an ellipse. The result is an ellipse with a thick border that shades from red in the upper left to blue in the
lower right.

using	(Brush	br	=	new	LinearGradientBrush(
				new	Point(20,	100),	new	Point(170,	200),
				Color.Red,	Color.Blue))
{
				using	(Pen	the_pen	=	new	Pen(br,	10))
				{
								e.Graphics.DrawEllipse(the_pen,
												20,	100,	150,	100);
				}
}

The Pen class has a few useful properties for controlling its appearance. As you can probably guess, the
Color property determines the pen’s color. Normally you select the color by picking a stock pen or by
passing the color into a new pen’s constructor, but sometimes it’s useful to change a pen’s color after you
have created it. For example, if you build a thick pen with a custom dash style, it is easier to change the
color and reuse the pen than it is to create several new pens.

The DashStyle property determines the pen’s dash style. Standard DashStyle values include Solid,
Dash, DashDot, DashDotDot, and Dot. The following code draws a polygon with a thick, purple, dashed
border.

Point[]	pts	=	{
				new	Point(250,	50),
				new	Point(220,	100),
				new	Point(270,	150),
				new	Point(200,	170),
				new	Point(180,	80),
				new	Point(210,	30)
};
using	(Pen	the_pen	=	new	Pen(Color.Purple,	5))
{
				the_pen.DashStyle	=	DashStyle.Dash;
				e.Graphics.DrawPolygon(the_pen,	pts);
}

C# Graphics Programming

10

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The code first creates an array of Point objects to define the polygon. It creates a thick, purple pen, sets
its DashStyle to Dash, and draws the polygon.

The DashStyle values (and many other more advanced drawing features) are defined in the
System.Drawing.Drawing2D namespace. If you need to use these values a lot, you may want to
import that namespace into your code.

The UsePens example program demonstrates simple stock pens, thick pens, pens defined by a brush,
and dashed pens.

The Pen class’s DashCap property determines how the ends of a dash are drawn. This property can take
the values Triangle, Flat, and Round.

The DashOffset property determines how far into the first dash the line begins. For example, if the
Pen’s DashOffset property is 1, then the line starts 1 unit into the first dash.

Note that dash measurements are relative to the pen’s thickness. For example, a dot is 1 unit long. If a
pen is 10 pixels wide, that means each dot is 10 pixels long.

The DashCaps example program, which is shown in Figure 1, draws three line segments with
DashStyle values Dash, DashDot, and DashDotDot. It sets the lines’DashCap values to Triangle,
Flat, and Round.

After it draws the three lines, the example program skips some space, sets the Pen object’s DashOffset
property to 1, and then draws the lines again.

Figure 1: The DashCaps
example program showing the
three DashStyle values Dash,
DashDot, and DashDotDot.

Just as the DashCap property determines how the ends of dashes are drawn, the StartCap and EndCap
properties determine how a line’s end points are drawn. This property can take the values
ArrowAnchor, DiamondAnchor, Flat, Round, RoundAnchor, Square, SquareAnchor, and Triangle.
The LineCaps example program, which is shown in Figure 2, demonstrates these values.

C# Graphics Programming

11

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure �: The LineCaps example program
showing various StartCap and EndCap
values.

Section 2, “Using Advanced Pens and Brushes,” describes some even more advanced Pen features.

Creating Brushes
Just as the Pens class defines stock pens, the Brushes class defines stock brushes with various colors.

Just as you should not call a stock pen’s Dispose method, you should not call a stock brush’s Dispose
method.

The StockBrushes example program uses the following code to fill an ellipse with yellow and then
outline it in orange:

//	Fill	an	ellipse.
e.Graphics.FillEllipse(Brushes.Yellow,	20,	20,	200,	150);
										
//	Outline	the	ellipse.
using	(Pen	the_pen	=	new	Pen(Color.Orange,	5))
{
				e.Graphics.DrawEllipse(the_pen,	20,	20,	200,	150);
}

The stock brushes are of the SolidBrush class, a fairly simple class that provides only one interesting
property: Color. You can use the class’s constructor to make solid brushes with non-standard colors, but
otherwise it’s a pretty boring class. C# provides several other brush classes that are a bit more interesting.

The HatchBrush class provides an assortment of hatched brushes. These fill an area with a background
color covered by some sort of pattern drawn in a foreground color. Figure 3 shows samples of the
available hatch styles drawn with blue foreground color on a yellow background color.

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure �: The HatchStyles example program demonstrating hatch brush patterns.

The HatchedRectangle example program uses the following code to draw a rectangle filled with
diagonal bricks:

using	(HatchBrush	br	=	new	HatchBrush(HatchStyle.DiagonalBrick,
				Color.Red,	Color.Pink))
{
				e.Graphics.FillRectangle(br,	10,	10,	200,	150);
				e.Graphics.DrawRectangle(Pens.Red,	10,	10,	200,	150);
}

Because hatched brushes are not stock objects, you should call their Dispose methods either explicitly or
with a using block as in the previous code.

The TextureBrush class fills an area with an image that you provide. The TexturedRectangle example
program uses the following code to fill its form’s background. It makes a TextureBrush, passing its
constructor the bitmap resource My.Resources.smile. It then uses that brush to fill the form’s
client area.

//	Fill	an	area	with	a	texture.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				using	(TextureBrush	br	=	new	TextureBrush(Properties.Resources.smile))
				{
								e.Graphics.FillRectangle(br,	this.ClientRectangle);
				}
}

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure 4 shows the TexturedRectangle example program in action.

Figure �: The TexturedRectangle example
program uses a TextureBrush to fill its form
with an image.

No matter where the area is that a TextureBrush fills, it starts tiling the image relative to the
upper-left corner of the Graphics object on which it is drawing. If the area you are drawing starts in
the upper-left corner of the Graphics object, the image lines up nicely as it does in Figure 4. If the area’s
corner is not an integer multiple of the size of the image away from the Graphics object’s corner, the
image doesn’t line up.

The TextureTests example program demonstrates this issue. The program fills the rectangle on the left
with the same brush used in Figure 4. If you compare the two pictures carefully, you can see that the
images in the two pictures line up.

Figure �: The TextureTests example
program fills an area with an image at its
default origin and another area with a
translated origin.

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Because every filled area starts tiling at the same origin, if you fill overlapping areas, their images line up
smoothly. If you are filling a single area that is not lined up properly, as on the left in Figure 5, the result
can look strange.

One way to fix this problem is to translate the brush’s origin. The following code shows how the
program TextureTests fills its rectangles. It draws its first rectangle with a normal TextureBrush. It then
uses the brush’s TranslateTransform method to move its origin to the position where it will fill its
second rectangle. Now when it fills the rectangle on the right, the image begins in the rectangle’s upper-
left corner.

//	Fill	some	rectangles	with	different	origins.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				int	wid	=	Properties.Resources.smile.Width;
				int	hgt	=	Properties.Resources.smile.Height;
										
				using	(TextureBrush	br	=	new	TextureBrush(Properties.Resources.smile))
				{
								e.Graphics.FillRectangle(br,	30,	30,	wid,	hgt);
								e.Graphics.DrawRectangle(Pens.Red,	30,	30,	wid,	hgt);
										
								br.TranslateTransform(150,	30);
								e.Graphics.FillRectangle(br,	150,	30,	wid,	hgt);
								e.Graphics.DrawRectangle(Pens.Red,	150,	30,	wid,	hgt);
				}
}

Section 1 Wrap-up
Section 1 is a bit longer than the others because it covers concepts that you need to understand for any
graphics programming. Every graphics program uses pens and brushes to draw on a Graphics object.

This section explains how to obtain Graphics objects. The two most common methods are to use the
e.Graphics parameter in a Paint or PrintPage event handler and to make a Graphics object
associated with a bitmap. The second technique lets you build a persistent image to display and is the
closest thing C# has to an auto-re-draw capability.

This section also explains how to use stock pens and brushes; how to build pens that are thick, dashed,
and with different end caps; and how to make hatched and textured brushes. These kinds of pens and
brushes can handle most of your graphics needs.

The next section describes more advanced pens and brushes that provide new features such as lines with
customized dash patterns, longitudinal stripes, and customized end caps; and brushes that fill with color
gradients.

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Section 2: Using Advanced Pens
and Brushes

Most graphics programs can make do with relatively simple pens and brushes, but occasionally it’s nice
to bump it up a notch. This section describes more advanced pen and brush classes and techniques that
can add an extra dimension of style and interest to an otherwise ordinary application.

Custom Dash Patterns
The Pen class supports five standard dash patterns: Solid, Dash, DashDot, DashDotDot, and Dot.
Those are good enough for simple drawings, but if you need to distinguish among many lines, you can
create your own dash patterns.

This technique is also useful when the standard dash patterns don’t look good for a particular line
thickness. Normally a unit of line length is the same as its width. If a line is 1 pixel wide, then a dot is
also 1 pixel long. If a line is 10 pixels wide, then a dot is 10 pixels long. Sometimes you may not like the
results. In particular, since the default dash and dot lengths are fairly small for thin lines, I often prefer
bigger dashes.

If you set a Pen object’s DashStyle property to Custom, then you can set its DashPattern property to
an array of floats that determine the line’s pattern of drawn and skipped pieces. For example, a
DashPattern of {4, 1, 2, 1} means draw 4 units, skip 1 unit, draw 2 units, skip 1 unit, and then repeat.

The CustomDash example program, which is shown in Figure 6, draws several lines with different dash
styles. The top two lines show the standard Dot and Dash styles. The third line uses a custom dash style
defined by the array {10, 2}.

Figure �: The CustomDash example program
draws lines with custom dash styles.

The units used to measure dashes are the same as the pen’s width. To define a dash pattern in absolute
numbers of pixels, divide the number of pixels by the pen’s width. For example, the fourth line in Figure 6
draws a thick line. It uses 10-pixel-wide dashes separated by 2-pixel-wide gaps just as the previous line
does. This pen is 5 pixels wide, thus the program uses the array {10/5, 2/5} to make this pattern.

The fifth line in Figure 6 uses the same thick pen and the dash pattern {10, 2}. The final line uses the
array {5, 2, 5, 2, 2, 2, 2, 2} to make a thick dash-dash-dot-dot pattern.

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The program CustomDash uses the following code to draw its lines:

//	Draw	some	custom	dash	patterns.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				using	(Pen	the_pen	=	new	Pen(Color.Blue))
				{
								int	y	=	10;
										
								//	Standard	dot.
								the_pen.DashStyle	=	DashStyle.Dot;
								e.Graphics.DrawLine(the_pen,	10,	y,	250,	y);
								y	+=	15;
										
								//	Standard	dash.
								the_pen.DashStyle	=	DashStyle.Dash;
								e.Graphics.DrawLine(the_pen,	10,	y,	250,	y);
								y	+=	15;
										
								//	Thin	with	long	dashes.
								the_pen.DashStyle	=	DashStyle.Custom;
								the_pen.DashPattern	=	new	float[]	{10,	2};
								e.Graphics.DrawLine(the_pen,	10,	y,	250,	y);
								y	+=	15;
										
								//	Thick	with	the	same	absolute	dash	lengths.
								the_pen.Width	=	5;
								the_pen.DashStyle	=	DashStyle.Custom;
								the_pen.DashPattern	=	new	float[]	{	2f,	0.4f	};
								e.Graphics.DrawLine(the_pen,	10,	y,	250,	y);
								y	+=	15;
										
								//	Thick	with	the	same	relative	dash	lengths.
								the_pen.Width	=	5;
								the_pen.DashStyle	=	DashStyle.Custom;
								the_pen.DashPattern	=	new	float[]	{10f,	2f};
								e.Graphics.DrawLine(the_pen,	10,	y,	250,	y);
								y	+=	15;
										
								//	Thick	Dash	Dash	Dot	Dot.
								the_pen.Width	=	5;
								the_pen.DashStyle	=	DashStyle.Custom;
								the_pen.DashPattern	=	new	float[]	{5f,	2f,	5f,	2f,	2f,	2f,	2f,	2f};
								e.Graphics.DrawLine(the_pen,	10,	y,	250,	y);
								y	+=	15;
				}
}

Longitudinal Stripes
Just as you can use an array of floats to define a custom dash pattern, you can use a similar array to
define longitudinal stripes. This array should contain pairs of numbers between 0.0 and 1.0 that
represent where drawing should start and stop across the width of the pen. To define a striped line, set a
Pen object’s CompoundArray property to the array.

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

For example, the array {0.0, 0.4, 0.6, 1.0} means draw from 0.0 to 0.4 of the line’s width, skip to 0.6, and
then draw the rest of the width to 1.0. The result is a line that has a blank stripe that is 20 percent of the
line’s width (0.6 – 0.4 = 0.2, or 20%) running down the middle.

The array {0.0, 0.1, 0.3, 0.7, 0.9, 1.0} draws a thin section from 0.0 to 0.1, skips from 0.1 to 0.3, draws a
thicker section from 0.3 to 0.7, skips another section from 0.7 to 0.9, and draws another thin section from
0.9 to 1.0.

The Stripes example program, shown in Figure 7, demonstrates these two arrays. It draws the red
triangle with the first pen and the green ellipse with the second.

Figure �: The Stripes example program
draws lines with longitudinal stripes.

The program Stripes uses the following code to draw its shapes. Notice that it sets the Graphics object’s
SmoothingMode property to make the lines smooth.

