
1

CORBA vs. DCOM:

 Solutions for the Enterprise

META Group Consulting
March 20, 1998

META Group Consulting 2

Introduction
At the enterprise level, expectations for distributed computing technologies are very high and often outstrip
the capabilities of available vendor offerings. IT professionals at many levels are asking, “Which
middleware best fits the short and long-term requirements of the enterprise?” Without a clear mapping of
enterprise needs to the strengths of various technologies, no clear answer exists. Moreover, vendor
marketing and differentiation efforts often serve only to confuse the situation further.

The enterprise middleware battle is raging. Businesses no longer can resist the promise of middleware in
providing a nimble framework upon which business applications can be integrated, cost-effectively built,
and flexibly extended. For the enterprise, the attractiveness of middleware lies in its tremendous flexibility
potential, which gives middleware the ability to accommodate numerous design paradigms, implementation
strategies, and exploit maximum levels of reuse. As the glue that connects business applications together,
middleware is now seen as the essential ingredient for component development and deployment in the
distributed enterprise environment. The following table indicates typical relationships between business
change, IT needs, and the inherent features of middleware technology.

BUSINESS IMPERATIVES IT REQUIREMENTS MIDDLEWARE STRENGTHS
Increase customer intimacy by
providing unified views

Integrate customers, departments,
vendors, and suppliers

Business application integration

Scale business costs closely with
market changes

Grow IT capacity incrementally Component based, N-tier
environment

Increase value by lowering
business costs

Preserve and leverage existing IT
investments

Heterogeneous IT asset
coexistence support

Deliver services faster to
changing market

Reduce application development
time

Shared services infrastructure

Unfortunately, the war has raged for so long that it is often difficult to distinguish the important features
from the marketing hype. Business leaders do not particularly care about the underlying details of
distributed object technologies. The realities of product differentiation will require organizations to
carefully match the strengths of middleware offerings with pressing business needs.

The Common Object Request Broker Architecture (CORBA) and the Distributed Component Object Model
(DCOM) represent a new class of software known as middleware. The purpose of this white paper is to
highlight the current needs of the enterprise and compare CORBA’s and DCOM’s capabilities in
supporting these needs. The paper will also explore synergies between emergent middleware technologies
such as CORBA/Java and DCOM/Java. The paper will take the following steps in “demystifying” the
fundamental differences between CORBA and DCOM:

• Lay the foundation of enterprise demands upon distributed computing technologies;
• Describe the key elements of CORBA and DCOM that support these demands; and
• Objectively assess the strengths and weaknesses of these elements for enterprise deployment.

META Group will evaluate these standards and their associated implementations across a range of
environments, with specific emphasis on “enterprise” needs. This paper compiles what META Group
believes to be a realistic set of “enterprise-critical” measurements and then differentiates between the
leading middleware paradigms and products (CORBA and DCOM) in assessing how they support the
current needs of enterprise computing.

META Group Consulting 3

Enterprise Computing Trends

Infrastructure Emphasis

Business priorities currently are dominated by the need to deploy new systems faster. Consequently,
business decision-makers are emphasizing “application purchase” over “application build.” However,
purchased applications can offer only competitive parity, never differentiating advantage. IT-based
competitive tactics generally take three forms:

1. Speed deployment of purchased applications (thereby accruing returns prior to competitive
implementations);

2. Lower costs and risks of implementing internally developed applications (thereby generating more
certain, sustainable differentiated application systems); and

3. Cut distributed computing costs (thereby enabling the business to allocate capital to non-IT uses).

In a world of distributed computing, these tactics share one objective: infrastructure optimization. Indeed,
META Group believes the only certain way for IT to generate sustainable strategic advantage for business
is through focused infrastructure development in support of strategic application objectives.

 The traditional approach to IT infrastructure; the common IT hardware, software, and support has been as a
pure cost center — i.e., a tactical response to support and integrate the current business application
portfolio together. Infrastructure was purchased or developed in response to specific application
requirements. However, when the business environment changed, followed closely by changes in
applications, the infrastructure remained constant. Since the infrastructure was tightly coupled with legacy
applications, the infrastructure itself restricted business-driven change.

 In the current IT environment, it is virtually impossible to piece these evolving applications together,
because these brittle infrastructures are highly intermingled with the applications. To gain competitive
advantage, the infrastructure must be viewed as a strategic asset that no longer simply accommodates, but
anticipates key changes in the business. Such a preemptive approach implies more than a tactical response.
It involves a streamlined process that promotes business growth instead of prohibiting it, and enables the
enterprise to:

• Achieve maximum leverage across multiple distributed applications; and
• Establish long-term flexibility in response to imminent changes in the business.

 Given these needs, IT must develop a phased strategy for delivering both near-term application services
and long-term strategic common technology services. This strategy is achieved by maximizing the ratio of
common IT assets and services available to a single application. It should be understood that common
services are not restricted to technical infrastructure (e.g., messaging, TCP/IP transport services), but also
include business services (e.g., workflow, calendar/scheduling, and sales tracking). Put another way,
infrastructure implies technical infrastructure plus common services. Middleware provides the basis for
common services.

Legacy Integration

The ability to integrate the enterprise’s legacy IT assets is perhaps the most overriding consideration for
middleware adoption. Millions of lines of code and megabytes of data represent the business intelligence
that drives the present and future survival of the enterprise. For the majority of organizations that are
considering middleware, wholesale replacement of all IT assets at once is simply not possible. The need to
maximize previous investments by extending the lifetime of legacy IT assets is critical. Controlling the
pace of transition in a way that minimizes impact on the operational environment is also a paramount
consideration.

META Group Consulting 4

CORBA and, to a lesser extent, DCOM are middleware standards. To test each of the critical requirements
described above, we must compare more than just standards. For many of these requirements, comparing
standards is meaningless. For example, only “live” implementations of these standards can generate
meaningful performance and scalability data. On the other hand, standards can present tangible and
comparable value to the enterprise, specifically in the area of interoperability.

