XML Metadatal nterchange (XMI)
Specification

May 2003
Version 2.0
for mal/03-05-02

An Adopted Specification of theObject Management Group, Inc.

Copyright © 1998, 1999, 2000, 2001 IBM Corporation
Copyright © 2002, Object Management Group
Copyright © 1998, 1999, 2000, 2001 Softeam

Copyright © 1998, 1999, 2000, 2001 Unisys Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companieslisted above have granted to the Object Management Group, Inc. (OMG) ahonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto thelegal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY
WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS' AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLEOR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FORA PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIESLISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and 11OP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmMed™, CORBANnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the | ssue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Tableof Contents

Preface vii
1. XMI SchemaDesign Principles 1-1
11 PUMPOSE. . ettt e 1-2
12 Useof XML Schemas 1-2
1.2.1 XML Validation of XMI documents. 1-3

1.2.2 Requirements for XMI Schemas. 1-3

1.3 BasicPrinciples........... L. 1-4
1.3.1 Required XML Declarations. 1-4

1.3.2 Metamodel Class Representation......... 1-4

1.3.3 Metamodel Extension Mechanism 1-4

1.4 XMI Schemaand Document Structure. 1-5
15 XMIModel ... 1-5
151 XML Schemaforthe XMl Model 1-6

152 XMIModeclasses.................... 1-6

153 XMl ..o 1-8

154 EXtensionc.oeieiniiniini.. 1-9

155 Documentation...................o.... 1-10

156 Add, Replace,andDelete............... 1-11

1.6 XMIAttributes. . ..o 1-12
1.6.1 Element Identification Attributes......... 1-12

1.6.2 Linking Attributes 1-13

1.6.3 VesionAttribute 1-14

1.6.4 TypeAttribute........................ 1-14

L7 XMIType. .o e e e 1-15

May 2003 XML Metadata I nterchange, v2.0 i

1.8 Metamodel Class Specification 1-15
1.8.1 Namespace Qualified XML Element Names 1-16

1.8.2 Metamodel Multiplicities. 1-16

1.8.3 Classspecification 1-17

1.8.4 Attribute Specification................. 1-17

18,5 Reference Specification 1-19

1.8.6 Containment Specification.............. 1-20

1.8.7 Inheritance Specification 1-20

1.8.8 Derived Information. 1-20

1.9 Transmitting Incomplete Metadata. 1-20
19.1 Interchange of model fragments.......... 1-20

192 XMlencoding........................ 1-21

193 Example........... 1-21

110 Linking.o e 1-21
1.10.1 Designprinciples..................... 1-21

1102 Linking...........coiiiiiiii, 1-22

1.10.3 ExamplefromUML 1-24

1.11 Tailoring SchemaProduction. 1-25
1111 XMITagVaues...................... 1-26

1.11.2 TagVaueConstraints.................. 1-27

1113 SCOpe .. oo 1-28

1.11.4 XML element vs XML attribute. 1-28

1.11.5 UML profilefor XML and XMI.......... 1-28

1.11.6 Effects on Document Production 1-29

1.11.7 Summary of XMI Tag Scope and Affect ... 1-31

1.12 Transmitting Metadata Differences 1-32
1121 Definitions. ... 1-32

1.12.2 Differences. 1-33

1123 XMlencoding........................ 1-33

1124 Example........ ..., 1-33

1.13 Document Exchange with MultipleTools 1-35
1131 Definitions. ... 1-35

1132 Procedures, 1-36

1133 Example......... ... i 1-36

1.14 Genera DatatypeMechanism 1-37
2. XML SchemaProduction 2-1
2.1 PUMPOSE. . .ttt e e 2-1
22 XMl Version2Schemas.cooin.. 2-2
221 EBNF........ 2-2

XML Metadata I nterchange, v2.0 May 2003

May 2003

3. XML Document Production

31
3.2
33

34

35

4. Production of MOF from XML

4.1
4.2
4.3
4.4

5. XML Schema Model

5.1
5.2

222
2.2.3

Fixed SchemaDeclarations

Schema Production Rules for Non-Primitive

PUIPOSE. . . o
Introduction
EBNF Rules Representation.
3.3.1 Overadl Document Structure.
3.3.2 Overadl Content Structure.
333 ObjectStructure.
334 References
335 ObjectContents
336 Packages.............. ... i,
337 Attributes. ...
3.3.8 Other Typesof Links
Additional Examples i
341 Inheritance............ ... i
342 NestedPackages......................
3.4.3 Derived Types and References...........
Document Production Rulesfor Non-Primitive Data. . .
351 StructureType
352 EnumerationTypecoou...
353 AliassType ...
354 CollectionType ...,

Introduction
MOF
MOF.................
XML Schemato MOF

DTD to
XML to

Introduction
XML Schema Structures
521 XSDSchema.........
5.2.2 XSDAttribute........
5.2.3 XSDElementRef.
5.2.4 XSDAttributeGroup . ..
5.25 XSDAttributeGroupRef

XML Metadata I nterchange, v2.0

31
31
31
32

33

34

37

39
311
3-12
3-12
3-12
3-12
3-13
3-15
3-15
3-15
3-16
3-16
3-16

4-1
4-1

4-3
4-4

51
5-1

5-12
5-13
5-13
5-13
5-13

5.2.6

5.2.7

5.2.8

5.2.9

5.2.10
5211
5.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.2.22
5.2.23
5.2.24
5.2.25
5.2.26
5.2.27
5.2.28
5.2.29
5.2.30
5.2.31
5.2.32
5.2.33
5.2.34
5.2.35
5.2.36
5.2.37
5.2.38
5.2.39
5.2.40
5.2.41
5.2.42
5.2.43
5.2.44
5.2.45
5.2.46

XSDTYPE . o

XSDBuiltInType. .
XSDComplexType

XSDComplexTypeContent.
XSDSchemaContent.

XSDElement.
XSDSimpleBase. .
XSDPettern.
XSDEnumeration .
XSDInclude
XSDImport.
XSDGroup
XSDGroupKind . .

XSDKeyRef
XSDUnique

XSDUniqueContent

XSDSdlector.

XSDField

XSDObject.

XSDAnnotatedElement
XSDDocumentationc......

XSDAppInfo
XSDAnNnotation . .

XSDSimpleContent

XSDComplexContent.
XSDSimpleComplex
XSDSimpleTypeContent

XSDSimpleRestrict
XSDSimpleList ..
XSDSimpleUnion.
XSDSimpleType. .

XSDFacet...........cooviiiii

XSDLength.
XSDMinLength ..
XSDMaxLength . .
XSDMinlnclusive.
XSDMaxInclusive

iv XML Metadata I nterchange, v2.0

5-13
5-13
5-14
5-14
5-14
5-14
5-14
5-14
5-15
5-15
5-15
5-15
5-15
5-15
5-16
5-16
5-16
5-16
5-16
5-16
5-16
5-16
5-17
5-17
5-17
5-17
5-17
5-17
5-17
5-17
5-18
5-18
5-18
5-18
5-18
5-18
5-18
5-19
5-19
5-19
5-19

May 2003

May 2003

5247 XSDMinExclusivec.oouv...
5.2.48 XSDMaxExclusive....................

5.2.49 XSDTotaDigits .

5.2.50 XSDFractionDigits.

5.2.51 XSDWhiteSpace.
5252 XSDAny.......
5.2.53 XSDAnyAttribute
5.2.54 XSDAttributeRef

5255 XSDNamedElement...................

5256 XSDOccurs.....
5.2.57 XSDTopLevelAttr

bute.................

5258 XSDTopLevelElement

53 XML SchemaSimpleDatatypes
531 XSDDateciiiiiiiia..

532 XSDDecimd ...
5.3.3 XSDDecimalType
534 XSDDouble
535 XSDCentury. ...
53.6 XSDBinary.....
5.3.7 XSDBinaryType.
5.3.8 XSDBooleanType
5.39 XSDBoolean. ...

5310 XSDBytecoiiiiiiiii

5.3.11 XSDDoubleType

5312 XSDFloatcooiiiiiiiinnn.

5.3.13 XSDFloatType ..
53.14 XSDInt........
53.15 XSDinteger.....
5.3.16 XSDCDATA....
5317 XSDID........
5.3.18 XSDIDREF
5.3.19 XSDIDREFS ...
5320 XSDListType. ..
5321 XSDList.......

5322 XSDLONG.......cvviiiiiiiii

5.3.23 XSDMonth.....
5.3.24 XSDName
5.3.25 XSDNCName. ..

5.3.26 XSDNegativelnteger

5.3.27 XSDNMTOKEN

XML Metadata I nterchange, v2.0

5-19
5-19
5-19
5-19
5-19
5-20
5-20
5-20
5-20
5-20
5-20
5-20
5-21
5-23
5-23
5-23
5-24
5-24
5-24
5-24
5-24
5-24
5-24
5-24
5-25
5-25
5-25
5-25
5-25
5-25
5-25
5-25
5-26
5-26
5-26
5-26
5-26
5-26
5-26
5-26

5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38
5.3.39
5.3.40
5.3.41
5.3.42
5.3.43
5.3.44
5.3.45
5.3.46
5.3.47
5.3.48
5.3.49
5.3.50
5.3.51
5.3.52
5.3.53
5.3.54
5.3.55
5.3.56
5.3.57

XSDNonNegativelnteger
XSDNonPositivelnteger.
XSDPositivelnteger

XSDQName.

XSDONameTypeccovviivnnn..
XSDRecurringDate.
XSDRecurringDayociiv ..
XSDRecurringDuration
XSDRecurringDurationType

XSDShort. . .
XSDToken ..
XSDString . .

XSDStringType ... oii i

XSDTime. ..

XSDTimeDuration
XSDTimeDurationType
XSDTimelnstant.
XSDTimePeriod
XSDUNIONTYPE ..o vve e i i e
XSDUnsignedByte.
XSDUnsignedint
XSDUnsignedLong
XSDUnsignedShort
XSDURIReference.
XSDURIReferenceType.
XSDVaueConstraint

XSDDecimalRange
XSDIntegerRange.

XSDPatterned

vi XML Metadata I nterchange, v2.0

............................ B-1

5-27
5-27
5-27
5-27
5-27
5-27
5-27
5-28
5-28
5-28
5-28
5-28
5-28
5-28
5-29
5-29
5-29
5-29
5-29
5-29
5-29
5-30
5-30
5-30
5-30
5-30
5-30
5-30
5-31
5-31

May 2003

Preface

About the Object Management Group

Introduction

May 2003

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

XMl is awidely used interchange format for sharing objects using XML. Sharing
objects in XML is a comprehensive solution that build on sharing data with XML.
XMl is applicable to a wide variety of objects: analysis (UML), software (Java, C++),
components (EJB, IDL, Corba Component Model), and databases (CWM). Over 30
companies have XMI implementations.

XMI defines many of the important aspects involved in describing objects in XML:

® The representation of objects in terms of XML elements and attributes is the
foundation.

® Since objects are typically interconnected, XM1 includes standard mechanisms to
link objects within the same file or across files.

XML Metadata Interchange (XMl), v2.0 Vii

OMG Documents

viii

® Object identity allows objects to be referenced from other objects in terms of 1Ds
and UUIDs.

® The versioning of objects and their definitions is handled by the XMI model.
® Validation of XMI documents using DTDs and Schemas

XMI describes solutions to the above issues by specifying EBNF production rules to
create XML documents, DTDs, and Schemas that share objects consistently. XMI
Version 1 defines production two kinds of production rules for sharing objects with
XML:

® Production of XML DTDs starting from an object model.
® Production of XML Schemas starting from an object model.

® Production of XML documents starting from objects.

In addition to generating XMI Version 1 compliant Schemas, we have produced a
mapping for how XMI looks if we used new features in Schemas that are not available
in DTDs. Based on these experiences, we have defined a course for XMI as well as
suggest improvements to XML Schema. This new form, called XMI Version 2, is the
successor to XMI Version 1, and is defined in this specification.

With the recent work by the W3C in XML Schemas, a more comprehensive form of
XML document validator, this specification adds these production rules:

® Production of XML Schemas starting from an object model: Chapters 2 and 3.
® Production of XML Documents compatible with XML Schemas. Chapter 4.

® Reverse engineering from XML to an object model. Chapter 5.

MOF is the foundation technology for describing object models, which cover the wide
range of object domains: analysis (UML), software (Java, C++), components (EJB,
IDL, Corba Component Model), and databases (CWM).

XMl is applicable to all levels of objects and metaobjects. Although this document
focuses on MOF metaobjects, general objects may be serialized and interchanged with
XMI.

The term “XML document” in this specification is equivalent to a general stream of
XML data.

Note — XML Schemais now a full recommendation of the W3C.

Note — References to MOF in this specification are to MOF 1.4.

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec_catalog.htm

XML Metadata I nterchange (XMl), v2.0 May 2003

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and | nterface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
Contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Couri er bol d - Programming language elements.

May 2003 XML Metadata I nterchange (XMl), v2.0 iX

Helvetica - Exceptions

Caution — Cautionary information appears with this prefix, framing, and in this font.

Note — Items of note appear with this prefix, framing, and in this font

Acknowl edgments

Don Baisley, Aditya Bansod, Robert Blum, Dan Chang, Dilhar DeSilva, Keith Duddy,
Michael Golding, Craig Hayman, Gary Karasiuk, Kurt Kirkey, Suresh Kumar, Bruce
Mclean, Lee Nackman, Martin Nally, Kevin Poole, Barbara Price, Jim Rhyne, Harm

Sluiman, Dave Stringer, Celia Tung, and Shu Wang.

X XML Metadata I nterchange (XMl), v2.0 May 2003

XMI SchemaDesignPrinciples

Contents

This chapter includes the following topics.

Topic Page
“Purpose 1-2
“Use of XML Schemas 1-2
“Basic Principles 1-4
“XMI Schema and Document Structure 1-5
“XMI Model 1-5
“XMI Attributes 1-12
“XMI Type 1-15
“Metamodel Class Specification 1-15
“Transmitting Incomplete Metadata 1-20
“Linking 1-21
“Tailoring Schema Production 1-25
“Transmitting Metadata Differences 1-32
“Document Exchange with Multiple Tools 1-35
“General Datatype Mechanism 1-37

May 2003 XML Metadata Interchange (XMl), v2.0

1.1 Purpose

This chapter contains a description of the XML Schemas that may be used with the
XMI specification to allow some metamodel information to be verified through XML
validation. The use of schemas in XMI is described first, followed by a brief
description of some basic principles, which includes a short description of each XML
attribute and XML element defined by XMI. Those descriptions are followed by more
complete descriptions that provide examples illustrating the motivation for the XMI
schema design in the areas of metamodel class specification, transmitting incomplete
metadata, linking, tailoring schema production, transmitting metadata differences, and
exchanging documents between tools.

It is possible to define how to automatically generate a schema from the MOF
metamodel to represent any MOF-compliant metamodel. That definition is presented in
Chapter 4.

This chapter describes XMI 2.0 schemas; Chapter 4 describes how to create XMI 2.0
schemas.

You may specify tag value pairs as part of the MOF metamodel to tailor the schemas
that are generated, but you are not required to do so. Using these tag value pairs
reguires some knowledge of XML schemas, but the schemas that are produced might
perform more validation than the default schemas. See Chapter 4 for a complete
description of how to generate XML schemas using these tag value pairs. Section
1.11, "Tailoring Schema Production,” on page 1-25 describes the tag values, their
affect on schema production, and their impact on document serialization.

1.2 Useof XML Schemas

An XML schema provides a means by which an XML processor can validate the
syntax and some of the semantics of an XML document. This specification provides
rules by which a schema can be generated for any valid XM -transmissible M OF-based
metamodel. However, the use of schemas is optional; an XML document need not
reference a schema, even if one exists. The resulting document can be processed more
quickly, at the cost of some loss of confidence in the quality of the document.

It can be advantageous to perform XML validation on the XML document containing
MOF metamodel data. If XML validation is performed, any XML processor can
perform some verification, relieving import/export programs of the burden of
performing these checks. It is expected that the software program that performs
verification will not be able to rely solely on XML validation for all of the verification,
however, since XML validation does not perform all of the verification that could be
done.

Each XML document that contains metamodel data conforming to this specification
contains: XML elements that are required by this specification, XML elements that
contain data that conform to a metamodel, and, optionally, XML elements that contain
metadata that represent extensions of the metamodel. Metamodels are explicitly
identified in XML elements required by this specification. Some metamodel
information can also be encoded in an XML schema. Performing XML validation

XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

provides useful checking of the XML elements that contain metadata about the
information transferred, the transfer information itself, and any extensions to the
metamodel.

The XML Namespace specification has been adopted by the W3C, allowing XMI to
use multiple metamodels at the same time. XML schema validation works with XML
namespaces, so you can choose your own namespace prefixes in an XML document
and use a schema to validate it. The namespace URIs, not the namespace prefixes, are
used to identify which schemas to use to validate an XML document.

1.2.1 XML Validation of XMI documents

XML validation can determine whether the XML elements required by this
specification are present in the XML document containing metamodel data, whether
XML attributes that are required in these XML elements have values for them, and
whether some of the values are correct.

XML validation can also perform some verification that the metamodel data conforms
to a metamodel. Although some checking can be done, it is impossible to rely solely
on XML validation to verify that the information transferred satisfies all of a
metamodel’s semantic constraints. Complete verification cannot be done through XML
validation because it is not currently possible to specify al of the semantic constraints
for a metamodel in an XML schema, and the rules for automatic generation of a
schema preclude the use of semantic constraints that could be encoded in a schema
manually, but cannot be automatically encoded.

Finally, XML validation can be used to validate extensions to the metamodel, because
extensions must be represented as elements; if those elements are defined in a schema,
the schema can be used to verify the elements.

1.2.2 Requirements for XMI Schemas

Each schema used by XMI must satisfy the following requirements:

* All XML elements and attributes defined by the XM specification must be
imported in the schema. They cannot be put directly in the schemaitself, since there
is only one target namespace per schema.

» Metamodel constructs have corresponding element declarations, and may have an
XML attribute declaration, as described below. In addition, some constructs also
have a complexType declaration. The declarations may utilize groups, attribute
groups, and types, as described below.

* Any XML elements that represent extensions to the metamodel may be declared in
a schema, although it is not necessary to do so.

By default, XMI schemas allow incomplete metadata to be transmitted, but you can
enforce the lower bound of multiplicities if you wish. See Section 1.9, " Transmitting
Incomplete Metadata,” on page 1-20 below for further details.

XML Metadata I nterchange (XMl), v2.0 1-3

1.3 BasicPrinciples

This section discusses the basic organization of an XML schema for XMI. Detailed
information about each of these topics is included later in this chapter.

1.3.1 Required XML Declarations

This specification requires that XML element declarations, types, attributes, and
attribute groups be included in schemas to enable XML validation of metadata that
conforms to this specification. Some of these XML elements contain metadata about
the metadata to be transferred. For example, the identity of the metamodel associated
with the metadata, the tool that generated the metadata, whether the metadata has been
verified, etc.

All XML elements defined by this specification are in the namespace
“http://www.omg.org/XMI”. The XML namespace mechanism can be used to avoid
name conflicts between the XMI elements and the XML elements from your MOF
models.

In addition to required XML element declarations, there are some attributes that must
be defined according to this specification. Every XML element that corresponds to a
metamodel class must have XML attributes that enable the XML element to act as a
proxy for alocal or remote XML element. These attributes are used to associate an
XML element with another XML element. There are also other required attributes to
let you put datain XML attributes rather than XML elements. You may customize the
declarations using MOF tag values.

1.3.2 Metamodel Class Representation

Every metamodel class is represented in the schema by an XML element whose name
is the class name, as well as a complexType whose name is the class name. The
declaration of the type lists the attributes of the class; references to association ends
relating to the class; and the classes that this class contains, either explicitly or through
composition associations. By default, the content models of XML elements
corresponding to metamodel classes do not impose an order on the attributes and
references.

By default, XMI allows you to serialize features using either XML elements or XML
attributes; however, XMI allows you to specify how to serialize them if you wish.
Containment references and multivalued attributes always are serialized using XML
elements.

1.3.3 Metamoddel Extension Mechanism

Every XMI schema contains a mechanism for extending a metamodel class. Zero or
more extension elements are included in the content model of each class. These
extension elements have a content model of ANY, allowing considerable freedom in
the nature of the extensions. The processContents attribute is lax, which means that
processors will validate the elements in the extension if a schemaisavailable for them,

XML Metadata I nterchange (XMl), v2.0 May 2003

but will not report an error if there is no schema for them. In addition, the top level
XMI element may contain zero or more extension elements, which provides for the
inclusion of any new information. One use of the extension mechanism might be to
associate display information for a particular tool with the metamodel class represented
by the XML element. Another use might be to transmit data that represents extensions
to a metamodel.

Tools that rely on XMI are expected to store the extension information and export it
again to enable round trip engineering, even though it is unlikely they will be able to
process it further. XML elements that are put in the extension elements may be
declared in schemas, but are not required to be.

1.4 XMI Schema and Document Structure

1.5 XMI Model

May 2003

Every XMI schema consists of the following declarations:
» An XML version processing instruction. Example: <? XML version="1.0" ?>

» An optional encoding declaration that specifies the character set, which follows the
1SO-10646 (also called extended Unicode) standard.
Example: <? XML version="1.0" ENCODING="UCS-2" ?>.

» Any other valid XML processing instructions.
* A schema XML element.
* Animport XML element for the XMI namespace.

» Declarations for a specific metamodel.

Every XMI document consists of the following declarations, unless the XM is
embedded in another XML document:

» An XML version processing instruction.
» An optional encoding declaration that specifies the character set.

» Any other valid XML processing instructions.

XMI imposes no ordering requirements beyond those defined by XML. XML
Namespaces may also be declared in the XMI element as described below.

The top element of the XMI information structure is either the XMI element, or an
XML element corresponding to an instance of a class in the MOF metamodel. An
XML document containing only XMI information will have XMI as the root element
of the document. It is possible for future XML exchange formats to be developed that
extend XMI and embed XMI elements within their XML elements.

This section describes the model for XMI document structure, called the XMI model.
The XMI model is an instance of MOF for describing the XMI-specific information in
an XMI document, such as the version, documentation, extensions, and differences.

XML Metadata I nterchange (XMl), v2.0 1-5

1-6

Using an XMI model enables XMI document metadata to be treated in the same
fashion as other MOF metadata, allowing use of standard MOF APIs for access to and
construction of XMI-specific information in the same manner as other MOF objects.
A valid XMI document may contain XMI| metadata but is not required to.

1.5.1 XML Schema for the XMI Model

When the XMI model is generated as an XML Schema following the XMI schema
production rules, the result is a set of XML element and attribute declarations. These
declarations are shown in Chapter 5 and given the XML namespace
“http://www.omg.org/ XMI”. Every XMI-compliant schema must include the
declarations of the following XML elements by importing the declarations in the XM
namespace “ http://www.omg.org/XM1".

In addition, there are attribute declarations and attributeGroup declarations that must
be imported also. These include the id attribute, and the IdentityAttribs, LinkAttribs,
and ObjectAttribs attribute groups. These constructs are not defined in the XMI model.