//	Draw	some	shapes	with	striped	lines.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				e.Graphics.SmoothingMode	=	SmoothingMode.AntiAlias;
				using	(Pen	the_pen	=	new	Pen(Color.Red,	20))
				{
								Point[]	pts	=	{
												new	Point(20,	20),
												new	Point(120,	20),
												new	Point(70,	120)
								};
								the_pen.CompoundArray	=	new	float[]	{0.0f,	0.4f,	0.6f,	1.0f};
								e.Graphics.DrawPolygon(the_pen,	pts);
										
								the_pen.Color	=	Color.Green;
								the_pen.CompoundArray	=	new	float[]	{0.0f,	0.1f,	0.3f,	0.7f,	0.9f,	1.0f};
								e.Graphics.DrawEllipse(the_pen,	150,	20,	100,	150);
				}
}

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

If any of the values in the CompoundArray property is smaller than 0.0 or greater than 1.0, or the values
are not arranged in increasing order, or if the array doesn’t contain an even number of values, the
program crashes.

Custom End Caps
You can set a Pen object’s StartCap and EndCap properties to determine how a line’s ends are drawn.
Figure 2 shows the possible line cap values. For some applications, the values shown in Figure 2 may not
be good enough. In some cases, you may want to use specialized line caps to better suit your application.
(I once worked on a professional football coaching tool where players’ routes were drawn with various
kinds of lines. The end caps showed the type of block linesmen were supposed to perform: angled left,
angled right, square, pushing left, etc.)

You can make a custom start cap or end cap by setting a Pen object’s CustomStartCap and
CustomEndCap properties to a new CustomLineCap object. One of the CustomLineCap constructors
takes as parameters GraphicsPath objects that it should use to fill and draw the custom cap. Finally,
you can make a GraphicsPath object and use its methods to add lines, curves, and other shapes
to the path.

The CustomEndCaps example program uses the following code to display a line with custom caps:

//	Draw	lines	with	custom	end	caps.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				using	(Pen	the_pen	=	new	Pen(Color.Green,	5))
				{
								//	Define	the	start	cap.
								Point[]	start_pts	=	{
												new	Point(0,	0),
												new	Point(-3,	3),
												new	Point(3,	3),
												new	Point(0,	0)
								};
								GraphicsPath	start_path	=	new	GraphicsPath();
								start_path.AddLines(start_pts);
								CustomLineCap	start_cap	=	new	CustomLineCap(null,	start_path);
								the_pen.CustomStartCap	=	start_cap;
										
								//	Define	the	end	cap.
								Point[]	end_pts	=	{
												new	Point(0,	0),
												new	Point(-3,	0),
												new	Point(-3,	3),
												new	Point(3,	3)
								};
								GraphicsPath	end_path	=	new	GraphicsPath();
								end_path.AddLines(end_pts);
								CustomLineCap	end_cap	=	new	CustomLineCap(null,	end_path);
								the_pen.CustomEndCap	=	end_cap;
										
								//	Draw	a	sample.

C# Graphics Programming

1�

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

								e.Graphics.DrawLine(the_pen,	50,	50,	100,	100);
										
								end_cap.Dispose();
								end_path.Dispose();
								start_cap.Dispose();
								start_path.Dispose();
				}
}

The code creates a thick, green pen. It then makes an array that defines the custom start cap. If you stand
on the line looking off the starting end, X coordinates increase to the left, and Y coordinates increase to
the front (off of the line).

Next the program creates a GraphicsPath object and uses its AddLines method to add the lines
defined by the array to the path. It then creates a CustomLineCap object, passing its constructor the
GraphicsPath. Finally, the code sets the Pen object’s CustomStartCap property to the new
CustomLineCap.

The code performs similar steps to create a custom end cap. The process is similar to the one used to
create a custom start cap. Even the coordinate system is the same: If you stand on the end of the line
looking away from the line, X increases to the left, and Y increases to the front.

Figure 8 shows the result.

Figure �: The CustomEndCaps
example program draws a line
with custom start and end caps.

Linear Gradient Brushes
Like other brush classes, the LinearGradientBrush class fills an area. This kind of brush fills the area
with a color gradient that blends smoothly from one color to another or that blends between several
colors.

You can create a simple LinearGradientBrush by passing its constructor two colors and two points
that determine where the colors should be. The brush smoothly shades from one color to the other
between those points.

C# Graphics Programming

�0

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

A second version of the class’s constructor takes as parameters two colors, a rectangle, and a flag
indicating how the colors should be used to fill the rectangle (horizontally, vertically, or diagonally).

The LinearGradientBrushes example program uses the following code to create a horizontal gradient
brush for a rectangle. It then fills that rectangle with the brush.

//	Draw	with	a	horizontal	gradient.
Rectangle	rect1	=	new	Rectangle(20,	20,	250,	100);
using	(LinearGradientBrush	br	=	new	LinearGradientBrush(
				rect1,	Color.Red,	Color.Blue,	LinearGradientMode.Horizontal))
{
				e.Graphics.FillRectangle(br,	rect1);
				e.Graphics.DrawRectangle(Pens.Black,	rect1);
}

The LinearGradientBrush class provides some properties that you can use to make more complicated
shading patterns. The InterpolationColors property is a ColorBlend object that defines a series of
colors and their positions within the blend. The brush then smoothly shades between all of the colors.

The program LinearGradientBrushes uses the following code to create a horizontal gradient brush and
creates a ColorBlend object. It sets the object’s Colors property to an array of colors that the brush
should use. It sets the object’s Positions property to an array of floats giving the positions of the colors
between 0.0 (the blend’s start) and 1.0 (the blend’s end). This example uses the colors of the rainbow
spaced equally throughout the blend area.

//	Draw	with	a	horizontal	gradient.
Rectangle	rect2	=	new	Rectangle(20,	140,	250,	100);
using	(LinearGradientBrush	br	=	new	LinearGradientBrush(
				rect2,	Color.Red,	Color.Blue,	LinearGradientMode.Horizontal))
{
				//	Define	a	rainbow	blend.
				ColorBlend	color_blend	=	new	ColorBlend();
				color_blend.Colors	=	new	Color[]
								{Color.Red,	Color.Orange,	Color.Yellow,
									Color.Lime,	Color.Blue,	Color.Indigo,	Color.DarkViolet};
				color_blend.Positions	=	new	float[]
								{0	/	6f,	1	/	6f,	2	/	6f,	3	/	6f,	4	/	6f,	5	/	6f,	6	/	6f};
				br.InterpolationColors	=	color_blend;
										
				//	Fill	a	rectangle	with	the	blended	brush.
				e.Graphics.FillRectangle(br,	rect2);
				e.Graphics.DrawRectangle(Pens.Black,	rect2);
}

Figure 9 shows the program LinearGradientBrushes in action. The upper rectangle shows a simple blend
fading from red to blue. The bottom rectangle shows the more complicated rainbow blend.

C# Graphics Programming

�1

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure �: The LinearGradientBrushes example
program draws two filled rectangles.

Note that the number of colors must match the number of positions and that the positions must start
with 0.0 and end with 1.0. Strangely, the positions do not need to be in increasing order, and mixing
them up can produce some interesting results.

Path Gradient Brushes
The colors in a LinearGradientBrush vary smoothly along a linear path. In a PathGradientBrush,
the colors vary smoothly between a “center point” (which need not be in the actual center) and the
points along a path. The brush’s CenterPoint and CenterColor properties determine the center’s
location and color. The SurroundColors property is an array giving the colors that should be used for
the points along the path.

The GradientStar example program uses the following code to fill a star:

//	Make	a	path	gradient	brush.
using	(PathGradientBrush	br	=	new	PathGradientBrush(pts))
{
				br.CenterPoint	=	new	PointF(cx,	cy);
				br.CenterColor	=	Color.White;
				br.SurroundColors	=	new	Color[]	{
								Color.Red,	Color.Blue,	Color.Red,	Color.Blue,	Color.Red,
								Color.Blue,	Color.Red,	Color.Blue,	Color.Red,	Color.Blue
				};
										
				//	Fill	the	star.
				e.Graphics.FillPolygon(br,	pts);
}
										
//	Outline	the	star.
e.Graphics.DrawPolygon(Pens.Black,	pts);

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The code creates a PathGradientBrush defined by a PointF array named pts (the code that builds the
start’s points isn’t shown here). It sets the brush’s center to the point (cx, cy) at the center of the star
and makes the center point white.

The program then defines the SurroundColors array. The array contains 10 colors alternating red and
blue. Because this is a five-pointed star, the colors are distributed so that the star’s tips are red and the
areas between them are blue. (If you don’t include enough colors for all of the path’s points, the brush
repeats the final color as many times as necessary.)

Finally, the code fills the star with the brush and then outlines the star in black. Figure 10 shows
the result.

Figure 10: The GradientStar example program
draws a star filled with a PathGradientBrush.

The LinearGradientBrush and PathGradientBrush classes provide other properties to let you
fine-tune how the colors shade from one to another. For example, you can make the blend start slowly
and then shade quickly near the end of the gradient. These techniques don’t provide a huge additional
benefit for most applications, so I won’t cover them here. See the online Help for details
(http://msdn2.microsoft.com/library/system.drawing.drawing2d.lineargradientbrush.aspx
and http://msdn2.microsoft.com/library/system.drawing.drawing2d.pathgradientbrush.aspx).

Section 2 Wrap-up
Many graphics programs rely on stock pens and brushes, but with only a little extra work, you can build
something really special. Custom dash styles, stripes, and line caps let you draw lines that are truly
unique. Linear and path gradient fills can also add an extra bit of interest to an otherwise run-of-the-mill
application. These features may seldom be absolutely essential, but adding them only takes a few
minutes and can really impress your users.

The Graphics object’s draw methods (those with names beginning with “Draw” — DrawRectangle,
DrawLine, DrawPolygon, etc.) use pens to determine how objects are drawn, while its fill methods use

http://msdn2.microsoft.com/library/system.drawing.drawing2d.lineargradientbrush.aspx
http://msdn2.microsoft.com/library/system.drawing.drawing2d.pathgradientbrush.aspx

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

brushes to determine how objects are filled. Although the DrawString method sounds like it draws a
shape without filling it, DrawString also uses a brush to determine how text is filled. The following
section explains how to use a Graphics object to draw text.

Section 3: Drawing Text
It’s easy to display text in a Label control. In fact, if the Label control does everything you need, you
should use it and skip this section.

However, if you need more control over text, C# provides lots of tools to help. For example, if you want
to draw text in multiple colors and fonts or text centered and wrapped within a drawing area with text
that doesn’t fit ended with an ellipsis, C# can do the job. This is both good and bad: It’s good that C#
provides lots of tools, but learning to get the most out of those tools can be a struggle.

Drawing Simple Text
The Graphics object’s DrawString method displays text. The DrawString method takes as its first
three parameters the string to draw, the font to draw it in, and a brush to use to fill the text. Different
overloaded versions of the method take other parameters that specify the string’s location and
formatting in various ways. You can specify the text’s position by X and Y coordinates, by a PointF
structure, or by a formatting rectangle.

The simplest way to display text is by using X and Y coordinates. The SimpleText example program uses
the following code to display three lines of text:

//	Draw	some	text.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				int	x	=	10;
				int	y	=	10;
										
				using	(Font	the_font	=	new	Font(“Times	New	Roman”,	20,
								FontStyle.Bold,	GraphicsUnit.Point))
				{
								e.Graphics.DrawString(“SimpleText”,	the_font,	Brushes.Blue,	x,	y);
								SizeF	text_size	=	e.Graphics.MeasureString(“SimpleText”,	the_font);
								e.Graphics.DrawRectangle(Pens.Red,	x,	y,
												text_size.Width,	text_size.Height);
								y	+=	(int)text_size.Height;
				}
										
				using	(Font	the_font	=	new	Font(“Comic	Sans	MS”,	20,
								FontStyle.Regular,	GraphicsUnit.Point))
				{
								e.Graphics.DrawString(“SimpleText”,	the_font,	Brushes.Blue,	x,	y);
								SizeF	text_size	=	e.Graphics.MeasureString(“SimpleText”,	the_font);
								e.Graphics.DrawRectangle(Pens.Red,	x,	y,
												text_size.Width,	text_size.Height);

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

								y	+=	(int)text_size.Height;
				}
										
				using	(Font	the_font	=	new	Font(“Arial”,	20,
								FontStyle.Italic	|	FontStyle.Bold,	GraphicsUnit.Point))
				{
								e.Graphics.DrawString(“SimpleText”,	the_font,	Brushes.Blue,	x,	y);
								SizeF	text_size	=	e.Graphics.MeasureString(“SimpleText”,	the_font);
								e.Graphics.DrawRectangle(Pens.Red,	x,	y,
												text_size.Width,	text_size.Height);
								y	+=	(int)text_size.Height;
				}
}

The code creates a font and uses the DrawString method to draw some sample text in that font. It then
calls the Graphics object’s MeasureString method to see how big the text is in that font and draws a
rectangle around the text. It then increases variable y by the height of the text to start a new line and
repeats these steps to draw two other samples with different fonts.

Figure 11 shows the program SimpleText displaying its sample strings. Notice that the three rectangles
are slightly different sizes even though all three were drawn with 20-point fonts. Since different fonts
and styles (such as italic and bold) have slight differences in spacing and character size, the resulting
strings have different heights and widths.

Figure 11: The SimpleText
example program displaying
three lines of text surrounded
by boxes.

