Developing Distributed Object
Computing Applications with CORBA

Douglas C. Schmidt

Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/~schmidt/ (615) 343-8197

D -C-C

Sponsors
NSF, DARPA, ATD, BBN, Boeing, Cisco, Comverse, GDIS, Experian, Global MT,
Hughes, Kodak, Krones, Lockheed, Lucent, Microsoft, Mitre, Motorola, NASA, Nokia,
Nortel, OCI, Oresis, OTI, Raytheon, SAIC, Siemens SCR, Siemens MED, Siemens
ZT, Sprint, Telcordia, USENIX

CORBA Tutorial Douglas C. Schmidt

Motivation: the Distributed Software Crisis

Symptoms
e Hardware gets smaller, faster, cheaper

e Software gets larger, slower, more
expensive

Culprits
e Inherent and accidental complexity
Solution Approach

e Components, Frameworks, Patterns,
& Architecture

N O™
UC Irvine D {:1' L

CORBA Tutorial Douglas C. Schmidt
Techniques for Improving Software

sePLCATON- goon Proven solutions —

FUNCTIONALITY
1 ° Components_
GYECEE — Self-contained, “pluggable”
1 EE ADTs
T

OLASSES e Frameworks
(A) CLASS LIBRARY ARCHITECTURE

— Reusable, “semi-complete”
@ applications

. e Patterns
«L et — Problem/solution/context

APPLICATION- |+]
INVOKES SPECIFIC BACKS| e Architecture

= 1 F”"“'ﬁ”w @ — Families of related patterns
CLASSES

«q C and components
DATABASE Loor

(B) FRAMEWORK ARCHITECTURE

N O™
UC Irvine D {:1' L

CORBA Tutorial Douglas C. Schmidt

Overview of CORBA Middleware Architecture

INTERFACE IDL IMPLEMENTATION Goals of CORBA
REPOSITORY COMPILER REPOSITORY . .
o Simplify

in args distribution by
operation|() OBJECT automating

(SERVANT)

— Obiject location &
activation

— Parameter
marshaling

— Demultiplexing

ORB CORE GIOP/IIOP/ESIOPS — Error handling

(C_)STANDARD INTERFACE () STANDARD LANGUAGE MAPPING ® Provide
@D oRB-speciFic INTERFACE (_) STANDARD PROTOCOL foundation for

www.cs.wustl.edu/~schmidt/corba.html higher-level

services
D. % T
UC Irvine - {:1' L5

CORBA Tutorial

Douglas C. Schmidt

Key CORBA Concepts

e Object reference: A strongly-typed
opaqgue handle that identifies an
object’s location

Client: Makes requests on an
object via one of its references

Server: Computational context
(e.g., process) for objects/servants

— Client and server are “roles” - a
program can play both roles

Stub: A proxy that converts method
calls into messages

Skeleton: An adapter that converts
messages back into method calls

e Object: A CORBA
programming entity with an
identity, an interface, and an
implementation

Servant: A programming
language entity that
implements requests on one
or more objects

e POA: A container for
objects/servants in a server

e ORB Core:
Message-passing
infrastructure

UC Irvine

D-O-C

JECT
ADAPTER

REPOSITORY
OBJECT
(SERVANT)

3

IMPLEMENTATION

e

(if necessary)
3s Process request

4s Return result or
exception

necessary)
2s Activate object’s servant

operation()
ORB CORE
Server processing steps
1s Activate server (if

CORBA Twoway Processing Steps

complete
4c Return control to client

server
3c Wait for request to

Client processing steps
1c Locate target object
2c Sentrequest message to

CORBA Tutorial

UC Irvine

CORBA Tutorial

Douglas C. Schmidt

Applying CORBA to Medical Imaging
e Domain Challenges

— Large volume of “Blob” data

x e.g., 10 to 40 Mbps

— “Lossy compression” isn’t

viable

— Prioritization of requests

e URLS

CLUSTER
BLOB

MODALITIES
(CT, MR, CR) BLOB STORE

— ~schmidt/PDF/COOTS-

96.pdf

~schmidt/PDF/av_chapter.pdf

— ~schmidt/NMVC.html

UC Irvine E}' E1"

CORBA Tutorial

Douglas C. Schmidt

Applying CORBA to Real-time Avionics

@ ﬁ@ ¢ Domain Challenges

; — Real-time periodic
3:PUSH (EVENTS) 4@: L(]iATA) processing

EVENT REPLICATION - Complex .

CHANNEL | 3:pUsH (EVENTS) SERVICE de pen dencies
— S —

e — Very low latency

2: SENSOR PROXIES DEMARSHAL DATA

& PASS TO EVENT CHANNEL e URLS

— ~schmidt/PDF/JSAC-
98.pdf
lé_;fgfff = — ~schmidt/TAO-
boeing.html

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Applying CORBA to Global PCS

o SATELLITES Tg'll:\Aql'}l(g\lNG e Domain Cha”enges

PEERS

— Long latency satellite links
— High reliability
— Prioritization

;
STATUS INFO /
/

¥ S =
Nerwosk. Ty e URL
/ e
COMMANDS // / / e BULK DATA)
Y TRANSFER — ~schmidt/PDF/TAPOS-

GROUND
STATION
PEERS

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Tutorial Outline

e Motivation

e Example CORBA Applications

e Using CORBA to Cope with Changing Requirements

e Detailed Overview of CORBA Architecture and Features

e Evaluations and Recommendations

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Motivation for COTS Middleware

e Itis hard to develop distributed applications whose components
collaborate efficiently, reliably, transparently, and scalably

e To help address this challenge, the Object Management Group
(OMG) is specifying the Common Object Request Broker
Architecture (CORBA)

e OMG is a consortium of ~800 companies
— Sun, HP, DEC, IBM, IONA, Borland, Cisco, Motorola, Boeing, etc.
e The latest version of the CORBA spec is available online

— www.omg.org/technology/documents/formal/

pHOTC

UC Irvine B r

CORBA Tutorial Douglas C. Schmidt
Sources of Complexity for Distributed Applications

pRmrE' e Inherent complexity
COMPUTER : ////\E/ Latency

@
" = Reliability

=1 Partitioning

(1) STAND-ALONE APPLICATION ARCHITECTURE Ordering

— Security

Accidental Complexity

— Low-level APIs

— Poor debugging tools

— Algorithmic
decomposition

— Continuous re-invention

(2) DISTRIBUTED APPLICATION ARCHITECTURE

E. ||':1

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Sources of Inherent Complexity

Inherent complexity results from fundamental challenges in the
distributed application domain

Key challenges of distributed computing include

— Addressing the impact of latency

— Detecting and recovering from partial failures of networks and
hosts

— Load balancing and service partitioning

— Consistent ordering of distributed events

CORBA Tutorial Douglas C. Schmidt

Sources of Accidental Complexity

Accidental complexity results from limitations with tools and
techniques used to develop distributed applications

In practice, key limitations of distributed computing include

— Lack of type-safe, portable, re-entrant, and extensible system call
interfaces and component libraries

— Inadequate debugging support

— Widespread use of algorithmic decomposition

— Continuous rediscovery and reinvention of core concepts and
components

UC Irvine) 5 UC Irvine

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt

Motivation for CORBA CORBA Quoter Example

Simplifies application interworking
— Higher level integration than untyped TCP bytestreams
Supports heterogeneity

— e.g., middleware enables applications to be independent of
transports, OS, hardware, language, location, and implementation
details

Benefits for distributed programming similar to OO languages

— e.g., encapsulation, interface inheritance, polymorphism, and
exception handling

Provides a foundation for higher-level distributed object collaboration
— e.g., CCM, J2EE, and CORBAServices

UC Irvine

int main (void)

/Il Use a factory to bind

/I to a Quoter.

Quoter_var quoter =
bind_quoter_service ();

const char *name =
"ACME ORB Inc.";

CORBA:Long value =
quoter->get_quote (name);
cout << name << " ="
<< value << endl;

e |deally, a distributed
service should look just
like a non-distributed
service

e Unfortunately, life is
harder when errors
occur...

UC Irvine

CORBA Tutorial Douglas C. Schmidt

CORBA Quoter Interface

/I IDL interface is like a C++ e We write an OMG
/I class or Java interface. IDL interface for
interface Quoter our Quoter

{
exception Invalid_Stock {}; — Used by both

clients and
long get_quote Servers
(in string stock_name)
raises (Invalid_Stock);

h

Using OMG IDL promotes language/platform independence, location
transparency, modularity, and robustness

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt

Overview of OMG Interfaces
e OMG interfaces are similar to e There are several differences,
C++ abstract classes or Java however, since they
interfaces

— Cannot define data

— They define object types members
— Can be passed as (reference) — Cannot have private or

parameters protected access control
— Can raise exceptions and sections
— Can be forward declared — Must designate their

parameter directions
e Only CORBA objects defined with interfaces can be accessed
remotely

— However, locality constrained CORBA objects can't be accessed
remotely

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt
Overview of OMG Operations

e Each operation in an OMG interface must have

— A name
— A return type (can be void)
— Zero or more parameters

e An operation can optionally have

— Araises clause, which indicates the exceptions(s) the operation

can throw
— A oneway qualifier, which indicates the caller doesn’t except any

results
— A context clause, which is deprecated and non-portable...

e Due to limitations with certain programming language mappings,
operations cannot be overloaded in IDL interfaces

UC Irvine

COMPILER

long get_quote (in string name):

%

LIBRARIES| ™ APPLICATION

SERVER

SERVER DEVELOPER

nterface Quoter

IDL FILE ﬁ

CORBA

CLIENT <—|RUN-TIME

IDL COMPILER

CLIENT DEVELOPER
APPLICATION

AN

Using an OMG IDL Compiler for C++

and provide different options

e Different IDL compilers generate different files

CORBA Tutorial

COMPILER
UC Irvine

CORBA Tutorial Douglas C. Schmidt

OMG IDL Mapping Rules

e There are mappings from OMG IDL to various programming
languages standardized by CORBA

Mapping OMG IDL to C++

Each module is mapped to a class or namespace
Each interface is mapped to a class
Each operation is mapped to a C++ method with appropriate

parameters
Each read/write attribute is mapped to a pair of get/set methods
An Environment is defined to carry exceptions in languages

that lack this feature

e We'll discuss the various mapping issues as we go along

— See Henning and Vinoski for gory details of IDL-to-C++ mapping

UC Irvine

CORBA Tutorial

Using an IDL Compiler for C++ & Java

interface Quoter

long get_quote (in string name);

IDL-TO-C++ COMPILER

IDL-TO-JAVA COMPILER

COMPILER

/

SERVER

SERVER DEVELOPER

CORBA

LIBRARIES| ™ APPLICATION

CLIENT < | RUN-TIME

CLIENT DEVELOPER

APPLICATION

COMPILER

N

e CORBA makes it straightforward to exchange

data between different programming languages

in different address spaces

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Software Bus

e CORBA provides a communication infrastructure for a
heterogeneous, distributed collection of collaborating objects

e Analogous to “hardware bus”

UC Irvine

CORBA Tutorial

CORBA Object Collaboration

1: resolve ("Quoter')

K get_quote ("ACME ORB, Inc.")