In the declarations that follow, the XML Schema namespace, whose URI is
“http://www.w3.0rg/2001/ XML Schema”, has the namespace prefix “xsd”; the XM
namespace is the default namespace.

1.5.2 XMI Model classes

Comment:

FTF Issue 4635 - remove PackageReference class and subclasses from the XM
model.

There are three diagrams that describe the XMI model. The details of the classes are
described in the sections below. This section gives an overview of the model.

Figure 1-1 shows the XMI element, documentation, and extension elements. The XM|
classis an overall default container for XMI document metadata and contents. The
attributes of the XMI class are the version, documentations, differences (add, replace,
delete in Figure 1-2), and extensions. The Documentation class contains many fields to
describe the document for non-computational purposes. The Extension class contains
the metadata for external information. The String datatype is the data type for strings
in the MOF model with XML Schema data type of

“http://www.w3.0rg/2001/X M L Schemadtstring”. The Integer datatype is the data type
for integers in the MOF model with XML Schema data type of
“http://www.w3.0rg/2001/X M L Schematfinteger”.

XML Metadata I nterchange (XMl), v2.0 May 2003

XM Documentation
<<0..1>> version : String <<0..*>> contact : Stripg
<<0..1>> documentation : Documentation <<0..*>> exporter : String _
<<0..*>> difference : Difference <<0..*>> exporterVersion : String
<<0..*>> extension : Extension <<0..*>> longDescription : String

<<0..*>> shortDescription : String

<<0..*>> notice : String
<<0..*>> owner : String

Extension
extender : String
<<0..1>> extenderld : String <<datatype>>
String

Figure1-1 The XMI Model for the XMI element, documentation, and extension.

The differences information (Figure 1-2) is described as additions, deletions, and
replacements to target objects. The objects referenced by the differences may be in the
same or different documents. The differences information consists of the Add, Delete,
and Replace classes, which specify a set of differences and refer to MOF objects that
are added or removed. Note that the RefBaseObject class is a placeholder for
specifying that a Difference has a target that can refer to any objects. The RefObject
classis not included in the required element declarations.

The XML Schema declarations for each element of the XML model are given in the
following sections. They may be generated by following the XMI production of XML
Schema rules defined in Chapter 5, except for the XMI class and the XM attributes
described in Section 1.6, " XMI Attributes,” on page 1-12.

May 2003 XML Metadata I nterchange (XMl), v2.0 1-7

+replacement

+addition RefBaseObject
— (from MOF)
0..* 0..*
0..*/|\ +target
Difference | tcontainer
0..1
0..*
+difference
Add
Delete

<<0..1>> position : Integer

Replace

<<0..1>> position : Integer

<<datatype>>
Integer

Figure1-2 The XMI Model for differences.

1.5.3 XMl

Comment:

FTF Issue 4641: updated this section to clarify what the version attributeis.

The top level XML element for XMI documents containing only XMI datais the XMI
element. Its declaration is:

<xsd:complexType name="XMI">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="strict"/>

</xsd:choice>

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="ldentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>

<xsd:attribute name="type" type="xsd:QName" use="optional"

form="qualified"/>
<xsd:attribute name="version" type="xsd:string" use="required" fixed="2.0"

XML Metadata Interchange (XMlI), v2.0

May 2003

May 2003

form="qualified"/>
</xsd:complexType>

<xsd:element name="XMI" type="XMI"/>

The version attribute is required to be set to “2.0.” This indicates that the metadata
conforms to this version of the XMI specification. Revised versions of this standard
will have another number assigned by the OMG.

The XMI element need not be the root element of an XML document; you can include
it inside any XML element that was not serialized according to this specification. If a
document contains only XMI information, the XMI element is typically not present
when there is only a single top-level object. The xmi:version attribute is used to denote
the start of XMI information and identify the XMI version, when the XMI element
itself is not present. Chapter 5 contains examples of the use of the XMI element.

The XMI class has the tag contentType set to “any” to indicate that any XMI element
may be present in the XMI stream.

The attribute version has the tag form set to “qualified,” the tag fixedvalue set to “2.0,”
the tag attribute set to “true,” and the tag enforceMinimumMultiplicity set to “true.”

Since the XMI model is an instance of MOF, it can be serialized using the same rules
as any other MOF metamodel, with one exception. Using the default serialization rules
would result in the XMI version attribute appearing twice in XMI elements. once
directly from the XMI version attribute, and once through the inclusion of the
ObjectAttribs group. Therefore, the version attribute that belongs to the ObjectAttribs
attribute group must be excluded from the XMI type declaration. See Section 3.3.1,
"Overall Document Structure,” on page 3-2 for details on how the XMI classis
serialized.

The serialization of the XMI element is specia--it is defined by the XML Document
Production rules in Chapter 5.

The XMI model package has the following tag settings:
» tag nsURI set to “http://www.omg.org/XM1”

» tag nsPrefix set to “xmi”

 tag superClassFirst set to “true”

» tag useSchemaExtension set to “true”

1.5.4 Extension

The Extension class is designed to contain extended information outside the scope of

the user metamodel. Extensions are a multivalued attribute of the XMI class and may

also be embedded in specific locations in an XMI document. The Schema for extension
is:

<xsd:complexType name="Extension">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="lax"/>

XML Metadata I nterchange (XMl), v2.0 1-9

</xsd:choice>

<xsd:attribute ref="id"/>

<xsd:attributeGroup ref="0ObjectAttribs"/>

<xsd:attribute name="extender" type="xsd:string" use="optional"/>

<xsd:attribute name="extenderID" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Extension" type="Extension"/>

The extender attribute should indicate which tool made the extension. It is provided so
that tools may ignore the extensions made by other tools before the content of the
extensions element is processed. The extender|D is an optional internal ID from the
extending tool. The other attributes allow individual extensions to be identified and to
act as proxies for local or remote extensions.

The Extension class in the MOF model has the tag contentType set to “any” and the
processContents tag set to “lax.” The extender and extenderID attributes have the tag
attribute set to “true.”

1.5.5 Documentation

The Documentation class contains information about the XMI document or stream
being transmitted, for instance the owner of the document, a contact person for the
document, long and short descriptions of the document, the exporter tool that created
the document, the version of the tool, and copyright or other legal notices regarding the
document. The data type of all the attributes of Documentation is string. The XML
Schema generated for Documentation is:

<xsd:complexType name="Documentation">

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="contact" type="xsd:string"/>

<xsd:element name="exporter" type="xsd:string"/>

<xsd:element name="exporterVersion" type="xsd:string"/>

<xsd:element name="longDescription" type="xsd:string"/>

<xsd:element name="shortDescription" type="xsd:string"/>

<xsd:element name="notice" type="xsd:string"/>

<xsd:element name="owner" type="xsd:string"/>

<xsd:element ref="Extension"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="0ObjectAttribs"/>
<xsd:attribute name="contact" type="xsd:string" use="optional"/>
<xsd:attribute name="exporter" type="xsd:string" use="optional"/>
<xsd:attribute name="exporterVersion" type="xsd:string" use="optional"/>
<xsd:attribute name="longDescription" type="xsd:string" use="optional"/>
<xsd:attribute name="shortDescription" type="xsd:string" use="optional"/>
<xsd:attribute name="notice" type="xsd:string" use="optional"/>
<xsd:attribute name="owner" type="xsd:string" use="optional"/>

</xsd:complexType>

1-10 XML Metadata I nterchange (XMl), v2.0 May 2003

<xsd:element name="Documentation" type="Documentation"/>

1.5.6 Add, Replace, and Delete

The Add class represents an addition to a target set of objectsin this document or other
documents. The position attribute indicates where to place the addition relative to
other XML elements. The default, -1, indicates to add the new elements at the end of
the target element. The addition attribute refers to the set of objects to be added. Both
of these attributes have the tag attribute set to “true.”

The Replace class represents the deletion of the target set of objects and the addition of
the objects referred to in the replacement attribute. The position attribute indicates
where to place the replacement relative to other XML elements. The default, -1,
indicates to add the replacing elements at the end of the target element. The
replacement attribute refers to the object that will replace the target element. Both of
these attributes have the tag attribute set to “true.”

The Delete class represents a deletion to a target set of objects in this document or
other documents.

The Difference class is the superclass for the Add, Replace, and Delete classes.

The declarations for these classes are:

<xsd:complexType name="Difference">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="target">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="difference" type="Difference"/>
<xsd:element name="container" type="Difference"/>
<xsd:element ref="Extension"/>
</xsd:choice>
<xsd:attribute ref="id"/>
<xsd:attributeGroup ref="0ObjectAttribs"/>
<xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>
<xsd:attribute name="container" type="xsd:IDREFS" use="optional"/>
</xsd:complexType>

<xsd:element name="Difference" type="Difference"/>
<xsd:complexType name="Add">

<xsd:complexContent>
<xsd:extension base="Difference">

May 2003 XML Metadata I nterchange (XMl), v2.0 1-11

1.6 XMI Attributes

<xsd:attribute name="position" type="xsd:string" use="optional"/>
<xsd:attribute name="addition" type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Add" type="Add"/>

<xsd:complexType name="Replace">
<xsd:complexContent>
<xsd:extension base="Difference">
<xsd:attribute name="position" type="xsd:string" use="optional"/>
<xsd:attribute name="replacement" type="xsd:IDREFS" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Replace" type="Replace"/>

<xsd:complexType name="Delete">
<xsd:complexContent>
<xsd:extension base="Difference"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="Delete" type="Delete"/>

This section describes the XML attributes that are used in the production of XML
documents and Schemas. By defining a consistent set of XML attributes, XMI provides
a consistent architectural structure enabling consistent object identity and linking
across all assets.

1.6.1 Element Identification Attributes

1-12

Three XML attributes are defined by this specification to identify XML elements so
that XML elements can be associated with each other. The purpose of these attributes
isto allow XML elements to reference other XML elements using XML IDREFs,
XLinks, and XPointers.

Two of these attributes are declared in an attribute group called | dentityAttribs; the id
attribute is declared globally, because you may change the name of the id attribute
using the idName tag. Placing these attributes in an attribute group prevents errors in
the declarations of these attributes in schemas. Its declaration is as follows:

<xsd:attribute name="id" type="xsd:ID"/>

<xsd:attributeGroup name="IdentityAttribs">

XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

<xsd:attribute name="label" type="xsd:string" use="optional"
form="qualified"/>
<xsd:attribute name="uuid" type="xsd:string" use="optional"
form="qualified"/>
</xsd:attributeGroup>

id

XML semantics require the values of this attribute to be unique within an XML
document; however, the value is not required to be globally unique. This attribute may
be used as the value of the idref attribute defined in the next section. It may also be
included as part of the value of the href attribute in XLinks. An example of the use of

this attribute and the other attributes in this section can be found in Section 1.10.3,
"Example from UML,” on page 1-24.

label

This attribute may be used to provide a string label identifying a particular XML
element. Users may put any value in this attribute.

uuid

The purpose of this attribute is to provide a globally unique identifier for an XML
element. The values of this attribute should be globally unique strings prefixed by the
type of identifier. If you have access to the UUID assigned in MOF, you may put the
MOF UUID in the uuid XML attribute when encoding the MOF data in XMI. For
example, to include a DCE UUID as defined by The Open Group, the UUID would be
preceded by “DCE:”. The values of this attribute may be used in the href attribute in
simple XLinks. XMI does not specify which UUID convention is chosen.

The form of the UUID (Universally Unique Identifier) is taken from a standard defined
by the Open Group (was Open Software Foundation). This standard is widely used,
including by Microsoft for COM (GUIDs) and by many companies for DCE, which is
based on CORBA. The method for generating these 128-bit IDs is published in the
standard and the effectiveness and uniqueness of the IDs is not in practice disputed.

When a UUID is placed in an XMl file, the form is “id namespace:uuid.” The id
namespace of UUIDs is typically DCE. An example is “DCE:2fac1234-31f8-11b4-
a222-08002b34c003.”

The MOF reflD() is often used as the uuid in XMI implementations.

1.6.2 Linking Attributes

XMI requires the use of several XML attributes to enable XML elements to refer to
other XML elements using the values of the attributes defined in the previous section.
The purpose of these attributesis to allow XML elements to act as simple XLinks or to
hold a reference to an XML element in the same document using the XML IDREF
mechanism. See Section 1.10, "Linking,” on page 1-21.

XML Metadata I nterchange (XMl), v2.0 1-13

1-14

The attributes described in this section are included in an attribute group called
LinkAttribs. The attribute group declaration is:

<xsd:attributeGroup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:string" use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF" use="optional"
form="qualified"/>
</xsd:attributeGroup>

The link attributes act as a union of two linking mechanisms, any one of which may be
used at one time. The mechanisms are the XLink href for advanced linking across or
within a document, or the idref for linking within a document.

Smple XLink Attributes

The href attribute declared in the above entity enables an XML element to act in a
fashion compatible with the simple XLink according to the XLink and XPointer W3C
recommendations. The declaration and use of href is defined in the XLink and
XPointer specifications. XMI enables the use of simple XLinks. XMI does not
preclude the use of extended XLinks. The XLink specification defines many additional
XML attributes, and it is permissible to use them in addition to the attributes defined in
the LinkAttribs group.

To use simple XLinks, set href to the URI of the desired location. The href attribute
can be used to reference XML elements whose id attributes are set to particular values.
The id attribute value can be specified using a special URI form for X Pointers defined
in the XLink and X Pointer recommendations.

idref

This attribute allows an XML element to refer to another XML element within the
same document using the XML IDREF mechanism. In XMI documents, the value of
this attribute should be the value of the id attribute of the XML element being
referenced.

1.6.3 \ersion Attribute

The version attribute must be present for XMI objects that are not serialized in an XM
XML element and are not serialized in an XML element representing another object.
The attribute value, if present, must be 2.0, indicating that the object was serialized
according to this specification:

<xsd:attribute name="version" type="xsd:string" fixed="2.0"/>

1.6.4 Type Attribute

The type attribute is used to specify the type of object being serialized, when the type
is not known from the model. This can occur if the type of a reference has subclasses,
for instance. The declaration of the attribute is:

XML Metadata I nterchange (XMl), v2.0 May 2003

Comment:

1.7 XMl Type

<xsd:attribute name="type" type="xsd:QName" form="qualified"/>

Rather than including the IdentityAttribs, and LinkAttribs attribute groups, and the
version and type attributes in the declarations for each MOF class, the XMI namespace
includes the following declaration of the ObjectAttribs attribute group for the attribute
declarations that pertain to objects:

<xsd:attributeGroup name="0ObjectAttribs">
<xsd:attributeGroup ref="ldentityAttribs"/>
<xsd:attributeGroup ref="LinkAttribs"/>
<xsd:attribute name="version" type="xsd:string" use="optional" fixed="2.0"
form="qualified"/>
<xsd:attribute name="type" type="xsd:QName" use="optional"
form="qualified"/>
</xsd:attributeGroup>

FTF Issue 5090: added Section 1.7.

The XMI namespace contains a type called Any. It is used in the XMI 2.0 schema
production rules for class attributes, class references, and class compositions. The
declaration of this typeis part of the fixed declarations for XMI 2.0. The Any type
allows any content and any attributes to appear in elements of that type, skipping XML
validation for the element’s content and attributes. The declaration of the type is as
follows:

<xsd:complexType name="Any">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="skip"/>
</xsd:choice>
<xsd:anyAttribute processContents="skip"/>
</xsd:complexType>

By using this type, the XMI 2.0 schema production rules generate smaller schemas
than if this type was declared multiple times in a schema. Also, using the Any type
enables some changes to be made to the Any type declaration without affecting
generated XM1 2.0 schemas.

1.8 Metamodel Class Specification

May 2003

This section describes in detail how to represent information about metamodel classes
in an XMI compliant schema. It uses the EBNF grammar in the “XML Schema
Production” chapter to describe the manner in which attributes, associations, and
containment relationships are represented in an XML schema, including how
inheritance between metamodel classes is handled. It uses a short example to explain
the encoding.

XML Metadata I nterchange (XMl), v2.0 1-15

1-16

1.8.1 Namespace Qualified XML Element Names

Comment:

Comment:

FTF Issue 4635: removed references to “physical URIS’ from this section.

When the official schema for a metamodel is produced, the schema generator must
choose one or more namespace URIs that uniquely identify the XML namespaces in
the metamodel. XML processors will use those namespace URIs to identify the
schemas to use for XML validation, as described in the XML schema specification.

The XML element name for each metamodel class, package, and association in a
document is its short name. The name for XML tags corresponding to metamodel
attributes and references is the short name of the attribute or reference. The name of
XML attributes corresponding to metamodel references and metamodel attributesis the
short name of the reference or attribute, since each tag in XML has its own namespace.

I ssue 4640: Updated example to use new OMG directory structure.

Each namespace is assigned alogical URI. The logical URI is placed in the namespace
declaration of the XMI element in XML documents that contain instances of the
metamodel. The XML namespace specification assigns logical names to namespaces
which are expected to remain fixed throughout the life of all uses of the namespace
since it provides a permanent global name for the resource. An example is
“http://schema.omg.org/spec/lUML/1.4". There is no requirement or expectation by the
XML Namespace specification that the logical URI be resolved or dereferenced during
processing of XML documents.

The following is an example of a UML model in an XMI document using namespaces.

<xmi:XMI version="2.0"
xmlns:UML="http://schema.omg.org/spec/UML/1.4"
xmlns:xmi="http://schema.omg.org/spec/XMlI/2.0" >
<UML:Class name="C1">
<feature xmi:type="UML:Attribute" name="al" visibility="private"/>
</UML:Class>
</xmi:XMI>

The model has a single class named C1 that contains a single attribute named al with
visibility private. The XMI element declares the version of XMI and the namespace for
UML with the logical URI.

1.8.2 Metamodel Multiplicities

In XM1I 1.1, the multiplicities from the metamodel were ignored, since DTDs were not
able to validate multiplicities without ordering the content of XML elements. By
default, XMI produces schemas that ignore multiplicities also.

You may tailor the schemas produced by XMI by specifying tag values in the MOF
metamodel. Two of the tags, “org.omg.xmi.enforceMaximumMultiplicity” and

XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

“org.omg.xmi.enforceMinimumMultiplicity” allow you to specify that multiplicities
are to be used in a schema rather than being ignored.

Metamodel multiplicities map directly from the MOF definition of multiplicity, which
is a lower bound and an upper bound, to schema XML attributes called “minOccurs”

and “maxOccurs.” The minOccurs XML attribute corresponds to the lower bound for
the multiplicity, and the maxOccurs XML attribute corresponds to the upper bound for
the multiplicity.

1.8.3 Class specification

Comment:

Every metamodel class is decomposed into three parts: attributes, associations, and
compositions. A class is represented by an XML element, with an XML element for
each attribute, reference, and composition. The XML element for the class includes the
inherited attributes, associations, and composition.

In the examples that follow in this section, “xsd” is the namespace prefix for the XML
schema namespace (“ http://www.w3.0rg/2001/XML Schema’), and “xmi” is the
namespace prefix for the XMI namespace.

The representation of a metamodel class named “c” is shown below for the simplest
case where “c” does not have any attributes, associations, or containment relationships:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
</xsd:complexType>

If the class has attributes, associations, or compositions, the XML elements for them
are put in the al group of the content model, as explained below.

FTF Issue 4634: updated section 1.8.4 to highlight the ability to serialize model
attributes as XML elements or XML attributes.

1.8.4 Attribute Specification

The representation of attributes of metamodel class “c” uses XML elements and XML
attributes. If the metamodel attribute types are primitives or enumerations, then by
default XML attributes are declared for them as well as XML elements. The reasons
for this encoding choice are several, including: the values to be exchanged may be very
large values and unsuitable for XML attributes, and may have poor control of
whitespace processing with options which apply only to element contents. The default
encoding can be changed using the XMI “attribute” and “element” tags. See Section
1.11.4, "XML element vs XML attribute,” on page 1-28 for information on how these

XML Metadata I nterchange (XMl), v2.0 1-17

1-18

tags affect encoding. See Section 1.11.1, "XMI Tag Values,” on page 1-26 for a
complete list of XMI tags.

The declaration of each attribute named “a” is as follows:
<xsd:element name="a" type="type specification"/>

The XML element corresponding to the attribute is declared in the content of the
complexType corresponding to the class that owns the attribute. The type specification
is either an XML schema data type, an enumeration data type, or a class from the
metamodel.

For attributes whose types are string type and whose upper bound multiplicity is 1, an
XML attribute must also be declared in the XML element corresponding to metamodel
class“c,” and the XML element must be put in the content model of the XML element
for class “c;” the declaration of “c” appears as follows without multiplicity
enforcement:

<xsd:element name="c" type="c"/>

<xsd:complexType name="c">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string" nillable="true"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs"/>
<xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>

An element is also declared to be of XML type string if the class contains a Tag
org.omg.xmi.schemaType with value “string.”

For multi-valued attributes, no XML attributes are declared; each value is encoded as
an XML element.

When “a’ is an attribute with enumerated values, the type used for the declaration of
the XML element and XML attribute corresponding to the metamodel attribute is as
follows:

<xsd:simpleType base="enumName" >
<xsd:restriction base="xsd:string">
<xsd:enumeration value="v1"/>
<xsd:enumeration value="v2"/>
</xsd:restriction>
</xsd:simpleType>

where enumName is the name of the enumeration type, and v1 and v2 are the
enumeration literals.

If an attribute has enumerated values, an XML element and an XML attribute is put in
the complexType for the class “c;” their declaration is as follows:

XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

<xsd:element name="a" type="enumName"/>
<xsd:attribute name="a" type="enumName" use="optional"/>

If an attribute is a multi-valued enumeration attribute, the declaration of the XML
attribute is omitted.

In some MOF models, enumerations have a prefix substring that should be removed
before placing the enumeration literals in the schema. The Tag
“org.omg.xmi.xmiName” indicates the name for the enumeration literal that should be
used in XMI documents and schemas.

Default values for property and enumeration attributes may be specified in schemas
using the Tag “org.omg.xmi.defaultValue” attached to the attribute. The default value
should be the XML string representation to be placed in the schema. Default values for
attributes should be specified in schemas with care since XML allows the processor
reading the document the option of not processing a schema as an optional
optimization. When tools skip processing the schema, they do not obtain the default
value of XML attributes. Instead, they would have to know the default value from
understanding the metamodel. The form for specifying defaults, where “d” is the
default, is:

For string attributes, the corresponding XML attribute declaration in the XML element
corresponding to the class is:

<xsd:attribute name="a" type="xsd:string" default="d"/>

For enumeration attributes, the corresponding XML attribute declaration in the XML
element corresponding to the class is:

<xsd:attribute name="a" type="enumTypeName" default="d"/>

Note — When reading documents with XML elements specifying model attribute
values, be sure to use the value in the XML element rather than the default value from
the unused XML attribute.

1.8.5 Reference Specification

Comment:

FTF Issue 5090: updated example XML.

Each reference is represented in an XML element and/or an XML attribute. The XML
element declaration for a reference named “r” for a metamodel class “c” of type
“classType” is:

<xsd:element name="r" type="xmi:Any"/>

This element is declared in the content of the complexType for the class that owns the
reference. This declaration enables any object to be serialized, enhancing the
extensibility of models. A user can override this declaration using the
useSchemaExtension tag or the contentType tag.