Enterprises face real risks in providing interoperability between their IT resources. Enforceable standards
provide a “contract of interoperability” between these resources, and help prevent the need for wholesale
replacement following each small change in a vendor product. Cross-platform and cross-language support
are both key enablers in achieving an incremental transition to middleware in a legacy-rich environment.

Enterprise Criteria

The benefits of middleware are alluring, but few organizations can afford to adopt a technology that is
unproven or incapable of supporting a minimum set of criteria. Accordingly, the enterprise battle has many
fronts. To truly support the needs of enterprise computing, middleware must satisfy certain essential
elements. Indeed, enterprise-grade middleware should be grounded in same functionality that previous
successions of systems have demanded:

• Performance and reliability form the baseline from which the enterprise must evaluate
middleware technologies;

• Interoperability is on equal ground for enterprises that represent the reality of a mixed-system
environment; and

• Market viability stands as the final test in measuring the maturity and longevity of vendor support
during the lifetime of the middleware.

The following table details specific measurement criteria for each of the above middleware elements.

Interoperability
Cross-Language Support
Cross-Platform Support
Network Communications
Common Services

Reliability
Transactions
Messaging
Security
Directory
Fault Tolerance

Performance
Scalability

Viability
Product Maturity
Vendor Outlook

Historical Perspective

It is important to understand how these middleware technologies have emerged. The original objectives of
CORBA and DCOM provide critical insight into their current strengths and weaknesses, and sets the stage
for their future directions.

META Group Consulting 5

A Brief History of CORBA

The Common Object Request Broker Architecture (CORBA) was established in 1991 by the Object
Management Group, a consortium dedicated to removing the intricacies of the network from individual
components and applications. The members of the OMG recognized early that, in order for objects to be
useful at an enterprise level, several obstacles had to be overcome.

First, the differences between programming languages, operating systems, platforms, and networks were
likely to continue for the foreseeable future. Individual projects within organizations were expected to
continue benefiting from the freedom of selecting tools that best suited their needs. The differences
between projects, however, did not end there. The IT portfolio continued to diversify with custom and
packaged mainframe and client/server applications. The growing need to integrate these disparate systems
revealed many shortcomings. A comprehensive architecture did not exist to mask the differences across
projects so those software assets in each could be shared and reused.

Second, the benefits of object-orientation (OO) could never be realized at an enterprise level without
overcoming this complexity. Key principles of OO such as encapsulation (hiding) had to be applied to this
“middle” area to reduce the complexity barriers that resulted from the lack of agreement between vendors
of infrastructure hardware (platforms and networks) and application software (languages and components).

The OMG released CORBA to address these issues; since then, many important contributions have
emerged from the OMG in support of component interoperability.

• OMG Interface Definition Language (IDL) — Introduced in 1991, IDL is CORBA’s primary
tool to insulate language differences. It has been heralded by some as the universal standard
for software interfaces and has been fully adopted by the ISO (International Standards
Organization DIS 14750).

• CORBA Interoperability – The CORBA 2.0 specification in 1996 defined the General Inter-
ORB Protocol (GIOP) as the basis for ORB-to-ORB communication. At the 1995 Object
World Show in San Francisco, the OMG unveiled ORB-to-ORB interoperability via the
Internet in a showcase demonstration titled CORBAnet. The demonstration, involving seven
ORBs and 12 vendors, is currently accessible to the public via the Internet.

• GIOP — This protocol requires the use of a TCP/IP based Internet Inter-ORB Protocol (IIOP)
as the underlying common communications mechanism that all CORBA 2.0-compliant ORBs
must support. It also permits the use of other protocols such as DCE.

The OMG continues to expand its presence horizontally and vertically through the development of
CORBAservices, CORBAdomains, and CORBAfacilities. The current Object Management Architecture
(OMA) defines 15 fundamental CORBAservices in four high-level (CORBAfacilities) categories:
Information Management (e.g., Query, Persistence), Task Management (e.g., Transactions, Concurrency),
System Management (e.g., Lifecycle, Trader), and Infrastructure Services & Elements (e.g., Security,
Messaging).

At another level, CORBAdomains are more vertically defined and deal with such areas as the Internet and
various industries (e.g., financial, medical, manufacturing, and telecommunications). These domains are
further driven into sub-domains such as banking and insurance within the larger financial domain. The
entire architecture forms a comprehensive model for distributed business object applications and
infrastructure.

META Group Consulting 6

A Brief History of DCOM

The Distributed Component Object Model (DCOM) has evolved from a number of fielded technologies,
starting in 1990 with Object Linking and Embedding (OLE). OLE started its life as a simple desktop cut-
and-paste mechanism using a technology called Dynamic Data Exchange (DDE). OLE was later extended
to OLE2 with the introduction of Microsoft’s Component Object Model (COM) to provide inter-application
communication and document embedding across Microsoft applications. OLE2 was also extended to
support “drag and drop” as well as scripting capabilities to enable one application to perform simple work
in another (OLE Automation).

Around the same time, Microsoft’s Visual Basic product was gaining credibility as general-purpose model
for assembling visual components (Visual Basic custom controls — VBXs). The limitations of VBXs
became apparent. VBX architecture was not “open” and Microsoft did not disclose a standard for the VBX
controls. Without this standard, vendors found it difficult to incorporate VBXs in their offerings. This
motivated Microsoft to provide a more generalized infrastructure for inter-application communication and
control.

This framework was defined by the combination of COM and OLE Controls (OCXs). OCXs became
COM’s first application-level implementation for supporting multiple applications. In other words, COM
was the system-level standard and OLE was the application service built upon the COM standard (i.e., OLE
is to COM as a specific ORB service is to CORBA). This clarification is not entirely true however,
because COM is also the actual communications technology used to connect components.

Distributed COM (DCOM) emerged to address COM’s shortcomings in supporting remote components.
Microsoft has described DCOM as “COM with a longer wire.” As Roger Sessions most appropriately
states, “The demarcation between the two (COM and DCOM) is much more a matter of historical accident
than technical foresight.” Microsoft continues to differentiate COM (most recently COM+), OLE
Automation (now simply Automation), and DCOM as separate entities.