2: authenticate (broker) l

3: timestamp()

LAl

TICATION

e Collaborating objects can be either remote or

local

— J.e., distributed or collocated

e For this to work transparently the ORB should

support nested upcalls and collocation

optimizations

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Communication Features of CORBA

e CORBA supports reliable,
uni-cast communication

operatlon(args) C]D
— I.e., oneway, twoway, deferred i]—<——r—]

synchronous, and Iesponse

2:poller I request
asynchronous POLLING oy TARGET
CLIENT ? operation(args) OBJECT

3: response %
—

TARGET
CLIENT request OB"ECT

e CORBA objects can also
collaborate in a client/server, D)
peer-to-peer, or 4-gat
publish/subscribe manner o

AEECO

- eg. COS Events & CALLBACK Ié)_,; TARGET
e H i i CLIENT eration(callback, ar OBJECT
Notification Services define a P

publish & subscribe C el CJOD
communication paradigm O 2myponse o

i ™
UC Irvine E} 1I:1""-'..-

CORBA Tutorial Douglas C. Schmidt

Fundamental CORBA Design Principles

e Separation of interface and implementation
— Clients depend on interfaces, not implementations
Location transparency
— Service use is orthogonal to service location
Access transparency
— Invoke operations on objects
Typed interfaces
— Object references are typed by interfaces
Support of multiple inheritance of interfaces

— Inheritance extends, evolves, and specializes behavior

i ™
UC Irvine E} 1I:1""-'..-

CORBA Tutorial Douglas C. Schmidt

Related Work (1/4)

e Traditional Client/Server RPC (e.g., DCE)

— Servers offer a service and wait for clients to invoke remote
procedure calls (RPCs)

— When a client invokes an RPC the server performs the requested
procedure and returns a result

e Problems with Client/Server RPC

— Only supports “procedural” integration of application services

— Doesn't provide object abstractions, e.g., polymorphism,
inheritance of interfaces, etc.

— Doesn’t support async message passing, or dynamic invocation

i ™
UC Irvine E} 1I:1""-'..-

CORBA Tutorial Douglas C. Schmidt

Related Work (2/4)

e Windows COM/DCOM/COM+

— A component model for Windows that support binary-level
integration and reuse of components

e Problems with Windows COM/DCOM/COM+

— Largely limited to desktop applications
— Does not address heterogeneous distributed computing

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Related Work (3/4)

e SOAP

— A simple XML-based protocol that allows applications to
exchange structured and typed information on the Web using
HTTP and MIME

— Widely implemented

e Problems with SOAP

— Considerable time/space overhead

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Related Work (4/4)

e Java RMI

— Limited to Java only
x Can be extended into other languages, such as C or C++, by
using a bridge across the Java Native Interface (JNI)
— Well-suited for all-Java applications because of its tight integration
with the Java virtual machine
*x e.g., can pass both object data and code by value
— However, many challenging issues remain unresolved
x e.g., security, robustness, and versioning

e J2EE and .NET

— Higher-level distributed component frameworks
— Widely used in business/enterprise domains

UC Irvine

CORBA Tutorial Douglas C. Schmidt

CORBA Stock Quoter Application Example

e The quote server(s)
maintains the
current stock prices

QUOTE e Brokers access the
SERVERS quote server(s) via
CORBA

DGaleway/Router e Note all the

Cmvs-im heterogeneity!

[sunos - sparc .
C) eux.pn e We use this example

[oss2 - Powerpc to explore many
Al wincows NT - Aphs features of CORBA

. Windows- Pentium

UC Irvine

etc.
raises (Invalid_Factory);

raises (Invalid_Stock);
Quoter create_quoter (in string quoter_service)

/I Factory Method that returns a new Quoter

/I selected by name e.g., "Dow Jones,"

Simple OMG IDL Quoter Definition
/I "Reuters,",

long get_quote (in string stock_name)
/I A factory that creates Quoter objects.

interface Quoter_Factory

/I Interface is similar to a C++ class.
{

/I Exceptions are similar to structs.
interface Quoter

exception Invalid_Stock {};

exception Invalid_Factory {};
Note the use of the Factory Method pattern

CORBA Tutorial
module Stock {
UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of IDL Parameter Passing (1/2)

e Operation parameters in OMG IDL must be designated to have one
of the following directions:

— in , which means that the parameter is passed from the client to
the server

— out , which means that the parameter is returned from the server
to the client

— inout , which means that the parameter is passed from the client
to the server and then returned from the server to the client,
overwriting the original value

e Parameter passing modes are used in CORBA to optimize the data
exchanged between client and server

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt
Overview of IDL Parameter Passing (2/2)

e The C++ mapping for parameter passing depend on both the type
and the direction

Built-in in params (e.g., char and long) passed by value
User defined in params (e.g., structs) passed by const
reference
Strings are passed as pointers (e.g., const char *)
inout params are passed by reference
Fixed-size out params are passed by reference

— Variable-size out params are allocated dynamically

— Fixed-size return values are passed by value

— Variable-size return values are allocated dynamically

— Object reference out params and return values are duplicated

e As usual, applications can be shielded from most of these details by
using _var types

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt
Overview of Object References (1/3)

e An object reference is a strongly-typed opaque handle to one
instance of an interface that identifies the object’s location

e An object reference is an ORB-specific entity that can contain

— A repository ID, which identifies its interface type
— Transport address information, e.g., a server’s TCP/IP host/port

address(es)
— An object key that identifies which object in the server the request

is destined for

e An object reference similar to a C++ “pointer on steriods” that's been
enhanced to identify objects in remote address spaces

— e.g., it can be NULL and it can reference non-existent objects

DR

¥

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Object References (2/3)

e Object references can be passed among processes on separate
hosts

— The underlying CORBA ORB will correctly convert object
references into a form that can be transmitted over the network

— The object stays where it is, however, and its reference is passed
by value

e The ORB provides the receiver with a pointer to a proxy in its own
address space

— This proxy refers to the remote object implementation
e Object references are a powerful feature of CORBA

— e.g., they support peer-to-peer interactions and distributed
callbacks

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Object References (3/3)

e The following is a transient object reference
— The timestamp helps ensure uniqueness across process lifetimes

Protocol Id Time Stamp Object Id

} } I

| iiop':1.0llpachanga:10015/P353b'ccdb00094ae8/firstPOA:/mys+arvant
A A

T |

Communication Object
Endpoint Adapter Id

e Persistent object references omit the timestamp to help ensure
consistency across process lifetimes

— There’s also a requirement to keep port numbers and IP
addresses consistent...

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of OMG Modules

e OMG modules are similar to C++ namespaces or Java packages

— Ie., they define scopes and can be nested

e OMG modules can be reopened to enable incremental definitions,
e.g.

module Stock {
interface Quoter { /* ... */ };
}.

..
module Stock {

interface Quoter_Factory { /* ... */ }
b

Reopening of modules is particular useful for mutually dependent
interfaces that require forward definitions

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of OMG Exceptions

Two types of exceptions in OMG IDL inherit from
CORBA::Exception

— System exceptions (e.g., CORBA::OBJECT_NOT_EXIST, which
are predefined by the CORBA spec and must not appear in a

raises clause
— User exceptions (e.g., Stock::Invalid_Stock), which can

be defined by user applications and can appear in a raises
clause

There are various restrictions on exceptions in CORBA

— e.g., they can’t be nested or inherited and can’t be members of
other data types

BRGHC

UC Irvine B’ at

etc
in Criteria criteria)

/I raises (NoFactory, InvalidCriteria,

. CosLifeCycle::LifeCycleObject

raises (Invalid_Stock);
CannotMeetCriteria);

/I Inherits:
/I void remove () raises (NotRemovable);

/Il Returns a new Quoter selected by name

/I e.g., "Dow Jones," "Reuters

long get_quote (in string stock_name)
/I Inherits:

CosLifeCycle::GenericFactory
/I Object create_object (in Key k,

1
1

Revised OMG IDL Quoter Definition

Apply the CORBA Lifecycle Service
/I Manage the lifecycle of a Quoter object.

exception Invalid_Stock {};
interface Quoter
interface Quoter_Factory :

{
UC Irvine

module Stock {

CORBA Tutorial

CORBA Tutorial

Douglas C. Schmidt

Overview of OMG Object

The CosLifeCycle::GenericFactory::create_object()
factory method returns an object reference to an instance that’s
derived from the CORBA.::Object interface

Since all objects implicitly inherit from CORBA::Object , all object
references support the following operations:

interface Object {
/I Reference counting methods
Object duplicate ();
void release ();
/I Checks for existence and reference identity & relationships
boolean is_nil ();
boolean non_existent ();
boolean is_equivalent (in Object another_object);
boolean is_a (in string repository_id);
..

uc

Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Fixed- and Variable-size Types

Certain types are variable-size: Other types can be variable- or

e Bounded or unbounded strings fixed-size:

(as shown in the e structs , unions , and arrays
Stock::Quoter example) are fixed-size if they contain only

e Bounded or unbounded fixed-size fields (recursively)

sequences e structs , unions , and arrays
are variable-size if they contain
any variable-size fields

e Type any (recursively)

e Object references

Variable-size types require the sender to dynamically allocate
instances and the receiver to deallocate instances

UC Irvine

CORBA Tutorial

: DowJones

ject()

create_ob

vs. Object-style Designs

: Quoter
Proxy - — - —

RPC

TTALS-LOArd0

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Results of Compiling the Stock.idl File

Running the Stock module through the IDL compiler generates stubs
and skeletons

e Each (twoway) stub is a proxy that e Each skeleton is an adapter

. that
1. Ensures a connection to the

server is established 1. Demarshals the request
. Marshals the request parameters
parameters 2. Performs an upcall on the
. Sends the request designated servant
. Waits to get the reply method
. Demarshals the reply . Marshals the reply
parameters _ parameters
. Returns to the client caller . Sends the reply back to

the client

UC Irvine

CORBA Tutorial Douglas C. Schmidt

OMG Object and POA IDL Mappings

CLIENT-SIDE e ® The OMG client mapping inherits all
proxy interfaces from the Object
interface

}/ — Moreover, proxy classes mirror

L=~ —— -

/ SulitcCreey ,,ﬂ.%.niﬁ%_sw the IDL inheritance hierarchy, so

{ GenericFactory

i
\ereate_object0 =0 \create_object() =0 references to derived interfaces

A] are compatible with references to

ym———— T~

// POA Stock::™ base interfaces via widening and

ﬁ\ Quoter_Factory]

/ create_object() = 0 \ B Qc\s or b\,:ms

//I/é\\lv >
ﬁ e The IDL server C++ mapping

p \

My inherits all Servants from

i Quoter |

\ \ !
/Factory. var\ Factory | ServantBase

\\create_object()
N -

(const CosLifeCycle::Key &factory key,
const CosLifeCycle::Criteria &criteria)

|

I
\ | i (
| create_object() v
\

-~ -

NI

/I Note C++ mapping of IDL long and string types

CORBA::Long get_quote (const char *stock_name);

..