Using Layout Rectangles
Instead of using X and Y coordinates to specify the text’s position, you can pass DrawString a rectangle
in which it should draw the text. The DrawString method automatically wraps the text as needed to fit
within the area.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The WrappedText example program uses the following code to draw a long string so that it fills the
program’s form. It first makes a rectangle that fills the form inside a 10-pixel-wide margin. It then calls
the DrawString method, passing this rectangle as the place to draw the text. It finishes by drawing this
formatting rectangle.

//	Draw	some	text	wrapped	to	fill	the	form.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				e.Graphics.Clear(this.BackColor);
				e.Graphics.TextRenderingHint	=	TextRenderingHint.AntiAliasGridFit;
										
				//	Make	a	margin	rectangle.
				Rectangle	rect	=	new	Rectangle(10,	10,
								this.ClientSize.Width	-	20,	this.ClientSize.Height	-	20);
										
				//	Draw	the	text	inside	the	rectangle.
				using	(Font	the_font	=	new	Font(“Times	New	Roman”,	20,
								FontStyle.Regular,	GraphicsUnit.Point))
				{
								e.Graphics.DrawString(SAMPLE_TEXT,	the_font,	Brushes.Black,	rect);
								e.Graphics.DrawRectangle(Pens.Blue,	rect);
				}
}

Figure 12 shows the result. Notice that the text is wrapped at word breaks to fit within the rectangle.
Also notice that the last line is chopped off vertically so only the tops of its letters are visible.

Figure 1�: The WrappedText example program
displaying text in a formatting rectangle.

Layout rectangles make it much easier to display long pieces of text wrapped across multiple lines.

In addition to a formatting rectangle, the DrawString method can take as a parameter a StringFormat
object that specifies the text’s formatting characteristics. Using this object’s properties, you can align the
text vertically or horizontally, determine how the last line is displayed (in Figure 12 it is partly visible),
and determine how text that is not shown is represented (e.g., with an ellipsis).

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The most useful StringFormat properties are Alignment, FormatFlags, HotkeyPrefix,
LineAlignment, and Trimming. The following sections describe these properties in detail.

Alignment and LineAlignment
The Alignment property determines how text is aligned horizontally within the formatting rectangle.
This property can take the values Near (left aligned), Center, and Far (right aligned).

The LineAlignment property determines how the text is aligned vertically within the formatting
rectangle. This property can take the values Near (top aligned), Center, and Far (bottom aligned).

FormatFlags
The FormatFlags property specifies general formatting characteristics. Some of the more useful
FormatFlags values include:

q	 FitBlackBox — This allows characters to slightly overhang the formatting rectangle if
necessary.

q	 LineLimit — This indicates that a line which cannot fit completely within the vertical space of
the formatting rectangle should be dropped entirely. For example, in Figure 12, the last line does
not fit. If LineLimit were set, that line would be completely omitted.

q	 NoClip — This indicates that text drawn outside of the formatting rectangle should be visible.
If this were set in Figure 12, the last line would appear entirely even though part of it would lie
below the formatting rectangle.

q	 NoWrap — This prevents DrawString from wrapping lines to fit in the formatting rectangle.
If a line doesn’t fit, it is truncated according to the other StringFormat properties. The text will
break to a new line only if it contains line feeds.

HotkeyPrefix
The HotkeyPrefix property determines whether the drawn text displays hotkeys if the text contains
ampersand (&) characters. For example, if the text is “&Click Me,” then the ampersand means that the
following character C is the hotkey and should normally be underlined, as in “Click Me.”

The HotkeyPrefix property can take these values:

q	 Hide — In this case, any ampersand characters in the text are hidden — for example, “Click
Me.”

q	 None — In this case, any ampersand characters are displayed as ampersands in the text — for
example, “&Click Me.”

q	 Show — In this case, the character following an ampersand is underlined — for example,

“Click Me.”

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Trimming
The Trimming property indicates how text should be truncated if it won’t fit completely within the
formatting rectangle. This property can take the following values:

q	 Character — Text is trimmed to the nearest character.

q	 EllipsisCharacter — Text is trimmed to the nearest character and is followed by an ellipsis.

q	 EllipsisPath — This value assumes that the text is a slash-delimited string similar to a
directory path. In that case, the middle of the text is replaced with an ellipsis. This lets the user
see the beginning and end of the path.

q	 EllipsisWord — Text is trimmed to the nearest word and is followed by an ellipsis.

q	 None — Specifies no trimming.

q	 Word — Text is trimmed at the nearest word.

The FormattedText example program uses the following code to display text in a formatting rectangle.
It is similar to the code used by the program WrappedText except it uses a different font and a
StringFormat object to specify centered horizontal alignment, line limit (partial lines are not shown
vertically), hotkey prefix (show underlined characters), and ellipsis word trimming (trim to the nearest
word and display an ellipsis).

//	Draw	formatted	text.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				e.Graphics.Clear(this.BackColor);
				e.Graphics.TextRenderingHint	=	TextRenderingHint.AntiAliasGridFit;
										
				//	Make	a	margin	rectangle.
				Rectangle	rect	=	new	Rectangle(10,	10,
								this.ClientSize.Width	-	20,	this.ClientSize.Height	-	20);
										
				//	Draw	the	text	inside	the	rectangle.
				using	(Font	the_font	=	new	Font(“Times	New	Roman”,	20,
								FontStyle.Regular	|	FontStyle.Italic,	GraphicsUnit.Point))
				{
								using	(StringFormat	sf	=	new	StringFormat())
								{
												sf.Alignment	=	StringAlignment.Center;
												sf.FormatFlags	=	StringFormatFlags.LineLimit;
												sf.Trimming	=	StringTrimming.EllipsisWord;
												sf.HotkeyPrefix	=	HotkeyPrefix.Show;
										
												e.Graphics.DrawString(SAMPLE_TEXT,	the_font,	Brushes.Black,	rect,	sf);
												e.Graphics.DrawRectangle(Pens.Blue,	rect);
								}
				}
}

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure 13 shows the program FormattedText displaying its text.

Figure 1�: The FormattedText example
program displaying text centered horizontally,
hotkey characters, partial lines omitted, and
trailing ellipsis.

Section 3 Wrap-up
The Graphics object’s DrawString method lets you draw text. Its MeasureString method tells you
how big a piece of text will be drawn so you can arrange text properly.

To get the greatest benefit out of DrawString, however, you need to use a formatting rectangle and a
StringFormat object. If you provide those two parameters, DrawString can wrap text across multiple
lines, align text horizontally and vertically, truncate text as needed, and even display ellipses to indicate
omitted text. While there are occasions when you have more work to do (e.g., if you want to display some
words within the text in different colors or fonts), DrawString is a powerful tool for formatting text.

For information on an alternative to using DrawString to arrange and display text and other objects,
see Section 8, “Building FlowDocuments.”

The previous sections explained how to fill and draw various shapes such as lines, rectangles, ellipses,
and text. The following section explains how to work with a different kind of graphics: images. It
explains how to load, modify, and save raster image data.

Section 4: Manipulating Images
The previous sections in this Wrox Blox have explained how to draw lines, shapes, and text at a
moderately high level. You don’t need to understand what colors to give which pixels to draw a line;
you simply call a Graphics object’s DrawLine method, and C# does the rest.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Usually it’s easiest to work at this high level, but sometimes you may want to work directly with the
pixels in an image. This is particularly useful when you want to manipulate an existing image such
as a bitmap, JPG, or GIF file, or when you want to draw something and then save it in a file of one of
those types.

The following sections explain how to load, manipulate, and save these kinds of images.

Creating and Loading Bitmaps
Creating a new bitmap from scratch is simple. Simply create a new Bitmap object, passing its constructor
the dimensions that the image should have. The MakeBitmap example program uses the following code
to create and display a bitmap. It creates a new Bitmap object and makes a Graphics object associated
with it. It uses that object to draw on the Bitmap and displays the result in the PictureBox named
picResult.

//	Create	and	display	a	bitmap.
private	void	Form1_Load(object	sender,	EventArgs	e)
{
				//	Make	the	Bitmap.
				Bitmap	bm	=	new	Bitmap(200,	150);
										
				//	Make	an	associated	Graphics	object.
				using	(Graphics	gr	=	Graphics.FromImage(bm))
				{
								//	Draw.
								gr.SmoothingMode	=	SmoothingMode.AntiAlias;
								gr.Clear(Color.Yellow);
								using	(Pen	thick_pen	=	new	Pen(Color.Red,	5))
								{
												gr.DrawEllipse(thick_pen,	3,	3,	195,	145);
										
												thick_pen.Color	=	Color.Green;
												gr.DrawLine(thick_pen,	3,	3,	197,	147);
										
												thick_pen.Color	=	Color.Blue;
												gr.DrawLine(thick_pen,	3,	147,	197,	3);
								}
				}
										
				//	Display	the	result	in	a	PictureBox.
				picResult.Image	=	bm;
}

The only “gotcha” in this code is that it must not call the Bitmap object’s Dispose method. The
PictureBox needs the Bitmap to re-draw itself. If you dispose of the Bitmap, then the program crashes
when the PictureBox tries to re-draw.

C# Graphics Programming

�0

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure 14 shows the program MakeBitmap displaying its Bitmap object.

Figure 1�: The MakeBitmap example
program creates a Bitmap and draws
on it.

Loading a Bitmap from an image file is just as easy. Simply create a new Bitmap object, passing its
constructor the name of the file you want to open. For example, the following code creates a Bitmap
object and loads the file C:\Temp\test.bmp into it. It then displays the Bitmap by setting a PictureBox
control’s Image property to it. The code does all this work inside a Try	Catch block so it won’t crash if
it cannot read the file.

try
{
				//	Load	and	display	the	image.
				Bitmap	bm	=	new	Bitmap(“C:\\Temp\\test.bmp”);
										
				//	Display	the	image	in	a	PictureBox.
				picTest.Image	=	bm;
catch	(Exception	ex)
{
				MessageBox.Show(“Error	opening	file\n”	+	ex.Message);
}

This code leads to one small problem. While the Bitmap object is alive, it seems to hold some sort of
handle to the original image file. That means you cannot modify or delete that file while the program is
running.

To work around this problem, the program can load the file, make a copy of the Bitmap, and then
dispose of the original Bitmap. Now the image file is free, and the program still has a copy of the image.
Unfortunately, since a clone of the original Bitmap seems to inherit the same file handle, you need to
make a completely new Bitmap and copy the image into it.

The following code shows one solution. It loads the image file into a Bitmap as before. It makes a new
Bitmap of the same size, creates a Graphics object associated with it, uses that object to draw on the
new Bitmap, and disposes of the original Bitmap.

C# Graphics Programming

�1

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

try
{
				//	Load	and	display	the	image.
				Bitmap	bm	=	new	Bitmap(“C:\\Temp\\test.bmp”);
										
				Bitmap	original_bm	=	new	Bitmap(file_name);
				Bitmap	bm	=	new	Bitmap(original_bm.Width,	original_bm.Height);
				using	(Graphics	gr	=	Graphics.FromImage(bm))
				{
								gr.DrawImageUnscaled(original_bm,	0,	0);
				}
				original_bm.Dispose();
				original_bm	=	null;
										
				//	Display	the	image	in	a	PictureBox.
				picTest.Image	=	bm;
catch	(Exception	ex)
{
				MessageBox.Show(“Error	opening	file\n”	+	ex.Message);
}

The LoadImageFile example program demonstrates these two methods for loading an image file. It uses
compilation constants to let you test the locking or non-locking version of the code.

Manipulating Bitmaps
After you have created or loaded a Bitmap, there are several ways you can modify it. Some of the previous
examples showed one method that creates a Graphics object associated with the Bitmap and then uses
that object to draw. The program MakeBitmap, which is shown in Figure 14, demonstrates this technique.

A Graphics object is good if you want to draw high-level items such as lines, polygons, and ellipses on
a Bitmap, but it’s sometimes useful to manipulate an image’s pixels directly. The Bitmap object provides
two methods, GetPixel and SetPixel, that make this possible.

The GetPixel method takes as parameters the X and Y coordinates of the pixel that you want to use and
returns a Color representing that pixel’s color. You can then use Color properties to study the color. For
example, you can use the A, R, G, B to learn about the Color’s alpha (opacity), red, green, and blue color
components.

The SetPixel method takes as parameters a pixel’s X and Y coordinates and the Color that you want to
make the pixel.

The InvertPixels example program uses the following code to demonstrate both methods of drawing on
a Bitmap: by using a Graphics object and by using GetPixel and SetPixel.

//	Invert	the	image.
private	void	mnuDataInvert_Click(object	sender,	EventArgs	e)
{
				this.Cursor	=	Cursors.WaitCursor;
				Application.DoEvents();
										
				Bitmap	bm	=	(Bitmap)(picOriginal.Image.Clone());

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

				Color	old_clr,	new_clr;
										
				//	Invert	the	pixels	in	the	upper	left	quadrant.
				int	x2	=	bm.Width	-	1;
				int	y2	=	bm.Height	-	1;
				int	x1	=	(int)(x2	/	2);
				int	y1	=	(int)(y2	/	2);
				for	(int	x	=	0;	x	<=	x1;	x++)
				{
								for	(int	y	=	0;	y	<=	y1;	y++)
								{
												old_clr	=	bm.GetPixel(x,	y);
												new_clr	=	Color.FromArgb(255,
																255	-	old_clr.R,	255	-	old_clr.G,	255	-	old_clr.B);
												bm.SetPixel(x,	y,	new_clr);
								}
				}
										
				//	Invert	the	pixels	in	the	lower	right	quadrant.
				for	(int	x	=	x1	+	1;	x	<=	x2;	x++)
				{
								for	(int	y	=	y1	+	1;	y	<=	y2;	y++)
								{
												old_clr	=	bm.GetPixel(x,	y);
												new_clr	=	Color.FromArgb(255,
																255	-	old_clr.R,	255	-	old_clr.G,	255	-	old_clr.B);
												bm.SetPixel(x,	y,	new_clr);
								}
				}
										
				//	Draw	a	bit.
				using	(Graphics	gr	=	Graphics.FromImage(bm))
				{
								using	(Pen	thick_pen	=	new	Pen(Color.Red,	5))
								{
												gr.DrawRectangle(thick_pen,	0,	0,	x1,	y1);
												gr.DrawRectangle(thick_pen,	x1,	y1,	x1,	y1);
								}
				}
										
				//	Display	the	result.
				picInverted.Image	=	bm;
										
				this.Cursor	=	Cursors.Default;
}

The code first makes a clone of the original image stored in the picOriginal control’s Image property.
It calculates the size and midpoints of the image and then enters a loop that makes variables x and y
cover every pixel in the image’s upper-left quadrant.