ActiveX became the successor to OCXs and was described as; “COM enabled for the Internet.” For some
time, it was used as an umbrella term covering many of the underlying technologies such as DCOM and
Automation. ActiveX also describes an Automation object, be it visual or non-visual.

Finally, enter the Microsoft predator products: Viper, Falcon, and Wolfpack. These products were aimed at
extending Microsoft NT from a simple file and print server to a more robust application server. Viper, now
Microsoft Transaction Server (MTS), has emerged as a general server environment for ActiveX
components. Falcon, or the Microsoft Message Queue Server (MSMQ), is Microsoft’s answer to reliable
messaging between applications. Finally, Wolfpack is Microsoft’s code name for an NT-based clustering
technology aimed at improved availability, manageability, and scalability. Combined, these services —
COM, DCOM, OLE, and ActiveX — form Microsoft’s newly coined Distributed interNet Architecture
(DNA).

META Group Consulting 7

CORBA and DCOM: A Feature Comparison

In the following sections, we define each “enterprise” quality and compare the levels of support currently
available in CORBA and DCOM specifications and products. Although this list is not comprehensive, it
stands as a reasonable baseline for middleware comparison. These features are not necessarily listed in
order of priority. Instead, each is treated independently, though many are highly interdependent. Finally,
individual ratings are given at the end of each section to indicate the relative levels of enterprise readiness.
A “+” implies full readiness, “0” connotes marginal status, and “-” indicates a failure to meet the overall
needs of the enterprise.

Interoperability

Cross-Language Support

Cross-language support is one part of the critical interoperability capabilities required of enterprise
systems. While languages such as C++, Visual Basic, and Java are on the rise, COBOL is still often cited
as the most widely used programming language, with an estimated three million active programmers.

CORBA
CORBA was designed from the ground up to be language and platform independent through the
use of a common Interface Definition Language (IDL). Now an ISO standard, OMG IDL
provides a common notation for describing cross-platform, cross-language application program
interfaces (APIs). IDL is used to define the “interface” of the component, not the inner workings.
For this, other standard programming languages are used. IDL interfaces are translated to standard
languages through mappings. Currently, IDL has been mapped to C, C++, Smalltalk, Ada, OLE
(Visual Basic, PowerBuilder, Delphi, etc.), Java, and soon to Eiffel and Objective C.

The benefits of interoperability are not without costs however. IDL was never meant to substitute
for a general-purpose language. Instead, it was designed to express generalized interfaces. IDL
limits the language data types to a least common denominator that can be supported by all
languages. Although some of the language-specific data types are not directly usable, IDL does
permit an “any” type to overcome this obstacle.

DCOM
DCOM’s language portability (heterogeneity) is based upon a “binary standard.” Binary
compatibility is accomplished at the ones-and-zeros level, an area that has previously been the
domain of computer language compilers and interpreters. To guarantee compatibility at this level,
the way each language is translated to machine binary code must be controlled. This can present a
few obstacles, but also has its benefits. First, there are fundamental differences in how languages
are translated. Since some languages are compiled and others are interpreted, “binary
compatibility” requires that components support all possible translation variations. Second, there
are many compilers/interpreters for a given language, each taking unique approaches to code
translation. Finally, specifying compatibility at such a low hardware level creates vulnerabilities
due to advances in hardware itself.

Microsoft has been successful in controlling the mainstream development tools in the desktop
arena for DCOM’s predecessor, COM. COM is currently supported by the popular array of
Microsoft products as well as Java, PowerBuilder, Delphi, and Micro Focus COBOL. Distributed
COM, however, requires additional support from Microsoft or a third party that ports DCOM (see
Software AG below).

Summary: Both CORBA and DCOM provide extensive support for multiple programming languages,
though they use different techniques.

META Group Consulting 8

Enterprise Criterion Ratings
Interoperability CORBA DCOM

Cross-Language Support + +

Cross-Platform Support

The “middle” in middleware often refers to the synergistic connection between disparate enterprise IT
resources. Until it is feasible for all enterprise resources to be hosted entirely on homogenous hardware
platforms, middleware must support new and legacy platforms and the freedom to mix them as required.

CORBA
Cross-platform support has always been a central focus of CORBA. ORBs currently exist for
more than 30 platforms and supports even more Microsoft operating systems than DCOM. Orbix,
one of the leading ORB products, supports 20 platforms itself.

DCOM
DCOM has approached cross-platform support as an afterthought. In 1993, Microsoft approached
a German company, Software AG, to port DCOM to other platforms. Software AG has ported
DCOM to several Unix variants; however, the port does not include many of the components of
DCOM. For example, many critical supporting technologies have not been ported, the most
important of which are MTS and MSMQ. Without MTS and MSMQ, DCOM is simply not a
viable enterprise middleware. DCOM has also been ported to Macintoshes and DEC Alphas that
run Windows NT. Many other ports are currently in the works (Open VMS, Digital Unix, HP-
UX, Solaris, IBM OS/390, IBM AIX, and Linux).

Summary: It should be clear by now that in order to cast either of these technologies into the enterprise
role, a comprehensive collection of critical infrastructure services must be considered for each of the
required platforms. For DCOM, this means exploiting the combined synergies of COM, MTS, MSMQ,
and clustering them together to fulfill the needs of enterprise computing. Without MTS, for example,
DCOM will be unable to fulfill these needs. By way of comparison, CORBA-based products typically
provide each of their services on all supported platforms. As such, ORBs are much further ahead in their
support for heterogeneous enterprise environments.

Enterprise Criterion Ratings
Interoperability CORBA DCOM

Cross-Platform Support + -

Network Communications

Robust support for enterprise network communications requires that middleware seamlessly provide
interoperability with many disparate networked systems. To enable this, the middleware should be
“protocol transparent.”

CORBA
The predominant CORBA networking model for cross-ORB communication is based on a form of
TCP known as IIOP (Internet Inter-ORB Protocol), a connection-based protocol. IIOP was
specifically designed to ensure that all ORBs use a common communications protocol. Internal to
a particular ORB, however, other protocols are possible. ORB products, similar to DCOM, are
usually remote procedure call (RPC)-based.