/I Note C++ mapping of Key and Criteria structs.

..

. public virtual CosLifeCycle::LifeCycleObject {

public:
. public virtual CosLifeCycle::GenericFactory {

public:
/I Factory method for creation that inherits:

/I CORBA::Object_ptr create_object

1
1

Overview of Generated Client Stubs

1
)

class Quoter // Quoter also 1S-A CORBA::Object.

/I Note C++ mapping of IDL interface type
class Quoter_Factory

}.
}.

1

Note that you never instantiate a stub class directly,

/I Note C++ mapping of IDL module type
but always via a factory

namespace Stock {

s
S
2
<
m
@
o}
O

UC Irvine

UC Irvine

}.

CORBA Tutorial Douglas C. Schmidt
Overview of Generated Server Skeletons

!
0

N\

e Skeleton classes provide the server counterpart to the client stub
class proxies

_object()
=0
e A

— There’s a C++ virtual method in the skeleton class for each
operation defined in the IDL interface

ject()

)
/

\i /

CosLifeCycle \
\ GenericFactory
)

/’ T~ — —
create ob

e CORBA associates a user-defined servant class to a generated IDL
skeleton class using either

J
|
/
Quoter
Factory '

! create ob
-~

[

ject()
\

1. The Class form of the Adapter pattern (inheritance)
POA_Stock::Quoter

2. The Object form of the Adapter pattern (object composition, i.e.,
TIE)
template <class Impl> class POA_Stock::Quoter_tie

/

1: create_obj
J
/ |
\ \
(‘]
bject() \

Factory

| create o

|
|
|

The Class Form of the Adapter Pattern

CORBA Tutorial
UC Irvine

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Defining a Servant Using Inheritance
e Servant classes can inherit from their skeleton directly:
class My_Quoter_Factory : public virtual POA_Stock::Quoter_Factory

public:

My_Quoter_Factory (const char *factory_name =

"my quoter factory");
virtual CORBA::Object_ptr // Factory method for creation.
create_object (const CosLifeCycle::Key &factory key,
const CosLifeCycle::Criteria &the_criteria)
throw (CORBA::SystemException, QuoterFactory::NoFactory);
h
e However, this approach can create a “brittle” hierarchy and make it

hard to integrate with legacy code (e.g., when distributing a
stand-alone application)

e Moreover, virtual inheritance is sometimes implemented poorly by
C++ compilers

i ™
UC Irvine E} 1I:1""-'..-

\

e object() /
N/

\
~
AN
/
/
-

| creat
~_—">

j
\

\1/ Base
\
|
ecg)_:_O
\) _
o~
/. My
Quoter
g Factory
_—

ect_()_=_)

)
/

\
/
r
\

ject()

]

CosLifeCycle \
/

//‘___J——\\

\ GenericFactory

! create_ob

Z
|
|
|
Quoter
Factory ¢
! create_ob
2: create_ob

’
\
\
]
|
\

\ 1: create_quoter ()
/

/
My_Quoter
ect() /

.

]

/TN
client

create obj

P
\
/
\

The Object Form of the Adapter Pattern

CORBA Tutorial
UC Irvine

CORBA Tutorial Douglas C. Schmidt

A TIE-based Implementation
class My_Quoter_Factory {
public:
My_Quoter_Factory (const char *factory_name =
"my quoter factory");
/I Factory method for creation.
CORBA::Object_ptr create_object
(const CosLifeCycle::Key &factory_key,
const CosLifeCycle::Criteria &the_criteria)
throw (CORBA::SystemException, QuoterFactory::NoFactory);

j

TIE allows classes to become distributed even if they weren’t
developed with prior knowledge of CORBA

e There is no use of inheritance and operations need not be virtual!

e However, lifecycle issues for “tie” and “tied” objects are tricky...

i ™
UC Irvine E} 1I:1""-'..-

CORBA Tutorial Douglas C. Schmidt

Defining a Servant Using TIE

namespace POA_Stock

{

template <class Impl>
class Quoter_Factory_tie : public Quoter_Factory { /* ... */ }
..

We generate a typedef and a servant that places an implementation
pointer object within the TIE class:

typedef POA_Stock::Quoter_Factory_tie<My_Quoter_Factory>
MY_QUOTER_FACTORY;

MY_QUOTER_FACTORY factory (new My_Quoter_Factory);

All operation calls via the TIE class are then delegated to the
implementation object

UC Irvine D 1IFI‘FL'"-'--'

/I return the new Object Reference.

return quoter->_this ();

Quoter;

"My Quoter") == 0)

"Dow Jones") == 0)
/I Dynamically allocate a My_Quoter object.

new Dow_Jones
new My_Quoter;

:Quoter *quoter;
else /| Raise an exception.

Implementing My_Quoter _Factory

const CosLifeCycle::Criteria &the_criteria)
throw Quoter_Factory::NoFactory ();

quoter
quoter

| ...

/I Perform Factory Method selection of
/I the servant with the default_POA, and

/I the subclass of Quoter.

if (strcmp (factory_key.id,
/I Create a Stock:Quoter_ptr, register

(const CosLifeCycle::Key &factory key,
else if (strcmp (factory_key.id,

POA Stock:

/

The following code is identical regardless of which
form of Adapter pattern is used for servant classes

My_Quoter_Factory::create_object

CORBA::Object_ptr

s
S
2
<
o
©
(@]
O

UC Irvine

{
}

CORBA Tutorial Douglas C. Schmidt
Overview of Implicit Activation and _this()

e Each generated skeleton class contains a _this() method, e.g.:

class POA_Stock::Quoter

: public virtual CosLifeCycle::LifeCycleObject {
public:

Quoter_ptr _this ();

e Depending on the POA policy, the _this() method can be used to
activate a servant and return the corresponding object reference

e Internally, this() duplicates the object reference, so it must be
decremented at some point to avoid memory leaks

e Ifyou use _this() for a servantin a non-Root POA, make sure to
override the servant’s _default_POA() method...

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Throwing Exceptions

e To throw an exception, simply instantiate the exception class and
throw it, i.e., throw Quoter_Factory::NoFactory()

— The process is slightly more baroque using emulated exceptions

e Servant code should generally try to throw user exceptions

— Avoid throwing system exceptions since they convey less
information to clients

— When you do throw a system exception, set its completion status
to indicate what state the operation was in

e Use C++try blocks to protect scopes where operations may throw
exceptions

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Motivation for the CORBA Naming Service

e Clients access Quoter objects returned by My Quoter_Factory

— But how do clients find My_Quoter_Factory ?!

e One approach is to use CORBA::ORBhelper operations to convert
an object reference to a string and vice versa

interface ORB {
...
string object_to_string (in Object 0);
Object string_to_object (in string s);
e Stringified object references can be written to and read from a file,
passed between ORBs, and/or stored in a database

e A more effective and scalable approach, however, is often to use the
CORBA Naming Service

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt

Overview of the CORBA Naming Service

e Purpose
CLIENT

— Maps sequences of

3: create object) 2 resolve(strings to object
4: get_qu_ote() references

NAMING e Capabilities
SERVICE

— A Naming Context
can be a hierarchically
nested graph

— Naming Contexts
can also be federated

UC Irvine

0;

this->_this

factory_name;
"object impl";

the Naming Service

->bind (name, gf.in ());

name_context;

Registering My_Quoter _Factory with

/I Obtain object reference and

/I register with the POA.

/I Export our object reference to the
/I naming context.

(const char *factory_name)
Quoter_Factory_var df

CosNaming::Name name;
name.length (1);

namel[0].id
name_context

name[0].kind

extern CosNaming::NamingContextExt_ptr
My_Quoter_Factory::My_Quoter_Factory
Real code should handle exceptions...

CORBA Tutorial
UC Irvine

CORBA Tutorial Douglas C. Schmidt
Programming with Object References (1/3)

e An IDL compiler generates two different object reference types for
each interface

— <interface>_ptr — C++ pointer to object reference
x An “unmanaged type” that requires programmers to manipulate
reference ownership via <proxy>:._duplicate() and
CORBA::release()
— <interface>_var — “Smart pointer” to object reference
x Manages reference lifetime by assuming ownership of
dynamically allocated memory and deallocating it when the

_var goes out of scope
* operator->() delegates to the underlying pointer value
x _var types are essential for writing exception-safe code

DR

UC Irvine B r

CORBA Tutorial Douglas C. Schmidt
Programming with Object References (2/3)

e You should use _var types as often as possible since they
automate most of the error-prone reference counting, e.g.:

/I When ORB returns object reference its proxy has

/I a reference count of 1

Quoter_ptr quoter = bind_quoter_service ();

CORBA::Long value = quoter->get_quote ("ACME ORB Inc.");
CORBA::release (quoter);

/I release() decrements the reference count by one,

/I which causes deallocate when the count reaches 0

VErsus

Quoter_var quoter = bind_quoter_service ();

CORBA::Long value = quoter->get_quote ("ACME ORB Inc.");

/I quoter automatically releases object reference.

Calls to _duplicate() and CORBA::release() only affect the
local proxy, not the remote object!!!

D

et

UC Irvine

auIAl DN

dooj| uans

S, 940 8yl unJ pue Jabeuew s,yYOd 100y ay) areAnde am ‘Ajjeuld g
:sdals Buimojjo) ayl

sse|d apeoe] Jaddeim
BIA pazijeniul s 1aAlas 1a10nb 3201s 1IN0 ‘s1anias ygyOD Auew a1 e

1aBeueNTgHO ayl aulap am ‘sdals asay) Jo Auew ajewone o) e
80uaJ9al 193(qo S urelgo

01)l 81eAllOe pue JueAIdS A10Joe) JBlonb ay) arenuelsul uayl 9\ ‘S
Onui"g40::vay0D I1e2 3 T

921A19S BulweN ay) BIA Sjuald 0}

a|qejrene A1012e) Ja10nb 8] 10} 9oUaIa)al 103[C0 8] 9w IXaU Sp\ T
1099[q0-opnasd g4 ay1 01 aoualajal 193lgo

pauresisuod AlI[eso| ay) ureiqo o}
labeueN~ gHO Jo] uoneAnon

VOd 100y 3y} urejqo 01 82uaJayal 193l0o gHO 8yl 8sn ap\ 2

[euoinL Y400

o
o
c
S
QD
1]
(9]
(%]
Q
0
E}
o
(=

auIAl DN

Owo —
(Ownour —
Qur —

d

Ja1awesed ulue se Jen ayl sassed

Jajuiod pauinmal ay) Jo diysiaumo
1NouUI Ue Se JeA ay) Sasse

(uial™ e aney sadAl JeA azis-ajgeliep e

Jolaweled 1o ue se Jen ay) sassed

Ja1aweled
(g/¢) saaualalay 19alqo yum bulwwelbold

9p092 ajes-uondaoxa Bunum Joj Jueriodwi SI poylaw siyl —
punoJeyiom 01 Jajidwod 13| ay1 Aq parelsauab spoylaw Jadjay
[e10ads asn 0] paau Aew NoA ‘sia|idwod ++9 uay0lq ajpuey o e

sJajsuel) ey} poyiaw

BulAllepun ayl 01 JeA wolj suoisianuod adAy nonduwi yum swajqold

[euoinL Y400

pIwyas "o selbnog

CORBA Tutorial

Overview of ORB _Manager

class ORB_Manager {
public:
/I Initialize the ORB manager.
ORB_Manager (int argc, char *argv[]) {
orb_ = CORBA::ORB_init (argc, argv, 0);
CORBA::Object_var obj =
orb_->resolve_initial_references ("RootPOA");
poa_ =
PortableServer::POA::_narrow (obj.in ());
poa_manager_ = poa_->the_POAManager ();