XML Metadata I nterchange (XMl), v2.0 1-19

The attribute declaration for the reference, which also is included in the complexType
declaration for the class that owns the reference, is as follows:

<xsd:attribute name="r" type="xsd:IDREFS" use="optional"/>

1.8.6 Containment Specification

Each association end that represents containment is represented by an XML element,
but not by an XML attribute. The form of the XML element is identical to that for
association roles.

1.8.7 Inheritance Soecification

XML schemas have a mechanism for extending types, but it does not support extending
from more than one type, and using that mechanism imposes an order on the content
models of the types that are derived from other types. Since XMI attempts to minimize
order dependencies, XMI by default does not use schema extension to represent
inheritance. Inits place, XMI specifies that inheritance will be copy-down inheritance.
For attributes and compositions, copy-down inheritance is required. For associations
(AssociationEnds with references), the actual class referenced is used, and subclasses
may be used on the other end of the reference.

Multiple inheritance is treated in such a way that the attributes, associations, and
compositions of classes that occur more than once in the inheritance hierarchy are only
included once in their subclasses. For associations (AssociationEnds with references),
the actual class referenced is used, and subclasses may be used on the other end of the
reference.

1.8.8 Derived Information

Derived information is orthogonal to serialization. The serialization tag is provided to
optionally suppress serialized data. This capability provides more control to the end
users, allowing them to customize exactly which information is present in their files.

1.9 Transmitting Incomplete Metadata

In XMI 2.0 a schema generator can decide whether to support the exchange of model
fragments.

1.9.1 Interchange of model fragments

In practice, most information is related. The ability to transfer a subset of known
information is essential for practical information interchange. In addition, as
information models are developed, they will frequently need to be interchanged before
they are complete.

The following guidelines apply for interchanging incomplete models via XMI:;

1-20 XML Metadata I nterchange (XMl), v2.0 May 2003

» Information may be missing from a model. The transmission format should not
require the addition or invention of new information.

» Model fragments may be disjoint sets. Each set may be transmitted in the same
XMI file or in different XM files.

» “Incomplete” indicates a quantity of information less than or equal to “complete.”
Additional information beyond that which the metamodel prescribes may be
transmitted only via the extension mechanism.

» Semantic verification is performed on the metadata that is actually present as if it
was included in complete metadata.

1.9.2 XMI encoding

The interchange of model fragments is accomplished by lowering the lower bound of
multiplicities whose lower bound is greater than O.

1.9.3 Example

The following is an example of an incomplete UML model:

<UML:Model name="modell" xmi:id="id1">
<ownedElement xmi:type="UML:Class" name="class1" xmi:id="id2">
<feature xmi:type="UML:Attribute" name="attributel"
type="typel"/>
</ownedElement>
<ownedElement xmi:type="UML:Datatype" name="Integer" xmi:id="typel"/>
</UML:Model>

1.10 Linking

The goal is to provide a mechanism for specifying references within and across
documents. Although based on the XLinks standard, it is downwards compatible and
does not require XLinks as a prerequisite.

1.10.1 Design principles

» Links are based on XLinks to navigate to the document (which may be the current
document) and XPointers to navigate to the element within the document.

« Link definitions are encapsulated in the attribute group LinkAttribs defined in
Section 1.6.2, "Linking Attributes,” on page 1-13.

» Elements act as a union, where they are either a definition or a proxy. Proxies use
the LinkAttribs attribute group to define the link, and contain no nested elements.

» LinkAttribs supports external links through the XLink attributes, and internal links
through the xmi:idref and xmi:id attributes.

May 2003 XML Metadata I nterchange (XMl), v2.0 1-21

1-22

» Links are always to elements of the same type or subclasses of that type.
Restricting proxies to reference the same element type reduces compl exity,
enhances reliability and type safety, and promotes caching. In XMI 2.0, subclasses
are also alowed, to permit more flexibility in combining models and metamodels.

* When acting as a proxy, XML attributes may be defined, but not contents. The
XML attributes act as a cache which gives an indication if the link should be
followed.

» Proxies may be chained.

» When following the link from a proxy, the definition of the proxy is replaced by the
referenced element.

» Itisefficient practice for maximizing caching and encapsulation to use local proxies
of the same element within a document to link to a single proxy that holds an
external reference.

» Association role elements typically contain proxies that link to the definitions of the
classes that participate in the association.

1.10.2 Linking

Comment:

FTF Issue 4639: rewrote this section to clarify use of XLink and XPointer.

For XMI, the most common linking requirements are:
e Linking to an XML element in the same document using the element’s id.
» Linking to an XML element in a different document using the element’s id.

» Linking to an XML element using the element’s uuid, in the same or a different
document.

The following sections describe how XMI supports these requirements.

Linking within a Document

The idref attribute may be used to specify the XML ID of an XML element within the
current XML document. Every construct that can be referred to has alocal XML 1D, a
string that is locally unique within a single XML file.

Linking across Documents

Supporting links across documents is optional.
1. Usingthe XMI href attributetolocatean XM id.

This is the simplest form of cross document linking. With help from the XMI idName
tag, it can be backward compatible with XMI 1.2 and later.

XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

Here, the XMI href attribute is used to locate an XML element in another XML
document by its XMI id. The value of href must be a URI reference, as defined by
IETF RFC 2396: Uniform Resource Identifiers. The URI reference must be of the form
URI#id value, where URI locates the XML file containing the XML element to link
to, and id_value is the value of the XML element’s XMI id attribute.

As an example:

<mgr xmi:id="mgr_21" href="Co.xml#emp_2"/>

locates XML element <Employee xmi:id="emp_2" ... /> in file Co.xml.

2.Using an XLink simplelink and XPointer bare nameto locate an XM id.

This is a little more complicated than using the XMI href attribute, and does not
provide any more function. It does have the advantage that standard XLink and
XPointer software can follow the link.

Here, an xlink:href attribute is used, where XLink is the prefix for the XLink
namespace. The XLink prefix must be declared in the document that contains the
Xlink:href attribute, for example:

<xmi:XMI version="2.0" xmIns:xlink="http://www.w3.0rg/1999/XLink"
xmlns:xmi=" http://schema.omg.org/spec/XMI/2.0" >

The value of xlink:href must again be a URI reference of the form URI#id_value. In
this case, id_value is technically an XPointer bare name, but it looks just like the
id_value for the XMI href attribute.

The XML element with the xlink:href must also have an xlink:type="simple" attribute,
to identify it as a simple link.

As an example:
<mgr xmi:id="mgr_1" xlink:href="Co.xml#emp_2" xlink:type="simple"/>

locates XML element <Employee xmi:id="emp_2" ... /> infile Co.xml.

3. Using an XLink simplelink and full XPointer to locatean XMI uuid.

An XLink simple link and a form of full XPointer can be used to locate an XML
element in an XML document by its XMI uuid. Again:

« Anxlink:href attribute is used, where XLink is the prefix for the XLink
namespace. The xlink prefix must be declared in the document containing the
xlink:href attribute.

» The value of xlink:href must be a URI reference.
However this time, the URI reference has a more complicated form:
URI#xpointer ((//*[@xmi:uuid="value'])[1])

The xpointer expression is a series of instructions for finding the first element in the
target file whose xmi:uuid has that value.

XML Metadata I nterchange (XMl), v2.0 1-23

1-24

As an example:

<mgr xmi:id="mgr_1"
xlink:href="Co.xml#xpointer((/*[@xmi:uuid="emp_27)[1])"
xlink:type="simple"/>

locates XML element <Employee xmi:uuid="emp_2".../> in file Co.xml, as long as
it's the first element with that uuid in the file.

Since a URI can identify the samefile that contains the href, this also supports locating
XML elements by XMI uuid in the same document.

4. Using full XLink and XPointer to locate almost anything.

XLink and XPointer provide rich and complex capahilities for locating XML elements,
far beyond what XMI requires. Consequently it is not expected that XMI
implementations supporting linking across documents provide this level of support.
The W3C XLink and XPointer specifications define what's possible and how it works.

1.10.3 Example from UML

There is an association between ModelElements and Constraints in UML. Operations
are a subclass of ModelElements. This example shows an association between
Operations and four Constraints with roles constraint and constrainedElement. Each of
the methods of linking is shown. The Constraints are shown in both definition and
proxy form.

Document 1

<UML:Operation xmi:id="idO1" xmi:label="op1" xmi:uuid="DCE:1234">
<constraint xmi:id="idC1" xmi:label="col" xmi:uuid="DCE:abcd">
<body>First Constraint definition</body>
<constrainedElement xmi:idref="idO1"/>
</constraint>
<constraint xmi:idref="idC2" />
<constraint xmi:idref="idC3" />
<constraint href="doc2.xml#dC4" />
</UML:Operation>
<UML:Constraint xmi:id="idC2" xmi:label="c02" xmi:uuid="DCE:efgh">
<body>Second Constraint definition</body>
<constrainedElement xmi:idref="idO1" />
</UML:Constraint>
<UML:Constraint xmi:id="idC3" xmi:label="c03" xmi:uuid="DCE:ijkl">
<body>Third Constraint definition</body>
<constrainedElement
href="#xpointer(descendent(1,0Operation,xmi:label,op1))"/>
</UML:Constraint>

XML Metadata I nterchange (XMl), v2.0 May 2003

Document 2

<UML:Constraint xmi:id="idC4" xmi:label="co04" xmi:uuid="DCE:mnop">
<body>Fourth Constraint definition</body>
<constrainedElement href="docl.xml#idO1"/>

</UML:Constraint>

The first constraint is a definition. The constrainedElement role contains an Operation
proxy that has alocal reference to the initial Operation definition using xmi:idref. The
second constraint is a proxy referencing a constraint definition using the xmi:idref of
“idC2.” The third constraint is a proxy reference to the definition using xmi:idref to
the constraint “idC3.” The fourth constraint is an XPointer reference proxy to the
definition of the constraint using the href to the file doc2.xml with id “idC4.”

Following the definition of the operation and its 3 constraint proxies are the definitions
of two of the constraints. The second document contains the third constraint definition.

The use and placement of referencesisfreely determined by the document creator. It is
likely that most documents will make internal and external references for a number of
reasons: to minimize the amount of duplicate declarations, to compartmentalize the
size of the document streams, or to refer to useful information outside the scope of
transmission. For example, the href of an XLink could contain a query to a repository
that will recall additional related information. Or there may be a set of XMI documents
created, one file per package to be transferred, where there are relationships between
the packages.

1.11 Tailoring Schema Production

May 2003

Comment:

This section describes how to tailor schema production by specifying particular MOF
tags as part of a MOF metamodel. It also explains the impact the tailored schemas have
on document production.

FTF Issue 4637: added paragraph.

Note that the MOF definition of the association between Model Element and Tag is not
a composition and does not have a reference as part of ModelElement. This allows
Tags to be contained in separate Packages and ‘remotely’ reference the tagged
elements. For XMI purposes this means that the following tags can be incrementally
added to an existing metamodel without needing to be embedded in it - and thus
changing it. Typically, the Tags could be in a separate Package and a ‘super’ package
could cluster this Tags package and the metamodel package to drive the Schema
generation. This conveniently allows different Tag sets to be used with the same
metamodel (there would be a separate ‘super’ package for each). And the * super’
package extent allows runtime metamodel access to the Tags package for introspection
of the tags that were used for the generation.

XML Metadata I nterchange (XMl), v2.0 1-25

1.11.1 XMI Tag Values

Table 1-1 specifies the XMI tags that allow you to tailor the schemas that are produced
and the documents that are produced using XMI. Each of the names has a prefix of
“org.omg.xmi.”, but the prefix is not included in the names to make the table easier to

read.
Comment: FTF Issue 5233: updated contentType tag’s default and description in the table.
Comment: FTF Issue 5325: updated idName tag's description.
Table 1-1 XMI Tag Values Summary

Tag Name Value Type | Default value | Description

Naming tags

xmiName string nil Provides an aternate name from the MOF name for
writing to XMI. Useful in cases where the MOF name
has characters that conflict with XML. This value is
used rather than the MOF name.

idName string xmi:id The value is the name of the id attribute.

nsURI string nil The namespace URI of the MOF package.

nsPrefix string nil The namespace prefix of the MOF package; thisis
used in schemas. (Any legal XML prefix may be used
in documents.)

XML Syntax tags

serialize boolean true If false, suppresses serialization of the MOF
construct. Typically applied to derived features.

attribute boolean false If true, serializes the MOF construct as an XML
attribute.

element boolean false If true, serializes the MOF construct as an XML
element.

remoteOnly boolean false If set on one end of a bidirectional relationship, only
serializes that end if it is remote.

href boolean false If true, use the href attribute rather than the idref
attribute for links within a document.

Ordering

superClassFirst boolean false If true, serialize the super class content first.

ordered boolean false If true, serialize object content in the order it is
defined in a MOF metamodel.

1-26

XML Metadata Interchange (XMlI), v2.0

May 2003

Table 1-1 XMI Tag Vaues Summary

Tag Name Value Type | Default value | Description

Content

includeNils boolean false If false, do not serialize nil values.

XML Schema Production

enforceMaximumMuultiplicity | boolean false If true, enforce maximum multiplicities; otherwise,
they are “unbounded.”

enforceMinimumMultiplicity | boolean false If true, enforce minimum multiplicities; otherwise,
they are “0.”

useSchemaExtensions boolean false If true, use schema extensions to represent inheritance
in the MOF metamodel.

schemaType string nil The name of a datatype defined in the XML Schema
Datatype specification.

contentType string empty Defines the schema content type. Other valid values
are: complex, any, mixed, complex, and simple.

processContents string strict If the contentType is any, this tag is used to specify
the value of the processContents attribute of the any
element. Other valid values are: lax, skip.

form string nil Specifies the value of the form attribute for attributes.
Other valid values are qualified and unqualified.

defaultValue string nil Specifies the default value for attributes.

fixedValue string nil Specifies the fixed value for attributes.

1.11.2 Tag Value Constraints

There are constraints on the values of the XMI tags in addition to the ones specified in
the above table. Hereis alist of them:

May 2003

XML Metadata Interchange (XMlI), v2.0

If includeNils is true, and the value of an attribute is nil, the value must be
represented by an XML element regardless of the value of the attribute tag. Note
that MOF references cannot be set to nil.

If enforceMinimumMultiplicity or enforceMaximumMultiplicity istrue, the ordered
tag must be true as well (to validate multiplicities, schemas require element content
to be serialized in a particular order). The multiplicity tags require the use of
serializing in elements.

If useSchemaExtensions is true, the MOF metamodel must not have multiple
inheritance.

If useSchemaExtensions is true, superClassFirst must be true also.

If href is true, element must be true as well for every reference that is serialized.

1-27

» The attribute tag may not be specified on containment references, multi-valued
attributes, attributes without simple data types, or features with the following tags as
true: element, includeNils, enforceMinimumMultiplicity,
enforceM aximumMuultiplicity, and href.

1.11.3 Scope

With the exception of xmiName, serialize, and remoteOnly, all of these tags apply to
all constructs within the scope of the construct they are assigned to. If they are
specified for a MOF package, they apply to constructs within the scope of the MOF
package. If they are specified for a MOF class, they apply to the MOF class and the
features of the class. For example, if you set the element tag to true for a MOF class,
you should serialize the values of all features of the class using XML elements rather
than XML attributes.

The xmiName, serialize, contentType, schemaType, and remoteOnly tags apply only to
the constructs for which they are specified. For example, setting the xmiName of a
MOF class to “c” means that the name “c” should be used in XMI schemas and
documents for that class; it does not constrain the names of the features of the class.

1.11.4 XML element vs XML attribute

You may choose features (MOF attribute or reference) to appear as XML attributes,
XML elements, or both, based on the model and tags in the model. The following is a
list of the conditions for mapping a feature to an XML construct.

XML attribute only
» The feature has an attribute tag set to true.

XML element only

» The feature is a containment reference, or

» The feature has an element tag set to true, or
» The feature has an href tag set to true, or

» The feature is a multi-valued attribute, or

» The feature is an attribute whose type is not a simple data type.

Both XML attribute and element
e The default.

1.11.5 UML profile for XML and XMl

The tags defined above define a UML profile for XML and XMI. The tags placed on a
UML element are transferred directly to the corresponding MOF element when

1-28 XML Metadata I nterchange (XMl), v2.0 May 2003

1

converting UML to MOF. In addition, a UML element with a stereotype of one of the
above non-prefixed tag names are transferred to a MOF tag of the same name and
value true. A UML profile for MOF supplements this profile by providing exact
mappings from UML models to MOF models.

An example of the UML profile for XML and XMI would be placing the <<element>>
stereotype on a UML attribute that should always be written as an XML element. The
corresponding MOF tag would have value true.

Comment: FTF Issue 5325: removed SOAP serialization section.

1.11.6 Effects on Document Production

The values of the XMI tags affect how documents are serialized. In general, the more
validation a schema performs, the more restrictions there are on the XMI documents
that validate using the schemas. There are two reasons for this. First, schemas cannot
validate multiplicities without imposing an order on element content. Second, if the
schema extension mechanism is used, superclass elements must be serialized in
element content before subclass elements.

Here are some examples of how the XMI tags affect document production. Assume
that there is a MOF metamodel with class “Super” and class “ Sub.” Sub inherits from
Super. Super has attribute a of type string, and Sub has attribute b of type string. If the
namespace URI is “URI,” and the prefix is “p,” here is the default schema produced
from the MOF metamodel:

<xml version="1.0" encoding="UTF-8"?>
<xsd:schema
targetNamespace="URI"
xmlns:xmi="http://www.omg.org/XMI"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:p="URI">

<xsd:import
namespace="http://www.omg.org/XMI"
schemalocation="xmi20.xsd"/>

<xsd:complexType name="Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs" />
<xsd:attribute name="a" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Super" type="p:Super"/>

May 2003 XML Metadata I nterchange (XMl), v2.0 1-29

<xsd:complexType name="Sub">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" type="xsd:string"/>
<xsd:element ref="xmi:Extension"/>
</xsd:choice>
<xsd:attribute ref="xmi:id"/>
<xsd:attributeGroup ref="xmi:ObjectAttribs" />
<xsd:attribute name="a" type="xsd:string" use="optional"/>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:element name="Sub" type="p:Sub"/>

</xsd:schema>

Note that the content model for Sub allows attribute a or attribute b to be serialized
first if they are serialized as elements. For example, if p is the namespace prefix for a
namespace whose uri is “URI” in an XML document, the following instance of Sub
validates against the default schema:

<p:Sub>
Valuel
<a>Value2

</p:Sub>

The following is also legal:

<p:Sub>
<a>Value2
Valuel

</p:Sub>

If useSchemaExtensionsiis true, the declaration of the Sub complexType uses the XML
schema extension mechanism, as follows:

<xsd:complexType name="Sub">
<xsd:complexContent>
<xsd:extension base="p:Super">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="b" type="xsd:string"/>
</xsd:choice>
<xsd:attribute name="b" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

This declaration of the Sub type imposes an ordering on the content of Sub instances.
With this declaration, attribute a must be serialized before attribute b, so the first
instance of Sub above does not validate with this schema, but the second does validate.

1-30 XML Metadata I nterchange (XMl), v2.0 May 2003

1

Comment:

Also, any xmi:extension elements must be serialized in Sub instances before elements
corresponding to attribute b.

FTF Issue 4636: added section 1.11.7.

1.11.7 Summary of XMI Tag Scope and Affect

Table 1-2 contains the following information:

» Affect: the second column identifies the MOF constructs that are affected by agiven
XMI tag.

» Scope: columns 3 through 5 identify the scope of each tag. If the scope is Package
Scope, atag set on the package applies to al the affected constructs within the
package. If the scope is Class Scope, atag set on the class applies to all affected
constructs within the class. If the scope is Construct Scope, the tag affects only the
specific construct it's set on.

By setting a tag on a package or class, you avoid setting the same tags repeatedly for
classes in the package, and for attributes and association ends belonging to the class.
For example, the element tag applies to attributes and association ends. If the element
tag is set to true for a class, the class itself is not affected, but each attribute and
association end belonging to the class is treated as if the element tag were set to true
for al of them.

Table 1-2 XMI Tags, the MOF Constructs They Affect, and Their Scope

XMI Tag MOF Constructs Affected Package Scope | Class Scope | Construct Scope
xmiName Class, Attribute, X
AssociationEnd
serialize Attribute, AssociationEnd X X X
element Attribute, AssociationEnd X X X
attribute Attribute, AssociationEnd X X X
enforceMaximumMultiplicity | Attribute, AssociationEnd X X X
enforceMinimumMultiplicity | Attribute, AssociationEnd X X X
form Attribute, AssociationEnd X X X
remoteOnly AssociationEnd X X X
href AssociationEnd X X X
includeNils Attribute X X X
schemaType Attribute X
defaultValue Attribute X
fixedValue Attribute X
May 2003 XML Metadata Interchange (XMlI), v2.0 1-31

Table 1-2 XMI Tags, the MOF Constructs They Affect, and Their Scope

XMI Tag MOF Constructs Affected Package Scope | Class Scope | Construct Scope
nsURI Package X X
nsPrefix Package X X
idName Class X X X
useSchemaExtensions Class X X X
contentType Class X X X
superClassFirst Class X X X

1.12 Transmitting Metadata Differences

The goal is to provide a mechanism for specifying the differences between documents
so that an entire document does not need to be transmitted each time. This design does
not specify an algorithm for computing the differences, just a form for transmitting
them.

Up to now we have seen how to transmit an incomplete or full model. This way of
working may not be adequate for all environments. More precisely, we could mention
environments where there are many model changes that must be transmitted very
quickly to other users. For these environments the full model transmission can be very
resource consuming (time, network traffic, ...) making it very difficult or even not
viable for finding solutions for cooperative work.

The most viable way to solve this problem is to transmit only the model changes that
occur. In this way different instances of a model can be maintained and synchronized
more easily and economically. Concurrent work of a group of users becomes possible
with a simple mechanism to synchronize models. Transmitting less information allows
synchronizing models more efficiently.

1.12.1 Definitions

1-32

Theideais to transmit only the changes made to the model (differences between new
and old model) together with the necessary information to be able to apply the changes
to the old model.

A. New - Old = Difference

Model differencing is the comparison of two models and identifying the differences
between them in a reversible fashion. The difference is expressed in terms of changes
made to the old document to arrive at the new document.

B. New = Old + Difference

Model merging is the ability to combine difference information plus a common
reference model to construct the appropriate new model.

XML Metadata I nterchange (XMl), v2.0 May 2003

1.12.2 Differences

Differences must be applied in the order defined. A later difference may refer to
information added by a previous difference by linking to its contents. Model integrity
requires that all the differences transmitted are applied. The following are the types of
differences recognized, the information transmitted, and the changes they represent:

» Delete (reference to deleted element): The delete operation refers to a particular
element of the old model and specifies a deep removal of the referenced element
and al of its contents.