META Group Consulting 9

DCOM
Initially, DCOM utilized UDP/DCOM, a connectionless protocol that is based on the OSF’s DCE
RPC specification with some changes. DCOM now offers a TCP protocol configuration as an
option, although by using this, many efficiency features are sacrificed.

Summary: CORBA has established the lead in common network protocol support through the de facto
IIOP standard. DCOM provides protocol options, but does not support them equally.

Enterprise Criterion Ratings
Interoperability CORBA DCOM

Network Communications + 0

Common Services

Common services form the base infrastructure of the middleware. These services are married to the
individual patterns of business in an enterprise setting. For example, a banking model is highly transaction
oriented and requires secure transaction support as a fundamental middleware service. To this end, most
organizations require a number of key services. It should be understood, however, that not all services are
equally important to all enterprises. Where more than one service is required, it should be fully compatible
and interoperable with the others.

Using the OMG specification terminology, we consider the following services as a minimal set for
enterprise middleware: Transactions, Directory, Messaging, Security, and interoperability. The CORBA
road map provides ORB vendors with a path for service interoperability. This interoperability is required
to integrate the best available third-party services across platforms. Microsoft’s approach is less explicit,
with service interoperability implied for the NT platform only. CORBA and DCOM products support these
basic services in various degrees.

CORBA
The OMG has concentrated on the development and integration of key architectural services.
Their technology adoption process is specifically aimed at ensuring that services are implemented
in an interoperable manner. The CORBA specification defines 15 services, though not all
commercial ORB products support the complete set. One exception to this is IBM’s COS
(Common Object Services), a suite of the full 15 CORBA services that is compatible with DSOM
and other brokers.

DCOM
DCOM services are less defined from an architectural standpoint, though there are many CORBA
equivalents. DCOM currently offers a limited naming service, transactions, and security
integration with NT. Other services such as MSMQ and clustering are becoming available, but are
not formally integrated into the DCOM specification.

Summary: Full-service support is not yet available from DCOM or CORBA products. At present,
CORBA products have the lead in the number, maturity, and scope of enterprise-required services that are
made available to both new and legacy applications.

Enterprise Criterion Ratings
Interoperability CORBA DCOM

Common Services 0 -

META Group Consulting 10

Reliability

Transactions

Transaction support has been the focus of both middleware technologies in recent years. During 1997, the
gaps in both camps were significantly closed.

CORBA
CORBA’s Object Transaction Service (OTS) specification offers a range of services for
distributed transaction support. These services extend the range of traditional flat transactions to
support both flat and nested transactions (since nested transactions break up transactions into
hierarchies of sub-transactions, this offers developers the flexibility for failures in a sub-
transaction to be retried using an alternative method, while the main transaction can succeed).
OTS enables both ORB and non-ORB applications to participate in the same transaction, so that
object transactions and procedural transactions (that support X/Open’s DTP standard) can
interoperate. It also supports transactions across heterogeneous ORBs, so that multiple ORBs can
participate in the same transaction. Also, a single IDL interface supports both transactional and
non-transactional implementations. To make an object transactional, developers use an interface
that inherits from an abstract OTS class. Taken together, the interfaces for OTS, plus the
Concurrency and Control service and Transactions, offer full commit, rollback, locking and other
capabilities, enabling ORB vendors supporting it to offer distributed transaction capabilities. A
number of the ORB implementers have offered links to tools from traditional TP monitors, and
OTS enables them to incorporate these capabilities directly into the ORB and distribute them.

The goal of integrating best-of-breed transaction products has been widely realized in the ORB
marketplace over the last year. Tuxedo, the most scalable TP monitor for highly distributed
environments, has been successfully integrated with two prominent ORBs. In addition, Visigenic
and Hitachi have integrated TPBroker and Iona has integrated Transarc in OrbixOTS.

DCOM
Microsoft also has been aggressively attacking transaction support in the form of its Microsoft
Transaction Server (MTS). As a fully integrated transaction service, MTS has great potential for
at least the Wintel environment, and is positioned by Microsoft as an extension to DCOM.

With MTS, transactions are supported implicitly, thereby freeing the developer from the
complexity of dealing with transaction services directly. This enables MTS to preserve the
component model. In addition, MTS provides a declarative security model. MTS is in an early
state of maturity, however. Few examples are available to assess the relative scalability of MTS,
and it has not been offered for the cross-platform environment to date.

Summary: We continue to believe that CORBA will remain the leading-edge middleware transaction
model for networked objects, with DCOM MTS transaction support suitable for low-end processing but
gaining ground quickly.

Enterprise Criterion Ratings
Reliability CORBA DCOM

Transactions + 0

Messaging

Reliable transmission and receipt of messages is a foundational quality of distributed middleware. Without
it, the electronic commerce (EC) systems of tomorrow will ultimately fail in delivering expedient and
reliable services to the increasingly demanding marketplace. Effective messaging requires four important
qualities: reliability, user convenience, system convenience, and performance.

META Group Consulting 11

In messaging, reliability means nothing less than guaranteed delivery. To guarantee delivery of anything
requires a reliable middleman, not unlike the US Postal Service. Rain or shine, the postal service can be
relied upon to deliver mail to its eventual destination. The operational word here is “eventual.” If the
weather becomes too severe, postal workers do not throw the mail away; they hold onto it until the weather
permits delivery. The same quality is required of middleware.

User convenience, system convenience, and performance are highly interrelated qualities. User
convenience means that the sending and receiving parties are not forced to be at a particular place and time
to send and receive messages. This is known in technical terms as asynchronous communication. With
asynchronous communication, a sender or system does not have to wait until the message is sent AND
received before being able to do other work. This convenience enables all parties — sender, system, and
receiver — to continue performing useful work, regardless of each other’s current situation.

To support these needs, distributed middleware requires a robust message queuing system. Message
queues support asynchronous transmission by providing a persistent queue (message queue) as a temporary
message holding area. Again, CORBA and DCOM approach messaging in different ways, but both
technologies are geared toward the same needs outlined above.