}
/I ORB Accessor.
CORBA::ORB_ptr orb (void) { return orb_; }

/I Run the main ORB event loop.

int run (void) {
poa_manager_->activate ();
return orb_->run ();

}

/I Cleanup the ORB and POA.
"ORB_Manager () { orb_->destroy (); }
private:
CORBA::ORB_var orb_;
PortableServer::POA_var poa_;
PortableServer::POA_Manager_var poa_manager_;

b

B

UC Irvine

CORBA Tutorial

The Main Server Program
Uses persistent activation mode

int main (int argc, char *argv[])

{

ORB_Manager orb_manager (argc, argv);
const char *factory_name = "my quoter factory";

/I Create the servant, which registers with
/I the rootPOA and Naming Service implicitly.
My_Quoter_Factory factory (factory_name);

/I Could use the TIE approach and explicitly
/I register the servant with the POA, i.e.:
/I MY_QUOTER_FACTORY factory
(new My_Quoter_Factory (factory_name));
orb_manager.activate (&factory);

Block indefinitely waiting for incoming
invocations and dispatch upcalls.
orb_manager.run ();
/I After run() returns, the ORB has shutdown.

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Pseudo-objects and Locality Constraints

e The CORBA::ORBand PortableServer::POA interfaces define
“pseudo-objects,” i.e.:
orb_ = CORBA:ORB_init (argc, argv, 0);
CORBA::Object_var obj =
orb_->resolve_initial_references ("RootPOA");
poa_ =
PortableServer::POA::_narrow (obj.in ());
e Pseudo-objects have IDL interfaces but are implemented in the
ORB’s runtime library, rather than by using generated
stubs/skeletons

e Pseudo-objects are “locality constrained,” which means that their
object references can't be passed to remote address spaces

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of _narrow() Conversion Operators

e The IDL compiler generates static method narrow() for each
proxy that behaves like the C++ dynamic_cast operator

— lLe., it returns a non-nil reference if the argument to the method is
the right type, else nil

Note that _narrow() implicitly calls _duplicate() , which
increments the reference count

class Quoter : public virtual CosLifeCycle::LifeCycleObject {
public:

static Quoter_ptr _narrow (CORBA::Object_ptr arg);

..

class Stat_Quoter : public virtual Quoter {

public:
static Stat_Quoter_ptr _narrow (CORBA::Object_ptr arg);
..

D

UC Irvine at

CORBA Tutorial Douglas C. Schmidt

Overview of ORB Shutdown

e The following two operations shutdown the ORB gracefully:

interface ORB {
void shutdown (in boolean wait_for_completion);
void destroy ();

h
e These operations do the following:

— Stop the ORB from accepting new requests
— Allow existing requests to complete and
— Destroy all POAs associated with the ORB

e The wait_for_completion boolean allows the caller to decide
whether to wait for the ORB to finish shutting down before returning

— This is important for multi-threaded ORB implementations...

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Recap of the Stock Quoter Server

e In our stock quoter e The ORB and associated tools (e.g., IDL
server, we (i.e., the compiler) provides the rest:
application
developers) simply
write

1. Generated skeleton classes that
connect the ORB with the
application-defined servant classes

1. The IDL interfaces . (De)marshaling code
2. The servant classes . Management of object references

3. Code to initialize 4. The ORB runtime libraries that handle
the server event connection management, GIOP data
loop transfer, endpoint and request

demuxing, and concurrency control

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Binding a Client to a CORBA Object

e Several steps:

1. Client uses resolve_initial_references() and
“Interoperable Naming Service” to obtain a NamingContext
— This is the standard ORB “bootstrapping” mechanism

2. Client then uses NamingContext to obtain desired object
reference

3. The client then invokes operations via object reference

e Object references can be passed as parameters to other remote
objects

— This design supports various types of “factory” patterns

UC Irvine E FL" >

CORBA Tutorial Douglas C. Schmidt

Stock Quoter Client Program (1/2)

int main (int argc, char *argv[]) {
Stock::Quoter_var quoter; // Manages refcounts.
const char *stock_name = 0;
try { // Use a factory to bind to any quoter.
Stock::Quoter_Factory var gf =
bind_service<Stock::Quoter_Factory>
("my quoter factory", argc, argv);
if (CORBA:is_nil (gf)) return -1;

CosLifeCycle::Key key; key.length (1);
key[0].id = "My Quoter";

/I Find a quoter and invoke the call.
CORBA::Object_var obj = qgf->create_object (key);
quoter = Stock::Quoter::_narrow (obj);

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Stock Quoter Client Program (2/2)

stock_name = CORBA::string_dup ("ACME ORB Inc.");
CORBA::Long value = quoter->get_quote (stock_name);

cout << stock name << " = " << value << endl;
/I Destructors of * var release memory.
} catch (Stock:Invalid_Stock &) {
cerr << stock name << " not valid" << endl;
} catch (...) {
/l Handle exception...

CORBA::string_free (const_cast <char *> (stock_name));
quoter->remove (); // Shut down server object

}

D)

. I CHL
UC Irvine - et

CORBA Tutorial Douglas C. Schmidt
Overview of Memory Management for OMG Strings

e CORBA provides the following methods that must be used to
manage the memory of dynamically allocated strings
namespace CORBA {

char *string_dup (const char *ostr);

void string_free (char *nstr);

char *string_alloc (ULong len); // Allocates len + 1 chars
/I ... Similar methods for wstrings ...

}

e These methods are necessary for platforms such as Windows that
have constraints on heap allocation/deallocation

¢ In the Stock Quoter client example above we could have avoided the
use of dynamic string allocations by simply using the following

const char *stock name = "ACME ORB Inc.";

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Obtaining an Object Reference (1/2)

static CORBA::ORB_var orb;
extern CosNaming::NamingContextExt_ptr name_context;

template <class T>
typename T::_ptr_type /* trait */
bind_service (const char *n, int argc, char *argv[]) {
CORBA::Object_var obj; /I "First time" check.
if (CORBA::is_nil (name_context)) {
/I Get reference to name service.
orb = CORBA::ORB_init (argc, argv, 0);
obj = orb->resolve_initial_references ("NameService");
name_context =
CosNaming::NamingContextExt::_narrow (obj.in ());
if (CORBA:is_nil (name_context)) return T::_nil();
}

D

UC Irvine at

CORBA Tutorial Douglas C. Schmidt

Obtaining an Object Reference (2/2)

CosNaming::Name svc_name;
svc_name.length (1); svc_name[0].id = n;
svc_name[0].kind = "object impl";

/I Find object reference in the name service.
obj = name_context->resolve (svc_name);

/I Can also use
/I obj = name_context->resolve_str (n);

/Il Narrow to the T interface and away we go!
return T::_narrow (obj);

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Coping with Changing Requirements

e New Quoter features
— Format changes to extend functionality
— New interfaces and operations

e Improving existing Quoter features

— Batch requests

e Leveraging other ORB features

— Asynchronous Method Invocations (AMI)
— Passing object references to implement a publisher/subscriber
architecture

BRGHC

UC Irvine B’ at

CORBA Tutorial Douglas C. Schmidt
New Formats

For example, percentage that stock increased or decreased since start
of trading day, volume of trades, etc.

module Stock

{
..

interface Quoter

{

long get_quote (in string stock_name,
out double percent_change,
out long trading_volume)
raises (Invalid_Stock);
h
I8

Note that even making this simple change would involve a great deal of
work for a sockets-based solution...

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Adding Features Unobtrusively

e Interface inheritance allows new features to be added without
breaking existing interfaces

module Stock {
/I No change to Quoter interface!!
interface Quoter { /* ... */ };

interface Stat_Quoter : Quoter // a Stat_Quoter IS-A Quoter {
/Il Note OMG IDL’s inability to support overloading!
long get_stats (in string stock_name,
out double percent_change,
out long volume) raises (Invalid_Stock);
I ..

e Applications can pass a Stat_Quoter whereever a Quoter is
expected

— Clients can use _narrow() to determine actual type

UC Irvine

CORBA Tutorial Douglas C. Schmidt

New Interfaces and Operations
For example, adding a trading interface

module Stock {
/I Interface Quoter_Factory and Quoter same as before.
interface Trader {
void buy (in string name,
inout long num_shares,
in long max_value) raises (Invalid_Stock);
/I sell() operation is similar...

ir’1terface Trader_Factory { /* ... */ }

h
Multiple inheritance is also useful to define a full service broker:

interface Full_Service_Broker : Stat_Quoter, Trader {};

Note that you can’t inherit the same operation from more than one
interface

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Batch Requests
Improve performance for multiple queries or trades

interface Batch_Quoter : Stat_Quoter
{ /I Batch_Quoter IS-A Stat_Quoter
typedef sequence<string> Names;
struct Stock_Info {
/I Acts like String_var initialized to empty string.
string name;
long value;
double change;
long volume;
b
typedef sequence<Stock_Info> Info;
exception No_Such_Stock { Names stock; };

/I Note problems with exception design...
void batch_quote (in Names stock names,
out Info stock_info) raises (No_Such_Stock);
b

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of OMG Structs

IDL structs are similar to C++ structs
— I.e., they contain one or more fields of arbitrary types
However, IDL structs must be named and have one or more fields

The C++ mapping rules are different for fixed- and variable-size
structs

— le., variable-size structs must be dynamically allocated by
sender and deallocated by receiver

Using the IDL-generated _var helper types minimize the differences
between fixed- and variable-sized structs in C++ mapping

BRGHC

UC Irvine B’ at

CORBA Tutorial

Douglas C. Schmidt

Overview of OMG Sequences (1/2)

IDL sequences are variable-length vectors of size >= 0
They can be bounded or unbounded

— Bounded sequences have a max number of elements
— Unbounded sequences can grow to any (reasonable) length

Sequences can contain other sequences

typedef sequence<octet> Octet_Sequence;
typedef sequence<Octet_Sequence> Octet Argv;

Sequences can be also used to define recursive data structures for
structs and unions

struct Node {
sequence<Node> Children;
...