For each pixel, the code gets the pixel’s color. It creates a new color that is the inverse of the original color
by subtracting the red, green, and blue components from 255 (the colors lie in the range 0 to 255, so
subtracting from 255 gives a value in the range 255 to 0). It then uses SetPixel to give the pixel in the
new Bitmap the new color.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The program repeats these steps to invert the pixels in the image’s lower-right quadrant.

Next the code creates a Graphics object associated with the Bitmap and uses it to draw rectangles
around the upper-left and lower-right quadrants.

Finally, the code displays the result in the PictureBox named picInverted.

Figure 15 shows the result.

Figure 1�: The InvertPixels example program inverts some of the pixels in an image.

The InvertPixels example program contains code to load the original image similar to the code described
in the previous section. It also contains code to save the partly inverted result. That code is described in
the next section.

Saving Image Files
After you’ve generated a beautiful image, you’ll want to be able to save it so that you can e-mail it to
friends, post it all over the Web, print it on tee-shirts, and so forth. Saving a Bitmap into a file in C# is
easy. Simply call the Bitmap object’s Save method, passing it the name of the file you want to create and
a parameter indicating the format you want to use (BMP, JPEG, GIF, BMP, etc.).

It is the second parameter that determines the file’s format, not the file’s name. For example, you can tell
the Save method to write the Bitmap into a file named Test.gif with the JPEG format. If you do that,
your system may have trouble displaying the image. If you double-click on the file, the system will try to
open it with the program assigned to view GIF files. If that program doesn’t realize that the file actually
has the JPEG format, it will fail. To prevent this kind of trouble, make the file extension match its
format.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The following code shows how the program InvertImage lets you save the Bitmap it builds:

//	Save	the	result	bitmap.
private	void	mnuFileSaveAs_Click(object	sender,	EventArgs	e)
{
				if	(sfdImage.ShowDialog()	==	DialogResult.OK)
				{
								try
								{
												Bitmap	bm	=	(Bitmap)picInverted.Image;
												string	file_name	=	sfdImage.FileName;
												string	ext	=	file_name.Substring(file_name.LastIndexOf(“.”)).ToLower();
												switch	(ext)
												{
																case	“.bmp”:
																				bm.Save(file_name,	ImageFormat.Bmp);
																				break;
																case	“.gif”:
																				bm.Save(file_name,	ImageFormat.Gif);
																				break;
																case	“.jpg”:
																case	“.jpeg”:
																				bm.Save(file_name,	ImageFormat.Jpeg);
																				break;
																case	“.png”:
																				bm.Save(file_name,	ImageFormat.Png);
																				break;
																case	“.tif”:
																case	“.tiff”:
																				bm.Save(file_name,	ImageFormat.Tiff);
																				break;
																default:
																				MessageBox.Show(“Unknown	file	extension	“	+	ext);
																				return;
												}
												MessageBox.Show(“Ok”,	“Done”,	MessageBoxButtons.OK,
																MessageBoxIcon.Information);
								}
								catch	(Exception	ex)
								{
												MessageBox.Show(“Error	opening	file	“	+	ofdImage.FileName	+
																“\n”	+	ex.Message);
								}
				}
}

The code displays a Save File dialog. If the user enters a file name and clicks Save, the code gets the file
name and determines its extension. It then uses a switch statement to save the file in an appropriate
format. This example handles the extensions bmp, gif, jpg, jpeg, png, tif, and tiff. If the file has some
other extension, the program complains and doesn’t save the file.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Section 4 Wrap-up
The Bitmap class’s constructors allow you to easily create a Bitmap or load one from a file.

After you have a Bitmap, you can associate a Graphics object with it to draw lines and shapes on it.
You can use the Bitmap object’s GetPixel and SetPixel methods to view and change individual pixels.

After you have finished editing a Bitmap, you can use its Save method to save the resulting image into a
file in a wide variety of formats.

All of the methods described so far in this Wrox Blox measure positions and sizes in pixels. While it is
natural to think of the computer’s screen in terms of pixels, it doesn’t always make sense to think of the
data in that way. The next section explains how you can transform the data so that you can work with
coordinates that make sense to you while still producing useful results on the screen.

Section 5: Using Transformations
All of the discussion and examples so far have been drawn in C#’s native drawing units: pixels.
By default, all of the Graphics object’s filling and drawing methods work in pixels.

However, pixels may not always be the most convenient unit for you. For example, suppose you want to
draw a simple bar chart showing sales figures between $1M and $30M for the years 1990 through 2000.
Since you can’t use pixel coordinates as large as (1995, 1,000,000), you’ll need to perform some
mathematical calculations to map these big values into something that will fit on your screen.

While you can perform those calculations yourself if you like, the Graphics object provides
transformation methods that can do this for you. The main transformation methods are
TranslateTransform, ScaleTransform, and RotateTransform, which translate, scale, and rotate
subsequent graphics, respectively.

Basic Transformations
The TranslateTransform method takes as parameters the distances by which graphics should be offset
in the X and Y directions; the ScaleTransform method takes parameters that indicate the amount by
which graphics should be scaled in the X and Y directions; and RotateTransform indicates the angle in
degrees by which graphics should be rotated around the origin.

For example, the following code uses TranslateTransform to translate subsequent graphics 100 pixels
in the X direction and 50 pixels in the Y direction. It then draws a rectangle with −50 ≤ X ≤ 50,
−50 ≤ Y ≤ 50. After translation, the result appears on the form in the area 50 ≤ X ≤ 150, 0 ≤ Y ≤ 100

e.Graphics.TranslateTransform(100,	50)
e.Graphics.DrawRectangle(Pens.Red,	-50,	-50,	100,	100)

Individually these three methods are fairly simple, but you can combine them to implement very
complex transformations. For example, you could scale, rotate, and then translate a drawing.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

All three of these methods take an optional final parameter that indicates whether the transformation
should be applied before or after any previous transformations. The difference is important because, for
example, a rotation followed by a translation generally does not give the same result as a translation
followed by a rotation.

By default, transformations are applied before any previous transformations. I find this counterintuitive.
Why would I want to have code I add later apply before earlier code? To avoid problems, I always
append new transformations after the previous ones.

In addition to these three basic transformation methods, the Graphics class provides several other
related methods. One of the most important of these is ResetTransform, which resets the object’s
transformation to its default non-transformed value. After you finish using a transformation, it’s usually a
good idea to reset the transformation so that it doesn’t affect later drawing code, possibly confusing you.

The TransformedSmiley example program uses the following code to draw a smiley face centered at the
origin on a Graphics object. Notice that this code uses a pen with width 0. A Pen with width 0 is always
drawn as thinly as possible (1 pixel wide), no matter how it is transformed. If you draw with a stock pen
such as Pens.Blue, then the result is modified by any scaling transformation and, in this example at
least, produces some weird results.

//	Draw	a	smiley	face	in	-1	<=	x	<=	1,	-1	<=	y	<=	1.
private	void	DrawSmiley(Graphics	gr)
{
				using	(Pen	thin_pen	=	new	Pen(Color.Blue,	0))
				{
								gr.FillEllipse(Brushes.Yellow,	-1,	-1,	2,	2);
								gr.DrawEllipse(thin_pen,	-1,	-1,	2,	2);
								gr.DrawArc(thin_pen,	-0.75f,	-0.75f,	1.5f,	1.5f,	0,	180);
								gr.FillEllipse(Brushes.Red,	-0.2f,	-0.2f,	0.4f,	0.6F);
								gr.FillEllipse(Brushes.White,	-0.5f,	-0.6f,	0.3f,	0.5F);
								gr.DrawEllipse(thin_pen,	-0.5f,	-0.6f,	0.3f,	0.5F);
								gr.FillEllipse(Brushes.Black,	-0.4f,	-0.5f,	0.2f,	0.3F);
								gr.FillEllipse(Brushes.White,	0.2f,	-0.6f,	0.3f,	0.5F);
								gr.DrawEllipse(thin_pen,	0.2f,	-0.6f,	0.3f,	0.5F);
								gr.FillEllipse(Brushes.Black,	0.3f,	-0.5f,	0.2f,	0.3F);
				}
}

The program uses the following code to draw three copies of the smiley face:

private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				e.Graphics.SmoothingMode	=	SmoothingMode.AntiAlias;
										
				//	Draw	50x50	pixels.
				e.Graphics.ScaleTransform(50,	50);
				e.Graphics.TranslateTransform(60,	60,	MatrixOrder.Append);
				DrawSmiley(e.Graphics);
				e.Graphics.ResetTransform();
										
				//	Draw	50x100	pixels.
				e.Graphics.ScaleTransform(50,	100);

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

				e.Graphics.TranslateTransform(170,	110,	MatrixOrder.Append);
				DrawSmiley(e.Graphics);
				e.Graphics.ResetTransform();
										
				//	Draw	50x30	pixels	rotated	and	flipped	vertically.
				e.Graphics.RotateTransform(45,	MatrixOrder.Append);
				e.Graphics.ScaleTransform(50,	-30,	MatrixOrder.Append);
				e.Graphics.TranslateTransform(60,	170,	MatrixOrder.Append);
				DrawSmiley(e.Graphics);
				e.Graphics.ResetTransform();
}

To draw the first face, the code scales by a factor of 50 in the X and Y directions. This enlarges the
original smiley to fill the area −50 ≤ X ≤ 50, −50 ≤ Y ≤ 50. It then translates the result by 60 pixels in the X
and Y directions, so the scaled face lies entirely on the form in the area 10 ≤ X ≤ 110, 10 ≤ Y ≤ 110.

To draw the second face, the code scales by a factor of 50 in the X direction and 100 in the Y direction to
produce a tall, thin face. It then translates to move the result onto the visible part of the form.

To draw the final face, the code rotates the original smiley by 45 degrees. It then scales the result by 50 in
the X direction and –30 in the Y direction. Scaling by –30 in the Y direction makes the result 30 times
bigger and inverts the Y coordinate so that the result is flipped vertically. Finally, the code translates the
result onto the visible part of the form.

Notice that the code calls ResetTransform after drawing each smiley face to reset the transformation.
If it did not do this, all of the transformations would add up and produce some very odd results
(the second smiley face’s nose is so big it covers the entire form).

Figure 16 shows the program TransformedSmiley displaying its three transformed smiley faces.

Figure 1�: The TransformedSmiley
example program draws the same
smiley face transformed in three
different ways.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

World Coordinate Mapping
One particularly common kind of transform maps a rectangle in some sort of world coordinate system to a
rectangle on the screen in device coordinates. For example, suppose you want to draw a bar chart showing
sales figures between $1M and $30M for the years 1990 through 2000. Drawing will be easier if you can
map the world coordinates 1990 ≤ year ≤ 2000, $1M ≤ sales ≤ $30M to the device coordinates that cover
the form 0 ≤ X ≤ form width, 0 ≤ Y ≤ form height.

The BarChart example program uses the MapRectangles subroutine shown in the following code to
build such a transformation for a Graphics object.

//	Transform	the	Graphics	object	so
//	world		coordinates	wxmin	<=	X	<=	wxmax,	wymin	<=	Y	<=	wymax	are	mapped	to
//	device	coordinates	dxmin	<=	X	<=	dxmax,	dymin	<=	Y	<=	dymax.
private	void	MapRectangles(Graphics	gr,
				float	wxmin,	float	wxmax,	float	wymin,	float	wymax,
				float	dxmin,	float	dxmax,	float	dymin,	float	dymax)
{
				//	Make	a	world	coordinate	rectangle.
				RectangleF	wrectf	=	new	RectangleF(wxmin,	wymin,	wxmax	-	wxmin,	wymax	-	wymin);
										
				//	Make	PointF	objects	representing	the	upper	left,	upper	right,
				//	and	lower	right	corners	of	device	coordinates.
				PointF[]	dpts	=	{
								new	PointF(dxmin,	dymin),
								new	PointF(dxmax,	dymin),
								new	PointF(dxmin,	dymax)
				};
										
				//	Map	the	rectangle	to	the	points.
				gr.Transform	=	new	Matrix(wrectf,	dpts);
}

It’s not too hard to build a transformation to map one rectangle to another (translate to the original
rectangle to the origin, scale, translate to the final destination), but the Matrix class provides a
constructor that does this for you. This constructor takes as parameters a source rectangle in world
coordinates and an array of three PointF structures defining the upper-left, upper-right, and
lower-left corners of the device rectangle. The code prepares the RectangleF and PointF structures,
creates a Matrix, and sets the Graphics object’s Transform property to the result.