» Add (reference to containing element, new element, optional position): The add
operation refers to a particular element of the old model and specifies a deep
addition. The element and its contents are added. The contents of the new element
are added at the optional position specified, the default being as the last element of
the contents. The optional position form is based on XPointer’s position form. 1
means the first position, -1 means the last position, and higher numbers count across
the contents in the specified direction.

* Replace (reference to replaced element, replacement element, optional position):
This operation deletes the old element but not its contents. The new element and its
contents are added at the position of the old element. The original contents of the
old element are then added to the contents of the new element at the optional
position specified, the default being at the end.

1.12.3 XMl encoding

The following are the elements used to encode the differences:

delete
The delete element’s link attributes contain a link to the element to be deleted.

add

The contents of add is the element to be added. The link attributes contain alink to
the element to be deleted and an optional position element. The numbering
corresponds to X Pointer numbering, where 1 is the first and -1 is the last element.

replace

The contents of replace is the element to replace the old element with. The
attributes contain a link to the element to be replaced and an optional position
element for the replacing element’s contents. The numbering corresponds to
XPointer numbering, where 1 is the first and -1 is the last element.

1.12.4 Example

This example will delete a class and its attributes, add a second class, and rename a
package.

The original document:

<xmi:XMI version="2.0" xmins:UML="org.omg/UML"

May 2003 XML Metadata I nterchange (XMl), v2.0 1-33

xmins:xmi="http://www.omg.org/XMI">
<UML:Package xmi:id="ppp" xmi:label="p1">
<ownedElement xmi:type="UML:Class" xmi:id="ccc" xmi:label="¢c1">
<feature xmi:type="UML:Attribute" xmi:label="al"/>
<feature xmi:type="UML:Attribute" xmi:label="a2"/>
</ownedElement>
</UML:Package>
</xmi:XMI>

The differences document:

<xmi:XMI version="2.0" xmins:UML="org.omg/UML"
xmlns:xmi="http://www.omg.org/XMI" >
<difference xmi:type="xmi:Delete">
<target href="original.xml#ccc"/>
</difference/>
<difference xmi:type="xmi:Add" addition="Class_1">
<target href="original.xml#ppp"/>
</difference>
<UML:Class xmi:id="Class_1" xmi:label="c2"/>
<difference xmi:type="xmi:Replace" replacement="ppp">
<target href="original.xml#ppp"/>
</difference>
<UML:Package xmi:id="ppp" xmi:label="p2"/>
</xmi:XMI>

Here's how the 3 differences change the document as they’re applied.
The delete:

<xmi:XMI version="2.0" xmins:UML="org.omg/UML"
xmlns:xmi="http://www.omg.org/XMI" >
<UML:Package xmi:id="ppp" xmi:label="p1"/>
</xmi:XMI>

Next, the add:

<xmi:XMI version="2.0" xmins:UML="org.omg/UML"
xmlns:xmi="http://www.omg.org/XMI">
<UML:Package xmi:id="ppp" xmi:label="p1">
<ownedElement xmi:type="UML:Class" xmi:label="c2"/>
</UML:Package>
</xmi:XMI>

Finally, the replace:

<xmi:XMI version="2.0" xmins:UML="org.omg/UML"
xmlns:xmi="http://www.omg.org/XMI">
<UML:Package xmi:id="ppp" xmi:label="p2">
<ownedElement xmi:type="UML:Class" xmi:label="c2"/>
</UML:Package>
</xmi:XMI>

1-34 XML Metadata I nterchange (XMl), v2.0 May 2003

1.13 Document Exchangewith Multiple Tools

May 2003

This section contains a recommendation for an optional methodology that can be used
when multiple tools interchange documents. In this methodology, the xmi:uuid and
extensions are used together to preserve tool-specific information. In particular, tools
may have particular requirements on their 1Ds that make ID interchange difficult.
Extensions are used to hold tool-specific information, including tool-specific IDs.

The basic policy is that the XML ID is assigned by the tool that initially creates a
construct. The UUID will most likely be the same as the ID the tool would choose for
its own use. Any other modifiers of the document must preserve the original UUID,
but may add their own as part of their extensions.

1.13.1 Definitions

General:
e MC - Model construct. An XML element that contains an xmi.uuid attribute.

» Extension - Extensions use the extension element. Extensions to MCs may be
nested in MCs, linked to the extensions section(s) of the document, or linked
outside the document. Each extension contains a tool-specific identifier in the
extender attribute. Extensions are considered private to a particular tool. An MC
may have zero or more extensions. Extensions may be nested.

IDs:

e xmi:uuid - The universally unique ID of an MC, expressed as the xmi:uuid
attribute. Example: <Class xmi:uuid="ABCDEFGH" >

» extenderID - The tool-specific ID of an MC. The extenderID is stored in an
extension of the MC when it differs from the xmi:uuid.

Tool ID policies:

Every tool is either Open or Closed.

* Opentool - A tool that will accept any xmi:uuid asits own. Open tools do not need
to add extensions to contain a tool-specific id.

e Closed tool - A tool that will not accept an xmi:uuid created by another tool.
Closed tools store their ids in the extender | D attribute of an XMI.extension. The
extender attribute of the XMI.extension is set to the name of the closed tool.

1.13.2 Procedures

Document Creation:

The Creating Tool writes anew XMI document. Each MC is assigned an xmi:uuid.
If the xmi:uuid differs from the extender|D, an extension for that tool is added
containing the extenderID.

XML Metadata I nterchange (XMl), v2.0 1-35

1-36

Document I mport:

The importing tool reads an existing XMI document. Extensions from other tools

may be stored internally but not interpreted in the event a Modification will occur at

alater time. One of the following cases occurs:

« If the importing tool is an Open tool, the xmi:uuids are accepted internally and
no conversion is needed.

« If the importing tool is a closed tool, the tool looks for a contained extension
(identified by extender) with an extenderID. If one does not exist, the importing
tool creates its own internal id.

Document Modification:

The modifying tool writes the MCs and any extensions preserved from import.
For new MCs, the MC is assigned an xmi:uuid.

Closed tools add an extension including their internal id in the extender|D.

1.13.3 Example

This section describes a scenario in which Tool1 creates an XMI document that is
imported by Tool 2, then exported to Tool1, and then a third tool imports the document.
All the tools are closed tools.

1. A model is created in Tool1 with one class and written in XMI.

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh"/>

. The class is imported into Tool2. Tool2 assigns extender|D "JKLMNOPQRST". A

second class is added with name “c2” and extender|D “X012345678".

. The model is merged back to XMlI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">

<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678"/>

. Themodel isimported intoTool 1. Tool 1 assigns extender|D “ijklmnop” to “c2” and

anew class “c3” is created with extenderID “grstuvwxyz”.

. The model is merged back to XMI:

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">
<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">
<xmi:Extension extender="Tool1" extenderID="ijklmnop"/>
</UML:Class>
<UML:Class xmi:label="c3" xmi:uuid="qrstuvwxyz"/>

6. A third closed tool, Tool3, adds its ids:

XML Metadata I nterchange (XMl), v2.0 May 2003

<UML:Class xmi:label="c1" xmi:uuid="abcdefgh">

<xmi:Extension extender="Tool2" extenderID="JKLMNOPQRST"/>
<xmi:Extension extender="Tool3" extenderID="s1234"/>
</UML:Class>
<UML:Class xmi:label="c2" xmi:uuid="X012345678">
<xmi:Extension extender="Tool1" extenderID="ijkimnop"/>
<xmi:Extension extender="Tool3" extenderID="s5678"/>
</UML:Class>
<UML:Class xmi:label="c3" xmi:uuid="qrstuvwxyz">

<xmi:Extension extender="Tool3" extenderlD="s90ab"/>
</UML:Class>

7. An open tool imports and modifies the file. There are no changes because the
xmi:uuids are used by the tool.

1.14 General Datatype Mechanism

The ability to support general data types in XMI has significant benefits. The
applicability of XMl is significantly expanded since domain metamodels are likely to
have a set of domain-specific data types. This genera solution allows the user to
provide a domain datatype metamodel with a defined mapping to the XML data types.

Data types are defined in the model and the XML serialization of the datatypes is
described in terms of the XML schema datatypes.

MOF complex data types are treated as MOF classes with each field treated as a MOF
attribute with a primitive type mapped to XML schema.

The Tag org.omg.xmi.schemaType indicates that this class is a datatype with XML
schema mapping. The value of the tag indicates the schema type. For example,
http://www.w3.0rg/2001/X ML Schema#int is the int datatype.

May 2003 XML Metadata Interchange (XMlI), v2.0

1-37

1-38 XML Metadata I nterchange (XMl), v2.0 May 2003

2.1 Purpose

May 2003

XML Schema Production 2

Contents

This chapter includes the following topics.

Topic Page
“Purpose 2-1
“XMI Version 2 Schemas 2-2

This section describes the rules for creating a schema from a MOF-based metamodel.
The conformance rules are stated in Appendix A.

Notation for EBNF

The rule sets are stated in EBNF notation. Each rule is numbered for reference. Rules
are written as rule number, rule name, for example 1la. SchemaStart. Text within
guotation marks are literal values, for example “<xsd:element”. Text enclosed in
double slashes represents a placeholder to be filled in with the appropriate external
value, for example //Name of Attribute//. Literals should be enclosed in single or
double quotation marks when used as the values for XML attributes in XML
documents. The suffix “*” is used to indicate repetition of an item 0 or more times.
The suffix “?" is used to indicate repetition of an item 0 or 1 times. The suffix “+” is
used to indicate repetition of an item 1 or more times. The vertical bar “|" indicates a
choice between two items. Parentheses “()” are used for grouping items together.

EBNF ignores white space; hence these rules do not specify white space treatment.
However, since white space in XML is significant, the actual schema generation
process must insert white space at the appropriate points.

XML Metadata I nterchange (XMl), v2.0 2-1

2.2 XMl \erson 2 Schemas

2.2.1 EBNF

The EBNF for XMI Version 2 schemas is listed below with rule descriptions between
sections:

1. Schema ;1= la: SchemaSt art
1d: I mport sAndl ncl udes?
le: Fi xedDecl arati ons
2: PackageSchema+
1f : SchenmaEnd
"<xsd: schema
xm ns: xsd=" http://ww. w3. or g/ 2001/ XM_Schena’
xm ns: xm =" http://ww. ong.org/ XM " "
1b: NanespaceDecl *
1c: Tar get Nanespace?
"
"xm ns:" //Nanespace name// "="
"*" [/ Namespace URI// """
"t arget Nanespace="" //Nanmespace URI//
/1 Inports and includes //
"<xsd: i nmport
nanespace=' http://ww. ong. org/ XM’/ >"
"</ xsd: schema>"
("<xsd:attribute ref="xm:id"
"use='optional’>" |
"<attribute nanme="" // Id attrib name //
"type='xsd: | D use= optional’'")
"<xsd:attributeGoup ref="xm:CbjectAttribs’'/>"
(// Nane of nanmespace// ":")?

la. SchemaStart

1b. NamespaceDecl

nin

1c. Target Namespace
1d. | nportsAndl ncl udes: :
le. FixedDeclarations ::

1f. SchenmaEnd
1g. XM Fi xedAttri bs

1h. Namespace

1 A schema consists of a schema XML element that contains import and include statements, fixed declarations,
plus declarations for the contents of the Packages in the metamodel.

la. | The schema XML element consists of the schema namespace attribute, namespace attributes for the other
namespaces used in the schema, if any, and an optional target namespace attribute. These rules are written as if
the namespace name for the schema namespace is “xsd” and the namespace name for the XMI namespace is
“xmi,” but you can substitute other names for these namespace names and still conform to this specification.

1b. Each namespace used in the schema must have a namespace attribute that identifies the namespace name and
the namespace URI. If the namespace name is"" , the attribute name should be “xmins.” The namespace is
declared by the nsPrefix and nsURI tags in the metamodel.

1c. If the schema has a target namespace, the targetNamespace attribute is present.

2-2 XML Metadata I nterchange (XMl), v2.0 May 2003

1d. If the schema uses declarations from other schemas, the appropriate include or import statements must be
present.
le. | The schemadeclarationsthat are inthe XMI namespace are listed in Section 3.3.2, "Overall Content Structure,”
on page 3-3.
1f. The end of the schema XML element.
1g. | Thefixed XMI attributes present on the major elements provide element identity and element linking. If the
org.omg.xmi.idName tag has a value, that value is the name of the ID attribute; otherwise, the name is “xmi:id”.
1h. | A namespace is a nhamespace name followed by a“:”. If no namespace name is given, the rule is a blank.
2. PackageSchenm 1= (2: PackageSchema
| 3:d assSchena
| 13: Enuntchenm) *
6: PackageE!l enent Def
2. The schema contribution from a Package consists of the declarations for any contained Packages, Classes,
Associations without References, enumerations, and an XML element declaration for the Package itself.
3. dassSchena 1= 4: d assTypeDef
5: O assEl ement Def
3. The class schema contribution consists of a type declaration based on the attributes and references of the class,

and an element declaration for the Class itself.

Comment: FTF Issue 5090: updated production rules.

4. d assTypeDef 1= "<xsd: conpl exType name="" //Nane of C ass//
("mxed="true ")?
o
("<xsd: conpl exCont ent >"
"<xsd: extensi on base='" 4a: d assTypeNarme "' ")?
("<xsd: choice m nCccurs='0’
maxQccur s=" unbounded’ >" |

May 2003 XML Metadata Interchange (XMlI), v2.0 2-3

4a.
4b.

4c.
4d.

4e.

4f .

4q.
4h.

4i .

4j .

"<xsd: sequence>")?
(4b: d assContents |
"<xsd:any m nCccurs="0" naxQOccurs=' unbounded’

processContents="" // ProcessContents Value //
sy ?
("<l xsd: choi ce>" | "</xsd:sequence>")?

49: Cl assAttListltens
("</ xsd: ext ensi on>"

"</ xsd: conpl exCont ent >") ?

"</ xsd: conpl exType>

G assTypeNamne ::= 1lh: Nanmespace // Nanme of C ass//

d assContents ::= 4d: Cd assAttri butes
4e: Cl assRef erences
4f : d assConposi ti ons

4c: Ext ensi on

Ext ensi on

(" <xsd: el enent

("nillable="true ")?

(4m M nQccursAttrib)?
(4n: MaxQccursAttrib)?
(("type="" //Name of type// "'/

("type='xm: Any'/>")))*

ref="xm:extension />")*
ClassAttributes c:= ("<xsd: el enent nanme="" //Nanme of Attribute//

>") |

nin

Cl assRef erences 1= ("<xsd:element name="" //Nane of Reference// "'"

(4m M nQccursAttrib)?

(4n: MaxQccursAttrib)?

(("type="" 4a:d assTypeNane "' />") |

("type='xm:Any' />")))*

Cl assConpositions ::= ("<xsd: el enment name="" //Nane of Reference// "'"

(4m M nCccursAttrib)?

(4n: MaxQccursAttrib)?

(("type="" 4a:d assTypeNane "' />")

("type='xm:Any' />")))*

ClassAttListltens ::= 1g: XM Fi xedAttribs 4h: Cl assAttri bAtts

Cl assAttribAtts c:= (4i:dassAttribRef

| 4j:C assAttribData

| 4k: d assAttri bEnum)*

Cl assAttri bRef ;1= "<xsd:attribute nane=""
("type=' xsd: | DREFS

"type=' xsd: | DREF
ClassAttribData ;1= "<xsd:attribute nane=""
"type=' xsd:string’

("use="optional’" | "use="required ")
("default="" 4l:C assAttribDfIt
("fixed="" 4p:d assAttribFixed """)?

("forme
e

XML Metadata Interchange (XMlI), v2.0

/1 Formvalue //

"y

"y

// Name of attribute// """
use='optional ' />" |
use="required />")

/I Name of attribute// """

May 2003

4k. d assAttribEnum ::= "<xsd:attribute name="" //Nanme of attribute// "'"
"type="" 8a: EnunTypeNane "'"
(("use="default’"
"value="" 4l:C assAttribDflt "' ") |

("use="optional’" | "use="required ")) "/>"
4. CdassAttribDflt ::= [/ Default value//
4m M nCccursAttrib := "mnCccurs="" // Mnimum// """
4n. MaxCccursAttrib ;o= "maxCccurs="" // Maximum// "'"
40. G ass AttribFixed ::=//Fixed val ue//
Comment: FTF Issue 5233: updated production rule 4.

These rules describe the declaration of a Class in the metamodel as an XML complex type with a content
model and XML attributes. If either of the tags org.omg.xmi.enforceMaximumMultiplicity or
org.omg.xmi.enforceMinimumMultiplicity is true, the contents of the class are put in a sequence; otherwise,
they are put in a choice. If the org.omg.xmi.contentType tag is complex, the class content declarations appear
as defined by rule 4b; however, if the contentType value is empty (the default), they do not appear, and if the
contentType value is any, the “xsd:any” element declaration appears instead of the class content. If the
contentType value is mixed, then the mixed attribute is included. If org.omg.xmi.useSchemaExtensionsistrue,
the complex type for the class is derived by extension from the complex type for its superclass.

4a

Thisruleis for areference to the type for the class, which is the name of the Class prefixed by the namespace,
if present and not the default namespace.

4b.
4c.

The complex type for the Class contains XML elements for the contained Attributes, References and
Compositions of the Class, plus an extension element, regardless of whether they are marked as derived. The
org.omg.xmi.serialize tag can be used to control whether these constructs are serialized. If
org.omg.xmi.useSchemaExtensions is false or not present, inherited Attributes, References, and Compositions
are included; otherwise, only local Attributes, References, and Compositions are included.

4d.

The XML element name for each Attribute of the Class is listed as part of the content model of the Class
element. This includes the Attributes defined for the Class itself as well as all of the Attributes inherited from
superclasses of the Class. The type is “xsd:string” for simple attributes, the name of an enumeration for
enumerated attributes, or part of the value of the org.omg.xmi.schemaType tag, if present. If the
org.omg.xmi.includeNils tag is false, then the “nillable” attribute is not included in the declaration.

If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included.

If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.

May 2003

XML Metadata I nterchange (XMl), v2.0 2-5

4e.

The XML element name for each Reference of the Class is listed in the content model of the Class. The list
includes the References defined for the Class itself, as well as all References inherited from the superclasses
of the Class. The type is the class name for the Reference type if org.omg.xmi.useSchemaExtensions is “trug”
or if the org.omg.xmi.contentType is “complex;” otherwise, the type allows any object to be serialized.

If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included.

If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.

4f.

The XML element name for each Reference of the Class that is a composite Reference is listed in the content
model of the class. The list includes the References defined for the Class itself, as well as al References
inherited from the superclasses of the Class. The type is the class name for the Reference type if
org.omg.xmi.useSchemaExtensions is “true” or if the org.omg.xmi.contentType is “complex;” otherwise, the
type alows any object to be serialized.

If org.omg.xmi.enforceMinimumMultiplicity is true, the minOccurs attribute is included.

If org.omg.xmi.enforceMaximumMultiplicity is true, the maxOccurs attribute is included.

4q.
4h.

In addition to the standard identification and linkage attributes, the attribute list of the Class element can
contain XML attributes for the Attributes and non-composite References of the Class, when the limited
facilities of the XML attribute syntax allow expression of the necessary values. Inherited attributes and
references are included unless the org.omg.xmi.useSchemaExtensions tag is true, in which case only local
attributes and references are included.

4i.

References can be expressed as XML id reference XML attributes. If the multiplicity of the attribute is exactly
one, and org.omg.xmi.enforceMinimumMultiplicity is true, the type is IDREF and the attribute is required.

4.

Single-valued Attributes of a Class that have a string representation for their data are mapped to XML
attributes of type “xsd:string”, unless the org.omg.xmi.schemaType tag is present, in which case its value is
used for the type. Multi-valued Attributes of a Class cannot be so expressed, since the XML attribute syntax
does not allow repetition of values. If the multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to be present.

4k.

Single-valued Attributes that have enumerated values are mapped to XML attributes whose type is the
enumerated type. If the multiplicity of the attribute is exactly one, and
org.omg.xmi.enforceMinimumMultiplicity is true, the attribute is required to be present.

4.

If an Attribute is expressed as an XML attribute, its default value may be expressed in the schema if there is
aMOF Tag “org.omg.xmi.defaultValue” attached to the Attribute. The value of thisTag must be expressible as
an XML attribute string.

am.

The value for minimum is the minimum multiplicity.

4n.

The value for maximum is the maximum multiplicity.

40.

If an Attribute is expressed as an XML attribute, its fixed value may be expressed in the schema if thereis a
MOF Tag “org.omg.xmi.fixedValue” attached to the Attribute. The value of this Tag must be expressible as an
XML attribute string.

2-6

XML Metadata Interchange (XMlI), v2.0 May 2003

5.

d assEl enent Def

<xsd: el enent nanme='" //Nanme of class// """
"type=' 4a:C assTypeNane "’ />"

5. This rule declares an XML element for a class in a metamodel.
6. PackageEl enent Def "<xsd: el enent nane="" //Name of package// "' >"
"<xsd: conpl exType>
<xsd: choi ce mi nCccurs="0" maxCccur s=" unbounded’ >"
6b: PkgCont ent s
"</ xsd: choi ce>"
6g: PkgAttListltens
"</ xsd: conpl exType>
</ xsd: el enent >"
6a. PkgEl nt Nane 1h: Namespace // Name of package//
6b. PkgContents 6¢: PkgAttri butes
6d: Pkgd asses
6e: PkgAssoci ati ons
6f : PkgPackages
4c: Ext ensi on
6c. PkgAttributes ("<xsd:el ement name=""
[/ Qalified name of Attribute// "'"
"type=' //Nane of type// "'[>")*
6d. PkgC asses ("<xsd:elenment ref="" 4a:d assTypeNane "' />")*
6e. PkgAssoci ati ons (7:AssociationDef)*
6f. PkgPackages = ("<xsd:elenent ref="" 6a: PkgEl ntNane "' />")*
6g. PkgAttListltens = 1g: XM Fi xedAttri bs 6h: PkgAttri bAtts
6h. PkgAttribAtts = 4h: d assAttribAtts
6. The schema contribution from the Package consists of an XML element definition for the Package, with a
content model specifying the contents of the Package.
6a. | Thisruleis for the use of a package name.
6b. | The Package contents consist of any classifier level Attributes, Associations without References, Classes, nested
Packages, and an extension.
May 2003 XML Metadata | nterchange (XMl), v2.0 2-7

6C. Classifier level Attributes of a Package are also known as static attributes. Such Attributes inherited from
Packages from which this Package is derived are aso included.
6d. | Each Class in the Package is listed. Classes contained in Packages from which this Package is derived are also
included.
6e. | Itispossible that the Package contains Associations that have no References (i.e., no Class contains a Reference
that refers to an AssociationEnd owned by the Association). Every such Association contained in the Package or
Package from which the Package is derived is listed as part of the Package contents in order that its information
can be transmitted as part of the XML document.
6f. Nested Packages are listed. Nested Packages included in Packages from which this Package is derived are also
included.
6g. | The Package XML attributes are the fixed identity and linking XML attributes, as well as the XML attribute
6h. | declarations corresponding to the classifier-level attributes for the classes in the package.
7. Associ ati onDef ;1= "<xsd: el ement name="" //Nanme of association// "'>"
"<xsd: conmpl exType>
<xsd: choice m nCccurs="0" naxCccur s=" unbounded’ >"
7b: AssnCont ent s
"</ xsd: choi ce>"
7d: AssnAtts
"</ xsd: conpl exType>
</ xsd: el ement >"
7a. AssnEl nt Nane ;.= 1lc: Nanespace // Nane of association//
7b. AssnContents ;1= 7c: AssnEndDef
7c¢: AssnEndDef
4c: Ext ensi on
7c. AssnEndDef ;1= "<xsd: el ement"
"name="" //Nane of association end// "’ >"
"<xsd: conpl exType>"
1g: XM Fi xedAttri bs
"</ xsd: conpl exType>"
"</ xsd: el ement >"
7d. AssnAtts ;= 1g: XM Fi xedAttri bs
7. The declaration of an unreferenced Association consists of the names of its AssociationEnd XML elements.
7a. | The use of the name of the XML element representing the Association.
7d. | The fixed identity and linking XML attributes are the Association XML attributes.
2-8 XML Metadata Interchange (XMlI), v2.0 May 2003

8. EnunSchema "<xsd: si npl eType name="" 8b: EnunName "’ >"
"<xsd:restriction base="xsd:string >"
8c: Enunliteral s
"</xsd:restriction>"
"</ xsd: si npl eType>"

1h: Nanespace 8b: EnunmNane
/1 Name of enuneration //
("<xsd:enuneration value="" 8d: EnunLiteral "'/>")+

// Name of enuneration literal //

8a. EnunilypeName
8b. EnumNane

8c. Enuniiterals
8d. Enuniiteral

8. The enumeration schema contribution consists of a simple type derived from string whose legal values are the
enumeration literals.