CORBA
The early CORBA specifications addressed messaging from a more primitive standpoint. The
Event Service was the basis of many messaging protocols such as push-pull and pull-push. ORBs
typically provided two avenues for messaging: the Event Service primitives or a proprietary
mechanism. The OMG recently addressed a more robust messaging model in the CORBAservices
specification. This specification addresses the asynchronous communication option that is
required by enterprise-grade applications; however, it has not been adopted yet. Many ORB
products have implemented extensions to the CORBA Events service that provide reliable
messaging. For example, in early 1996, Orbix announced their OrbixTalk Reliable Multicast
Protocol, which provides reliable sequencing and delivery of messages.

Some ORB implementations have integrated an enterprise-grade messaging service on par with
standalone Message-Oriented Middleware (MOM). IBM’s ComponentBroker is one example of
integration with MQSeries, a leading MOM product. Iona has been successful in demonstrating
GIOP over MQSeries. BEA has also announced intentions to integrate its newly acquired
MessageQ into the Iceberg product.

DCOM
Formally, DCOM does not directly support asynchronous communication. Microsoft’s answer to
reliable messaging is a separate offering titled Microsoft Message Queue Server (MSMQ) or
Falcon. On the plus side, MSMQ promises to support each of the important qualities of reliable
messaging and more. Unfortunately, MSMQ is not a fully integrated part of DCOM at this time
and has the same interoperability limitations as MTS.

Software AG’s EntireX product, a cross-platform port of DCOM, is integrated with the proprietary
EntireX Message Broker service. This service does not rely upon MSMG and provides persistent
storage of messages to enable asynchronous communication between clients and servers.

Summary: Reliable messaging is now being recognized by both CORBA and DCOM as a critical service
for the enterprise. CORBA has been augmented with leading MOM products, but full inter-service
integration has not yet been achieved. DCOM has also been augmented with early MOM functionality, but
also lacks full integration with other complementary services and is again, not available across a wide range
of platforms.

Enterprise Criterion Ratings
Reliability CORBA DCOM

Messaging 0 -

META Group Consulting 12

Security

Clearly, security is one of the key considerations for enterprise computing. Most organizations cringe at
the prospect of opening up the mainframe to the Internet. Distributed applications that are exposed to the
Web simply cannot tolerate security breaches.

CORBA
The CORBA Security service is one of the most comprehensive security specifications available
for distributed computing. The 262-page specification was jointly adopted with the Time Service
and covers nearly every conceivable aspect of security, including integrity, accountability,
availability, confidentiality, and non-repudiation. It also recognizes that differing levels of
security needs exist in an enterprise environment. The service defines three (0-2) levels of
security compliance, ranging from non-aware ORB products to those that require the entire range
of services (access control, delegation, auditing, authentication, and policy implementation).

ORB products differ widely in their support for security. For example, ICL’s DAIS product was
the first ORB to offer CORBA security conforming to Kerberos and the GSS API standards.
Orbix provides both the SSL-IIOP standard (secure encrypted communications over the Internet)
and an implementation of the CORBA Security Level 1 service. Finally, Visigenic has recently
partnered with MITRE Corporation spin-off Concept Five to deliver the first ORB complying with
CORBA Level 2 security.

DCOM
DCOM utilizes NT mechanisms as the basis of its security support. NT Version 3.5 has been
rated level C2 by the National Computer Security Center and ensures a comprehensive array of
security controls such as discretionary access, authentication, and auditing. DCOM also provides
a CryptoAPI to enable advanced encryption of information. This service requires the support of a
Cryptographic Service Provider (CSP) that is provided with NT.

Without question, the combination of NT, MTS, and COM can provide a comprehensively secure
environment; however, because DCOM’s security managers are NT dependent, this support is
limited to Windows/NT platforms.

Summary: CORBA and DCOM are both building comprehensive security mechanisms. To CORBA’s
credit, the recognition of a wide variety of security services will provide more solutions to the differing
needs of the enterprise. For DCOM, the cooperation of the operating system is paramount to providing
high levels of security. Although from different directions, both middleware technologies are reaching
critical mass in their support for secure distributed computing.

Enterprise Criterion Ratings
Reliability CORBA DCOM

Security 0 0

Directory Service
An essential feature of any middleware is the ability to keep track of the location of key services in the
distributed network space. This lessens the burden of each application (provides location transparency)
and, more importantly, provides for load balancing and failover services. Examples of working directory
services include; DNS, X.500, Novell NDS, and Microsoft NTDS, though each is accessed by a specialized
interface.

META Group Consulting 13

CORBA
The OMG has specified the Naming Service for just this purpose. Similar to a “white pages”
directory, the Naming Service permits a component to look up a service by name. The Naming
Service was designed to allow the use of conventional directory services such as those identified
above. These services are wrapped by a higher-level service interface that masks idiosyncrasies
from the developer.

VisiBroker offers a CORBA-compliant naming service that is fault tolerant (self-recovering) and
persistent (survives shutdowns and abnormal failures), and supports federated name spaces. Orbix
also provides a fault-tolerant naming service.

DCOM
Microsoft’s answer to this need is called the Active Directory Service (ADS). This service is said
to combine the best features of X.500 and DNS. Like the OMG Naming Service, ADS intends to
abstract differences between various directory services by providing one standardized interface.
ADS Version 1.0 is offered with NT 4.0, with the full ADS capability to be integrated in NT 5.0.
The ADS Interface (ADSI) is based on DCOM with specific offerings from directory service
providers being implemented as DCOM objects.

Summary: Both CORBA and DCOM are beginning to support sophisticated directory services on par with
previous “enterprise tested” incarnations such as NDS and DNS.

Enterprise Criterion Ratings
Reliability CORBA DCOM

Directory Service 0 0

Fault Tolerance

Middleware’s ability to “heal itself” in the event of reasonable failure is essential for most enterprise
applications. There are many supporting mechanisms that contribute to this capability. Asynchronous
messaging (discussed under Messaging) is one example. Service pools and redundant failover mechanisms
also enable graceful recovery and increase the fault tolerance and reliability of middleware. Finally, a
reliable directory service is needed to find and connect backup services in the event of failure.

CORBA
The CORBA specification does not directly support fault-tolerance services; however, many ORB
vendors have provided this support. For example, Visigenic’s VisiBroker provides symmetric
failover support to automatically bind to another object server on a separate host in the event of
service failure.