The following code shows how the program BarChart uses the subroutine MapRectangles:

//	Draw	a	bar	chart	filling	the	form.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				e.Graphics.SmoothingMode	=	SmoothingMode.AntiAlias;
										
				const	int	MIN_YEAR	=	1990;
				const	int	MAX_YEAR	=	2001;
				const	int	MIN_SALES	=	0;
				const	int	MAX_SALES	=	30000000;
										
				//	Map	the	coordinates	1990	<=	X	<=	2001,	0	<=	Y	<=	30M

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

				//	to	the	form’s	client	area,	minus	a	10	pixel	margin.
				MapRectangles(e.Graphics,
								MIN_YEAR,	MAX_YEAR,	MIN_SALES,	MAX_SALES,
								10,	this.ClientSize.Width	-	10,	this.ClientSize.Height	-	10,	10);
										
				//	Make	some	data.
				Point[]	sales_data	=	{
								new	Point(1990,	4000000),
								new	Point(1991,	3000000),
								new	Point(1992,	5000000),
								new	Point(1993,	10000000),
								new	Point(1994,	9000000),
								new	Point(1995,	14000000),
								new	Point(1996,	19000000),
								new	Point(1997,	18000000),
								new	Point(1998,	22000000),
								new	Point(1999,	27000000),
								new	Point(2000,	30000000)
				};
										
				//	Draw	the	data.
				using	(Pen	thin_pen	=	new	Pen(Color.Green,	0))
				{
								//	Draw	the	bars.
								foreach	(Point	pt	in	sales_data)
								{
												e.Graphics.FillRectangle(Brushes.PaleGreen,	pt.X,	0,	1,	pt.Y);
												e.Graphics.DrawRectangle(thin_pen,	pt.X,	0,	1,	pt.Y);
								}
										
								//	Translate	1/2	year	horizontally
								//	so	the	points	lie	in	the	middle	of	each	bar.
								e.Graphics.TranslateTransform(0.5f,	0f,	MatrixOrder.Prepend);
								thin_pen.Color	=	Color.Red;
								e.Graphics.DrawLines(thin_pen,	sales_data);
				}
										
				//	Draw	a	box	around	it	all.
				e.Graphics.ResetTransform();
				e.Graphics.DrawRectangle(Pens.Blue,	10,	10,	this.ClientSize.Width	-	20,	
								this.ClientSize.Height	-	20);
}

The code first declares some constants to define the world coordinate bounds. It then calls
MapRectangles to define a transformation to map the world coordinates to the form’s client area minus
a 10-pixel margin. Notice that the minimum Y value in device coordinates is greater than the maximum
Y value. Inside the subroutine MapRectangles, this gives the device coordinate rectangle a negative
height, and that flips the drawing vertically. The result is that world coordinates are now drawn so that
they increase upward as you would normally expect for a bar chart.

C# Graphics Programming

�0

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

After building the transformation, the program defines some data values. It then loops through the
values drawing rectangles for each.

Next the code adds a new translation transformation of 0.5 years in the X direction. It prepends the
translation to the existing transformation, and thus shifts the data in world coordinates before the other
transformations are applied. Finally, the code draws lines connecting the data points.

Figure 17 shows the program BarChart displaying its data.

Figure 1�: The BarChart example program uses
transformations to draw a bar chart in world coordinates.

Transformations apply to all graphical operations, not just drawing lines and rectangles.
The TransformedText example program uses the following code to draw a transformed bitmap and
transformed text:

//	Draw	a	transformed	bitmap	and	transformed	text.
private	void	Form1_Paint(object	sender,	PaintEventArgs	e)
{
				e.Graphics.TextRenderingHint	=	TextRenderingHint.AntiAliasGridFit;
				e.Graphics.SmoothingMode	=	SmoothingMode.AntiAlias;
				e.Graphics.InterpolationMode	=	InterpolationMode.HighQualityBilinear;
										
				e.Graphics.TranslateTransform(
								-Properties.Resources.Smiley.Width	/	2,
								-Properties.Resources.Smiley.Height	/	2);
				e.Graphics.ScaleTransform(1.5f,	1f,	MatrixOrder.Append);
				e.Graphics.RotateTransform(-30,	MatrixOrder.Append);
				e.Graphics.TranslateTransform(220,	150,	MatrixOrder.Append);
				e.Graphics.DrawImageUnscaled(Properties.Resources.Smiley,	0,	0);
				e.Graphics.ResetTransform();
										
				using	(Font	the_font	=	new	Font(“Times	New	Roman”,	16))

C# Graphics Programming

�1

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

				{
								e.Graphics.ScaleTransform(1,	4);
								e.Graphics.TranslateTransform(10,	10,	MatrixOrder.Append);
								e.Graphics.DrawString(“Tall	And	Thin”,	the_font,	Brushes.Blue,	0,	0);
								e.Graphics.ResetTransform();
										
								e.Graphics.RotateTransform(45);
								e.Graphics.TranslateTransform(30,	90,	MatrixOrder.Append);
								e.Graphics.DrawString(“Rotated	45”,	the_font,	Brushes.Blue,	0,	0);
								e.Graphics.ResetTransform();
										
								e.Graphics.RotateTransform(-90);
								e.Graphics.TranslateTransform(100,	200,	MatrixOrder.Append);
								e.Graphics.DrawString(“Rotated	-90”,	the_font,	Brushes.Blue,	0,	0);
								e.Graphics.ResetTransform();
										
								e.Graphics.ScaleTransform(4,	1);
								e.Graphics.TranslateTransform(140,	10,	MatrixOrder.Append);
								using	(StringFormat	sf	=	new	StringFormat())
								{
												sf.Alignment	=	StringAlignment.Center;
												sf.LineAlignment	=	StringAlignment.Near;
												Rectangle	rect	=	new	Rectangle(0,	0,	60,	80);
												e.Graphics.DrawString(“Short	And	Wide”,	the_font,
																Brushes.Blue,	rect,	sf);
												e.Graphics.DrawRectangle(Pens.Red,	rect);
								}
								e.Graphics.ResetTransform();
				}
}

Figure 18 shows the result.

Figure 1�: The TransformedText example program draws a
transformed bitmap and transformed text.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Download the sample project to see the code.

Section 5 Wrap-up
Transformations may very well be the most powerful and underused feature in .NET graphics
programming. They simplify programming tasks by allowing you to work in world coordinates that are
convenient for you. They also let you reuse code by calling the same drawing routines with different
transformations. Finally, they let you produce special effects that are not otherwise possible, such as
rotated images and text.

The sections up to this point have shown how to produce graphics on a form. The next section explains
how to produce the same results on a print preview or a printout.

Section 6: Printing
The way in which you draw graphics for printing and print previewing is exactly the same as the way
you draw on a bitmap, form, picture box, or other screen object. In every case, you obtain a Graphics
object and use its methods to create a picture.

Figure 1�: The NameGrid example program
uses transformations to draw rotated text above
a grid.

The NameGrid example program, which is shown in Figure 19, performs a more useful task, using
transformations to draw a grid with angled names across the top.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Table 2: PrintPage Event Handler Properties

Property Purpose

Cancel If you set this to True, the printout is canceled. While this seems to work for
printing, it doesn’t cancel print previews.

MarginBounds Returns a Rectangle representing the page’s margins. Normally you should
print within this area.

HasMorePages Set this value to False when there are no more pages to print.

PageBounds Returns a Rectangle representing the page’s physical bounds.

PageSettings Returns a PageSetting object that describes the page’s settings.

The only difference is in how you obtain the Graphics object. When you are drawing on the screen, you
use CreateGraphics or the e.Graphics parameter provided by a Paint event handler. Similarly,
when you generate a printout or print preview, you use an e.Graphics parameter provided by a
PrintDocument object’s PrintPage event handler.

Using PrintPage
The PrintDocument class represents a printout. When you print or create a print preview, you use a
PrintDocument object created either at design time or at run time in the code. That object raises a
PrintPage event when it needs you to generate output. Like the Paint event handler, PrintPage
provides an e.Graphics parameter that you can use to generate graphics.

In addition to its Graphics property, the e parameter provides the following useful properties, shown
in Table 2.

The form used by the PrintWithPreview example program contains a PrintDocument named pdShapes
created at design time. It also contains a PrintPreviewDialog named ppdShapes with the Document
property set to pdShapes. When the program displays the dialog, it automatically uses the
PrintDocument to generate the graphics that it displays in the preview.

The example program uses the following code to display the print preview dialog:

//	Display	the	print	preview.
private	void	btnPreview_Click(object	sender,	EventArgs	e)
{
				m_NextPage	=	0;
				ppdShapes.ShowDialog();
}

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The following code shows how the program sends a printout directly to the printer without displaying a
preview:

//	Print	without	a	preview.
private	void	btnPrint_Click(object	sender,	EventArgs	e)
{
				m_NextPage	=	0;
				pdShapes.Print();
}

The most interesting part of this program is the PrintDocument object’s PrintPage event handler,
which is shown in the following code:

//	Generate	a	page	of	the	printout.
private	int	m_NextPage;
										
private	void	pdShapes_PrintPage(object	sender,
System.Drawing.Printing.PrintPageEventArgs	e)
{
				e.Graphics.SmoothingMode	=	SmoothingMode.AntiAlias;
										
				int	xmin	=	e.MarginBounds.Left;
				int	ymin	=	e.MarginBounds.Top;
				int	xmax	=	e.MarginBounds.Right;
				int	ymax	=	e.MarginBounds.Bottom;
				int	xmid	=	(int)(xmin	+	(xmax	-	xmin)	/	2);
				int	ymid	=	(int)(ymin	+	(ymax	-	ymin)	/	2);
										
				//	Draw	a	different	shape	for	each	page
				switch	(m_NextPage)
				{
								case	0:
												//	Draw	a	triangle.
												Point[]	pts	=	{
																new	Point(xmid,	ymin),
																new	Point(xmax,	ymax),
																new	Point(xmin,	ymax)
												};
												using	(Pen	thick_pen	=	new	Pen(Color.Blue,	10))
												{
																thick_pen.DashStyle	=	DashStyle.Dot;
																e.Graphics.DrawPolygon(thick_pen,	pts);
												}
												break;
								case	1:
												//	Draw	an	ellipse.
												using	(Pen	thick_pen	=	new	Pen(Color.Red,	10))
												{
																e.Graphics.DrawEllipse(thick_pen,	e.MarginBounds);

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

												}
												break;
								case	2:
												//	Draw	a	rectangle.
												using	(Pen	thick_pen	=	new	Pen(Color.Green,	10))
												{
																thick_pen.DashStyle	=	DashStyle.Dash;
																e.Graphics.DrawRectangle(thick_pen,	e.MarginBounds);
												}
												break;
								case	3:
												//	Draw	an	X.
												using	(Pen	thick_pen	=	new	Pen(Color.Black,	10))
												{
																thick_pen.DashStyle	=	DashStyle.Custom;
																thick_pen.DashPattern	=	new	float[]	{10,	10};
																e.Graphics.DrawLine(thick_pen,	xmin,	ymin,	xmax,	ymax);
																e.Graphics.DrawLine(thick_pen,	xmin,	ymax,	xmax,	ymin);
												}
												break;
				}
										
				//	Draw	the	page	number.
				using	(Font	the_font	=	new	Font(“Times	New	Roman”,	250,
								FontStyle.Bold,	GraphicsUnit.Point))
				{
								using	(StringFormat	sf	=	new	StringFormat())
								{
												sf.Alignment	=	StringAlignment.Center;
												sf.LineAlignment	=	StringAlignment.Center;
												e.Graphics.DrawString(m_NextPage.ToString(),
																the_font,	Brushes.Black,	xmid,	ymid,	sf);
								}
				}
										
				m_NextPage++;
				e.HasMorePages	=	(m_NextPage	<=	3);
}

Both of the button event handlers set m_NextPage	=	0 before generating a printout or preview. The
PrintPage event handler uses m_NextPage to determine what it should draw on a page. When it has
finished drawing the page, the code increments m_NextPage and sets e.HasMorePages to false if
m_NextPage is greater than 3.

Figure 20 shows the program PrintWithPreview displaying a print preview. The buttons on the preview
dialog let the user view one, two, three, four, or six printout pages at a time. They also let the user zoom
in on the pages or send the printout to the printer.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure �0: The PrintWithPreview example program displaying a print
preview.

Using Other Event Handlers
While PrintPage is the most important event provided by PrintDocument, the class does provide a
few other events that are occasionally useful. The BeginPrint event occurs before the printout is
generated. You could use this event handler to open files, fetch data from a database, and perform other
setup tasks.

The PrintBooklet example program uses the following code to remember whether the program is
generating a printout or a print preview. Later the PrintPage event handler checks this value and
draws only in black if the program is printing a printout. This example also sets m_NextPage	=	0 in this
event handler rather than making the Print and Print Preview buttons do it.

private	void	pdShapes_BeginPrint(object	sender,
System.Drawing.Printing.PrintEventArgs	e)
{
				//	Remember	whether	we’re	printing	(as	opposed	to	previewing).

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

				m_IsPrinting	=	(e.PrintAction	==	PrintAction.PrintToPrinter);
										
				//	Start	with	the	first	page.
				m_NextPage	=	0;
}

The EndPrint event occurs after the printout is finished. You can use this event handler to close files,
shut down databases, and otherwise clean up after the printing process.