8a. | The name of the enumeration in XML schema references.

8b. | Each enumeration literal is put in the value XML attribute of an enumeration XML element.

8d. | The name of the enumeration literal.

2.2.2 Fixed Schema Declarations

Comment: FTF Issue 4635: removed the annotations, complex types, and elements for
PackageReference, Model, Metamodel, and Import. Also removed the elements
that refer to them.

There are some elements of the schema that are fixed, constituting a form of
“boilerplate” necessary for every XMI 2.0 schema. These elements are described in
this section. These declarations are in the namespace “ http://www.omg.org/XMI".

Only the schema content of the fixed declarations is given here. For a complete
description of the semantics of these declarations, see Chapter 4.

May 2003 XML Metadata Interchange (XMlI), v2.0 2-9

2-10

The fixed declarations are:
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"

<?xm version="1.0" encodi ng="UTF-8""?>

<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. ong. org/ XM "
t ar get Nanespace="htt p: // ww. ong. or g/ XM " >

<xsd: annot ati on>
<xsd: docunent ati on>

The following attribute and attribute group declarations are included

in the types for MOF classes, but they are not defined in the XM

nodel .
</ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd:attribute nane="id" type="xsd:ID'/>

<xsd: attributeG oup name="ldentityAttribs">
<xsd:attribute nane="Ilabel" type="xsd:string" use="optional"
forme"qualified"/>
<xsd: attribute nanme="uui d" type="xsd:string" use="optional"
forme"qualified"/>
</ xsd: attri buteG oup>

<xsd: attributeG oup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:string" use="optional"/>
<xsd:attribute name="idref" type="xsd:|DREF" use="optional"
forme"qualified"/>
</ xsd:attributeG oup>

<xsd: attri buteG oup nane="ChjectAttribs">
<xsd:attributeGoup ref="IdentityAttribs"/>
<xsd: attributeGoup ref="LinkAttribs"/>
<xsd: attri bute nane="version" type="xsd:string" use="optional"
fixed="2.0" forn"qualified"/>
<xsd: attribute name="type" type="xsd: QNane" use="optional"
forme"qualified"/>
</ xsd:attributeG oup>

<xsd: annot ati on>
<xsd: docunent at i on>PACKAGE: XM Package</ xsd: documnent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>

<xsd: docunent ati on>CLASS:. XM </ xsd: docunent ati on>
</ xsd: annot ati on>

XML Metadata Interchange (XMlI), v2.0

May 2003

May 2003

<xsd: conpl exType nanme="XM ">
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: any processContents="strict"/>
</ xsd: choi ce>
<xsd:attribute ref="id"/>
<xsd:attributeGoup ref="ldentityAttribs"/>
<xsd:attributeG oup ref="LinkAttribs"/>
<xsd:attribute nane="type" type="xsd: QNane" use="optional"
forme"qualified"/>
<xsd: attribute nane="version" type="xsd:string" use="required"
fixed="2.0" forne"qualified"/>
</ xsd: conpl exType>

<xsd: el enent nanme="XM" type="XM"/>

<xsd: annot ati on>
<xsd: docunent ati on>CLASS: Docunent ati on</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: conpl exType nane="Docunent ati on">
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el ement nane="contact" type="xsd:string"/>
<xsd: el enent nane="exporter" type="xsd:string"/>
<xsd: el enent nane="exporterVersion" type="xsd:string"/>
<xsd: el enent nane="1| ongDescri ption" type="xsd:string"/>
<xsd: el enent nane="shortDescri ption" type="xsd:string"/>
<xsd: el enent nane="notice" type="xsd:string"/>
<xsd: el ement nanme="owner" type="xsd:string"/>
<xsd: el ement ref="Extension"/>
</ xsd: choi ce>
<xsd:attribute ref="id"/>
<xsd:attributeGoup ref="0CbjectAttribs"/>
<xsd: attribute nane="contact" type="xsd:string" use="optional"/>
<xsd: attri bute nane="exporter" type="xsd:string" use="optional"/>
<xsd: attribute nane="exporterVersi on" type="xsd:string"
use="optional "/ >
<xsd: attri bute nane="I|ongDescripti on" type="xsd:string"
use="optional "/ >
<xsd: attri bute nane="short Description" type="xsd:string"
use="optional "/ >
<xsd:attribute nane="notice" type="xsd:string" use="optional"/>
<xsd: attribute nane="owner" type="xsd:string" use="optional"/>
</ xsd: conpl exType>

<xsd: el enent nane="Docunent ati on" type="Docunentation"/>
<xsd: annot ati on>

<xsd: docunent ati on>CLASS: Ext ensi on</ xsd: docunent ati on>
</ xsd: annot ati on>

XML Metadata I nterchange (XMl), v2.0 2-11

<xsd: conpl exType nane="Ext ensi on">

<xsd: choi ce m nCccurs="0" nmaxCccur s="unbounded" >

<xsd: any processContents="|ax"/>

</ xsd: choi ce>

<xsd:attribute ref="id"/>

<xsd:attributeGoup ref="0CbjectAttribs"/>

<xsd: attribute nane="extender" type="xsd:string" use="optional"/>

<xsd: attribute nane="extender| D' type="xsd:string" use="optional"/>
</ xsd: conpl exType>

<xsd: el enent nane="Ext ensi on" type="Extension"/>

<xsd: annot ati on>
<xsd: docunent ati on>CLASS: Di fference</xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: conpl exType name="Di fference">
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el ement nanme="target">
<xsd: conpl exType>
<xsd: choi ce m nQccurs="0" maxQccur s="unbounded" >
<xsd: any processContents="skip"/>
</ xsd: choi ce>
<xsd: anyAttri bute processContents="skip"/>
</ xsd: compl exType>
</ xsd: el enent >
<xsd: el enent nane="di fference" type="Di fference"/>
<xsd: el ement nanme="contai ner" type="Difference"/>
<xsd: el ement ref="Extension"/>
</ xsd: choi ce>
<xsd:attribute ref="id"/>
<xsd:attributeGoup ref="0CbjectAttribs"/>
<xsd:attribute nane="target" type="xsd:|DREFS"' use="optional"/>
<xsd: attri bute nane="contai ner" type="xsd:|DREFS" use="optional"/>
</ xsd: conpl exType>

<xsd: el enent nane="Di fference" type="D fference"/>

<xsd: annot ati on>
<xsd: docunent ati on>CLASS: Add</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: conpl exType nanme="Add">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Di fference">
<xsd:attribute nane="position" type="xsd:string" use="optional"/>
<xsd: attribute nane="additi on" type="xsd:|DREFS" use="optional"/>
</ xsd: ext ensi on>

2-12 XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el ement nanme="Add" type="Add"/>

<xsd: annot ati on>
<xsd: document at i on>CLASS: Repl ace</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: conpl exType nane="Repl ace" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Di fference">
<xsd:attribute nane="position" type="xsd:string" use="optional"/>
<xsd: attribute nane="repl acenent" type="xsd: | DREFS"
use="optional "/ >
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el emrent nane="Repl ace" type="Repl ace"/>

<xsd: annot ati on>
<xsd: docunent ati on>CLASS: Del et e</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: conpl exType nane="Del ete" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Difference"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el ement nane="Del ete" type="Del ete"/>

XML Metadata Interchange (XMlI), v2.0

2-13

Comment: FTF Issue 5090: added the ANY type declaration.

<xsd: conpl exType nane="Any" >
<xsd: choi ce m nCccurs="0" nmaxCccur s="unbounded" >
<xsd: any processContents="skip"/>
</ xsd: choi ce>
<xsd: anyAttribute processContents="skip"/>
</ xsd: conpl exType>

<xsd: el ement name="XM Package" >
<xsd: conpl exType>
<xsd: choi ce m nQccurs="0" maxCccur s="unbounded" >
<xsd: el ement ref="Difference"/>
<xsd: el ement ref="Add"/>
<xsd: el ement ref="Repl ace"/>
<xsd: el enent ref="Del ete"/>
<xsd: el enent ref="XM"/>
<xsd: el enent ref="Docunentation"/>
<xsd: el enent ref="Extension"/>
</ xsd: choi ce>
</ xsd: conpl exType>
</ xsd: el ement >

</ xsd: schema>

Comment: FTF Issue 4612: added section 2.2.3.

2.2.3 Schema Production Rules for Non-Primitive Data

MOF 1.4 added a set of non-primitive data types. The schema production rules for
these data types are defined using the existing production rules in Section 2.2.1,
"EBNF,” on page 2-2. They are described in the following sections.

Sructure Type

The schema production rules for a structure type with structure fields are the same as
for a class with attributes. The production rules for classes are defined starting with
3:ClassSchema. For structure types, use the structure type name instead of class name,
and the structure field names instead of attribute names.

Enumeration Type

The schema production rules for enumeration types are defined starting with
8:EnumSchema.

2-14 XML Metadata I nterchange (XMl), v2.0 May 2003

Alias Type

The schema production rules for an alias type are the same as for its base type, but
using the alias type name instead of the base type name.

Collection Type

The schema production rules for a collection type are the same as for a class that has
one attribute with the same type and multiplicity as the collection type. The production
rules for classes are defined starting with 3:ClassSchema. For collection types, use the

collection type name instead of class name. Use the collection type’s type name instead
of attribute name.

May 2003 XML Metadata I nterchange (XMl), v2.0 2-15

2-16 XML Metadata I nterchange (XMl), v2.0 May 2003

XML Document Production 3

Contents

This chapter includes the following topics.

Topic Page
“Purpose 31
“Introduction 3-1
“EBNF Rules Representation 32
“Additional Examples 3-12
“Document Production Rules for Non-Primitive Data 3-15

3.1 Purpose

This chapter specifies the XMI Version 2 production of an XML document from a
MOF model. XMI Version 2 describes an XML syntax that leverages the new
capability of XML schema, resulting in smaller, more powerful documents and
enhanced human readability. A set of MOF objects are written to an XML document
following the grammar defined here. It is essentia for successful model interchange
that this specification be complete and unambiguous. It is also essential that all
significant aspects of the metadata are included in the XML document and can be
recovered from it.

3.2 Introduction

XMI's XML document production process is defined as a set of production rules.
When these rules are applied to a model or model fragment, the result is an XML
document. The inverse of these rules can be applied to an XML document to

May 2003 XML Metadata I nterchange (XMl), v2.0 31

3-2

reconstruct the model or model fragment. In both cases, the rules are implicitly applied
in the context of the specific metamodel for the metadata being interchanged.

The production rules are provided as a specification of the XML document production
and consumption processes. They should not be viewed as prescribing any particular
algorithm for XML producer or consumer implementations.

Section 3.4, "Additional Examples,” on page 3-12 contains additional examples
beyond those in the EBNF.

3.3 EBNF Rules Representation

The XML produced by XMI is represented here in Extended Backus Naur Form
(EBNF). The XML specification does not require XML processors to preserve the
order of XML attributes within an XML element. Therefore, although this grammar
indicates that XML attributes should be serialized in a particular order for each XML
element, the XML attributes may be serialized in any order. Also, XML attributes are
normalized by XML processors, so whitespace may not be preserved.Y ou may choose
to serialize parts of objects as XML elements rather than XML attributes using the
org.omg.xmi.element tag, as explained below.

The following sections provide the production rules.

3.3.1 Overall Document Sructure

1: Docunent

la: XM

1b:
1c:
1d:
le:

1f

1g:
1h:
1i:

XM Nanespace
StartAttribs
XM Ver si on
Nanmespaces

Namespace

la: XM | 2: ContentEl enents

"<" 1b: XM Nanespace "XM" 1c: StartAttribs ">"
(2:ContentEl enents)?
(5j:Extension)*
"</" 1b: XM Nanespace " XM >"
(//NsNane// ":") ?
1d: XM Ver si on le: Nanmespaces

= 1b: XM Namespace "version="" //XM Version// """
= 1f: XM NanmespaceDecl ?
("xmns:" 1h:NsNane "="" 1li:NsUR "'")*
: XM NanmespaceDecl ::= "xmins="http://ww.ong.org/ XM’ " |
"xmns:" //NsNanme// "= http://ww. ong.org/ XM " "
= (1h: NsNane> ":")?
= // Nane of namespace//

/1 URl of nanespace//

XML Metadata I nterchange (XMl), v2.0 May 2003

The content of an XMI document may be enclosed in an XMI XML element, but it does not need to be. The
XML specification requires that there be one root element in an XML document for the document to be well-
formed.

la

An XMI element has XML attributes that declare namespaces and specify the version of XMI, and the XMI
element contains XML elements that make up the header, content, differences, and extensions for the XMI
document.

1b.

This rule represents the use of the XMI namespace name, XMINsName, in an XMI document. If NsName is

, this rule produces ""; otherwise, this rule produces NsName followed by ":". For example, if the XMI
namespace name is "xmi", then the XML element specified in the XMI production rule has a tag name of
"xmi:XMI". If the XMI namespace nameis"", then the XML element specified in the XMI production rule has
a tag name of "XMI".

1c.

The start attributes include the version attribute and the declaration of namespaces used in the document

1d.

The version must be “2.0” for XMI documents that conform to this specification.

le.

The XMI namespace and the namespaces associated with a model must be declared or already be visible to the
XMI element in the XML document. Since there is no requirement that the XMI XML element be the root
element, these namespaces may be declared in XML elements that contain the XMI element.

1g.

The use of a namespace name, including a“:” separator. If the namespace name is blank, the result is the
empty string.

1h.

A particular namespace name. Document producers can choose their own namespace names, as long as doing
so results in legal XML documents, or they may choose to use the value of the org.omg.xmi.nsPrefix tag.

1i.

Thelogical URI of the namespace. Note that namespaces are resolved to logical URIs, as opposed to physical
ones, so that there is no expectation that this URI will be resolved and that there will be any information at that
location. The URI is obtained from the org.omg.xmi.nsURI tag.

3.3.2 Overall Content Sructure

2: Content El ement s = (3:Obj ect AsEl enent) *
(6:ClassAttributes)*
(7

O her Links)*

Comment: FTF issue 5321: updated description of production rule 2.

The contents are the XML representations of top level objects, classifier level attributes, and other links. The
top level objects will include those which have a composite link with no reference from the composite to
component.

May 2003

XML Metadata Interchange (XMlI), v2.0 3-3

3.3.3 Object Sructure

3: Obj ect AsEl enent

3a:
3b:
3c:

3d:

3e:
3f:

30:

3h:
: EnunVal ueAttrib
3j:
3k:
:Attri bNane

3i

3l

oj ect TagNane
Ooj ect EndTag
oj ectAttribs

ldentityAttribs
| dAt tri bName
TypeAttrib

FeatureAttri bs

Dat aVal ueAttrib

Ref Val ueAttrib
Ref Val ues

"<" 3a: bj ect TagName 3c: Obj ectAttribs ("/>")?
5: (bj ect Content s
3b: Obj ect EndTag
1g: Nanespace // XM nane//
("</" 3a: Obj ect TagNane ">")?
(lc:StartAttribs)?
3d:ldentityAttribs

(3f:TypeAttrib)?

3g: FeatureAttribs
(3e:ldAttribNane "="" [/ id [/l """)?
(1b: XM Nanespace "label =" //label// """)?
(' 1b: XM Nanespace "uuid="" //uuid// """)?
1b: XM Narmespace "id" | // id attrib name //

(1b: XM Nanmespace | 1g: Nanespace)

"type="" 3a: (bj ect TagNane "'"

(3h: DataVal ueAttrib

| 3i:EnunVal ueAttrib

| 3j:RefValueAttrib)*

3l:AttribName "="" /[/val ue//
3l:AttribName "="" //enuneration literal//
3l:AttribName "="" 3k: RefValues "'"

(//reference id// ")

/1 XM name of attribute //

3. | An object has a starting element, contents, and a closing element. If the contents are empty, you may end the
starting element with “/>.” You use this production rule to serialize top-level objects and to serialize objects that
are the values of attributes and references. You may also use this production rule to serialize structured types. To
serialize structured types, use the name of the structure rather than the class name, and use the attribute
production rules to serialize the fields of the structure and their values.

34

<department xmi:id="Department_1"/>

Example 3-1. Instance of a class with empty contents

XML Metadata Interchange (XMlI), v2.0

May 2003

3a

If the object is a top-level object, the tag name is the namespace name followed by “:” and the XMI name for
the object. The XMI name for the object is either the name of the object’s class or the value of the
org.omg.xmi.xmiName tag. If the object is the value of an attribute or reference, the XMI name is the name of
the attribute or reference, or the value of the org.omg.xmi.xmiName tag. The namespace name isignored for an
object that is the value of an attribute or reference.

<complexco:department xmi:id="Department_1"/>

Example 3-2 Instance of a class, namespace name is its package name

3b.

The end tag name is the same as the start tag name, preceded with a“/.” An end tag need not be written if there
is no content for the object.

3c.

The XML attributes for an object are the optional start attributes, identity attributes, and attributes
corresponding to an object’s features (its attributes and references). The start attributes must be written if the
object is atop-level object and it is not inside an XMI element specified by production rule 1la:XMI.

<Company xmi:version="2.0" xmlnsxmi="http://ww. ong. org/ XM "
xm @i d=Conpany_1" name="Acne" >

</ Conpany>

Example 3-3Company is the top-level object in a document with no XMl
element

3d.

The identity attributes consist of an optional id, label, and uuid. If the element has a MOF uuid, it may be used
here.

3e.

By default, the name of the identity attribute is “id” in the XMI namespace. However, if an
org.omg.xmi.idName tag has been specified, the name of the identity attribute is the value of that tag.

3f.

If the class of the object cannot be determined unambiguously from the model, you must specify the class name
using the “type” attribute in either the XMI namespace or the schema instance namespace whose URI is
“http://www.w3.0rg/2001/X M L Schema-instance”. The value of this attribute is defined by the XML Schema
Part 1. Structures specification to be a QName, consisting of a namespaces name for the value's class (if there
is one and it is not the default namespace for the document), a “:”, and the name of the value's class. Refer to
the schema specification for more details. You may only use the XML schema instance type attribute if
org.omg.xmi.useSchemaExtensions is true. Section 3.4.3, " Derived Types and References,” on page 3-15
provides an example of the use of the “type” attribute.

May 2003 XML Metadata I nterchange (XMl), v2.0 3-5

30.

The XML attributes of the element correspond to attributes whose type is a data value or enumeration, or
references whose values are objects in the document. You may not serialize an attribute or reference as both an
XML element and an XML attribute in the same object. You must not serialize an attribute or reference as an
XML attribute if the value of the org.omg.xmi.element tag is “true.” You must not serialize an attribute or
reference at al if the value of the org.omg.xmi.serialize tag is “false.” You must not serialize a reference at all
if the org.omg.xmi.remoteOnly tag is true and the reference has a value that is an object in the same XML
document. You may serialize classifier-level attributes with an object.

3h.

Use this production rule to serialize an attribute whose type is not an object and whose value can be represented
by a string. Multi-valued attributes cannot be serialized as XML attributes. If the attribute's type is one of the
types defined by the XML Schema Part 2: Datatypes specification, serialize the value as specified in that
specification.

<Department xmi:id="Department_1" number="13"/>

Example 3-4 Instance of a class with a single valued attribute

3i.

Use this production rule to serialize an attribute whose type is an enumeration and whose value is one of the
legal enumeration literals. If the org.omg.xmi.xmiName is specified for the literal, the value of that tag should
be used; otherwise, the name of the enumeration literal specified in the model is used.

Stoplight <<enumeration>>

&id : String SBpEs
gistate : StopGo &green

&red

<Stoplight xmi:id="Stoplight 6" id="SL06" state="red" />

Example 3-5 Instance of a class with an enumerated attribute

3.
3.

Use this production rule to serialize references whose values are objects that are serialized in the same
document. The value of the XML attribute contains the XMI 1D of each referenced object, separated by a
space.

3-6

XML Metadata I nterchange (XMl), v2.0 May 2003

TargetClass
&5id : String

A
0.*

Classl +LinktoTargetClass

<Classl xmi:id="Classl 1" LinktoTargetClass=" TargetClass 1 TargetClass 2" />
<TargetClass xmi:id="TargetClass 1" id="TC1 instance"/>
<TargetClass xmi:id="TargetClass 2" id="TC2 instance"/>

Example 3-6 Association from an instance of a class to instances of another class

3l

The name of the XML attribute is the name of the model attribute or reference, or the value of the
org.omg.xmi.xmiName tag for the attribute or reference.

3.3.4 References

Comment: FTF issue 4639: updated production rule 4b and description.

4: Ref erenceEl enent ::= "<" 3a: bj ect TagNane
(lc:StartAttribs)?
3d:ldentityAttribs
(3f:TypeAttrib)?
4a: Li nkAttri bs
nysn
4a: LinkAttri bs ;1= 1b: XM Nanespace "idref="" //reference id// """
| 4b:Link
"href="" //UR reference//

4b: Li nk

May 2003 XML Metadata Interchange (XMlI), v2.0 37

Use this production rule to serialize a reference to an object using an XML element. If you use identity
attributes, the values of the identity attributes must match the values of the identity attributes for the object that
is referenced.

4a.

Use the idref attribute to specify the id of an XML element that is referenced in the document; use the href
attribute to specify an XML element in another document. If the org.omg.xmi.href tag is “true,” you must not
use the idref attribute; use the href attribute for references within the document and across documents.

4b.