%

UC Irvine

CORBA Tutorial

Douglas C. Schmidt

Overview of OMG Sequences (2/2)

Each IDL sequence type maps to a distinct C++ class

The length()
the sequence

The length() mutator method can be used to change the number
of elements in the sequence

accessor method returns the number of elements in

Each C++ class defines pair of overloaded subscript operators
(operator[])

Although it’s illegal to access beyond the current length, you can use
the length() mutator to grow the sequence length at its tall

The copying semantics of sequences depend on the types of its
elements

UC Irvine

DR

— ¥

CORBA Tutorial

Motivation for Asynchronous
Method Invocations (AMI)

communication
2. Increase the end-to-end latency for multiple

operations
3. Decrease OS/network resource utilization

Increase the number of client threads
transfers

— e.g., due to synchronous two-way

requests
— e.g., due to blocking on certain long-delay

— e.g., inefficient support for bulk data

asynchronous two-way invocations

e This omission yielded the following drawbacks
1.

e Early versions of CORBA lacked support for

UC Irvine

CORBA Tutorial

CORBA'’s Lack of Asynchrony

inefficient

Limitations with Workarounds for
requests

— Often non-portable, non-scalable, and
— Best-effort semantics are unreliable
— Applications must match callbacks with

— Requires callback objects
— Uses DI, thus very hard to program

— Not type-safe

e Synchronous method invocation (SMI)
multi-threading

e Oneway operations
e Deferred synchronous

UC Irvine

CORBA Tutorial Douglas C. Schmidt

OMG Solution — CORBA Messaging Specification
e Defines QoS Policies for the
ORB 2poller I request
POLLING O—>
— Timeouts CLIENT ? operation(args)

3: response %
—

TARGET
OBJECT

— Priority L

— Reliable one-ways -4‘ga
o—»

AE-CO~

e Specifies two asynchronous

method invocation (AMI) models .
CALLBACK O’ qulm. TARGET
1. Poller model CLIENT operation(callback, argbomECT

2. Callback model C}@%ﬁ'mﬂ 0

e Standardizes time-independent EEEEE) 2 mspone L
invocation (TII) model

— Used for store/forward routers

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt

AMI Callback Overview

Implied-IDL for client:
QUOTE STOCK module Stock {
CLIENT stock name QUOTER /I ReplyHandler.
— interface AMI_QuoterHandler
: Messaging::ReplyHandler {

- 0
et_quote ("IBM" :
O i () /I Callback method.
_ -—0 _ void get_quote (in long return_value);

value

interface Quoter {
/I Two-way synchronous operation.
long get_quote (in string stock_name);

Quoter IDL Interface:
module Stock {
interface Quoter {
/I Two-way operation to /I Two-way asynchronous operation.
/I get current stock value. void sendc_get_quote

long get_quote (AMI_QuoterHandler handler,
(in string stock_name); in string stock);

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Example: Synchronous Client

QUOTE stock Application:
CLIENT stock name QUOTER // NASDAQ abbreviations for ORB vendors.
— static const char *stocks[] =

o—»
[) et quote('BM") [[J—
c—— J—— "] oNA" // IONA Orbix
@) <+ ©° @) BEAS' // BEA Systems WLE
value "IBM" /I IBM Component Broker
IDL-generated stub: }
CORBA::ULong /I Set the max number of ORB stocks.
Stock::Quoter::get_quote static const int MAX_STOCKS = 3;
(const char *name)
{ /I Make synchronous two-way calls.
. Setup connection for (int i = 0; i < MAX_STOCKS; i++) {
. Marshal CORBA::Long value =
. Send request quoter_ref->get_quote (stocksi]);
. Get reply cout << "Current value of "
. Demarshal << stocks[i] << " stock: "
. Return << value << endl,

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Example: AMI Callback Client (1/2)

CALLBACK Reply Handler Servant:
QUOTE | My_Async_Stock_Handler
sendc get quote(handler, class My Async_ —
CLIENT = "IBM") . public POA_Stock::AMI_QuoterHandler {

=L public
C]O :upcall 1: stock_name C]O My_Async_Stock_Handler (const char *s)
_ P u— ﬂ . stock_ (s)

2: value _ {1}
"My_Async_Stock_Handler (void) { }

Asynchronous stub:
void
Stock::Quoter::sendc_get_quote /I Callback method.
(AMI_QuoterHandler_ptr, virtual void get_quote
const char *name) (CORBA::Long ami_return_val)
{
Setup connection cout << stock_.in () << " stock: "
Store reply handler << ami_return_val << endl;
in ORB /I Decrement global reply count.
Marshal reply_count--;
Send request]
Return private:
CORBA::String_var stock_;

h
D-O-C

UC Irvine

CORBA Tutorial

Douglas C. Schmidt

Example: AMI Callback Client (2/2)

/I Global reply count
int reply_count = MAX_STOCKS;

/I Servants.
My_Async_Stock_Handler *
handlersfMAX_STOCKS];

/I Objrefs.
Stock::AMI_QuoterHandler_var
handler_refsfMAX_STOCKS];

int i;

/I Initialize ReplyHandler

/I servants.

for (i = 0; i < MAX_STOCKS; i++)
handlers[i] = new

My_Async_Stock_Handler (stocksl[i]);

/I Initialize ReplyHandler object refs.
for (i = 0; i < MAX_STOCKS; i++)
handler_refs[i] =
handlers[i]->_this ();

/I Make asynchronous two-way calls
/I using the callback model.
for (i = 0; i < MAX_STOCKS; i++)
quoter_ref->sendc_get_quote
(handler_refs]il.in (),
stocksli]);

..

/I Event loop to receive all replies.
while (reply_count > 0)
if (orb->work_pending ())
orb->perform_work ();
else

UC Irvine

.1'-1. ¥
e

CORBA Tutorial Douglas C. Schmidt
Additional Information on AMI

Messaging specification is integrated into CORBA spec.
— www.omg.org

See Vinoski's CACM article on CORBA 3.0 for more info.
— www.cs.wustl.edu/~schmidt/vinoski-98.pdf

See our papers on AMI

— www.cs.wustl.edu/~schmidt/report-doc.html
— www.cs.wustl.edu/~schmidt/PDF/amil.pdf
— www.cs.wustl.edu/~schmidt/PDF/ami2.pdf

See TAO release to experiment with working AMI examples

— $TAO_ROOT/tests/AMI/

- (M0

UC Irvine B e

CORBA Tutorial

Douglas C. Schmidt

Motivation for a Publisher/Subscriber Architecture

e To this point, our stock quoter service has required the client to “poll”
the server periodically to receive the latest quote value

— However, this design is inefficient since the client keeps
contacting the server, even if nothing has changed!

e A more scalable approach may be to use the Publisher/Subscriber
architectural pattern

— This pattern decouples the publishers who produce quote events
from subscribers who consume them

e We'll redesign our stock quoter application to implement the
Publisher/Subscriber pattern using object references

D

UC Irvine B’

1: subscribe (ObjRefy)

Architecture

/ 4: push (event)

A:
Consumer
B
Consume

A Publisher/Subscriber Stock Quoter

Note the use of the Publisher/Subscriber pattern

CORBA Tutorial
UC Irvine

in your

that contains a

behaves like a
that’s initialized to the empty string

Event Type

and an any:
application code since it’s explicitly designed

string topic_; // Used for filtering.
any value_; // Event contents.
to be ORB-specific!!!

CORBA::Any value_;

TAO::String_mgr topic_;
— Do not use the TAO::String_mgr

string

struct Event {
struct Event {
String_var

|3

e The TAO::String_mgr

|3

e This maps to the following C++ class

e We define an Event struct

s
S
2
<
o
©
(@]
O

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of the CORBA Any Type (1/2)

e OMG IDL defines type any for use with applications that can only
determine the types of their data at runtime

e This type contains the following pair of fields:

— The TypeCode that describes the type of the value in the any in

order to ensure typesafety
— The current value of the any

e The client ORB stores the TypeCode before the value so that the
server ORB can properly decode and interpret the value

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of the CORBA Any Type (2/2)

e |IDL any maps to the C++ class CORBA::Any::

class Any {
public:
Any (); // Constructs an Any that contains no value.
Any (const Any &); // Deep copy semantics
Any &operator= (const Any &); // Deep copy semantics
..
Built-in types are inserted and extracted using overloaded

operator<<= and operator>>= | respectively

— The insertion operators copies the value and sets the typecode
— The extract operators return true iff the extraction succeeds, i.e., if

the typecodes match!

The IDL compiler generates these overloaded operators for
user-defined types, as shown later in a DIl example

UC Irvine

Event Receiver Interface
/I Inform the Consumer
/I event has occurred.
void oneway push (in Event event);
/I Disconnect the Consumer
/I from the Notifier.
void disconnect (in string reason);

A Consumer is called back by the Notifier

interface Consumer

CORBA Tutorial
UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of Oneway Operations

e The push() operations in Consumer and Notifier interfaces are
oneway

— They must therefore have void return type, only in parameters,
and no raises clause

e By default, oneway operations have “best effort” semantics

— lLe., there is no guarantee they will be delivered in the order sent
or that they’ll even be delivered at all!

e Later versions of CORBA define so-called “reliable oneways,” which
address some of these issues via the SyncScope policy

— €.0., SYNC_NONE, SYNC_WITH_TRANSPORT, SYNC_WITH_SERVER,
and SYNC_WITH_TARGET

D

UC Irvine

Returns consumer

Notifier Interface

in string filtering_criteria);
/I Remove a particular consumer.

(in Consumer consumer,
/I who have subscribed and who match

/I Subscribe a consumer to receive

/I events that match filtering_criteria
void unsubscribe (in long consumer_id);
/I Push the event to all the consumers
/I the filtering criteria.

/I applied by notifier.

long subscribe
void oneway push (in Event event);

/I = For Consumers.
/I = For Suppliers.

interface Notifier {

CORBA Tutorial

A Notifier publishes Events to subscribed

Consumers

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Limitations of Object References

¢ Note that the Notifier::subscribe() operation returns a
consumer ID that the unsubscribe() operation uses to remove
the subscription of a particular consumer

e We need this ID since it’s invalid to compare objects for equality
directly using object references, i.e.:

— Object references only indicate location, not object identity
— Object::is_equivalent() is a local operation that tests
object reference identity, not object identity!!

e Other invalid operations on object references include

— Using C++ dynamic_cast rather than _narrow()
— Testing for NULL rather than using CORBA::is_nil()

UC Irvine

CORBA Tutorial

Douglas C. Schmidt

Notifier Implementation

class My_Notifier { // C++ pseudo-code
public:
CORBA::Long subscribe (Consumer_ptr consumer,
const char *fc) {
insert <consumer> into <consumer_set > with <fc>.
return consumer_id;
}
void unsubscribe (CORBA::Long consumer_id) {
remove <consumer_id> from <consumer_set >.