Most ORBs provide a simple timeout mechanism for detecting dead or disconnected clients. This
approach alone is not sufficient for highly fault-tolerant applications.

DCOM
Basic support for fault tolerance is provided at the protocol level. DCOM utilizes reference counts
augmented by “keep alive” messages or pinging as an essential component of the DCOM object
life cycle. It requires the successful transmission and receipt of a heartbeat every two minutes
between a client and server. If three consecutive heartbeats are missed, the server declares the
client dead and decrements the reference count. According to a recent Web FAQ1 maintained by
AT&T Labs (updated Nov. 5, 1997), DCOM does not support configurable times, so clients may
not detect problems for a considerable period of time (six minutes). Further, if a distributed
component gets into a continuous loop, there is no automated way to detect a problem, because the

1 COM Reliability FAQ; http://akpublic.research.att.com/~ymwang/resources/COM-R-FAQ.htm

META Group Consulting 14

heartbeats will still be sent. Finally, this approach utilizes significant network resources and may
not scale well for large numbers of connections. Microsoft has taken positive steps to streamline
this approach and has employed piggybacking, grouped pings, and delta pinging to reduce
network traffic. Anything beyond this generally requires extensive customization on both the
middleware and application side.

Summary: Both DCOM and CORBA do not directly support robust fault tolerance; however, with
sophisticated customization, it can be provided. For DCOM, it is not clear whether such customization is
possible across a heterogeneous platform environment, because most workarounds currently require the
support of NT or Windows 95 components.

Enterprise Criterion Ratings
Reliability CORBA DCOM

Fault Tolerance 0 0

Performance

Scalability
We generally define scalability as the middleware’s ability to perform when the size of the problem
increases. Middleware performance can be highly variable depending on how it is used. For example,
component granularity is one of the most significant drivers of performance stress. In other words, as the
pieces get smaller, so does sheer volume — causing the middleware substrate mechanisms to work harder.
As this occurs, the need arises for middleware mechanism tuning in ways that conventional database
products have supported. Finally, middleware performance is very costly to measure, since only in vitro
modeling can provide a reasonable capacity estimation.

There must be compelling evidence, via current implementations or anecdotal data, that indicate the
middleware’s ability to scale through various scenarios. These scenarios may include numbers of objects
or users. Key areas where impacts are most likely are found in services that commonly aggregate
components such as naming services or interface repositories. Finally, middleware must able to support
threads to allow parallel processing of work.

CORBA
As a specification, CORBA does not address specific scalability services aside from providing for
the transparent distribution of processing. Instead, individual ORBs deal with this problem in one
of two ways:

Threading — Many ORBs provide thread-safe libraries that use each operating system’s
native thread model. This enables threads to be created for clients, objects, or even
specific method calls of an object. In addition, several ORB products also support thread
pools. Filters can also be used to balance processing based on current loading.

Tuning — ORB products provide various internal tuning mechanisms to enable
optimization for specific situations. For example, internal memory representations can be
changed to order references by “most frequently used” or other criteria that suit the
specific conditions.

DCOM
DCOM offers similar scalability mechanisms such as parallel processing and threading. As with
CORBA, DCOM features are not transparently supported, and require detailed knowledge of
client/server interactions to implement.

META Group Consulting 15

Thread pools — DCOM utilizes thread pool managers to maximize scalability however,
Windows NT symmetric multiprocessing is required to support this feature.

Summary: Both middleware products are relatively nascent in their support for highly scalable enterprise
applications. There are, however, a growing number of large-scale ORB implementation examples in the
investment, aerospace, and telecommunications industries. In addition, indirect evidence of scalability can
be inferred when combining ORBs with enterprise-grade products such as commercial TP monitors and
MOM. Concrete evidence of large-scale DCOM enterprise applications is not readily available at this time.

Enterprise Criterion Ratings
Performance CORBA DCOM

Scalability 0 -

Viability

Product Maturity
Despite the current fragmented condition of middleware offerings, we believe IT organizations should be
consumers of middleware components, not producers. As of this writing, the best way to manage the
massive complexity of middleware is through the purchase and customization of commercial frameworks
that organize their flexibility into structured application packages. Such frameworks go beyond the
primitive and complex services that CORBA and DCOM can provide but still require a minimum maturity
level from each.

CORBA
Many commercial ORB products are in their third generation of development. As such, we are
beginning to see a critical mass of services (Directory, Messaging, Transactions, and Security) in
several leading products. Although the OMG specification is explicitly designed to insure these
services are well integrated, no single ORB vendor has brought them all together in strict CORBA
compliance. Irrespective of this, ORBs are now being used for enterprise systems in many
demanding industries, including telecommunications, aerospace, and investment.

DCOM
The arrival of the predator services (Falcon, Viper, Wolfpack, and Active Directory) represents
Microsoft’s recognition of what must be in place in an enterprise setting. Like the leading ORB
products, these services are not fully integrated (even in the “NT only” environment) and are not
explicitly part of DCOM. What is worse, platform interoperability is only just appearing on the
DCOM radar screen and will likely be the last piece to fall into place.

Summary: Products from both DCOM and CORBA are only just beginning to aspire to the so-called
“heavy lifting” demands of the enterprise. At the end of the day, representative products from both
middleware camps require a tremendous amount of financial fortitude and technical expertise from the
adopting enterprise to be successful.

Enterprise Criterion Ratings
Viability CORBA DCOM

Product Maturity 0 -

Vendor Outlook
Clearly, the trick is to buy and extend frameworks that are based on the likely winners of the middleware
framework wars, not the losers.

META Group Consulting 16

CORBA
CORBA differs from DCOM in an important way. While the CORBA specification is controlled
by the OMG standards body, ORBs are produced by a variety of vendors (though most belong to
the OMG). This separation has caused — and always will cause — a natural tension between the
need to differentiate product offerings and the need for interoperable standards compliance. The
OMG currently enjoys membership and backing from some 760 members. This large membership
will continue to uphold the OMG’s emphasis on interoperable and standardized solutions but is
often to blame for slow progress.