An XMI link. The value of the href attribute is a URI reference that refers to an XML element in another
document or in the same document. For example, if the href is “file:someFilexmi#someld,” the href refersto an
XML element in the “someFile.xmi” document whose XM ID is “someld.” If the href is “#anotherld,” the href
attribute refers to an XML element whose XM ID is “anotherld” in the same document. XLinks are also
supported in XMI. See Section 1.10.2, "Linking,” on page 1-22 for more information. See the W3C XLink
and XPointer specification for production rules.

3-8

Company

+company

~~
-employeeOfTheMonth

+department O..N

Department 0.1 0.* Employee

wnumber : Integer > || gdnanager : Boolean
+department +employee

Document CompanyK ey 1.xml contains a link to external document CompanyKey 2.xml for the
employeeOfTheM onth association:
<Company xmi:id=" Company_1" name="Acme">
<employeeOfTheMonth href="CompanyKey 2.xml#Employee 1" />
</Company>

Document CompanyKey 2.xml contains the target of the link, and link back to original document:

<Employee xmi:id="Employee 1" name="Fatale, Natasha'>
<company href="CompanyKey_ 1.xml#Company_ 1" />

Example 3-7Linking across documents

XML Metadata I nterchange (XMl), v2.0 May 2003

3.3.5 Object Contents

5: Obj ect Content s = 5a: Attri but eAsEl nmt
5h: Ref er enceAsEl nt >
5i : ConmpositeAsElm)*
5j : Extension)*
5b: AttribVal ueAsEl enent) *
5f: Nul | Val ue
: bj ect AsEl enment
4: Ref er enceEl enent
5c: Dat aVal ue
5d: Enunli t er al
"<" Be:AttribTagNane ">"

ba. AttributeAsElnmt ::=

5b: Attri bVal ueAsEl nt

—_——_—— R — —~—~ — — ~

5c¢: Dat aVal ue

//val uel/
"</" Ge:AttribTagNanme ">"
5d: Enunli t eral 1= "<" be:Attri bTagNane ">"

[/ enunmeration literal//
"</" 5e:AttribTagNane ">"
[l XM name for attribute//
"<" Be:AttribTagName 5g: Nul | Attrib "/>"
1g: Namespace "nil ="true' "
4: Ref er enceEl enent
3: Obj ect AsEl enent
"<" 1b: XM Nanespace "extension"
(" extender="" // extender // "'")?
(" extenderID="" // extenderID// """)?

5e: Attri bTagNane
5f: Nul | Val ue

5g: Nul l Attrib

5h: Ref er enceAsEl nt
5i : Conposi t eAsEl mt
5j : Ext ensi on

/1 Extension elenents //
"</" 1b: XM Nanmespace " ext ensi on>"

Comment: FTF issue 5321: updated description of production rule5.

5. The contents of an object are the attributes, references, and compositions that are serialized as XML elements,
as well as the extensions. Note that ‘ contents’ (component objects that are reached via composite links) without
a composite reference are not subject to this production rule and so not written as nested elements: instead they
are written as top-level elements. Any particular reference or single-valued attribute may be expressed as an
XML element or XML attribute, but not both. You can specify whether an attribute or reference is serialized as
an XML element or an XML attribute by using the org.omg.xmi.element tag. If the value of the
org.omg.xmi.superClassFirst tag is “true,” you must serialize inherited attributes, references, and compositions
first, beginning at the top of the class hierarchy.

May 2003 XML Metadata Interchange (XMlI), v2.0 39

5a. Each value of an attribute is represented by an XML element; for multi-valued attributes, there is one XML
element for each value. Null values may be serialized as well, unless the value of the org.omg.xmi.includeNils
tag is “false,” in which case you may not serialize null values.

5b. If the attribute value is an object, it is serialized using the 3:0bjectAsElement production rule unless the object
is in another document, in which case the 4:ReferenceElement production rule is used.

Addres s
Company Steet: Stri

: &Street: String
EEHQAddress : Address &City : String

<Company xmi:id="Company_1" name="Acme">
<HQAddress xmi:id="Address 1" Street="Side Street"
</Company>City="Hometown" />

Example 3-8 Value of attribute HQAddress is an object

5c. Use this production rule to save values of attributes that are neither objects nor enumeration literals. If the type
of the attribute is one of the types defined by the XML Schema Part 2: Datatypes specification, the value must
be serialized according to that specification.

PtyClass2
&<<*>> T1VOCL1 : Integer

<PtyClass2 xmi:id="PtyClass2 1">
<T1VvV0C1>1001</T1V0C1>
<T1VvV0C1>2001</T1V0C1>
</PtyClass2>

Example 3-9 Multi-valued attribute, with each value serialized as an element

3-10 XML Metadata Interchange (XMlI), v2.0 May 2003

5d. The enumeration literal is either the name of the literal from the model or the value of the
org.omg.xmi.xmiName tag.

5e. The XMI name for the attribute is either the name of the attribute from the model or the value of the
org.omg.xmi.xmiName tag.

5g. The null attribute has the name “nil” in a namespace whose URI is “http://www.w3.0rg/2001/X M L Schema-
instance.”

5i. Use this production to serialize composite relationships as elements.

Department 0.1 0.* Person

number : Integer @ name : String
+department +employee

<Department xmi:id="Department_1" number="13">
<employee xmi:id="Employee 2" name =" Glozic, Dgan" />
<employee xmi:id="Employee 3" name =" Andrews, Gilbert" />
<employee xmi:id="Employee 4" name =" Beisiegel, Gloria" />
</Department>

Example 3-10 Aggregation serialized as elements

NOTE: FTF issue 4597: corrected and clarified example 3-10.

5j. Each extension element has an optional extender and extenderID attribute; its content can be anything.
3.3.6 Packages
6: Package = "<" 6a: PackageTagNanme 3c: Obj ect Attribs ">"

(7:d assAttributes | 8: O herlLinks)*
"</" 6a: PackageTagNane ">"
1g: Nanmespace // XM nane//

6a: PackageTagNane ::

6. This element is only seriaized if there are classifier-level attributes that have not been serialized in objects, or
other links that have not been serialized with objects, either.

May 2003 XML Metadata Interchange (XMlI), v2.0 311

3.3.7 Attributes

7:d assAttributes o= (ba:AttributeAsElnt)*

7. All classifier-level attributes are expressed using the XML element form, unless they have already been
serialized in objects.

3.3.8 Other Types of Links

8: O her Li nks "<" 8a:AssocTagNane 3c: CbjectAttribs ">"
(8b: Associ ati onEndRef 8b: Associ ati onEndRef)*
"</" 8a: AssocTagName ">"

8a: AssocTagNane /1 XM nane for the association//

8b: Associ ati onEndRef ::= 4: ReferenceEl enent

Comment: Editorial change: the production numbers on the descriptions did not match the
production rules.

8. All associations which have no references are placed here. Each associationEnd’s links are contained as pairs of
nested XML elements.

8a. The tag name of the association is the name of the association specified in the model or the value of the
org.omg.xmi.xmiName tag.

8b. A reference to the linked element from the AssociationEnd; the tag name of the referenced element should be
the XMI name for the association end, which is either the name of the association end specified in the model or
the value of the org.omg.xmi.xmiName tag.

3.4 Additional Examples

3.4.1 Inheritance

Attributes and associations are inherited from parent classes. For example, in the
model below, CollegeStudent inherits directly from Student and Citizen, and indirectly
from Person.

3-12 XML Metadata Interchange (XMlI), v2.0 May 2003

May 2003

<<Abstract>>
Person

[PeronName : String
Q}Addres: Stiing

Student

Status: String
Parents: String

GPA : Single

Citizen

SSN : Integer
Passport : Integer
RegisterVoter : Boolean
State : String

CollegeStudent

Scholarships: String
LoanAmount : Currency

An instance of CollegeStudent can include attributes inherited from each of these

parent classes:

<CollegeStudent xmi:id="CollegeStudent_1"
PersonName=" Andrew Pham" GPA="4.95" SSN="1234567890" />

3.4.2 Nested Packages

The following model shows the Education package, which contains another package
called Students, where the Students package has an org.omg.xmi.nsPrefix tag set to

“Students:”

XML Metadata Interchange (XMlI), v2.0

<<Abstract>>
Person

EfPersonName : String]

ESAddress : String
Students

A

|
Student
Efstatus : String
BEParents : String
BEGPA : Single

The Students package contains class CollegeStudent:

Student
(from Edu cation)
5 status : String
EEParents : String
BEGPA : Single

CollegeStudent

EEischolarships : String
EELoanAmount : Curency

The package nesting can be expressed in the qualifier for the
CollegeStudent element:

<Students: CollegeStudent xmi:id="CollegeStudent_1"
PersonName="Andrew Pham" GPA="4.95" SSN="1234567890" />

3-14 XML Metadata Interchange (XMlI), v2.0

May 2003

3.4.3 Derived Types and References

In the following example, class Company has attribute HQAddress whose type is
another class, the Address class:

Company Address
[BBHQAddress : Address LStreet : String
wCity : String
\
USAddress

wzipcode : Decimal

Address has a subclass, USAddress. An instance of Company can use Xsi:type to
indicate that its HQAddress is actually of type USAddress and includes a zipcode:

<Company xmi:id="Company_1" name="Acme">
<HQAddress xmi:type=" USAddress"' xmi:id="Address 1"
Street="Side Street" City="Hometown" zipcode="90210"

Similarly, if amodel contains areference to a class that has a subclass, xmi:type can be
used in an instance to indicate that the reference is actually to the subclass.

Comment: FTF issue 4612: added section 3.5.

3.5 Document Production Rulesfor Non-Primitive Data

MOF 1.4 added a set of non-primitive data types. The document production rules for
these data types are defined using the existing production rules in Section 3.3, "EBNF
Rules Representation,” on page 3-2. They are described in the following sections.

3.5.1 Sructure Type

The document production rules for a structure type with structure fields are the same as
for a class with attributes. The production rules for classes are defined starting with
3:0ObjectAsElement. For structure types, use the structure type's name instead of class
name, and the structure field names instead of attribute names.

Example: ST isastructure type with structure fields sf1 (type String) and sf2 (type A).
A is aclass with attributes al (type String) and a2 (type String). Aninstance of ST is
serialized as:

May 2003 XML Metadata I nterchange (XMl), v2.0 3-15

3-16

<ST xmi:id="ST_1" sf1="xxxx">
<sf2 xmi:id="sf2_1" xmi:type="A" al="yyyy" a2="zzzz7"/>
</ST>

3.5.2 Enumeration Type

The document production rules for enumeration types are defined by rules
3i:EnumValueAttrib and 5d:EnumLiteral.

3.5.3 Alias Type

The document production rules for an alias type are the same as for its base type, but
using the alias type's name instead of the base type's name.

3.5.4 Collection Type

The document production rules for a collection type are the same as for a class that has
one attribute with the same type and multiplicity as the collection type. The production
rules for classes are defined starting with 3:ObjectAsElement. For collection types, use

the collection type name instead of class name. Use the collection type's type name
instead of attribute name.

Example: CT is acollection type. CT'stype is A, and it has multiplicity 0.*. Aisa

class with attributes al (type String) and a2 (type String). An instance of CT of size 3
is serialized as:

<CT xmi:id="CT_1">
<A xmi:id="A_1" al="string" a2="another string"/>
<A xmi:id="A_2" al="stuff" a2="more stuff"/>
<A xmi:id="A_3" al="xxxx" a2="yyyy"/>

</CT>

XML Metadata I nterchange (XMl), v2.0 May 2003

4.1

May 2003

Introduction

Production of MOF fromXML 4

Contents

This chapter includes the following topics.

Topic Page
“Introduction 4-1
“DTD to MOF 4-2
“XML to MOF 4-3
“XML Schemato MOF 4-4

XML isincreasingly becoming an information source, supplementing existing sources
such as analysis (UML), software (Java, C++), components (EJB, IDL, Corba
Component Model), and databases (CWM). Although XML does not define objects, it
can be used as an input source of true object definitions by supplementing the XML
with additional information or conventions.

This chapter describes the following algorithms for producing object definitions in
MOF from XML input sources:

» DTD to MOF production
e XML to MOF production
* XML Schemato MOF production.

This section describes mappings to produce MOF declarations from XML documents,
DTDs, and XML schemas. The mappings are not unique since XML-only forms of
information are not rich enough to produce an unambiguous MOF representation.

XML Metadata I nterchange (XMl), v2.0 4-1

4.2 DTDtoMOF

These mechanisms are not necessary for reading XMI documents, since XMl is rich
enough to interchange complete MOF information without loss or ambiguity.

The approach in these productions has been to provide reverse mappings for only the
most common declarations used in XML. The productions are in two parts: rules and
parameterized mappings. Each of the three XML information sources has its own rule
to extract the corresponding class and attribute declarations they represent. The
parameterized mappings are MOF rules to produce the simplest MOF classes and
attributes with specific parameters that may be customized by an implementation that
has additional domain knowledge beyond the production inputs.

When aDTD is used to create a MOF metamodel, the DTD is read declaration by
declaration, and MOF definitions are added accordingly. For each type of declaration,
one of the following MOF definitions is added by following the particular rule. The
mapping may be customized by setting the parameters in the second table.

As an example, this DTD would by default produce these MOF declarations:

DTD:

<IELEMENT Car (Engine, Door*)>

<IATTLIST Car make CDATA #MPLIED model CDATA #IMPLIED>
<IELEMENT Engine (#PCDATA)>

<IELEMENT Door EMPTY>

<IATTLIST Door side CDATA #REQUIRED>

MOF:
ClassCar {
Attribute make: String;
Attribute model : String;
Association engine : Engine 1..* containment one-way;
Association door : Door 1..* containment one-way;

}

ClassEngine{
Attributevalue: String 0..1;
}

ClassDoor {
Attributeside: String 0..1;

}

XML Metadata I nterchange (XMl), v2.0 May 2003

Rule DTD Declaration MOF Definition

1 <IELEMENT E> Class E with Supertype (E).

2 <IATTLIST E A Type Occurs> | Attribute named A of Class E with type AttributeType(E, A, Type) and
multiplicity AttributeMult(E, A, Occurs).

3 <IELEMENT E (F)> TypedElement(E,F) Attribute or Association to Class F and name
RoleName(E, F).

4 <IELEMENT E (#PCDATA)> Attribute named TextName(E) of type AttributeType(E, TextName(E)).

5 <IELEMENT E ANY> TypedElement(E, “ANY”) Attribute or Association to Supertype(“Any”)
and name RoleName(E, “ANY").

Parameters Defaults

Supertype(Element name) Node

AttributeType (Element name, Attribute name, Type name) | String for Type CDATA

AttributeNult (Element name, Attribute name, Occurs style) | 0..1

Lookup MOF type for IDREF

TypedElement (Element name, TypedElementname) Association: containment by value, multiplicity 0..*,

one way navigable, Attribute: multiplicity O..*
RoleName (Element name, TypedElement name) LowerCase TypedElement name
TextName(Element name) “value’

4.3 XML to MOF

May 2003

When an XML document has no additional type information, it is possible to
generalize to produce a minimal MOF representation. The mapping uses the same
optional parameters as the DTD to MOF mapping.

The processing of the generalization follows these steps:
1. Parse the XML document into a DOM tree.
2. Select an existing MOF metamodel or create an empty MOF metamodel.

3. Perform a depth-first traversal of the XML document’s DOM tree. At each node,
apply the appropriate generalization operation from the table, based on the type of
parent and child nodes encountered.

This is an example result from mapping from an XML document to MOF:

XML Metadata Interchange (XMlI), v2.0 4-3

XML:

<Car make="Ford" model="Mustang" >
<Engine>240 HP</Engine>
<Door side="left" />
<Door side="right" />

</Car>

MOF:
ClassCar {

Attribute make: String;

Attribute model : String;

Association engine : Engine 1..* containment one-way;
Association door : Door 1..* containment one-way;

}

ClassEngine{

Attributevalue: String 0..1;

}

ClassDoor {

Attributeside: String 0..1;

}

Rule

DOM Parent Node

DOM Child Node

M OF Definition

Element E

None

Class E with Supertype(E)

Element E

Attribute A

Attribute named A of Class E with type
AttributeType(E,A, “CDATA”) and
multiplicity AttribiteMult(E,A, “#IMPLIED”)

Element E

Element F

TypedElement(E,F) Attribute or Association to Class F and name

RoleName(E,F)

Element E

Text,
CharacterData, or
CDATA Section

Attribute named TextName(E) of type
AttributeType(E, TextName(E))

4.4

4-4

XML Schemato MOF

The following subset of the example of XML Schema, representing a portion of the
purchase order example of the XML Schema specification, part 0, mapped to MOF
using the reverse engineering table below.

The processing follows these steps:

1. The XML Schemais parsed.

XML Metadata Interchange (XMlI), v2.0

May 2003

4

May 2003

2. Schema declarations corresponding to one of the three rules are processed while

traversing the XML Schema depth-first.

XML Schema:

<xsd:schema xmins:xsd=" http://mmw.w3.or g/2001/XM L Schema" >

<xsd:element name=" purchaseOrder" type="PurchaseOrder Type" />

<xsd:element name="comment" type="xsd:string" />

<xsd:complexType name=" PurchaseOr der Type" >
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress' />
<xsd:element name="hill To" type="USAddress' />
<xsd:element ref="comment" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="order Date" type="xsd:date" />
</xsd:complexType>

<xsd:complexType name=" USAddress" >
<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element name="gtreet" type="xsd:string" />
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal" />
</xsd:sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN"

fixed="US" />
</xsd:complexType>

</xsd:schema>

XML Metadata Interchange (XMlI), v2.0

4-5

MOF:

<Class name="PuchaseOrder" >

<attribute name="shipTo" type="USAddress' />
<attribute name="billTo" type="USAddress' />
<attribute name="comment" type="mof:String" multiplicty="0..1"/>
<attribute name="orderDate" type="mof:String" />
</Class>

<Class name="USAddress>

<attribute name="name" type="mof:String" />
<attribute name="street" type="mof:String" />
<attribute name=" city" type="mof:String" />
<attribute name="state" type="mof:String" />
<attribute name="zip" type="mof:Integer" />
<attribute name="country" type="mof:String" />
</Class>

Data types map to “mof:String” unless defined in the user model, except “xsd:decimal”
and its restrictions map to “mof:Integer” and “xsd:boolean” maps to “mof:boolean.”

Rule XML Schema M OF Definition
1 Element(E), ComplexType(E), SimpleType(E) with base (S) | Class E with Supertype(S)
2 Sequence(L), List(L), Choice(L) containing Rule 1 (E2) and | Attribute E2 of AttributeType (E, L, E2) with
minOccurs(min), MaxOccurs(max) multiplicity min..max
3 Attribute(A) Type(T) Attribute A with AttributeType(E, A, T)
4-6 XML Metadata Interchange (XMlI), v2.0 May 2003

XML SchemaModel

Contents

This chapter includes the following topics.

Topic Page
“Introduction 51
“XML Schema Structures 51
“XML Schema Simple Datatypes 5-21

5.1 Introduction

This section describes the MOF model for XML Schema declarations using UML

notation. The model is a straightforward mapping from the XML Schema specification,

where classes in the model have a direct correspondence to a definition in XML
Schema. This definition assumes a strong working knowledge of XML Schema and
refers throughout to the XML Schema specification for the detailed description of
constructs that are defined by XML Schema.

5.2 XML Schema Structures

This model corresponds to the structures defined in the XML Schema Part 1,

Structures.

May 2003 XML Metadata Interchange (XMl), v2.0

5-1

5-2

XSDObject

XSDSchema

whamespacePrefix : String
wtargetNamespace : String
wiversion : String
sAinalDefault : String
wblockDefault : String
selementFormDefault : String
wattributeFormDefault : String
sdanguage : String

1 1

+content | xspschemaContent
0..*
{ordered}
XSDType XSDTopLewelAttrbute XSDAttributeGroup XSDGroup
XSDTopLewvelElement
XSDlInclude

+includedFromAnotherSchema

wschemalocation : String

XSDImport

.ahamespace : String

+importedFromAnotherSchema

Figure5-1 XML Schema top level declarations

whamespacePrefix : String
wschemalocation : String

Thetop level XML SChema declarations consist of the description of the schema itself
(namespace prefix, target namespace, etc.) and the declarations within the schema.
These declarations include global scope Attributes, global scope Elements, attribute
groups, type declarations (extending from XSDGroup), and imports from other

schemas.

XML Metadata Interchange (XMlI), v2.0

May 2003

May 2003

XSDObject

A\

XSDAnnotated Element

XSDAnyAttribute

L

whamespace : String
whrocessContents : String

+anyAttribute
0.1
XSDAttributeG roup 1 +attrGrpReferences | XSDAttributeGroupRef
+refAttribute Group 0.*
0.* | +attribute
XSDAttribute
Zusage : String | +refAttribute +referencedType | XSDSimpleBase
wform : String
wdefault : String 0.* 0.1
‘wfixed : String h 0.1 | t*type
+attribute

type association = Anonymous/unnamed type
referencedType association = Type defined globally

XSDTopLevelAtrbute

+referencedAttribute

+attributeReferences

Figure5-2 XML Schema Attribute Declarations

An XML attribute has a name inherited from X SDNamedElement, and a simple type
that is either defined within its scope or referred to externally. The attribute may be

1.1

annotated.

The attribute may be defined within an attribute group for reuse later. Attribute groups

may refer to other attribute groups.

XML Metadata Interchange (XMlI), v2.0

0.*

XSDAttributeR ef

A top level attribute may be referred to by other attribute uses.

XSDAnNnotatedElement XSDObject XSDNamedElement
XSDS chemaContent
XSDOccurs
XSDElement XSDGroupContent
wabstract : Boolean A

whillable : Boolean _—
+elementContent |Lsdfinal : String
wblock : String
0..* |[idefault : String
wfixed : String
wform : String

XSDTopLewelElement

+content 1..1/\ +referencedElement

+type
0..1

XSDType

0.1

0..* | +elementReferences
XSDElementRef

+referencedType

Figure5-3 XML Schema Element declaration

An Element declaration includes a name from X SDNamedElement, an annotation from
XSDAnnotatedElement, and may be used as content for a schema or a group.

The element may define new types in its own declaration or refer to types declared
elsewhere.

A top level element declaration may be referred to by element references.

5-4 XML Metadata Interchange (XMlI), v2.0 May 2003

+baseType XSDType
0.1

XSDComplexType

XSD AnnotatedElem ent

0.*

XSDObject

XSD Com plexTypeContent

+content

¢

XSDAnyAttribute

+complexTypeContent

0.*

{ordered}

0.1 | +anyAttribute

XSDGroupContent XSDAttribute XSDAttributeGroupRef
XSDAttributeRef
+anyAttribute
0.1 \

¢

XSDSimpleComplex

May 2003

+complexTypeChildren g «

swderivedByExtension : String

.

XSDSimpleContent

XSDComplexContent

Figure5-4 XML Schema Complex type declaration

A complex type is both a type and an annotated element. The complex type has
complexTypeContent that may be a group of types and declared simple or complex
types. The type may have attributes, or refer to attributes or attribute groups.

Complex type contents may be derived by extension or restriction, and may be simple
or complex.