The QueryPageSettings event occurs just before each PrintPage event. You can use this event to
prepare for printing the next page. The program PrintBooklet assumes that its pages will be printed
double-sided. It adds some extra space called a gutter to the margins on alternating sides of the pages to
allow room for binding. (In this example, the gutter is 2 inches to make it easy to see. That’s bigger than
you would probably need in a real booklet.) The code adds the gutter on the left of even-numbered
pages and on the right of odd-numbered pages.

//	Set	an	appropriate	margin.
private	void	pdShapes_QueryPageSettings(object	sender,
System.Drawing.Printing.QueryPageSettingsEventArgs	e)
{
				//	Shift	margins	by	2	inches.
				const	int	MARGIN_WID	=	200;
										
				if	(m_NextPage	==	0)
				{
								//	First	page.	Large	left	margin.
								e.PageSettings.Margins.Left	+=	MARGIN_WID;
				}	else	if	(m_NextPage	%	2	==	1)	{
								//	Odd	page.	Move	margins	left.
								e.PageSettings.Margins.Left	-=	MARGIN_WID;
								e.PageSettings.Margins.Right	+=	MARGIN_WID;
				}	else	{
								//	Even	page.	Move	margins	right.
								e.PageSettings.Margins.Left	+=	MARGIN_WID;
								e.PageSettings.Margins.Right	-=	MARGIN_WID;
				}
}

The code that draws the pages in the PrintPage event handler doesn’t need to know about the
gutters. The QueryPageSettings event handler adjusts the margins, and PrintPage simply draws
inside those margins.

Figure 21 shows the program PrintBooklet displaying a preview of its four pages. This program draws
each page’s margins in red so that you can easily see the gutters.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure �1: The PrintBooklet example program adds
gutters to alternating sides of its pages.

Printing Transformations
Just as you can use transformations while drawing on the screen, you can use similar transformations
while drawing a printout. The process is exactly the same as the one described in Section 5, “Using
Transformations”; thus, it isn’t described in much detail here. However, there are three particularly
common uses of transformations in printouts: centering a drawing, scaling a drawing to fit the page, and
stretching a drawing to fill the page.

The MapRectangles subroutine described in the subsection, “World Coordinate Mapping,” in Section 5,
“Using Transformations”; maps, a world coordinate rectangle to a device coordinate rectangle. You can
use that routine to stretch a picture in world coordinates to fill the printout’s margins. The program
PrintBarChart uses the following code to stretch the world coordinate area MIN_X <= X <= MAX_X,
MIN_Y <= Y <= MAX_Y to fill the page’s margins:

MapRectangles(e.Graphics,
				MIN_X,	MAX_X,	MIN_Y,	MAX_Y,
				e.MarginBounds.Left,	e.MarginBounds.Right,
				e.MarginBounds.Top,	e.MarginBounds.Bottom);

The program uses the CenterRectangles subroutine shown in the following code to center the world
coordinate rectangle within the device coordinate rectangle. It calculates the width and height of the
world coordinates. It then adds and subtracts half those values from the device rectangle’s center to

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

determine the location of the device rectangle that will center the world coordinates. After it has calculated
the necessary device coordinate bounds, the routine calls MapRectangles to build the final transformation.

private	void	CenterRectangles(Graphics	gr,
				float	wxmin,	float	wxmax,	float	wymin,	float	wymax,
				float	dxmin,	float	dxmax,	float	dymin,	float	dymax)
{
				//	Figure	out	where	we	need	to	map	in	device	coordinates.
				float	wwid	=	wxmax	-	wxmin;
				float	whgt	=	wymax	-	wymin;
				float	dxmid	=	(dxmax	+	dxmin)	/	2;
				float	dymid	=	(dymax	+	dymin)	/	2;
										
				dxmin	=	dxmid	-	wwid	/	2;
				dxmax	=	dxmid	+	wwid	/	2;
				dymin	=	dymid	-	whgt	/	2;
				dymax	=	dymid	+	whgt	/	2;
										
				//	Map	the	rectangles.
				MapRectangles(gr,	wxmin,	wxmax,	wymin,	wymax,	dxmin,	dxmax,	dymin,	dymax);
}

Note that the subroutine CenterRectangles relies on the fact that the minimum bounds are smaller
than the maximum bounds. For example, wxmin < wxmax and dxmin < dxmax. The drawing code was
adjusted to draw the bar chart without a flipping transformation.

The program PrintBarChart uses the FitRectangles subroutine shown in the following code to make a
world coordinate rectangle as large as possible within a device rectangle without distorting it:

private	void	FitRectangles(Graphics	gr,
				float	wxmin,	float	wxmax,	float	wymin,	float	wymax,
				float	dxmin,	float	dxmax,	float	dymin,	float	dymax)
{
				//	Compare	the	world	and	device	aspect	ratios.
				float	dxmid	=	(dxmax	+	dxmin)	/	2;
				float	dymid	=	(dymax	+	dymin)	/	2;
				float	wwid	=	wxmax	-	wxmin;
				float	whgt	=	wymax	-	wymin;
				float	dwid	=	dxmax	-	dxmin;
				float	dhgt	=	dymax	-	dymin;
				float	new_dwid,	new_dhgt;
				if	(wwid	/	whgt	>	dwid	/	dhgt)
				{
								//	World	rectangle	is	shorter/wider	than	device	rectangle.
								//	Make	the	result	as	wide	as	possible.
								new_dhgt	=	dwid	*	whgt	/	wwid;
								new_dwid	=	dwid;
				}	else	{
								//	World	rectangle	is	taller/thinner	than	device	rectangle.
								//	Make	the	result	as	tall	as	possible.
								new_dwid	=	dhgt	*	wwid	/	whgt;
								new_dhgt	=	dhgt;
				}
										
				dxmin	=	dxmid	-	new_dwid	/	2;
				dxmax	=	dxmid	+	new_dwid	/	2;

C# Graphics Programming

�0

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

				dymin	=	dymid	-	new_dhgt	/	2;
				dymax	=	dymid	+	new_dhgt	/	2;
										
				//	Map	the	rectangles.
				MapRectangles(gr,	wxmin,	wxmax,	wymin,	wymax,	dxmin,	dxmax,	dymin,	dymax);
}

This code compares the world and device rectangles’ aspect ratios (the width-to-height ratios) to see
whether the world rectangle is tall and thin or short and wide compared to the device rectangle. That
comparison determines whether the world rectangle will fill the device rectangle vertically or
horizontally. The code sets the limiting dimension equal to the corresponding device rectangle
dimension and calculates the other dimension.

For example, suppose the world rectangle is 100 units wide and 200 units tall and the device rectangle is
a square 300 units on a side. The world rectangle is tall and thin compared to the device rectangle, so it
is limited in height. The resized world rectangle should have height 300 so that it fills the device
rectangle vertically. The new width is 100/200 × 300 = 150 units. The resized world rectangle fills the
device rectangle vertically, so it can’t be made any larger and still fit. The new world rectangle’s aspect
ratio is 150/300 = 1/2, just as it was before; thus, this doesn’t distort the rectangle.

After it calculates the world rectangle’s new size, the code determines where to position the rectangle to
center it and then calls MapRectangles to build the final transformation.

Figure 22 shows the program PrintBarChart displaying a print preview of the same bar chart arranged
in three different ways. The first page uses the subroutine CenterRectangles to center the chart. The
second page uses the subroutine FitRectangles to enlarge the chart to fill as much of the page as possible
without distorting it. The last page uses MapRectangles to make the chart fill the page even though that
distorts it. The program draws a red rectangle around the pages’ margins, so you can see how the chart fits.

Figure ��: The PrintBarChart example program displaying a bar chart centered, enlarged to fit
the page, and stretched to fill the page.

C# Graphics Programming

�1

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Section 6 Wrap-up
The key to printing and print previews is the PrintDocument object. Your code should catch that
object’s PrintPage event to generate the printout’s pages. It can also catch the BeginPrint, EndPrint,
and QueryPageSetting events to provide support for the main printing routines.

Subroutines such as FillRectangles, CenterRectangles, and FitRectangles make mapping world
coordinates easier for any graphics program, but they are particularly useful for printing where
programs often need to center or resize graphics. (You may want to copy those routines from the
PrintBarChart example program so that you can use them in your projects.)

This section gives you the tools you need to generate printouts, but there’s still a lot of work to do. The
techniques in this section, combined with the text-drawing techniques described in Section 3, “Drawing
Text,” let you produce pages that are all text or that contain images, but making text flow around
pictures and other objects can be difficult. (After reading about WPF Graphics in Section 7, Section 8 on
FlowDocument objects gives you an easier approach to mixing graphics and text.)

The sections up to this point have explained how to use code to produce graphics at run time. The next
section explains how to use WPF graphics to produce graphics at run time.

Section 7: Using WPF Graphics
WPF (Windows Presentation Foundation) is a fairly recent addition to Visual Studio. It includes a whole
new set of forms, controls, components, and other gimmickry for building form-based applications. The
Visual Studio development environment includes a large set of tools for building and editing WPF forms
and the controls they contain. Unfortunately, those tools are somewhat limited, and there are lots of
things you cannot do easily with the WPF form designer. For example, the designer lets you set a
Rectangle object’s Fill property to a solid color, but it won’t let you set it to a more complicated brush.

WPF is extremely complicated, thus there’s hardly room here to even scratch the surface. Since the focus
of this Wrox Blox is graphics, this section concentrates on WPF elements that you can use to produce
graphics. The following sections describe WPF controls that you can use to display decorations and
draw shapes. A separate section discusses brushes that you can use to fill WPF graphics. For a more
complete discussion of WPF, see the online Help or search the Web.

Decorative Controls
WPF includes an assortment of the usual kinds of controls: text boxes, labels, buttons, scroll bars, and so
forth. You can use these controls more or less as you would in a Windows Forms application.

Three controls that play a mainly decorative role are Border, GroupBox, and Label. I consider these
controls decorative because they usually just sit there and don’t interact with the user. If you can use them
to provide the graphics that you need, go ahead and avoid the extra work needed to use more complicated
controls or code. Since these controls are straightforward, I won’t say any more about them here.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Shape Controls
Windows Forms controls don’t include any shape controls; thus, if you want to draw an ellipse or
rectangle on a form, you must do so in code. In contrast, WPF provides several shape controls that let
you draw graphics at design time. Unfortunately, since the WPF design time editors are not very
powerful, there are many graphics tasks that you cannot accomplish using the designer alone. In those
cases, you must write XAML (eXtensible Application Markup Language, pronounced “zammel”) code to
fill in the missing pieces.

The ShapeControls example program, which is shown in Figure 23, demonstrates the most useful WPF
shape controls. The following sections describe these controls and show the XAML code that this
program uses to draw them.

Figure ��: The ShapeControls example program
displaying several WPF shape controls.

Line
The Line control displays a line segment. You can set its XAML properties to specify the line’s position,
color, thickness, start and end caps, dash caps, and so forth.

The Line control does not use the same kind of DashStyle property that the Windows Forms Pen class
uses. Instead, you can set its StrokeDashArray property to a series of numbers that define the dash
pattern much as a Pen object’s DashPattern array does.

The following code shows how the program ShapeControls draws its dashed line:

<Line	Height=”37”	Margin=”110,0,11,9”	Name=”Line1”	Stroke=”BlueViolet”
	StrokeThickness=”10”	VerticalAlignment=”Bottom”	X2=”200”	Y2=”20”
	StrokeDashArray=”3,3”	StrokeDashCap=”Triangle”	StrokeEndLineCap=”Round”
	StrokeStartLineCap=”Round”	/>

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Rectangle
The Rectangle control draws a rectangle. Its properties let you determine the rectangle’s line color, size,
and fill color. The following code shows how the program ShapeControls draws its rectangle. The
RadiusX and RadiusY properties determine the curvature at the rectangle’s corners. Leaving these at
their default values of 0 gives a normal, square-cornered rectangle.

<Rectangle	Height=”73”	Margin=”13,10,0,0”	Name=”Rectangle1”	Stroke=”Red”
	VerticalAlignment=”Top”	HorizontalAlignment=”Left”	Width=”86”	StrokeThickness=”4”
	Fill=”LightBlue”	RadiusX=”10”	RadiusY=”50”	/>

Ellipse
The Ellipse control draws an ellipse. Its properties are similar to those of the other shape controls and
let you determine the ellipse’s size, position, line color, and fill color. The following code shows how the
program ShapeControls draws its ellipse.

<Ellipse	HorizontalAlignment=”Left”	Margin=”13,97,0,0”	Name=”Ellipse1”
	Stroke=”Cyan”	StrokeThickness=”10”	Width=”86”	Height=”147”
	VerticalAlignment=”Top”	Fill=”Lime”	/>

Image
The Image control displays an image. Its Stretch property determines how the image is sized to fit the
control. The Stretch property can take the values shown in Table 3.

Table 3: The Image Control’s Stretch Property Values

Stretch Value Purpose

None Displays the image at its original size.

Fill Stretches the image to fill the control.

Uniform Stretches the image uniformly so that it is as large as possible while still fitting
within the control without distortion. The image is centered in the control.

UniformToFill Stretches the image uniformly so that it completely fills the control. Some of
the image may not fit within the control and will be clipped.

The Image control’s Source property determines what image is displayed. This can be a file path, URL,
or a path to a resource.

A file path might be absolute, as in C:\Images\logo.bmp, or relative to the current directory, as in
logo.bmp or Images\logo.bmp.