There are several leading vendors whose viability is sound for at least the next several generations
of enterprise technology. Users must insist on enterprise players that will not only survive the
middleware wars but also remain committed to ORBs as part of their long-term, strategic
direction. Such vendors as IBM, BEA, and Orbix appear to fit this category.

DCOM
Clearly, Microsoft will be one of the survivors. Microsoft stands as testament to the difference
between technological elegance and marketing leadership, a distinction that should never be
overlooked. While there is no question about Microsoft’s intention to support its value
proposition — optimized product integration on lower-cost NT platforms — overwhelming
support for competing platforms would not be a logical assumption. That being said, Microsoft
will continue to focus its attentions on real scalability, manageability, and low cost in the NT
environment.

Summary: Both technologies will continue to have significant market backing and support. DCOM will
continue to enjoy heavy independent software vendor (ISV) tool support while ORBs will continue to be
supported by corporate customers. It is important to note, however, that non-DCOM integrated services
such as MTS and MSMQ have not been widely tested, and ISV acceptance for these is yet to be
determined.

Enterprise Criterion Ratings
Viability CORBA DCOM

Vendor Outlook + +

Middleware Synergy with Java
The Internet has heralded in a new era of distributed computing. The ubiquitous nature of the Internet
demands platform-independent component solutions. To this end, Java has emerged as one of the dominant
technologies for Internet-based computing. By combining Java effectively with middleware, businesses
can gain maximum market exposure to valued enterprise IT resources.

CORBA + Java

In many respects, CORBA and Java address similar goals. Both support distributed business applications,
and both attempt to insulate the specifics of different platforms from the business applications. CORBA
supports distributed objects in a heterogeneous (cross platform, language, and network) server
environment. Java supports component relocation across platforms, but not across languages.

The differences between these middleware technologies are subtle and diminishing each day. For example,
Remote Method Invocation (RMI) enables Java components to be easily relocated across the network. The
CORBA specification is now addressing object “pass-by-value” to accomplish a similar goal. Further, both
Sun and the OMG have been actively involved in combining these models where advantageous as
described below. It is the often in the areas of distinct differences, however, where CORBA and Java can
be combined to gain the best of both worlds.

META Group Consulting 17

Differences and Synergistic Opportunities

CORBA is a distribution and integration technology — not a general-purpose development language.
CORBA assumes that various general-purpose languages will continue to be used and integrated. Java on
the other hand, is a full-fledged language and set of services used to build distributed components. Java is
positioned as a language that directly incorporates distribution as well as a comprehensive computing
platform with a set of infrastructure services. CORBA, on the other hand, is positioned to provide
distribution features for existing languages and applications.

Java has evolved in many areas that are complementary to CORBA. On the client side, Java provides
client functionality and portability. The visual features of Java applets and JavaBeans components have
been widely recognized in the marketplace. By combining Java’s graphical features on the front end with
CORBA’s access to legacy applications on their native back-end platforms, developers can integrate new
technology with the old and gain the best aspects of each. In a sense, Java can provide the component
model that is missing from CORBA.

Java has also been aggressively positioned to support the server side. For example, Sun’s Enterprise
JavaBeans (EJB) now provides a collection of services for database access, transactions, directory, and
messaging. Although many of these services have equivalents to well-established ORB offerings, several
services have emerged that add significant value to the enterprise middleware milieu.

In many ways, CORBA and Java have been engineered to collaborate. The following sections provide
examples of how Java and CORBA have been or are now being designed to work together.

Language Interoperability

Since 1996, the OMG has worked to provide a comprehensive mapping between the Java language and
CORBA. Even today, JavaBeans language elements are being extended by Sun to work with CORBA-
based services. The reverse is also true as the OMG pursues the adoption of JavaBeans as part of its until
now, lacking component model support.

Java Layering

With EJB, Java is being layered above CORBA services as well as others. Using this approach, Java
developers can gain several advantages. First, the layering hides many of CORBA’s details and frees the
programmer to concentrate on the business application. Support for transactions and distribution becomes
implicit thereby relieving the need for low-level programming. Without this layer, service complexity is
fully exposed to the developer. Second, it permits services other than CORBA to be plugged in on the
server side. For example, the Java Transaction Service (JTS), a Java platform API, allows bindings to
multi-vendor transaction processing solutions, including the CORBA Object Transaction Service (OTS).

Network Communications

In June of 1997, Sun announced that IIOP was to be adopted as a way for Java RMI to communicate across
the network in addition to its native protocol, Java Remote Method Protocol (JRMP). This effectively
extended Java with CORBA support for standards-based interoperability and connectivity. Java
applications can transparently invoke operations on remote CORBA services using IIOP or JavaIDL, a
Java-based ORB that also allows communication between Java and CORBA components.
In addition, Java components can be automatically configured as CORBA objects and accessed through
IIOP by other non-Java clients.

META Group Consulting 18

Back-End Services

The Java Database Connectivity (JDBC) API provides a uniform interface to a wide range of relational
databases. IIOP-based JDBC implementations can reap the benefits of combining client-neutral Java
components with server-neutral CORBA connectivity to distributed and heterogeneous data stores.

The Java Naming and Directory Interface (JNDI) is another example of EJB-based layering. JNDI is a set
of interfaces that supply distributed naming and directory services. It can be mapped to the CORBA
Naming service as well as mature directory services such as X.500, LDAP, NIS, and NDS.

Summary: In many ways, Java and CORBA have been architected to collaborate in the enterprise
environment. Most importantly, Java components can be used as an extension to CORBA services for thin-
client Internet computing. The synergistic opportunities outlined above enable CORBA services and Java
components to be mixed and matched as needed without sacrificing platform interoperability.

DCOM + Java

Several vendors have taken steps to combine DCOM and Java. Microsoft has focused primarily on
integration by allowing Java components into the Windows environment. Sun and other third-party
vendors have provided products that enable Java to interoperate with ActiveX on Windows platforms.

Client Services

On the client side, Microsoft has blurred the distinction between Java and ActiveX by permitting both
components to be viewed in the same browser. The benefits of this integration are primarily enjoyed by
users of ActiveX-supported browsers, however.