XML Metadata Interchange (XMlI), v2.0

5-6

XSDObject

XSDTotalDigits

XSDWhiteSpace

+content | 0..1

+gtContent

XSDSimpleType

XSDSimpl eRestrict

XSDFractionDigits

XSDLength

XSDSinpleTypeContent

0.*
+enum

XSDMinLength

XSDMaxLength

XSDMaxInclusive

XSDEnumeration

wvalue : String

XSDSimpleList

XSDSimpleUnion

Figure5-5 XML Schema Simple type content declarations

The content of a simple type is described in terms of facets. These facets include
white space, digit representation, length, ranges, patterns, enumerations, unions, and

lists.

XML Metadata Interchange (XMlI), v2.0

XSDPattern
wvalue : String

XSDMinlInclusive

XSDMaxExclusive

0.1

XSDMinExclusive

XSDObject

i

XSDFacet

value : String
wifixed : Boolean

1

XSDLength

XSDMinLength

XSDMaxLength

XSDEnumeration

XSDWhiteSpace

XSDMinlInclusive

XSDMaxInclusive

XSDPattemn

May 2003

XSDMinExclusive

XSDMaxExclusive

XSDFractionDigits

Figure5-6 XML Schema Facets

XSDTotalDigits

There are many types of facets used in simple type content declarations. They share a
common root, XSDFacet, an abstract class that declares the value of the facet, and if

the facet is fixed.

XML Metadata Interchange (XMlI), v2.0

5-8

+elementContent

An element has atype. A type can be referenced by many elements.
type association =Anonymous/unnamed type
referencedType association = Type defined globally

+content

XSDElement

0.1 | treferencedType

+ype XSDType
>
0.1
XSDComplexType XSDSimpleBase +baseType
abstract : Boolean 1L
ifinal : String
\wblock : String {ordered}
\wmixed : Boolean
XSDBuiltinType

\wKind : XSDBui ltinTypeKind

+simpleTypeChildren 0%

XSDSimpleType +stContent | XSDSimpleTypeContent

1

0.1 +content

Figure5-7 XML Schema Type declaration
An XML Schema Type may be declared in a schema or within an element. The type

may be a simple or complex type. Simple types may be one of the built-in, predefined
types from XML Schema part 2, data types, or they may be a user-defined simple type.

XML Metadata Interchange (XMlI), v2.0 May 2003

May 2003

XSDObject

e

. XSDAnnotation
XSDAnnotatedElement 0. Balue : String
+annotate wsource : String
XSDAttribute XSDAttribute Group XSDComplexType XSDDocumenta.uon XSDApplnfo
wlanguage : String
XSDFacet XSDElement XSDSimpleType XSDSchema

Figure5-8 XML Schema annotated elements

Many XML Schema declarations may contain annotations. These elements are

attributes, attribute groups, elements, simple and complex types, facets, and schemas.
An annotation may include documentation or application information.

XML Metadata Interchange (XMlI), v2.0

5-9

5-10

XS DGroupContent +scopeContent

1.*

]

XSDGroup

+referencedGroup XSDGroupRef

T

0..*
+groupReferences

XSDElementRef

L

XSDGro

upSoope

‘wgroupKind : XSDGroupKind

+groupContent

XSDAny

\inamespace : String
LwaprocessContents:: String

Figure5-9 XML Schema group declarations

A group may contain other groups, references to other groups or elements, or contain
declarations of additional groups and elements in terms of choice, sequence, or all.
Groups with Any content may also be declared.

XML Metadata Interchange (XMlI), v2.0

May 2003

XSDElement

May 2003

XSDObject
+unique | XSDUniqueContent *selector [Ty spselector
0.* 1 wvalue : String
‘N
1..% XSDField
wvalue : String
XSDUnique XSDKey XSDKeyRef
+referencedKey 1 +keyReferences
0”*

Figure5-10 XML Schema key declaration
A key declaration is made based on the uniqueness of the content of an element. The

elements contents are measured based on selections on its attributes. Keys may refer to
other keys.

XML Metadata Interchange (XMlI), v2.0 5-11

5-12

XSDNamedElement

whame : String

XSDAttribute

XSDAttributeGroup

XSDComplexType

XSDElement

XSDGroup

XSDSchema

XSDSimpleType

XSDUniqueContent

Figure5-11 XML Schema name declarations

Attributes, attribute groups, elements, simple and complex types, groups, unique

content, and schemas are named.

XSDOccurs

wiminOccurs : String
wmaxOccurs : String

T

XSDAny

XSDElement

wihamespace : String

wprocessContents : String

wabstract : Boolean
whillable : Boolean
wfinal : String

wblock : String

wdefault : String
wfixed : String
wdorm : String

XSDElementRef

XSDGroupRef

XSDGroupScope

wgroupKind : XSDGroupKind

Figure5-12 XML Schema occurrence particles

The occurrence particle in declarations of elements, element references, anys, groups,

and group references is factored into the Occurs abstract class.

5.2.1 XSDSchema

XSDSchema is an XML Schema Declaration.
Extends: XSDObject, XSDNamedElement, X SDA nnotatedElement

XML Metadata Interchange (XMlI), v2.0

May 2003

Attributes:

namespacePrefix : String
targetNamespace : String
version : String

finalDefault : String
blockDefault : String
elementFormDefault : String
attributeFormDefault : String
language : String

5.2.2 XSDAttribute

An XML Schema attribute declaration.
Extends: XSDComplexTypeContent, X SDNamedElement, X SDAnnotatedElement
Attributes:
usage : String
form : String
default : String
fixed : String
5.2.3 XSDElementRef

A reference to an XML Schema element declaration.
Extends. XSDGroupContent, XSDOccurs

5.2.4 XSDAttributeGroup

An XML Schema attribute group declaration.
Extends: X SDSchemaContent, X SDNamedElement, X SDA nnotatedElement

5.2.5 XSDAttributeGroupRef

A reference to an attribute group.
Extends. XSDComplexTypeContent

5.2.6 XSDType

An XML Schema abstract type.
Extends: XSDSchemaContent

5.2.7 XSDBuiltInType

An XML Schema predefined datatype.
Extends: XSDSimpleBase

May 2003 XML Metadata I nterchange (XMl), v2.0 5-13

5.2.8 XSDComplexType

A ComplexType can derive from another Complex Type or another Simple Type.
Complex types may have substantial structure.

Extends: XSDType, X SDNamedElement, X SDAnnotatedElement

Attributes:
abstract : Boolean
final : String
block : String
mixed : Boolean

5.2.9 XSDComplexTypeContent

The content of an XML Schema.
Extends: XSDObject

5.2.10 XSDSchemaContent

The content of an XML Schema.
Extends: XSDObject

5.2.11 XSDElement

An XML Schema element declaration.

Extends: XSDObject, X SDNamedElement, X SDOccurs, X SDAnnotatedElement,
X SDGroupContent, X SDSchemaContent

Attributes:
abstract : Boolean
nullable : Boolean
final : String
block : String
default : String
fixed : String
form : String

5.2.12 XSDSmpleBase

An abstract base class for XML Schema simple types.
Extends: XSDType

5.2.13 XSDPattern

A pattern constraint on a datatype.
Extends: X SDFacet

5-14 XML Metadata I nterchange (XMl), v2.0 May 2003

Attributes:
value : String

5.2.14 XSDEnumeration

An enumeration constraint on a datatype.
Extends: X SDFacet

Attributes:
value : String

5.2.15 XSDInclude

An XML Schema include declaration.
Extends: X SDSchemaContent

Attributes:
schemalocation : String

5.2.16 XSDImport

An XML Schema import declaration.
Extends: X SDSchemaContent

Attributes:

namespace : String
namespacePrefix : String
schemal ocation : String

5.2.17 XSDGroup

An XML Schema group declaration.
Extends: XSDSchemaContent, X SDGroupContent, X SDNamedElement

5.2.18 XSDGroupKind

Declares whether the groups contents will be one of each of its contents, a choice of
one of its contents, or a sequence of all of its contents.

Enumeration literals:
al

choice

sequence

5.2.19 XSDGroupScope

A nested XML Schema group declaration that may be declared as all, choice, or
sequence.

May 2003 XML Metadata I nterchange (XMl), v2.0 5-15

5-16

5.2.20

5221

5.2.22

5.2.23

5.2.24

5.2.25

5.2.26

5.2.27

Extends: XSDGroupContent, XSDOccurs

Attributes:
groupKind : XSDGroupKind

XSDGroupContent

An abstract class representing contents of an XML Schema group declaration.
Extends: XSDComplexTypeContent

XSDGroupRef

A reference to an XML Schema group declaration.
Extends: XSDGroupContent, XSDOccurs

XSDKey

The declaration of a Key.
Extends: XSDUniqueContent

XSDKeyRef

A reference to the declaration of a key.
Extends: XSDUniqueContent

XSDUnique

The concrete declaration of the unique fields.
Extends: XSDUniqueContent

XSDUniqueContent

The type of content that is uniquely keyed.
Extends: XSDObject, X SDNamedElement

XSD S ector

The selector of an XML Schema uniqueness declaration.

Attributes:
value : String

XSDField

The fields to apply the selector of an XML Schema uniqueness declaration.

XML Metadata I nterchange (XMl), v2.0 May 2003

Attributes:
value : String

5.2.28 XSDObject

XSDObject in an abstract superclass to facilitate modeling of XML Schema.

5.2.29 XSDAnnotatedElement

XSDAnnotatedElement is an abstract class for XML Schema constructs that may be
annotated.

Extends. XSDObject

5.2.30 XSDDocumentation

XSD documentation is the documentation of an XML Schema construct.
Extends: X SDAnnotation

Attributes:
language : String

5.2.31 XSDApplnfo

Provides application specific information.
Extends: X SDAnnotation

5.2.32 XSDAnnotation

An XML Schema annotation.
Extends. XSDObject

Attributes:
value : String
source : String

5.2.33 XSDSmpleContent

XML Schema declaration of the content of a simple type.
Extends: XSDSimpleComplex

5.2.34 XSDComplexContent

XML Schema declaration of the content of a simple type.
Extends: XSDSimpleComplex

May 2003 XML Metadata I nterchange (XMl), v2.0 5-17

5.2.35 XSDSmpleComplex

XML Schema extended simple or complex types. Types may be extended by extension
or restriction.

Extends: XSDComplexTypeContent

Attributes:
derivedByExtension : Boolean

5.2.36 XSDSmpleTypeContent

The declaration of simple type contents.
Extends: XSDObject

5.2.37 XSDSmpleRestrict

A simple type restriction.
Extends: XSDSimpleTypeContent

5.2.38 XSDSmpleList

A simple type list.
Extends: XSDSimpleTypeContent

5.2.39 XSDSmpleUnion

A simple type union.
Extends: XSDSimpleTypeContent

5.2.40 XSDSmpleType

An XML Schema simple type declaration. Simple types have minimal structure.
Extends: XSDBuiltInType, X SDNamedElement, X SDAnnotatedElement

5.2.41 XSDFacet

XML Schematype declarations use a series of facets to define the particular behavior.
The XSDFacet is an abstract class that is specialized by the type of facet.

Extends: XSDObject, X SDAnnotatedElement

Attributes:
value : String
fixed : Boolean

5-18 XML Metadata I nterchange (XMl), v2.0 May 2003

5.2.42

5.2.43

5.2.44

5.2.45

5.2.46

5.2.47

5.2.48

5.2.49

5.2.50

May 2003

XSDLength

The length facet.
Extends. X SDFacet

XSDMinLength

The minLength facet.
Extends. X SDFacet

XSDMaxLength

The maxLength facet.
Extends: X SDFacet

XSDMinlnclusive

The mininclusive facet.
Extends: X SDFacet

XSDMaxInclusive

The maxInclusive facet.
Extends: X SDFacet

XSDMinExclusive

The minExclusive facet.
Extends: X SDFacet

XSDMaxExclusive

The maxExclusive facet.
Extends: X SDFacet

XSDTotal Digits

The totalDigits facet.
Extends. X SDFacet

XSDFractionDigits

The fractionDigits facet.

XML Metadata Interchange (XMlI), v2.0

5-19

Extends: X SDFacet

5.2.51 XSDWhiteSpace

The whiteSpacefacet.
Extends: X SDFacet

5.2.52 XSDAny

The Any content for an XML Schema group content declaration.
Extends: XSDGroupContent, XSDOccurs

Attributes:
namespace : String
processContents : String

5.2.53 XSDAnyAttribute

The XML Schema reference to any attributes with non-schema namespace.
Extends: XSDObject
Attributes:

namespace : String
processContents : String
5.2.54 XDAttributeRef

A reference to an XML attribute.
Extends. XSDComplexTypeContent

5.2.55 XSDNamedElement

Attributes:
name : String

5.2.56 XSDOccurs

An abstract class representing the min and max occurrence of an XML Schema
particle.

Attributes:
minOccurs : String
maxOccurs : String

5.2.57 XSDTopLevel Attrbute

Attributes at the top level of a schema may be referenced from other declarations.

5-20 XML Metadata I nterchange (XMl), v2.0 May 2003

Extends: X SDAttribute, X SDSchemaContent

5.2.58 XSDTopLevel Element

Elements at the top level of a schema may be referenced from other declarations.
Extends: X SDElement, X SDSchemaContent

5.3 XML Schema Smple Datatypes

The XML Schema simple data types are defined in terms of a basic set of simple
primitive types and a set of commonly used derived types.

Each data type is constrained in terms of the applicable facets described in the
XSDFacets in Section 5.2, " XML Schema Structures,” on page 5-1. Each facet is a
subclass of the abstract XSDFacet. The data types use specific facets, modeled as the
data types’ attributes.

May 2003 XML Metadata I nterchange (XMl), v2.0 5-21

XSDBuiltinType
(from>mischene)

T
Z% +itemType

XSDDoubleType
XSDHFoatType XSDStringType
<<*>> enumeration : XSDF oa Seiacaunre aionXsDooubla o XSDRecuringDurationType
<<*>> enumeration : String period : String XSDQNameType XSDUnionType
/[\ duration : String <<*>>enumeration : XSDQName <<*>>enumeration : XSDObject
N <<*>> enumeration : XSDRecurringDuratior)
\ | | e
l ‘ ‘ +memberTypes
XSDDedmalType XSDBooleanType I 1.%
precision : Integer \ ‘ ‘ ‘ XSDBinaryType
scale : Integer \7—‘ XSDListType XSDTimeDurationType —— | XSDUF Type XSDType
<<*>> enumeration : XSDDecimal ‘ <<>> enumeration - XSDList ‘ <55 enumeration - XSDTimeDuration ‘ oy enumevallun:c";g%&na <<*b> enumeration : XSDURReferencd | (romsmisches)
XSDObject ; ™ |
//\ (fomxmischema) ‘ 7\ ‘ ~ ‘ A | N
/ ! | | |
[I [X 1 IT f

XSDTimeDuration J ’
}:“ XSDBinary XSDURIReference
 —

‘ XSDDecimal ‘ ‘ XSDFloat ‘ ‘ XSDBoolean ‘ ‘ xSDDouh\e‘ ‘ XSDLigt ‘
1 | | | |
A

[|
L]
[— | E—4
XSDinteger ’—L XSDQName
 — XSDRecurringDuration o
— XSDIDREFS o G 8LERL;
A — localPart : XSDNCName:
/1

[XsDRecuringDay | | [xSDRecuringDate | [xsDTime |
L 1 L 1 L 1
[I | [|

I T 1
‘ XSDLong ‘ ‘XSDl\anostlvelmeger‘ ‘XSDf\hnl\bganvelnteger
[il i
[J 1 J [

XSDint XSDNeg g ! 1
‘ XSDUnsignedLong H xSDPosnve\nteger‘
[I I 1
A [|-

[] []
XSDShort A r 4 T T
XSDUnsignedint
XSDName | | XSDNMTOKEN ‘ XSDDate ‘ ‘XSDMOMN ‘ ‘ XSDYear‘ XSDCertury
[il 1 [il i 1
[J 1 I] :‘

‘)GDTlmePenm‘ ‘ XSDTimelnstant ‘
[1 [1

[]
A —
XSDUnsignedShort
XSDNCName

=
Q
i

XSDID XSDIDREF
 — —
[1

Figure5-13 XML Schema data types

The XML Schema model consists of a set of basic primitive types, all of which have a
“type” suffix. These types are then instantiated as a set of type instances that may be
referred to in user schema definitions. These instantiated types are then further
specialized to provide a wide range of useful derived types. The derivation of these
types is described in terms of restriction as opposed to extension.

5-22 XML Metadata Interchange (XMlI), v2.0 May 2003

May 2003

XSDDecimalRange

maxExclusive : XSDMaxExclusive
maxinclusive : XSDMaxInclusive
minExclusive : XSDMinExclusive
mininclusive : XSDMinlInclusive

=

XSDDecimalType

XSDDoubleType

XSDFloatType

precision : Integer
scale : Integer
<<*>>enumeration : XSDDecimal

<<*>>enumeration : XSDDouble

<<*>>enumeration : XSDFloat

XSDRecurringDurationType

XSDTimeDurationType

period : String
duration : String

<<*>>enumeration : XSDRecurringDuration

<<*>>enumeration : XSDTimeDuration

Figure 5-14 XSL Schema types with decimal ranges

The X SDDecimal Range abstract class consolidates the declarations of the decimal

range inclusive and exclusive minimum and maximum.

XSDintegerRange

length : XSDLength
maxLength : XSDMaxLength
minLengthXSDMinLength

b

XMLNCNameType

<<*>> enumeration : XMLNCName

XSDBinaryType

encoding : XSDEncoding
<<*>> enumeration : XSDBinary

XSDListType

<<*>>enumeration : XSDList

XS DQNameType

XSDStringType

XSDURIReferenceType

<<*>> enumeration : XSDQName

<<*>> enumeration : String

<<*>> enumeration : XSDURIReference

whiteSpace : XSDWhiteSpace

Figure5-15 XSL Schematypes with integer ranges

The XSDIntegerRange abstract class consolidates the declarations of the integer range

in terms of length, minimum length, and maximum length.

XML Metadata Interchange (XMlI), v2.0

5-24

XSDPatterned

pattern : XSDPattern

XMLNCNameType

XSDBinaryType

XSDBooleanType

XSDDecim alType

XSDFloatType

XSDStringType

XSDQNameType

XSDDoubleType

XSDRecurringDurationType

XSDURIReferenceType

XSDUnionType

XSDTimeDurationType

Figure 5-16 XML Schema pattern facet used in types

The pattern facet, enabling matches of the types to conform to a regular expression, is
used by the majority of the primitive data typesin XML Schema.

5.3.1 XSDDate

The XML Schema date data type.

Extends: XSDTimePeriod

5.3.2 XSDDecimal

The XML Schema decimal data type.
Extends: XSDObject

5.3.3 XSDDecimal Type

An XML Schema decimal type definition.
Extends: XSDBuiltInType, XSDDecimalRange, X SDPatterned
Attributes:
precision : Integer
scale : Integer
enumeration : XSDDecimal

XML Metadata Interchange (XMlI), v2.0

May 2003

May 2003

534

535

5.3.6

5.3.7

5.3.8

539

5.3.10

5311

XSDDouble

The XML Schema double data type.
Extends. XSDObject

XSDCentury

The XML Schema century data type.
Extends: XSDTimePeriod

XSDBinary

The XML Schema binary data type.
Extends. XSDObject

XSDBinaryType

An XML Schema binary type definition.
Extends: XSDBuiltInType, XSDIntegerRange, X SDPatterned

Attributes:
encoding : XSDEncoding
enumeration : XSDBinary

XSDBooleanType

An XML Schema boolean type definition.
Extends: XSDBuiltInType, XSDPatterned

XSDBoolean

The XML Schema boolean data type.
Extends. XSDObject

XSDByte

The XML Schema byte data type.
Extends: XSDShort

XSDDoubleType

An XML Schema double type definition.
Extends: XSDDecimalRange, X SDPatterned, XSDBuiltInType

XML Metadata I nterchange (XMl), v2.0 5-25

5-26

5.3.12

5.3.13

5.3.14

5.3.15

5.3.16

5.3.17

5.3.18

5.3.19

Attributes:
enumeration : XSDDouble
XSDFloat

The XML Schema float data type.
Extends: XSDObject

XSDFloatType

An XML Schema floating type definition.
Extends: XSDDecimalRange, X SDPatterned, XSDBuiltInType

Public Attributes:
enumeration : XSDFloat

XDInt

The XML Schema int data type.
Extends: XSDLong

XSDInteger

The XML Schema integer data type.
Extends: XSDDecimal

XSDCDATA

The XML Schema CDATA data type.
Extends: XSDString

XSDID
Extends: XSDNCName

XSDIDREF
Extends: XSDNCName

XSDIDREFS

The XML Schema IDREFS data type.
Extends: XSDList

XML Metadata Interchange (XMlI), v2.0

May 2003

May 2003

5.3.20

5.3.21

5.3.22

5.3.23

5.3.24

5.3.25

5.3.26

5.3.27

XSDListType

An XML Schema list type definition.
Extends: XSDBuiltInType, XSDIntegerRange

Attributes:
enumeration : XSDList

XSDList

The XML Schema list data type.
Extends. XSDObject

XSDLong

The XML Schema long data type.
Extends: XSDInteger

XSDMonth

The XML Schema month data type.
Extends. XSDTimePeriod

XSDName

The XML Schema name data type.
Extends: XSDToken

XSDNCName

The XML Schema NCName data type.
Extends: XSDName

XSDNegativel nteger

The XML Schema negative integer type.
Extends: XSDNonPositivel nteger

XSONMTOKEN

The XML Schema NMToken data type.
Extends: XSDStringType, XSDToken

XML Metadata Interchange (XMlI), v2.0

5-27

5.3.28 XSDNonNegativel nteger

The XML Schema non-negative integer data type.
Extends: XSDInteger

5.3.29 XSDNonPositivel nteger

The XML Schema non-positive integer data type.
Extends: XSDInteger

5.3.30 XSDPositivel nteger

The XML Schema positive integer data type.
Extends: XSDNonNegativel nteger

5.3.31 XSDQName

The XML Schema QName data type.
Extends. XSDObject

Attributes:
namespaceName : XSDURIReference
localPart : XSDNCName

5.3.32 XSDQNameType

An XML Schema qualified name type definition.
Extends: XSDBuiltInType, XSDIntegerRange, X SDPatterned

Attributes:
enumeration : XSDQName

5.3.33 XSDRecurringDate

The XML Schema recurring date data type.
Extends: XSDRecurringDuration

5.3.34 XSDRecurringDay

The XML Schema recurring day data type.
Extends: XSDRecurringDuration

5-28 XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

5.3.35 XSDRecurringDuration

The XML Schema recurring duration data type.
Extends. XSDObject

5.3.36 XSDRecurringDurationType

An XML Schema recurring duration type definition.
Extends: XSDBuiltInType, XSDDecimalRange, X SDPatterned

Attributes:

period : String

duration : String

enumeration : X SDRecurringDuration

5.3.37 XSDShort

The XML Schema short data type.
Extends: XSDInt

5.3.38 XSDToken

The XML Schema token data type.
Extends: XSDCDATA

5.3.39 XSDSring

The XML Schema string data type.
Extends: XSDObject

5.3.40 XSDSringType

An XML Schema string type definition.
Extends: XSDBuiltInType, XSDIntegerRange, X SDPatterned

Attributes:
enumeration : String
whiteSpace : X SDWhiteSpace

5.3.41 XSDTime

The XML Schema time data type.
Extends: XSDRecurringDuration

XML Metadata I nterchange (XMl), v2.0 5-29

5.3.42 XSDTimeDuration

The XML Schema time duration data type.
Extends. XSDObject

5.3.43 XSDTimeDurationType

An XML Schema time duration type definition.
Extends: XSDBuiltInType, XSDDecimalRange, X SDPatterned

Attributes:
enumeration : XSDTimeDuration

5.3.44 XSDTimel nstant

The XML Schema time instant data type.
Extends: XSDRecurringDuration

5.3.45 XSDTimePeriod

The XML Schema time period data type.
Extends: XSDRecurringDuration

5.3.46 XSDUnionType

An XML Schema union type definition. The member types association are the set of
possible types allowed in the union.