void push (const Event &event) {
foreach <consumer> in <consumer_set >
if (event.topic_ matches <consumer> filter_criteria)
<consumer>.push (event);
}
private: // e.g., use an STL map.
std::map <string, Consumer_ptr> consumer_set_;

h

N O™
UC Irvine E E‘ L

auIAIl DN

Douglas C. Schmidt

e Connection/memory
management

e Request transfer
e Endpoint demuxing
e Concurrency control

Features

Alonsoday aoeualu|

Alonsoday uoneiuawsajdwi

(VOd) Jerdepy 108l s|geniod

(IS@) @9elLIU| UCIBIEXS JlWeUAQ

(ISS) 8depsiu| UOIBIRNS dNEIS

(11@) @oeWLIU| UOIEI0AU| JIWeUAQ

(11S) 8oeI8IU| UOIEI0AU| 1Bl

1) 4o} sbuiddew abenbue| Buiwweiboid

(7)) abenbue uoniuyaq adepalu|

(dOll pue dO19) 29ds Aujiqesadolaiu]
810D (9H0) J18xoig 1sanbay 108lq0 -

<2

Overview of the ORB Core

OBJECT ADAPTER
I/0 SUBSYSTEM

ENDPOINT DEMULTIPLEXER
GIOP TRANSPORT PROTOCOLS

:sjusuodwod Jofew
Buimoljoy 8yl sureluod uoneanads yay0D ayl

suauodwo) YgHOD JO MBIAIBAQ

[eloinL vg40o0

TIOP/TCPAP
UC Irvine

CORBA Tutorial

auIAIl DN

|

Douglas C. Schmidt
A

SMOMLAN
SADVAYALINI SHOMLAN SADVAYALINI SHOMLAN

WILSASINS O/ SO WILSASINS O/ SO

COMMON
FACII:ITIES

TINII SO TINII SO

do1/dord
YALIVAY ADVAAALNI Sg0LS
LOArd0 e R: (0) a1
NOLITIIS
"1dI
o——»

anfeA uInjax + sSae no

(INVANUAS)
1OArdo Quoneiado INATLS
<+_—0

sSae ur

)L,

DOMAIN
]NTER;FACES
OBJECT REQUEST BROKER
SERVICES

I

A

AJOLISOdTd AJOLISOdTd
NOILVINAWATIATL AOVAAALNI

INTERFACES

APPLICATION

AATIANOD ADIAYAS
a1 ONINVN

A

OMA Reference Model Interface Categories

|

91N1331iydly 440 vad0D

[eloinL vg40o0

describes the interactions between various CORBA components and

The Object Management Architecture (OMA) Reference Model

CORBA Tutorial
UC Irvine

CORBA Tutorial Douglas C. Schmidt

Tracing a Request Through a CORBA ORB

Request invocation phases

Client ORB . .
ﬂ £Memypom 1. Client ORB connection

Connection Cach
® management

. Server ORB connection

Leader/Followers
Reactor Connectof
& management
~ 2 . Client invocation for twoway

®@Ed ® calls

Server ORB .
_) . Server processing for
Connection Cachi [Memory Pool

®®© || [P twoway calls

. Client reply handling for
ShE) twoway calls
G @ud
bRoNO

UC Irvine B’

CORBA Tutorial Douglas C. Schmidt
Client ORB Connection Management

The following are the activities a client ORB performs to create a
connection actively when a client application invokes an operation on
an object reference to a target server object:

. Query the client ORB’s connection cache for an existing connection
to the server designated in the object reference on which the
operation is invoked.

. If the cache doesn’t contain a connection to the server, use a
connector factory to create a new connection S.

. Add the newly established connection S to the connection cache.

4. Also add connection S to the client ORB'’s reactor since S is
bi-directional and the server may send requests to the client using S.

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Server ORB Connection Management

The server ORB activities for accepting a connection passively include:

5. Use an acceptor factory to accept the new connection C from the
client.

. Add C to the server ORB’s connection cache since C'is
bi-directional and the server can use it to send requests to the client.

. Also add connection C to the server ORB’s reactor so the server is
notified when a request arrives from the client.

. Wait in the reactor’s event loop for new connection and data events.

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Client Invocation of Synchronous Twoway Operation

We now describe the steps involved when a client invokes a
synchronous two-way request to a server:

9. Allocate a buffer from a memory pool to marshal the parameters in
the operation invocation.

10. Send the marshaled data to the server using connection S.
Connection S is locked for the duration of the transfer.

11. Use the leader/followers manager to wait for a reply from the server.
Assuming that a leader thread is already available, the client thread
waits as a follower on a condition variable or semaphore.!

1The leader thread may actually be a server thread waiting for incoming requests or another client
thread waiting for its reply.

UC Irvine

CORBA Tutorial

Douglas C. Schmidt

Server Processing for Twoway Operation

The server ORB activities for processing a request are described
below:

12.

13.

14.

15.

16.

17.

Read the header of the request arriving on connection C' to
determine the size of the request.

Allocate a buffer from a memory pool to hold the request.
Read the request data into the buffer.

Demultiplex the request to find the target portable object adapter
(POA), servant, and skeleton — then dispatch the designated upcall
to the servant after demarshaling the request parameters.

Send the reply (if any) to the client on connection C. Connection C
is locked for the duration of the transfer.

Wait in the reactor’s event loop for new connection and data events.

UC Irvine

D

¥

CORBA Tutorial Douglas C. Schmidt

Client Reply Handling for Twoway Operation

Finally, the client ORB performs the following activities to process a
reply from the server:

18. The leader thread reads the reply from the server on connection S.

19. After identifying that the reply belongs to the follower thread, the
leader thread hands off the reply to the follower thread by signaling
the condition variable used by the follower thread.

20. The follower thread demarshals the parameters and returns control
to the client application, which processes the reply.

UC Irvine

CORBA Tutorial

ESIOP
RELIABLE
SEQUENCED

STANDARD CORBA PROGRAMMING API
VME-IOP ATM -IOP
DRIVER
PROTOCOL CONFIGURATIONS

GIOP GIOPLITE

CORBA Interoperability Protocols
— Enables ORB-to-ORB interoperability

e |[IOP
— Works directly over TCP/IP, no RPC

e ESIOPs
— e.g., DCE, DCOM, wireless, etc.

COMPONENT

ADAPTER COMPONENT

ORB TRANSPORT
TRANSPORT LAYER
NETWORK LAYER

IIOP

ORB MESSAGING

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of GIOP and IIOP
Common Data Representation (CDR)

— Transfer syntax mapping OMG-IDL data types into a bi-canonical
low-level representation
* Supports variable byte ordering and aligned primitive types

Message transfer

— Request multiplexing, i.e., shared connections

— Ordering constraints are minimal, i.e., can be asynchronous
Message formats

— Client: Request , CancelRequest , LocateRequest

— Server: Reply , LocateReply , CloseConnection
— Both: MessageError

[IOP is a mapping of GIOP over TCP/IP

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Interface Definition Languages (IDLS)

e Motivation

— Developing flexible distributed applications on heterogeneous
platforms requires
x An interface contract between client and server that defines
permissible operations and types
* Strict separation of interface from implementation(s)

e Benefits of using an IDL

— Ensure platform independence — e.g., Windows NT to UNIX

— Enforce modularity — e.g., separate concerns

— Increase robustness — e.g., eliminate common network
programming errors

— Enable language independence — e.g., COBOL, C, C++, Java,
etc.

octet byte_ordTer; /I Fragment bit in 1.1.

octet message_type;

Example GIOP Format

Request, Reply, CancelRequest,

LocateRequest, LocateReply,

CloseConnection, MessageError
struct MessageHeader {

char magic[4];

Version GIOP_version;

unsigned long message_size;
struct RequestHeader {

I0OP::ServiceContextList service context;

unsigned long request_id;

/I Reliable one-way bits in 1.2

boolean response_requested;

sequence<octet> object_key;

string operation;

Principal requesting_principal;

enum MsgType {

k
I3

CORBA Tutorial
module GIOP {
UC Irvine

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt

Example IDLs Overview of OMG IDL (1/2)

e Many IDLs are currently available, e.g., e OMG IDL is an object-oriented interface definition language

— OSI ASN.1 — Used to specify interfaces containing operations and attributes
— OSI GDMO — OMG IDL support interface inheritance (both single and multiple
— SNMP SMI inheritance)

— DCE IDL

— Microsoft’s IDL (MIDL)
— OMG IDL - e.g., C, C++, C#, Java, Smalltalk, COBOL, Perl, etc.

e OMG IDL is designed to map onto multiple programming languages

— ONC’s XDR ¢ All data exchanged between clients and servers must be defined
¢ However, many of these are procedural IDLs using OMG IDL

— These are more complicated to extend and reuse since they don't
support inheritance

DR

UC Irvine - at UC Irvine

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt

Overview of OMG IDL (2/2) OMG IDL Features

OMG IDL is similar to Java interfaces or C++ abstract classes OMG IDL is similar to C++ and Java

— I.e., it defines the interface and type “contracts” that clients and — e.g., comment styles, identifiers, built-in types, etc.
servers must agree upon to exchange data correctly and

. OMG IDL supports the following features:

efficiently

— modules and interfaces

— Operations and Attributes

— Single and multiple inheritance
Fixed-size basic types (e.g., double , long , char , octet , etc).
Arrays and sequence

IDL source files must end with the .idl suffix struc:, enum, union, typedef

consts

exceptions

OMG IDL is not a complete programming language, however

— e.g., itis purely declarative and can not be used to define object
state or perform computations

UC Irvine) 5 UC Irvine

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt

OMG IDL Differences from C++ and Java Using OMG IDL Interfaces Effectively
The CORBA specification and services are defined using IDL

Case-insensitive Unions require a tag _ _ o -~
) i Interfaces described using OMG IDL can also be application-specific
No control constructs Different String type

— e.g., databases, spreadsheets, spell checkers, network
managers, air traffic control systems, documents, medical
Different exception interface imaging systems, etc.

No data members (cf Different Sequence type
valuetypes)

No pointers (cf valuetypes) No templates Objects may be defined at any level of granularity

No constructors or destructors , ,naway call semantics — e.g., from fine-grained GUI objects to multi-megabyte multimedia

No overloaded operations e readonly keyword Blobs

It's essential to remember that distributed objects will incur higher
latency than collocated objects

Noint data type any type

Contains parameter passing
modes — Interfaces designed for purely stand-alone applications may
therefore require reengineering

D)

oo EE1E

UC Irvine - UC Irvine

CORBA Tutorial Douglas C. Schmidt

Static Invocation Interface (SllI)

e The common way to use OMG IDL is
the “Static Invocation Interface” (Sll)

/I Get object reference.
Quoter_var quoter = // ...

const char *name =

"ACME ORB. Inc." e All operations are specified in

advance and are known to client via

CORBA::Long value = stubs
quoter->get_quote (name);
cout << name << " = "

— Stubs marshal operation calls into
<< value << endl;

request messages

e The advantages of SlI are simplicity, typesafety, and efficiency

e The disadvantage of Sll is its inflexibility (and potentially its footprint)

UC Irvine E} 1I.-Ih-h"'--'

CORBA Tutorial

Sl Stubs use the Proxy Pattern

1: METHOD CALL

et_quote()

2
DNy

4: METHOD RETURN

: BROKER

\ 2: FORWARD REQUEST

: QUOTER

3: RESPONSI:\
| QUOTER SKELETON

NETWORK

Intent: provide a surrogate for another object that

controls access to it

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Dynamic Invocation Interface (DII)

e A less common programming APl is the “Dynamic Invocation
Interface” (DII)

— Enables clients to invoke operations on objects that aren’t known
until run-time
x e.g., MIB browsers

— Allows clients to “push” arguments onto a request stack and
identify operations via an ASCIl name
x Type-checking via meta-info in “Interface Repository”

e The DIl is more flexible than the SlI
— e.g., it supports deferred synchronous invocation

e However, the DIl is also more complicated, less typesafe, and
inefficient

pHOTC

UC Irvine e e Mt

CORBA Tutorial

An Example DIl Client

/I Get Quoter reference.