Finally, for developers interested in having their components interoperate with existing ActiveX
components, Sun provides the JavaBeans Bridge for ActiveX. This Bridge provides users of legacy COM
containers with the ability to use JavaBeans components, but again, only in the Wintel client-side
environment .

Back-End Services

On the server side, Microsoft’s version of the Java Virtual Machine (JVM) provides the ability to make
Java objects appear as DCOM objects, giving them full access to DCOM system services. The JVM
seamlessly integrates many underlying DCOM mechanisms such as reference counting and object
introspection. Integration with Java class libraries also exposes key DCOM functions such as monikers and
structured storage.

Unfortunately, the Microsoft JVM does not support many fundamental Java services such as RMI, the Java
Native Interface (JNI), or EJB services such as JTS. In one example, there is no equivalent RMI layering
over DCOM as there is between RMI and IIOP. In effect, this relegates Java to a programming language
and limits synergy between Java and DCOM. Further, ActiveX wrapped Java components lose their cross-
platform abilities. For example, JNI allows Java programmers to combine native code with Java code and
retain portability. Microsoft’s JVM does not currently support JNI and thereby nullifies Java’s portability
capabilities.

Summary: On the surface, DCOM and Java appear to fit well together. The full enterprise benefits of this
combination, however, are very limited. Although Java can access a limited number of DCOM services
through the Microsoft JVM, full access to enterprise-grade DCOM services across platforms is not
available. Until substantive interoperability has been demonstrated between DCOM services on platforms
other than NT, enterprise synergy between the two will be greatly limited.

META Group Consulting 19

Summary of Differences between CORBA and DCOM

Both middleware technologies provide integration frameworks for object-based, distributed client/server
development. As such, both technologies provide full support for component distribution. In pure
technology terms, this paper has demonstrated that most of these challenges will eventually become
resolved. The key remaining difference lies in support for cross-platform interoperability.

Historically, CORBA has focused on enterprise-wide interoperable solutions, whereas many of the
underlying technologies that make up DCOM have focused on the desktop. Since 1989, CORBA has
followed the path of developing the architecture first, then the implementation. Microsoft, on the other
hand, follows the opposite path of “build first, then architect.” Unfortunately, CORBA’s “architect first”
distinction does not necessarily hold with the vendors of ORB products. As a result, ORB vendors often
provide services that are not in full compliance with the CORBA specification.

From the outset, CORBA has concentrated on providing an open architecture to support interoperability
with both existing and new technologies. As evidence, neither Java nor DCOM were defined at the time
CORBA was originally specified; however, significant progress has been made toward integrating these
into the standard. This is a testament to open nature of the CORBA reference architecture and the
collaborative nature of the OMG as a standards body. The inherent problem with this approach is market
timeliness. The collaborative nature of the OMG is often cited as an obstacle for getting functionality “on
the glass.”

DCOM has approached distribution and interoperability as an afterthought. This is evident in the way that
DCOM has evolved from DDE to OLE to OLE2 to ActiveX and so on. However, this makes DCOM’s
significance as a limited platform middleware no less important. The often-cited problem with this
approach is disruption to previous iterations of technology and lack of interoperability.

Finally, CORBA has traditionally been heavily concentrated toward the mixed platform server domain.
The recent collaborations with Java have given CORBA products a way to realize support for the client tier
also. With ActiveX, DCOM incorporates both client-side and server-side features. The homogenous
nature of the desktop has given DCOM less motivation for cross-platform support. With NT’s maturation
in the middle-tier, DCOM will most likely continue this trend.

META Group Consulting 20

Conclusions

Interoperability CORBA DCOM
Cross-Language Support + +
Cross-Platform Support + -
Network Communications + 0
Common Services 0 -

Reliability
Transactions + 0
Messaging 0 -
Security 0 0
Directory Service 0 0
Fault Tolerance 0 0

Performance
Scalability 0 -

Viability
Product Maturity 0 -
Vendor Outlook + +

Note that there is no overall grade at the bottom of each middleware category. This is because we
recognize that not all organizations require all levels of enterprise support. Further, since the grading was
conducted on the best implementations currently available in each category, it is impossible to make such
broad generalizations. This condition is equally true with both CORBA and DCOM. In the future
however, we believe most ORBs will provide a complete set of critical services and Microsoft will
eventually integrate their separate services (e g. MTS, MSMQ) into DCOM or another consolidated
offering such as DNA.

For now and the foreseeable future, it is unlikely that any one middleware offering will dominate as the
“universal solution.” This is particularly true at the enterprise level, where IT diversity is greatest. META
Group believes organizations must view the move toward middleware as a set of discrete steps. Instead of
an all-at-once approach, companies must develop a three- to five-year middleware strategy that supports
targeted business needs in a prioritized manner.

This report has defined several critical needs that the enterprise demands of middleware products. It then
decomposed the offerings of the competing middleware models, CORBA and DCOM, and described their
current progress in meeting these needs. This report has concluded that between the two models, CORBA-
based middleware remains the dominant technology for enterprise needs that demand multiple-
platform/operating system interoperability. Conversely, DCOM-oriented middleware may be the obvious
choice for homogeneous Wintel-based environments although, several scalable CORBA ORB
implementations have been demonstrated on NT platforms. DCOM’s dependence on the Wintel platform
and lack of interoperability are pervasive inhibitors for the enterprise. This condition continues with the
DCOM/Java relationship as described above. For the time being, it is unlikely that any single middleware
will solve the disparate needs of the enterprise, particularly as long as the enterprise-computing
environment requires a mix of languages, networks, and platforms to solve business problems.

Bottom Line: CORBA continues to be seen as the middleware of choice where enterprise systems are
made up of a wide variety of languages, platforms, and operating systems. Although DCOM is rapidly
evolving into a viable middleware for NT platforms, it has yet to become practicable for real-world,
heterogeneous enterprise environments. Microsoft’s relentless displacement of middle-tier platforms,
however, demands that enterprise middleware adopters actively employ DCOM-friendly approaches,
because both technologies will likely coexist and mature in the foreseeable future.