A URL is the address of an image file available on the Web as in www.vb-helper.com/vb_prog_ref.jpg.

http://www.vb-helper.com/vb_prog_ref.jpg

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

To make the control load an embedded resource, add an image file to the application’s resources and set
the image’s Build	Action property to Resource. Then if the file’s name is smile.bmp, you can
specify the Image control’s Source property as in Resources/smile.bmp.

The following code shows how the program ShapeControls displays an image stored in the resource
smile.bmp:

<Image	Height=”73”	HorizontalAlignment=”Left”	Margin=”111,12,0,0”	Name=”Image1”
	Stretch=”None”	VerticalAlignment=”Top”	Width=”71”	Source=”Resources/smile.bmp”	/>

Polygon
The Polygon control draws a polygon much as the Graphics object can with its DrawPolygon and
FillPolygon methods. Its Points property contains a list of the point coordinates in pixels that the
polygon should connect. The coordinates can be separated by spaces, commas, or a mix of the two. To
make reading the point data easier, I separate points with spaces and the X and Y coordinates in a point
with a comma.

The following code shows how the program ShapeControls draws its polygon. The Points property’s
value is split across two lines in this code, but in the program it’s all on one line.

<Polygon	Name=”Polygon1”	Stroke=”Red”	StrokeThickness=”5”
	Points=”50.00,0.00	64.69,29.77	97.55,34.55	73.78,57.73	79.39,90.45	50.00,75.00
	20.61,90.45	26.22,57.73	2.45,34.55	35.31,29.77”	Margin=”110,97,123,56”
	Fill=”Blue”	/>

Polyline
The Polyline control connects a series of points with lines. It is similar to the Polygon control except it
does not connect the last point to the first point. Because it is not a closed shape, the Polyline also does
not fill its shape.

The following code shows how the program ShapeControls draws its polyline. The Points property’s
value is split across two lines in this code, but in the program it’s all on one line.

<Polyline	Margin=”0,97,33,75”	Name=”Polyline1”	Stroke=”Orange”	StrokeThickness=”5”
	HorizontalAlignment=”Right”	Width=”80”	Points=”34,43	34,34	26,34	24,47	30,53
	47,47	45,32	29,19	14,36	14,54	30,70	54,61	62,38	47,14”	/>

Path
The Path control draws a series of connected lines and curves. You can either define a Path with the path
mini-language or by building a series of objects nested within the Path object’s XAML code.

Table 4 describes the path mini-language’s most useful commands.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Table 4: The Path Control’s Mini-Language Commands

Command Purpose

M	x,y Moves to the point (x, y).

L	x,y Draws a line to the point (x, y).

H	x Draws a horizontal line to the X coordinate x.

V	y Draws a vertical line to the Y coordinate y.

C	x1,y1	x2,y2	
x3,y3

Draws a cubic Bezier to the end point (x3, y3) using the control points
(x1, y1) and (x2, y2).

Q	x1,y1	x2,y2 Draws a quadratic Bezier curve to the end point (x2, y2) using the control
point (x1, y1).

S	x1,y1	x2,y2 Draws a smooth cubic Bezier curve to the end point (x2, y2). The first
control point is calculated as a reflection of the second control point in the
previous command. The second control point is (x1, y1).

T	x1,y1	x2,y2 Draws a smooth quadratic Bezier curve to the end point (x2, y2). The first
control point is calculated as a reflection of the second control point in the
previous command. The second control point is (x1, y1).

A	xr,yr	ang		
is_big	dir	x,	y

Draws an elliptical arc from the current point to (x, y). The parameters xr
and yr give the ellipse’s X and Y radii, ang gives the ellipse’s angle of rota-
tion in degrees, is_big should be 0 (False) to indicate that the sweep angle
should be less than 180 degrees or 1 to indicate a big angle, and dir should
be 1 for a positive sweep direction or 0 otherwise.

Z Closes the figure by connecting the current point to the starting point.

Each of the command characters (M, L, H, etc.) can be in uppercase to indicate absolute coordinates or
lowercase to indicate coordinates relative to the current position.

The following code shows how the program ShapeControls draws the red path to the right of the image
in Figure 23:

<Path	HorizontalAlignment=”Right”	Margin=”0,12,81,0”	Name=”Path2”	Stroke=”Red”
	StrokeThickness=”3”	Width=”63”	Data=”M	0,0	C	30,90	40,-40	50,70”	Height=”73”
	VerticalAlignment=”Top”	/>

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The second method of building a Path control is to place other objects inside its XAML tags. The
following code shows how the program ShapeControls draws the green path in the upper-right corner of
Figure 23:

<Path	Height=”63”	Margin=”201,12,0,0”	Name=”Path1”	Stroke=”Green”
	StrokeThickness=”3”	VerticalAlignment=”Top”	HorizontalAlignment=”Left”	Width=”62”>
				<Path.Data>
								<PathGeometry>
												<PathFigure>
																<BezierSegment	Point1=”0,0”	Point2=”50,0”	Point3=”50,20”	/>
																<BezierSegment	Point1=”50,40”	Point2=”30,10”	Point3=”0,50”	/>
												</PathFigure>
								</PathGeometry>
				</Path.Data>
</Path>

In this code, the Path element contains a Path.Data element to hold its data. That element can hold a
single instance of one of several geometry elements including EllipseGeometry, RectangleGeometry,
and LineGeometry. Alternatively, it can hold a GeometryGroup, which can contain one or more other
geometries.

In this example, the Path.Data element holds a PathGeometry element containing a PathFigure that
holds the BezierSegments that actually produce results.

Whether you use the path mini-language or an object model to define a Path is up to your preference. In
many cases, the path mini-language is easier to write and understand.

Brushes
The ideas behind filled areas in WPF are similar to those behind the brushes you use to fill areas in
Windows Forms applications. Many of the WPF controls allow you to specify a Fill property that
determines the control’s fill color. For example, the following code draws an ellipse and fills it with the
color lime:

<Ellipse	HorizontalAlignment=”Left”	Margin=”13,97,0,0”	Name=”Ellipse1”
	Stroke=”Cyan”	StrokeThickness=”10”	Width=”86”	Height=”147”
	VerticalAlignment=”Top”	Fill=”Lime”	/>

WPF provides more complicated brushes with classes such as LinearGradientBrush, RadialBrush,
DrawingBrush, and ImageBrush. Because these classes are moderately complex, they cannot be
represented in XAML by simple text values; thus, you cannot use them directly in a control’s XAML tag.
Instead, you must nest them within the control’s element.

The Brushes example program, which is shown in Figure 24, demonstrates these types of brushes. The
rectangles from left to right in the top row of Figure 24 are filled with a LinearGradientBrush, a
RadialBrush, and a DrawingBrush. The bottom rectangle is filled with an ImageBrush.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

Figure ��: The Brushes example program
demonstrating the LinearGradientBrush,
RadialBrush, DrawingBrush, and ImageBrush
classes.

The following sections describe each of these kinds of brushes in greater detail.

LinearGradientBrush
The LinearGradientBrush fills an area with colors shading smoothly from one to another across the
area. Its StartPoint and EndPoint properties determine where the color gradient starts and ends.
These properties are measured as fractions of the size of the control being filled with (0, 0) in the
control’s upper-left corner and (1, 1) in the lower right.

The LinearGradientBrush XAML element should contain GradientStop objects that define the
colors the brush should use and their positions within the gradient. This object’s Color property
specifies a color, and its Offset property determines the position within the gradient where that color
should appear.

The program Brushes uses the following code to draw the rectangle in the upper-left corner of
Figure 24. The StartPoint and EndPoint properties make the gradient start in the control’s upper-left
corner and end in the lower right. The GradientStop objects make the gradient start with red, shade to
green halfway through, and then shade to blue at the end.

<Rectangle	Height=”82”	HorizontalAlignment=”Left”	Margin=”0,1,0,0”
	Name=”Rectangle1”	Stroke=”Black”	VerticalAlignment=”Top”	Width=”99”>
				<Rectangle.Fill>
								<LinearGradientBrush	StartPoint=”0,0”	EndPoint=”1,1”>
												<GradientStop	Color=”Red”	Offset=”0.0”	/>
												<GradientStop	Color=”Green”	Offset=”0.5”	/>
												<GradientStop	Color=”Blue”	Offset=”1.0”	/>
								</LinearGradientBrush>
				</Rectangle.Fill>
</Rectangle>

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

RadialGradientBrush
The LinearGradientBrush shades colors radially from a defined center point outward. Its Center
property determines where the center point lies. The point’s coordinates are measured as fractions of the
size of the control being filled with (0, 0) in the control’s upper-left corner and (1, 1) in the lower right.

The RadialGradientBrush XAML element should contain GradientStop objects that define the colors
the brush should use and their positions within the gradient.

The program Brushes uses the following code to draw the rectangle in the upper center. The Center
property makes the gradient start in the control’s center, (0.5, 0.5) in the control’s internal coordinate
system. The GradientStop objects make the gradient start with blue, shade to white halfway through,
and then shade to lime 90 percent of the way through. Beyond that point, the area is filled with lime.

<Rectangle	Height=”82”	HorizontalAlignment=”Left”	Margin=”111,1,0,0”
	Name=”Rectangle4”	Stroke=”Black”	VerticalAlignment=”Top”	Width=”99”>
				<Rectangle.Fill>
								<RadialGradientBrush	Center=”0.5,0.5”>
												<GradientStop	Color=”Blue”	Offset=”0”	/>
												<GradientStop	Color=”White”	Offset=”0.5”	/>
												<GradientStop	Color=”Lime”	Offset=”0.9”	/>
								</RadialGradientBrush>
				</Rectangle.Fill>
</Rectangle>

DrawingBrush
The DrawingBrush can contain:

q	 GeometryDrawing to draw a shape.

q	 ImageDrawing to draw an image.

q	 GlyphRunDrawing to draw text.

q	 VideoDrawing to play an audio or video file.

q	 DrawingGroup to draw a group of drawings.

The DrawingBrush defines a viewport that determines the basic unit of drawing, and it then tiles the area
with that viewport. By default, the viewport fills the control containing the brush so that you’ll see only
one copy of the drawing. Normally you would change this behavior by setting the viewport size to
something smaller. You can set the ViewportUnits property to Absolute to indicate that the viewport’s
size is measured in pixels.

The program Brushes uses the following code to draw the rectangle in its upper-right corner:

<Rectangle	Margin=”222,1,0,0”	Name=”Rectangle2”	Stroke=”Black”
	HorizontalAlignment=”Left”	Width=”99”	Height=”82”	VerticalAlignment=”Top”>
				<Rectangle.Fill>
								<DrawingBrush	Stretch=”None”	TileMode=”Tile”
									Viewport=”0,0,20,20”	ViewportUnits=”Absolute”	>
												<DrawingBrush.Drawing>

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

																<DrawingGroup>
																				<GeometryDrawing	Brush=”LightBlue”>
																								<GeometryDrawing.Geometry>
																												<GeometryGroup>
																																<EllipseGeometry	Center=”10,10”
																																	RadiusX=”10”	RadiusY=”10”	/>
																												</GeometryGroup>
																								</GeometryDrawing.Geometry>
																								<GeometryDrawing.Pen>
																												<Pen	Thickness=”1”	Brush=”Blue”	/>
																								</GeometryDrawing.Pen>
																				</GeometryDrawing>
																				<GeometryDrawing	Brush=”Black”>
																								<GeometryDrawing.Geometry>
																												<EllipseGeometry	Center=”13,9”
																													RadiusX=”5”	RadiusY=”5”	/>
																								</GeometryDrawing.Geometry>
																				</GeometryDrawing>
																</DrawingGroup>
												</DrawingBrush.Drawing>
								</DrawingBrush>
				</Rectangle.Fill>
</Rectangle>

The code sets the brush’s Viewport and ViewportUnits properties to indicate that the viewport should
be 20 pixels wide and 20 pixels tall. It sets the brush’s TileMode property to Tile so that the brush
repeats its image across the area it fills.

The brush’s XAML element contains a DrawingGroup, so it can hold more than one other drawing
element. The DrawingGroup contains two GeometryDrawing elements that draw a large blue ellipse
and a smaller black ellipse.

ImageBrush
The ImageBrush fills an area with an image. Like the DrawingBrush, this brush defines a viewport that
it uses to fill its area. You can use the brush’s Viewport and ViewportUnits properties to determine the
viewport’s size. The TileMode property determines how the brush tiles its area.

The brush’s ImageSource property determines where the brush gets its image, and it can be a URL or
the name of an embedded resource.

An ImageSource URL is the address of an image file available on the Web as in
www.vb-helper.com/vb_prog_ref.jpg.

To make the control load an embedded resource, add an image file to the application’s resources and
set the image’s Build	Action property to Resource. Then if the file’s name is smile.bmp, you can
specify the brush’s Source property as in smile.bmp.

The program Brushes uses the following code to draw the rectangle at the bottom in Figure 24. The
ImageBrush has a 73-by-73 pixel viewport and loads its image from the smile.bmp embedded resource.

http://www.vb-helper.com/vb_prog_ref.jpg

C# Graphics Programming

�0

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

<Rectangle	HorizontalAlignment=”Left”	Margin=”0,92,0,0”	Name=”Rectangle3”
	Stroke=”Black”	Width=”321”	Height=”146”	VerticalAlignment=”Top”>
				<Rectangle.Fill>
								<ImageBrush	ImageSource=”smile.bmp”	TileMode=”Tile”	Stretch=”None”
																				Viewport=”0,0,73,73”	ViewportUnits=”Absolute”	/>
				</Rectangle.Fill>
</Rectangle>

Section 7 Wrap-up
WPF provides many new controls including several that display graphics. By using those controls, you
can construct complex graphics declaratively at design time instead of generating them at run time with
code. Some of the WPF designer tools are a bit weak (e.g., they won’t let you define complex brushes),
but with some extra effort you can implement additional features in XAML.