...

Stock::Quoter_var quoter_ref
CORBA::Long value;

quoter_ref->_request ("get_quote™);

/I Create request object.
CORBA::Request_var request

9);

tc_lon

/I Add parameter using insertion operation,
request->set_return_type (CORBA::

/I which makes a “deep copy” and sets
/I typecode to “unbounded string.”
request->add_in_arg () <<= "IONAY";

request->invoke (); / Call method.

/I Retrieve/print value using extraction

"

/I operator, which makes a “shallow copy.”
cout << "Current value of IONA stock:

if (request->return_value () >>= value)

<< value << endl;
e The DIl example above is more complicated and

inefficient than the earlier SIl example

e www.cs.wustl.edu/~schmidt/report-doc.html has

more information on DII

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Static and Dynamic Skeleton Interface

e The Static Skeleton Interface (SSI) is generated automatically by the
IDL compiler

— The SlI performs the operation demuxing/dispatching and
parameter demarshaling

e The Dynamic Skeleton Interface (DSI) provides analogous
functionality for the server that the DII provides on the client

— It is defined primarily to build ORB “Bridges”

— The DSI lets server code handle arbitrary invocations on CORBA
objects

— The DSI requires the use of certain POA features

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Advanced CORBA Features

INTERFACE IDL IMPLEMENTATION Features

REPOSITORY COMPILER REPOSITORY .
e Portable Object

in args
operation() OBJECT I Adapter
/ (SERVANT)

e Multi-threading

A 4

JECT .
ﬁ-ﬁstn e Implementation

Repository
ORB CORE

() STANDARD INTERFACE () stanparD LanGuace marPiNé ¢ CORBA
.ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL Component Model

www.cs.wustl.edu/~schmidt/corba.html

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of the Portable Object Adapter (POA)

SERVANTS SERVANTS PortableServer interfaces
SERVANTS SERVANTS

Csrvanis] ¥ POA

POAManager

OBJECT ID O
OBJECTID O Servant

\ POA Policies
OBJECT 1D oA Root Servant activators and servant

ACTIVE OBJECT MAP POA locators

L OBJECT ADAPTER y, POACurrent

ORB CORE AdapterActivator
I/O SUBSYSTEM

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Design Goals of the Portable Object Adapter

Servants that are portable between ORBs

Objects with persistent & transient identities

Transient objects with minimal programming effort and overhead
Transparent activation & deactivation of servants

Implicit and explicit servant activation

A single servant can support multiple object identities

Multiple (nested) instances of the POA in a server process

POA behavior is dictated by creation policies

Servants can inherit from skeletons or use DSI

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Object Lifecycle for a POA

SERVANT!
SERVANT
SERVANT
Adapter
Activator
Servant
Activator
SERVANT

CORBA

sarvani =arvani zervani sarwani
incarnation incamation Object incarnatian incarnation

ACTIVATED

=zarvani zarvanm sarvani servani
eiharaalization elharaalization aiharaalizafion ailharaalizafion

R R S
17 o L

DEACTIVATED

Objectld O3~ [SERVANT

ObjectId O |
Obiject Id O
Object Id O
Object Id O
ObjectId O |
Object Id

activator
Active Object Map

default servant
Active Object Map

GORBA Objeet GORBA Objact
craation dasiruciion

POA Manager

The POA Architecture

CORBA
Object
NON-EXISTENT

POA Manager
RootPOA
Object Id O

-

Active Object Map
POA object|

Object reference

s
S
2
<
o
©
(@]
O

UC Irvine

UC Irvine

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt
Overview of Object IDs Overview of POAs

e Object IDs are the value used by the POA and by the ORB POAs form a hierarchical namespace for objects in servers

implementation to identify particular CORBA objects — j.e., a namespace for object ids and child POAs

— Object ID values may be assigned by the POA or by the Each servant belongs to one POA, but a POA can contain many
application servants

— Object ID values are encapsulated by references and hidden from
clients

— Object ID have no standard form; they are managed by the POA — A factory for creating object refs
as uninterpreted octet sequences — Activates and deactivates objects

— Etherealizes and incarnates servants

e An object reference encapsulates an object Id, a POA identity, and A POA maps client requests to servants
transport profiles

A POA is a manager for object lifecycles, e.g.:

POA policies specify the characteristics of a child POA when it is
created

DR

UC Irvine) 5 UC Irvine at

CORBA Tutorial Douglas C. Schmidt

_policy()

create_request_processing_policy()

0

id()

ect_with_id|
ect()
ce()

deactivate_obj

Overview of the POA Manager

()
()

ager ()
ager()
reference_to_servant|

|_policy()
i queness_policy()
create_id_assignment_policy()
)
create_referen
()
()

plicit_activation_policy()

? e Encapsulates the processing

state of associated POAs

0
activate_object()

ager
: PortableServer::POAManager

the_activator
0

0
e thread

create_servant_retention
servant_to_referenc

PortableServer::AdapterActivator
ager
PortableServer:: ServantM anager

jet_instance_man:

> | g
the_parent : PortableServer::POA
the_man:
get_servant()

destroy

@ deactivate

deactivate

1..11/7 the_parent j 0.n

PortableServer::POA

(from PortableServer)
the_name : strin
the_servant_man
create POA
find_POA

destroy()
create_id_uni
set_instance_man
set_servant
activate_ob)j
create_reference_with_id
id_to_servant|
id_to_referenct

create_im|
g

0.1 create lifespan_policy()
7| reference_to_id()

-7 servant_to_id()

7

Can dispatch, hold, or discard
requests for the associated
POAs and deactivate POA(S)

e A POA manager is associated
with a POA at creation time and
cannot be changed after
creation

0.1
T creat

ager

deactivate

Y
PortableServer::Objectld
(from PortableServer)

L

discard_requests

the_servant_man

|
hold_requests
hold_requests

PortableServer::POAManager
(from PortableServer)

activate()
hold_requests()

discard_requests()

deactivate()
incarnate()
etherealize()
get_POA()
jet_object_id()
CORBA::Policy

9

PortableServer::ServantActivator

(from PortableServer)

activate

@ discard_requests

create_POA

(from PortableServer)

(from PortableServer)
E
PortableServer::Current

the_activator

PortableServer::Servant

(from CORBA Core)

1n
fo—=
0.

POA Architecture in UML

PortableServer::ServantM anager

(from PortableServer)

preinvoke()
postinvoke()

PortableServer::AdapterActivator
(from PortableServer)
unknown_adapter()

PortableServer::ServantL ocator

(from PortableServer)

(from CORBA Core)
(from CORBA Core)
CORBA::Policy

PortableServer::Cookie
(from PortableServer)
E |

CORBA Tutorial
CORBA::Current
CORBA::PolicyList
UC Irvine

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of POA Policies

e When a POA is created, its behavior can be controlled by up to
seven policies

SERVANT \

— lLe., lifespan, ID assignment, ID uniqueness, implicit activation,
request processing, servant retention, and thread policies

e These policies all inherit from the CORBA::Policy interface

module CORBA {
typedef unsigned long PolicyType;
interface Policy {
readonly attribute PolicyType policy_type;
Policy copy ();

YNOLLV¥3dO

. SERVANTS
(s

ZNOLLYH3dO .

ACTIVE OBJECT MAP
ROOT POA
ORB CORE

SKEL 9

void destroy ();

h
typedef sequence<Policy> PolicyList;

1

e The POA interface defines a factory method to create each policy

UC Irvine

Overview of the Active Object Map

CORBA Tutorial

(AOM)
e The object ID in the object key sent by the client

e By default, a POA contains an active object map

is the index into the AOM

SKEL 4

e §

D D

ORB
LAYER

LQBJECT|D1 OBJECTID2 | """[OBJECTIDy)

| Lp!1oe_fq0/Lv0d/v0dlooa/|

A3M 103rao0

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Overview of the Root POA

e The Root POA has a preordained set of policies that cannot be
changed:

— The lifespan policy is transient

— The ID assignment policy uses system IDs

— The ID uniqueness policy uses unique IDs

— The implicit activation policy is enabled

— The request processing policy uses an active object map
— The servant retention policy retains servants

— The thread policy gives the ORB control

e |f these policies are inappropriate, you can create your own child
POAs via the PortableServer::POA:.create_POA() factory

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Canonical Steps to Obtain the Root POA
/I ORB is “locality constrained”
CORBA::ORB_var orb = CORBA:ORB_init (argc, argv);

/I Root POA is the default POA (locality constrained)
CORBA::Object_var obj =
orb->resolve_initial_references ("RootPOA");

/I Type-safe downcast.
PortableServer::POA_var root_poa
= PortableServer::POA::_narrow (obj.in ());

/I Activate the POA.
PortableServer::POA_Manager_var poa_manager =

root_poa->the_ POAManager ();
poa_manager->activate ();

N O™
UC Irvine E E‘ L

CORBA Tutorial Douglas C. Schmidt
Overview of Implicit Activation Policy

e This policy controls whether a servant can be activated implicitly or
explicitly

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION /* DEFAULT * };

interface ImplicitActivationPolicy : CORBA::Policy {
readonly attribute ImplicitActivationPolicyValue value;

e When the IMPLICIT_ACTIVATION policy value is used with
RETAIN and SYSTEM_IDpolicy values servants are added to the
AOM by calling _this()

e The NO_IMPLICIT_ACTIVATION policy value requires servants to
be activated via one of the POA::activate_object*() calls

UC Irvine

ger_var poa_manager

root_poa->the_ POAManager ();
poa_manager->activate ();

orb->run ();

IDL
. public virtual POA_Stock::Quoter

Implict Activation with System IDs

raises (Invalid_Stock);
CORBA::Long get_quote (const char *stock_name);

long get_quote (in string stock_name)

..