Extends: XSDBuiltInType, X SDPatterned

Attributes:
enumeration : XSDObject

5.3.47 XSDUnsignedByte

The XML Schema unsigned byte data type.
Extends: XSDUnsignedShort

5.3.48 XSDUnsignedint

The XML Schema unsigned int data type.
Extends: XSDUnsignedLong

5-30 XML Metadata Interchange (XMlI), v2.0 May 2003

5.3.49 XSDUnsignedLong

The XML Schema unsigned long data type.
Extends: XSDNonNegativel nteger

5.3.50 XSDUnsignedShort

The XML Schema unsigned short data type.
Extends: XSDUnsignedint

5.3.51 XSDURIReference

The XML Schema URI Reference data type.
Extends. XSDObject

5.3.52 XSDURIReferenceType

An XML Schema URI reference type definition.
Extends: XSDBuiltInType, XSDIntegerRange, X SDPatterned

Attributes:
enumeration : XSDURIReference

5.3.53 XSDValueConstraint

Attributes:
use : XSDUse
value : XSDString

5.3.54 XSDYear

The XML Schema year data type.
Extends. XSDTimePeriod

5.3.55 XSDDecimalRange

An abstract class consolidating the min and max inclusive and exclusive range.

Attributes:
maxExclusive : XSDMaxExclusive
maxInclusive : XSDMaxInclusive
minExclusive : XSDMinExclusive
mininclusive : XSDMinlnclusive

XML Metadata I nterchange (XMl), v2.0 5-31

5-32

5.3.56 XSDIntegerRange

An abstract class consolidating the length, min and max range.

Attributes:
length : XSDLength
maxLength : XSDMaxLength
minLengthX SDMinLength :

5.3.57 XSDPatterned

An abstract class consolidating the pattern regular expression.

Attributes:
pattern : XSDPattern

XML Metadata Interchange (XMlI), v2.0

May 2003

Al

Conformancel ssues A

Introduction

This section describes the required and optional points of compliance with the XMI
specification. “XMI Document” and “XMI Schema” are defined as documents and

schemas produced by the XMI production (document and XML schema) rules defined
in this specification.

A.2 Required Compliance

May 2003

A.2.1 XMI Schema Compliance

Comment: FTF Issue 4663: clarify equivalence

XMI Schemas must be equivalent to those generated by the XMI Schema production
rules specified in this document. Equivalence means that XMI documents that are valid
under the XMI Schema production rules would be valid in a conforming XMI Schema
and that those XMI documents that are not valid under the XMI Schema production
rules are not valid in a conforming XMI Schema.

A.2.2 XMI Document Compliance

XMI Documents are required to conform to the following points:

» The XMI document must be “valid” and “well-formed” as defined by the XML
recommendation, whether used with or without the document’s corresponding XMl
Schema(s). Although it is optional not to transmit and/or validate a document with
its XMI Schema(s), the document must still conform as if the check had been made.

XML Metadata I nterchange (XMl), v2.0 A-1

» The XMI document must be equivalent to those generated by the XMI Document
production rules specified in this document. Equivalence for two documents
requires a one to one correspondence between the elements in each document, each
correspondence identical in terms of element name, element attributes (name and
value), and contained elements. Elements declared within the XMI documentation
and extension elements are excepted.

Comment: FTF issue 4706: add section A.2.3.

A.2.3 Software Compliance

Software is XMI schema compliant when it produces XML schemas that are XM|I
schema compliant.

Software is XMI document compliant when it produces or consumes XML documents
that are XMI document compliant.

A.3 Optional Compliance Points

A-2

A.3.1 XMI Extension and Differences Compliance

XMI Documents optionally conform to the following points:

e The guidelines for using the extension elements suggested in Section 1.5, "XMI
Model,” on page 1-5 and Section 1.11, " Tailoring Schema Production,” on page
1-25. Tools should place their extended information within the designated extension
areas, declare the nature of the extension using the standard XMI elements where
applicable, and preserve the extensions of other tools where appropriate.

» Processing of XMI differencing elements (Section 1.12, " Transmitting Metadata
Differences,” on page 1-32) is an optional compliance point.

Comment: FTF issue 4608: corrected cross references.

A.3.2 Reverse engineering Compliance

» Each of the reverse engineering productions in this Appendix is an independent
optional compliance point:
* XML to MOF
« DTD to MOF
» Schemato MOF

XML Metadata I nterchange (XMl), v2.0 May 2003

May 2003

A.3.3 XML Schema Model Compliance

Use of the normative XML Schema model by instantiation, code generation,
invocation, or serialization as defined by the MOF specification and this XMl
specification for metamodel document and schema conformance.

XML Metadata Interchange (XMlI), v2.0

A-3

A-4

XML Metadata I nterchange (XMl), v2.0

May 2003

[XML]
[XMLSchemal]

[NAMESP]
[XLINK]

[XPath]
[UML]
[MOF]
[XMI]

References B

XML, atechnical recommendation standard of the W3C. http://www.w3.0rg/TR/REC-xml

XML Schemas, a proposed recommendation of the W3C.
Primer: http://www.w3.0rg/TR/xmlIschema-0/,

Structured types: http://www.w3.org/TR/xmlschema-1/ and
Data types: http://www.w3.org/TR/xmIschema-2/ .

Namespaces, a technical recommendation of the W3C. http://www.w3.org/TR/REC-xml-names

XLinks, a working draft of the W3C. http://www.w3.0org/TR/WD-xlink and
http://www.w3.0rg/TR/NOTE-xlink-principles

XPointer, technical recommendation of the W3C. http://www.w3.org/TR/xpath
UML, an adopted standard of the OMG. http://www.omg.org
MOF 1.4, an adopted standard of the OMG. http://www.omg.org

XMI 1.2, an adopted standard of the OMG. http://www.omg.org

The following is the Open Group DCE standard on UUIDs.

[UUID]

May 2003

CAE Specification

DCE 1.1: Remote Procedure Call

Document Number: C706

http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm (Definition/creation of UUIDs).

XML Metadata Interchange (XMl), v2.0

B-1

B-2

XML Metadata I nterchange (XMI), v2.0

May 2003

| ndex

A

Addclass 1-11

Affect 1-31

Aliastype 2-14, 3-16
Attribute 1-17, 1-28
Attribute specification 1-17
Attributes 1-12

C

Class 1-17

Class schema 2-3

Class specification 1-17
Collection type 2-14, 3-16
Compliance A-1

Containment specification 1-20
Content structure 3-3

D

Datatypes 3-15

Datatype mechanism 1-37

DCE 1-13

Declarations 1-4

Definitions 1-32

Deleteclass 1-11

Derived information 1-20
Derived types and references 3-15
Differenceclass 1-11
Differences 1-32, 1-33
Document exchange 1-35
Document production 1-29
Document production rules 3-15
Document structure 3-2
Documentation class 1-10

DTD to MOF 4-2

E

EBNF notation 2-1

EBNFrules 3-2

Element 1-28

Enumeration type 2-14, 3-16

Extended Backus Naur Form (EBNF) 3-2
Extensions 1-4

F
Fixed schema declarations 2-9

G
General datatype mechanism 1-37

|

Incomplete metadata 1-20
Inheritance 3-12

Inheritance specification 1-20
Interchange of model fragments 1-20

L

Linking 1-21, 1-22
Linking requirements 1-22

M
Metadata differences 1-32
Metamodel class representation 1-4

May 2003

Metamodel class specification 1-15
Metamodel extension mechanism 1-4
Model classes 1-6

MOF 4-2, 4-3, 4-4

Multipletools 1-35

N

Namespace 1-16
Nested packages 3-13
Notation for EBNF 2-1

o
Object contents 3-9
Object structure 3-4

P

Package schema 2-3
Packages 3-11
Procedures 1-36
Production rules 3-2

R

Reference specification 1-19
References 3-7

Replace class 1-11

Required XML declarations 1-4
Requirements for XMI schemas 1-3

S

Schema production 1-25
Schema production rules 2-14
Scope 1-28, 1-31

Simple datatypes 5-21
Simple XLinks 1-14
Structure type 2-14, 3-15
Structures 5-1

T
Tag value congtraints 1-27

Tag-Vaue 1-18

Tailoring schema production 1-25
Timestamp 1-9

Transmitting Incomplete Metadata 1-20
Transmitting Metadata Differences 1-32
Type 1-15

Type attribute 1-14

u

UML example 1-24

UML profilefor XML and XMI 1-28
UuID 1-13

\%

Vaue 1-18

verified 1-9

Version attribute 1-14

X

XLinks 1-22

Xmi
extenderlD 1-10
id 1-13
idref 1-14

XML Metadata Interchange, v2.0 Index-1

| ndex

label 1-13

position 1-11

uuid 1-13

version 1-9
XMI element 1-8
XMI encoding 1-21, 1-33
XMI model 1-5
XMI model classes 1-6
XMI tags 1-26
XMI.element.att 1-12
XMl.extension 1-9
XMl.link.att 1-14
XMIDataType 1-18
XML attribute only 1-28
XML element only 1-28
XML schemaannotated elements 5-9
XML schema attribute declarations 5-3
XML schema complex type declaration 5-5
XML schema element declaration 5-4
XML schemafacets 5-7
XML schemafor the XMI model 1-6
XML schemagroup declarations 5-10
XML schemakey declaration 5-11
XML schemaname declarations 5-12
XML schema occurrence particles 5-12
XML schema pattern facet used in types 5-23
XML schemasimple datatypes 5-21
XML schema simple type content declarations 5-6
XML schemato MOF 4-4
XML schematop level declarations 5-2
XML schematype declaration 5-8
XML to MOF 4-3
XSDAnnotatedElement 5-17
XSDAnnotation 5-17
XSDAny 5-20
XSDAnyAttribute 5-20
XSDApplnfo 5-17
X SDAttribute 5-13
X SDAttributeGroup 5-13
XSDAttributeGroupRef 5-13
XSDAttributeRef 5-20
XSDBinary 5-24
XSDBinaryType 5-24
XSDBoolean 5-24
XSDBooleanType 5-24
XSDBuUIiltInType 5-13
XSDByte 5-24
XSDCDATA 5-25
XSDCentury 5-24
XSDComplexContent 5-17
XSDComplexType 5-14
XSDComplexTypeContent 5-14
XSDDate 5-23
XSDDecima 5-23
XSDDecimaRange 5-30
XSDDecima Type 5-23
XSDDocumentation 5-17
XSDDouble 5-24
XSDDoubleType 5-24
XSDElement 5-14
XSDElementRef 5-13

XSDEnumeration 5-15
XSDFacet 5-18
XSDField 5-16
XSDFloat 5-25
XSDFloatType 5-25

X SDFractionDigits 5-19
XSDGroup 5-15
XSDGroupContent 5-16
XSDGroupKind 5-15
XSDGroupRef 5-16
XSDGroupScope 5-15
XSDID 5-25
XSDIDREF 5-25
XSDIDREFS 5-25
XSDImport 5-15
XSDInclude 5-15
XSDint 5-25
XSDInteger 5-25
XSDIntegerRange 5-31
XSDKey 5-16
XSDKeyRef 5-16
XSDLength 5-18
XSDList 5-26
XSDListType 5-26
XSDLong 5-26
XSDMaxExclusive 5-19
XSDMaxInclusive 5-19
XSDMaxLength 5-19
XSDMinExclusive 5-19
XSDMinlInclusive 5-19
XSDMinLength 5-19
XSDMonth 5-26
XSDName 5-26
XSDNamedElement 5-20
XSDNCName 5-26

X SDNegativelnteger 5-26
XSDNMTOKEN 5-26

X SDNonNegativelnteger 5-27
X SDNonPositivelnteger 5-27
XSDObject 5-17
XSDOccurs 5-20
XSDPattern 5-14
XSDPatterned 5-31
XSDPositivelnteger 5-27
XSDQName 5-27
XSDQNameType 5-27

X SDRecurringDate 5-27
XSDRecurringDay 5-27
XSDRecurringDuration 5-28
XSDRecurringDurationType 5-28
XSDSchema 5-12
XSDSchemaContent 5-14
XSDSelector 5-16
XSDShort 5-28
XSDSimpleBase 5-14
XSDSimpleComplex 5-17
XSDSimpleContent 5-17
XSDSimpleList 5-18
XSDSimpleRestrict 5-18
XSDSimpleType 5-18
XSDSimpleTypeContent 5-18

Index-2 XML Metadata Interchange, v2.0 May 2003

| ndex

XSDSimpleUnion 5-18
XSDString 5-28
XSDStringType 5-28
XSDTime 5-28
XSDTimeDuration 5-29
XSDTimeDurationType 5-29
XSDTimelnstant 5-29
XSDTimePeriod 5-29
XSDToken 5-28
XSDTopLevelAttrbute 5-20
XSDTopLevelElement 5-20
XSDTotaDigits 5-19
XSDType 5-13
XSDUnionType 5-29

May 2003

XSDUnique 5-16

XSDUniqueContent 5-16
XSDUnsignedByte 5-29

XSDUnsignedint 5-29

XSDUnsignedLong 5-30
XSDUnsignedshort 5-30
XSDURIReference 5-30
XSDURIReferenceType 5-30
XSDVaueConstraint 5-30
XSDWhiteSpace 5-19

XSDYear 5-30

XSL schematypes with decimal ranges 5-22
XSL schematypes with integer ranges 5-22

XML Metadata Interchange, v2.0 Index-3

| ndex

Index-4 XML Metadata Interchange, v2.0 May 2003

XML Metadata Interchange (XMl), v2.0
Reference Sheet

The XMI Production of XML Schema has been split into 2 documents. Version 2.0 defines XMI Version 2,
which leverages new featuresin XML schemas that are not availablein DTDs.

The following OMG documents were used to produce this specification:
* ad/01-06-12 - submission document
* ad/01-06-13 - extrafiles
e ptc/02-06-01 - FTF report

e ptc/02-06-03 - convenience document

May 6, 2003 1

May 13, 2003

	Preface
	1. XMI Schema Design Principles
	1.1 Purpose
	1.2 Use of XML Schemas
	1.2.1 XML Validation of XMI documents
	1.2.2 Requirements for XMI Schemas

	1.3 Basic Principles
	1.3.1 Required XML Declarations
	1.3.2 Metamodel Class Representation
	1.3.3 Metamodel Extension Mechanism

	1.4 XMI Schema and Document Structure
	1.5 XMI Model
	1.5.1 XML Schema for the XMI Model
	1.5.2 XMI Model classes
	1.5.3 XMI
	1.5.4 Extension
	1.5.5 Documentation
	1.5.6 Add, Replace, and Delete

	1.6 XMI Attributes
	1.6.1 Element Identification Attributes
	1.6.2 Linking Attributes
	1.6.3 Version Attribute
	1.6.4 Type Attribute

	1.7 XMI Type
	1.8 Metamodel Class Specification
	1.8.1 Namespace Qualified XML Element Names
	1.8.2 Metamodel Multiplicities
	1.8.3 Class specification
	1.8.4 Attribute Specification
	1.8.5 Reference Specification
	1.8.6 Containment Specification
	1.8.7 Inheritance Specification
	1.8.8 Derived Information

	1.9 Transmitting Incomplete Metadata
	1.9.1 Interchange of model fragments
	1.9.2 XMI encoding
	1.9.3 Example

	1.10 Linking
	1.10.1 Design principles
	1.10.2 Linking
	1.10.3 Example from UML

	1.11 Tailoring Schema Production
	1.11.1 XMI Tag Values
	1.11.2 Tag Value Constraints
	1.11.3 Scope
	1.11.4 XML element vs XML attribute
	1.11.5 UML profile for XML and XMI
	1.11.6 Effects on Document Production
	1.11.7 Summary of XMI Tag Scope and Affect

	1.12 Transmitting Metadata Differences
	1.12.1 Definitions
	1.12.2 Differences
	1.12.3 XMI encoding
	1.12.4 Example

	1.13 Document Exchange with Multiple Tools
	1.13.1 Definitions
	1.13.2 Procedures
	1.13.3 Example

	1.14 General Datatype Mechanism

	2. XML Schema Production
	2.1 Purpose
	2.2 XMI Version 2 Schemas
	2.2.1 EBNF
	2.2.2 Fixed Schema Declarations
	2.2.3 Schema Production Rules for Non-Primitive Data

	3. XML Document Production
	3.1 Purpose
	3.2 Introduction
	3.3 EBNF Rules Representation
	3.3.1 Overall Document Structure
	3.3.2 Overall Content Structure
	3.3.3 Object Structure
	3.3.4 References
	3.3.5 Object Contents
	3.3.6 Packages
	3.3.7 Attributes
	3.3.8 Other Types of Links

	3.4 Additional Examples
	3.4.1 Inheritance
	3.4.2 Nested Packages
	3.4.3 Derived Types and References

	3.5 Document Production Rules for Non-Primitive Data
	3.5.1 Structure Type
	3.5.2 Enumeration Type
	3.5.3 Alias Type
	3.5.4 Collection Type

	4. Production of MOF from XML
	4.1 Introduction
	4.2 DTD to MOF
	4.3 XML to MOF
	4.4 XML Schema to MOF

	5. XML Schema Model
	5.1 Introduction
	5.2 XML Schema Structures
	5.2.1 XSDSchema
	5.2.2 XSDAttribute
	5.2.3 XSDElementRef
	5.2.4 XSDAttributeGroup
	5.2.5 XSDAttributeGroupRef
	5.2.6 XSDType
	5.2.7 XSDBuiltInType
	5.2.8 XSDComplexType
	5.2.9 XSDComplexTypeContent
	5.2.10 XSDSchemaContent
	5.2.11 XSDElement
	5.2.12 XSDSimpleBase
	5.2.13 XSDPattern
	5.2.14 XSDEnumeration
	5.2.15 XSDInclude
	5.2.16 XSDImport
	5.2.17 XSDGroup
	5.2.18 XSDGroupKind
	5.2.19 XSDGroupScope
	5.2.20 XSDGroupContent
	5.2.21 XSDGroupRef
	5.2.22 XSDKey
	5.2.23 XSDKeyRef
	5.2.24 XSDUnique
	5.2.25 XSDUniqueContent
	5.2.26 XSDSelector
	5.2.27 XSDField
	5.2.28 XSDObject
	5.2.29 XSDAnnotatedElement
	5.2.30 XSDDocumentation
	5.2.31 XSDAppInfo
	5.2.32 XSDAnnotation
	5.2.33 XSDSimpleContent
	5.2.34 XSDComplexContent
	5.2.35 XSDSimpleComplex
	5.2.36 XSDSimpleTypeContent
	5.2.37 XSDSimpleRestrict
	5.2.38 XSDSimpleList
	5.2.39 XSDSimpleUnion
	5.2.40 XSDSimpleType
	5.2.41 XSDFacet
	5.2.42 XSDLength
	5.2.43 XSDMinLength
	5.2.44 XSDMaxLength
	5.2.45 XSDMinInclusive
	5.2.46 XSDMaxInclusive
	5.2.47 XSDMinExclusive
	5.2.48 XSDMaxExclusive
	5.2.49 XSDTotalDigits
	5.2.50 XSDFractionDigits
	5.2.51 XSDWhiteSpace
	5.2.52 XSDAny
	5.2.53 XSDAnyAttribute
	5.2.54 XSDAttributeRef
	5.2.55 XSDNamedElement
	5.2.56 XSDOccurs
	5.2.57 XSDTopLevelAttrbute
	5.2.58 XSDTopLevelElement

	5.3 XML Schema Simple Datatypes
	5.3.1 XSDDate
	5.3.2 XSDDecimal
	5.3.3 XSDDecimalType
	5.3.4 XSDDouble
	5.3.5 XSDCentury
	5.3.6 XSDBinary
	5.3.7 XSDBinaryType
	5.3.8 XSDBooleanType
	5.3.9 XSDBoolean
	5.3.10 XSDByte
	5.3.11 XSDDoubleType
	5.3.12 XSDFloat
	5.3.13 XSDFloatType
	5.3.14 XSDInt
	5.3.15 XSDInteger
	5.3.16 XSDCDATA
	5.3.17 XSDID
	5.3.18 XSDIDREF
	5.3.19 XSDIDREFS
	5.3.20 XSDListType
	5.3.21 XSDList
	5.3.22 XSDLong
	5.3.23 XSDMonth
	5.3.24 XSDName
	5.3.25 XSDNCName
	5.3.26 XSDNegativeInteger
	5.3.27 XSDNMTOKEN
	5.3.28 XSDNonNegativeInteger
	5.3.29 XSDNonPositiveInteger
	5.3.30 XSDPositiveInteger
	5.3.31 XSDQName
	5.3.32 XSDQNameType
	5.3.33 XSDRecurringDate
	5.3.34 XSDRecurringDay
	5.3.35 XSDRecurringDuration
	5.3.36 XSDRecurringDurationType
	5.3.37 XSDShort
	5.3.38 XSDToken
	5.3.39 XSDString
	5.3.40 XSDStringType
	5.3.41 XSDTime
	5.3.42 XSDTimeDuration
	5.3.43 XSDTimeDurationType
	5.3.44 XSDTimeInstant
	5.3.45 XSDTimePeriod
	5.3.46 XSDUnionType
	5.3.47 XSDUnsignedByte
	5.3.48 XSDUnsignedInt
	5.3.49 XSDUnsignedLong
	5.3.50 XSDUnsignedShort
	5.3.51 XSDURIReference
	5.3.52 XSDURIReferenceType
	5.3.53 XSDValueConstraint
	5.3.54 XSDYear
	5.3.55 XSDDecimalRange
	5.3.56 XSDIntegerRange
	5.3.57 XSDPatterned

	A. Conformance Issues
	A.1 Introduction
	A.2 Required Compliance
	A.2.1 XMI Schema Compliance
	A.2.2 XMI Document Compliance
	A.2.3 Software Compliance

	A.3 Optional Compliance Points
	A.3.1 XMI Extension and Differences Compliance
	A.3.2 Reverse engineering Compliance
	A.3.3 XML Schema Model Compliance

	B. References
	Index
	Reference Sheet