The next section describes a particularly powerful tool provided by WPF: the FlowDocument control.
This control can display complex graphics including drawing controls such as Rectangle, Ellipse,
and Polygon, as well as other controls such as labels, textboxes, buttons, and so forth.

Section 8: Building FlowDocuments
The WPF FlowDocument class represents a document that contains elements that display WPF controls,
text, and other graphics. Special objects within the document can arrange elements as lists, tables,
paragraphs, and so forth. The FlowDocument object automatically rearranges the elements as needed
and as space permits, much as a web page rearranges the text, images, and other items it contains.

This is a very different kind of interface from those produced by simple Windows Forms and WPF
pages. The result is appropriate, when displaying as much content as possible is more important than
keeping the content in specific relative positions.

To use a FlowDocument in WPF, you put other objects inside its XAML tags. The following list describes
the kinds of objects that a FlowDocument can hold directly. You can place other objects inside these top-
level objects:

q	 BlockUIContainer — Contains controls such as TextBoxes and Label.

q	 List — Contains a list of items.

q	 Paragraph — Contains elements grouped in a paragraph.

q	 Section — Contains a higher-level grouping usually containing multiple paragraphs or other
objects.

q	 Table — Contains items displayed in rows and columns.

The following sections give a brief overview of these kinds of objects.

C# Graphics Programming

�1

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

BlockUIContainer
The BlockUIContainer object contains user interface controls such as TextBox and Label. Normally
you would use this to place these controls inside some larger object such as a Paragraph. In other
words, a Paragraph would contain a BlockUIContainer that would contain a Button, Grid, or
GroupBox.

While this control can hold only a single Child control, this isn’t a big restriction since that Child can be a
container. For example, you could place a Panel or Grid inside the BlockUIContainer and the Child
can hold other controls.

List
A List displays a series of items, optionally with bullets or numbers next to them.

The MarkerStyle property determines whether the List is numbered or bulleted and can take the
values Box, Circle, Decimal, Disc, LowerLatin, LowerRoman, None, Square, UpperLatin, and
UpperRoman. The StartIndex property determines the first number for numbered lists (e.g., so you can
continue a previous list).

The MarkerOffset property determines how far the markers are from the content area, and
TextAlignment determines how text is aligned.

Paragraph
A Paragraph contains elements that should be grouped as a paragraph. Normally a Paragraph
contains plaintext, but it can also hold formatting elements such as Bold, Italic, and Underline.

A Paragraph can also hold more structural elements such as InlineUIContainer (similar to
BlockUIContainer but inside a Paragraph), Figure (a positioned object that the text flows around),
and Floater (similar to Figure except it is not positioned and the FlowDocument will float it to a
convenient position if necessary).

Section
A Section contains a higher-level grouping of objects, usually containing multiple paragraphs or other
objects. Its main purpose is to group other block elements. A Section can contain BlockUIContainer,
List, Paragraph, Section, and Table elements.

Table
A Table contains items displayed in rows and columns. At the lower levels, TableRow objects hold
TableCell objects that contain the items to display. Building a table can be a lot of work, but with
enough effort, you can build pretty complicated tables with cells that span multiple columns, rows, or
cells with different backgrounds and text alignments, and so forth.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The following code builds a simple Table:

<Table>
				<Table.Columns>
								<TableColumn	/>
								<TableColumn	/>
				</Table.Columns>
				<TableRowGroup>
								<TableRow	Background=”DarkGreen”	Foreground=”Yellow”>
												<TableCell	ColumnSpan=”2”	TextAlignment=”Center”>
																<Paragraph	FontSize=”16”	FontWeight=”700”>
																				Some	Table	Components</Paragraph>
												</TableCell>
								</TableRow>
								<TableRow	Background=”Green”	Foreground=”White”>
												<TableCell>
																<Paragraph	FontSize=”14”>Component</Paragraph>
												</TableCell>
												<TableCell>
																<Paragraph	FontSize=”14”>Purpose</Paragraph>
												</TableCell>
								</TableRow>
								<TableRow>
												<TableCell>
																<Paragraph>Table.Columns</Paragraph>
												</TableCell>
												<TableCell>
																<Paragraph>
																				Holds	TableColumn	objects	that	define	the	columns.</Paragraph>
												</TableCell>
								</TableRow>
								<TableRow>
												<TableCell>
																<Paragraph>TableColumn</Paragraph>
												</TableCell>
												<TableCell>
																<Paragraph>Defines	a	column.</Paragraph>
												</TableCell>
								</TableRow>
				</TableRowGroup>
</Table>

The Table’s first Child is a Table.Columns element that contains TableColumn elements that
define the Table’s two columns. The code doesn’t define widths for the columns; thus, they share the
available area.

The rest of the Table’s contents are contained in a TableRowGroup. That element contains TableRow
objects that hold TableCell objects.

The first TableRow holds one TableCell that spans both of the Table’s columns and gives the Table
an overall title row. TableRow properties give the row yellow text with a dark green background.
TableCell properties make the cell use a large, bold font.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The second TableRow holds two TableCell objects that give column headers. Properties make these
cells use white text with a green background and a large font.

The remaining TableRow objects hold detail in ordinary cells with default colors and font sizes.

The FlowDocumentDemo example program, which is shown in Figure 25, contains a Grid that holds a
FlowDocumentReader. That object contains a FlowDocument object that demonstrates many basic kinds
of Children. For example, it contains (either directly or indirectly) BlockUIContainer, List,
Paragraph, Section, and Table objects. It also demonstrates Figure and Floater objects.

Figure ��: The FlowDocumentDemo example program displaying a FlowDocument object containing a
variety of objects.

The code used by the program FlowDocumentDemo is not too complicated, but it is very long (about six
pages); thus, it’s not shown here. Download the example program and see for yourself.

Section 8 Wrap-up
A FlowDocument flows the objects it contains to fit the space available; thus, you only have indirect
control over where things are positioned. If your goal is to display a lot of information in a format
similar to a newspaper, newsletter, or web page, a FlowDocument can give you a lot of flexibility. It also
allows you to build complicated documents declaratively at design time.

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

The FixedDocument class is similar to FlowDocument except it keeps objects in the exact positions
where you place them. If a FlowDocument is similar to a web page displaying objects that move as the
browser is resized, then a FixedDocument is similar to an Adobe Acrobat PDF document displaying
objects at specific positions.

Conclusion
C# provides a huge number of graphics tools that you can use to solve all sorts of problems. By using
Graphics objects, pens, and brushes, you can draw and fill all sorts of shapes. You can use stock pens
and brushes or create your own with hatch patterns, gradient fills, textures, custom dash patterns and
end caps, and longitudinal stripes.

The Graphics class’s DrawString method lets you draw text formatted and wrapped to fit a particular
area, optionally with ellipses. The Bitmap class provides methods for getting and setting the values of
every pixel in an image.

Transformations add a whole new level of power to any graphics code. By using transformations, you
can stretch, rotate, and translate images to reuse code that draws standard pictures. Transformations also
allow you to produce results that are otherwise impossible such as stretched text.

C#’s printing capabilities are awkward at first, requiring you to respond to events requesting pages
rather than generating pages explicitly, but once you get the hang of it, printing is fairly easy. The
fact that you use a Graphics object to draw on the screen or printout makes printing a lot easier.
The fact that you use a PrintDocument both for printing and generating previews makes providing
previews practically trivial.

Finally, WPF and the FlowDocument control give you a whole new arsenal of graphics tools. They let
you generate graphics declaratively at design time instead of writing complicated code that only
produces results when the program executes.

If you have questions or comments about the material in this Wrox Blox, please e-mail me at
RodStephens@vb-helper.com and let me know. If you get stuck on a graphical technique, let me know,
and I may be able to point you in the right direction. Finally, if you produce some really cool and
amazing images, send them to me so I can post them and let others see what’s possible with C#.

mailto:RodStephens@vb-helper.com

C# Graphics Programming

��

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

About Rod Stephens
Rod Stephens is a consultant and author who has written more than 18 books and 250 magazine articles,
mostly about Visual Basic. Currently he is a regular contributor of C# and Visual Basic articles at
DevX.com (www.devx.com). During his career he has worked on an eclectic assortment of applications
spanning such fields as repair dispatch, fuel tax tracking, professional football training, wastewater
treatment, geographic mapping, and ticket sales. His VB Helper web site (www.vb-helper.com) receives
more than 7 million hits per month and provides three newsletters and thousands of tips, tricks, and
examples for Visual Basic programmers.

http://www.devx.com/
http://www.vb-helper.com/

Wrox Blox: C# Graphics Programming By Rod Stephens - ISBN: 978-0-470-34349-4
Copyright 2008, Wiley Publishing, Inc.

This PDF is exclusively for your use in accordance with the Wrox Blox Terms of Service. No part of it may be reproduced or transmitted in any
form by any means without prior written permission from the publisher. Redistribution or other use that violates the Wrox Blox Terms of

Service or otherwise violates the U.S. copyright laws is strictly prohibited.

C# Graphics Programming
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 978-0-470-34349-4

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may make. Further,
readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this Wrox Blox.

This PDF should be viewed with Acrobat Reader 6.0 and later, Acrobat Professional 6.0 and later, or Adobe Digital
Editions.

Usage Rights for Wiley Wrox Blox. Any Wiley Wrox Blox you purchase from this site will come with certain restrictions
that allow Wiley to protect the copyrights of its products. After you purchase and download this title, you:

• Are entitled to three downloads
• Are entitled to make a backup copy of the file for your own use
• Are entitled to print the Wrox Blox for your own use
• Are entitled to make annotations and comments in the Wrox Blox file for your own use
• May not lend, sell or give the Wrox Blox to another user
• May not place the Wrox Blox file on a network or any file sharing service for use by anyone other than yourself or

allow anyone other than yourself to access it
• May not copy the Wrox Blox file other than as allowed above
• May not copy, redistribute, or modify any portion of the Wrox Blox contents in any way without prior permission

from Wiley

If you have any questions about these restrictions, you may contact Customer Care at (877) 762-2974 (8 a.m. - 5 p.m. EST,
Monday - Friday). If you have any issues related to Technical Support, please contact us at 800-762-2974 (United States
only) or 317-572-3994 (International) 8 a.m. - 8 p.m. EST, Monday - Friday).

Executive Editor
Robert Elliott
Development Editor
Ami Frank Sullivan
Technical Editor
John Mueller
Production Editor
Debra Banninger

Copy Editor
Cate Caffrey
Editorial Manager
Mary Beth Wakefield
Production Manager
Tim Tate
Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert
Proofreader
Nancy Carrasco

Ready for more?
Build onto the knowledge that you just gained from this Wrox Blox.

Visit us at www.wrox.com

Visual Basic 2008 Programmer’s Reference

By ROD STEPHENS

ISBN: 978-0-470-18262-8

P
roviding programmers and developers of all skill levels with a
comprehensive tutorial and reference to Visual Basic (VB) 2008,
Microsoft MVP Rod Stephenspresents a broad, solid understanding of
essential topics on the latest version of VB. He explains the forms,

controls, and other objects that VB furnishes for building applications in a
modern windows environment. Plus, he examines the powerful
development environment that makes VB such a productive language, and
he delves into the VB language itself to show you how to use it to perform
an array of important development tasks.

New examples and extensively revised and retested code that complies
with the 2008 release help you obtain a firm understanding of VB 2008.
Extensive appendixes prove to be particularly useful to help you translate
from the languages you already know into the corresponding VB syntax.
Ultimately, you'll find coverage of the technologies you need in order to build
sophisticated applications with VB 2008. What you will learn from this book

• Extension methods for adding new features to existing classes

• How to select and use Windows Forms Controls for a specific purpose

• Tips for using subroutines and functions to break a program into manageable pieces

• Techniques for error handling and debugging

• Various important classes and objects to use when building an application

• How to use the graphics device interface routines to draw images in VB

• Ways an application interacts with its environment

Visual Basic 2008 Programmer’s Reference is available now!

	Section 1: Using Graphics, Pens, and Brushes
	Getting a Graphics Object
	Using a Graphics Object
	Creating Pens
	Creating Brushes
	Section 1 Wrap-up

	Section 2: Using Advanced Pens and Brushes
	Custom Dash Patterns
	Longitudinal Stripes
	Custom End Caps
	Linear Gradient Brushes
	Path Gradient Brushes
	Section 2 Wrap-up

	Section 3: Drawing Text
	Drawing Simple Text
	Using Layout Rectangles
	Section 3 Wrap-up

	Section 4: Manipulating Images
	Creating and Loading Bitmaps
	Manipulating Bitmaps
	Saving Image Files
	Section 4 Wrap-up

	Section 5: Using Transformations
	Basic Transformations
	World Coordinate Mapping
	Section 5 Wrap-up

	Section 6: Printing
	Using PrintPage
	Using Other Event Handlers
	Printing Transformations
	Section 6 Wrap-up

	Section 7: Using WPF Graphics
	Decorative Controls
	Shape Controls
	Brushes
	Section 7 Wrap-up

	Section 8: Building FlowDocuments
	BlockUIContainer
	List
	Paragraph
	Section
	Table
	Section 8 Wrap-up

	Conclusion
	About Rod Stephens