/I Auto-generated for use by servants.
My_Quoter *quoter = new My_Quoter;

/I Implicit activation with system ID
CORBA::Object_var objref = quoter->_this ();

This example illustrates _this()
class My_Quoter

interface Quoter // ...
PortableServer::POA_Mana

CORBA Tutorial
UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of ID Assignment Policy

e This policy controls whether object IDs are created by the ORB or
by an application

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID /* DEFAULT */
b

interface IdAssignmentPolicy : CORBA::Policy {
readonly attribute IdAssignmentPolicyValue value;
}
e The USER_ID policy value works best with the
NO_IMPLICIT_ACTIVATION and PERSISTENTpolicy values

e The SYSTEM_IDpolicy value works best with the
IMPLICIT_ACTIVATION and TRANSIENTpolicy values

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Lifespan Policy

e This policy controls whether object references are transcient or
persistent
enum LifespanPolicyValue {

PERSISTENT,
TRANSIENT /* DEFAULT */

%

interface LifespanPolicy : CORBA::Policy {
readonly attribute LifespanPolicyValue value;
}
e The PERSISTENTYpolicy value works best with the
NO_IMPLICIT_ACTIVATION and USER_ID policy values

e The TRANSIENTpolicy value works best with the
IMPLICIT_ACTIVATION and SYSTEM_IDpolicy values

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Creating a Child POA

We use the PortableServer::POA::create_ POA() operation to
create a new POA with the USER_ID and PERSISTENTpolicies

CORBA::PolicyList policies (2);

policies[0] = root_poa->create_id_assignment_policy
(PortableServer::IdAssignmentPolicy::USER_ID);

policies[1] = root_poa->create_lifespan_policy
(PortableServer::LifespanPolicy::PERSISTENT);

PortableServer::POA_var child_poa =
root_poa->create_ POA
("child_poa", /I New POA name
PortableServer::POAManager::_nil (), // Non-shared POA manager
policies); /I New POA policies

for (CORBA::ULong i = 0; i != policies.length (); ++i)
policies[i]->destroy ();

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Explicit Activation with User IDs
This example illustrates POA::activate_object_with_id()

/I Create a new servant instance.
My Quoter *quoter = new My_Quoter;

/I Create a new user-defined object ID for the object.
PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld ("my quoter");

/I Activate the object with the new object ID

child_poa->activate_object_with_id (oid.in (), quoter);

PortableServer::POA_Manager_var poa_manager =
child_poa->the_ POAManager ();

poa_manager ()->activate ();

/I Run the ORB’s event loop.

orb->run ();

N O™
UC Irvine E E‘ L

CORBA Tutorial Douglas C. Schmidt
The Servant Retention Policy

e This policy controls whether a POA has an active object map.

enum ServantRetentionPolicyValue
{ NON_RETAIN, RETAIN /* DEFAULT * }

interface ServantRetentionPolicy : CORBA::Policy {
readonly attribute ServantRetentionPolicyValue value;

e The NON_RETAINpolicy value must be used in conjunction with the
request processing policy of either

— USE_DEFAULT_SERVANTn which case the POA delegates

incoming requests to a default servant (used for DSI)
— USE_SERVANT_MANAGERwhich case the POA uses the

Interceptor pattern to determine how to associate a servant with
the request

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt
POA Policies for Lazy Object Allocation

The following example illustrates how to create references without first

activating objects:

PortableServer::Objectld_var oid =
PortableServer::string_to_Objectld ("my quoter");
CORBA::Object_var obj =
child_poa->create_reference_with_id
(oid.in (),
"IDL:Stock/Quoter:1.0"); // Repository ID.

/I Insert into a name context.
name_context->bind (svc_name, obj);

/I Later the following steps happen:
/I 1. A new My_Quoter servant is created

/l 2. This object is activated in the child_poa
RGO

¥

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Repository IDs

e An IDL compiler generates a unique repository ID for each identifier
in an IDL file

module Stock { /I IDL:Stock:1.0
interface Quoter { // IDL:Stock/Quoter:1.0
long get_quote (in string stock_name);
/I IDL:Stock/Quoter/get_quote:1.0

I3

e You can use #pragma prefix to ensure the unigueness of
repository IDs

#pragma prefix "wallstreet.com”

module Stock { /I IDL:wallstreet.com/Stock:1.0
interface Quoter { // IDL:wallstreet.com/Stock/Quoter:1.0
long get_quote (in string stock_name);
/I IDL:wallstreet.com/Stock/Quoter/get_quote:1.0

b

e You can use #pragma version to change the version number

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Overview of Servant Managers

The POA defines servant managers to support the lazy object
allocation approach described above

A servant manager is an interceptor that incarnates and
etherealizes servants on-demand

Two types of servant managers are supported

— ServantActivator , which allocates a servant the first time it's

accessed
— ServantLocator , which allocates and deallocates a servant on

each request

Naturally, each type of servant manager can be selected via POA
policies

DR

UC Irvine - at

CORBA Tutorial

Custom ServantActivator
Definition and Creation

/I Implementation class.
class My_Quoter_Servant_Activator :

public POA_PortableServer::ServantActivator
{

Servant incarnate (const Objectld &oid,
POA ptr poa) {
String_var s =
PortableServer::Objectld_to_string (oid);

if (strcmp (s.in (), "my quoter") == 0)
return new My_Quoter;
else
throw CORBA::OBJECT_NOT_EXIST ();
}

void etherealize
(const Objectld &oid,
POA_ptr poa,
Servant servant,
Boolean remaining_activations) {
if (remaining_activations == 0)
servant->_remove_ref ();

UC Irvine

{

. Adljodbuissasoidisanbay aoepsiul

auIAl DN
{

H3OVNVIN _LNVAYIS _3SN

17Nv43a 3IsnayL e

dVA 1D3rdo 3AILOVY 3ASN syl e

‘LINVAY3AS L1Nv43d_3sn

‘lx 1INV43A «/ AINO dVIN 1D3rdo 3IAILOY 3ASN

puBWSP-UO SIUBAISS Ul S)Ne}, 10

} anpepAKaljodbuissasoidisanbay wnua
‘JUeAJSS Jnejap e ‘INQY Ue Sash YOd e Jaylaym S|0J1uod /(O!|Od SIYl e

} Aojodvadoo
Ad1j0d Buissadold 1senbay ay

‘anfen anpeAAKaljodbuissadoldisenbay asingune Ajuopeal

Aaijod ssausnbiun @i A" ITdILTINIA SY YIm uonodunfuod
Aa1j0d uonuaial JueAlas NIV.LIH 2yl yum uonosunfuod ul

ul pasn ag 1snw anjeA A21j0gNVAH3S

pasn aq 1snw anjeA A211gdiNO

[euoinL Y400

pIwyas "o selbnog

CORBA Tutorial

Overview of the String _var Class
String_var is a “smart pointer” class

class String_var {

public:
/I Initialization and termination methods.
String_var (char *); // Assumes ownership.
String_var (const char *); // CORBA::string_dup().
/I ... (assignment operators are similar)
“String_var (); // Deletes the string.

/I Indexing operators.
char &operator[] (CORBA::ULong index);
char operator[] (CORBA::ULong index) const;

/I Workarounds for broken C++ compilers.
const char *in () const;

char *&inout ();

char *&out ();

/I Relinquishes ownership.
char * retn ();

h

istream &operator >> (istream, CORBA::String_var &);
ostream &operator << (ostream,
const CORBA::String_var);

pYoXo

UC Irvine

CORBA Tutorial

Servant Activator Definition
A POA created with RETAIN servant retention
policy and the USE_SERVANT_MANAGERjuest
processing policy uses the servant activator to
“fault in” servants into the POA

typedef ServantBase *Servant;

/I Skeleton class
namespace POA_PortableServer

class ServantActivator :

public virtual ServantManager
{

/I Destructor.

virtual “ServantActivator (void);

/I Create a new servant for <id>.
virtual Servant incarnate

(const Objectld &id,

POA ptr poa) = 0;

/I <servant> is no longer active in <poa>.
virtual void etherealize

(const Objectld &,

POA_ptr poa,

Servant servant,

Boolean remaining_activations) = 0;

RGN

UC Irvine - -

d

= J0Jed0| JeA J0jedoTiuenlss

CORBA Tutorial
Servant Locator Definition

auInI| ON

‘) uni<-gio
1910n0 AN
-IX3JU0d sweu

{() arennoe<-() lebeuew eod

() 1ebeueNYOd ayi<-eod
[00::'vad02

A POA created with NON_RETAINservant retention
policy and the USE_SERVANT_MANAGERjuest
processing policy uses the servant locator to
create/destroy a servant for each request

[euoinL Y400

a1ealo<-eod

JUBAISS 19S<-B0

A 109

[qO::1en1asa|qenod

VOd::1an18sa|gerod
JUBAISS

‘paurensuos Aueso J/

[go e

plo Jen pjoa

namespace POA_PortableServer

UYIm aoualajel

Beuep

‘() urioreoo)) lebeuew

‘() sy <-101e00| Ja10nb

“IX81U0D Bweu e Ol uasu| J/
{(,4@10nb Aw,) pposlgo 01 Bulis:ianIaSa|gelIod

b, 1012007

class ServantLocator :
public virtual ServantManager {
/I Destructor.
virtual “ServantLocator (void);

A 1D

11012007 UeAIaS Ja10nd) AN Mau

“eod Je
101820]| J210N

/I Create a new servant for <id>.
virtual PortableServer::Servant preinvoke
(const PortableServer::Objectld &id,

PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie &cookie) = 0;

‘() urfgo ‘eweu oas) puig<
‘() urpio) pi

Jabeuew

S101e207 ueAlas bullalsibay

/I <servant> is no longer active in <poa>.
virtual void postinvoke
(const PortableServer::Objectld &id,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie cookie,
PortableServer::Servant servant) = 0;

(,0'T:4210nd:1AlL

pIwyas "o selbnog

bRONO

UC Irvine L e

CORBA Tutorial
Custom ServantLocator

Definition and Creation

auIAl DN
[eLOINL Va0

/I Implementation class.
class My_Quoter_Servant_Locator :
public POA_PortableServer::ServantLocator {
Servant preinvoke
(const PortableServer::Objectld &oid,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie &cookie) {
CORBA::String_var key =
PortableServer::Objectld_to_string (oid);
Object_State state;
if (database_lookup (key, state) == -1)
throw CORBA::OBJECT_NOT_EXIST ();
return new My_Quoter (state);

}

void postinvoke
(const PortableServer::Objectld &id,
PortableServer::POA_ptr poa,
const char *operation,
PortableServer::Cookie cookie,
PortableServer::Servant servant) {
database_update (servant);
servant->_remove_ref ();

Apua.ind 1SIXa 10U S90p 1eyl YOJd P|Iyd € 1o}

U0 YOd palinbai ay) a1eald uay) ued Jojeanoe Jajdepe ayl —
SI01eANdY Ja1depy JO M3IAIBAQ

}
h

PaAlgoal SI1sanbal e uaym pasn 193lgo xoeq|ed :I0JeANdY Jaldepy e

pIwyas "o selbnog

UC Irvine

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt

Additional Information on the POA Motivation for Concurrency in CORBA

e e Leverage hardware/software
e See OMG POA specification for some examples:

] — e.g., multi-processors and OS
— One Servant for all Objects thread support

WORK WORK

— Single Servant, many objects and types, using DSI REQUEST—<REQUEST
9 y bl yp 9 e Increase performance

e See Vinoski/Henning book for even more examples

— e.g., overlap computation and
e See Schmidt/Vinoski C++ Report columns communication

— www.cs.wustl.edu/~schmidt/report-doc.html e Improve response-time

e See TAO release to experiment with working POA examples sy ~ &g, GUIs and network servers

_ $TAO ROOT/tests/POA/ R e Simplify program structure

— e.g., sync vs. async

(2) CONCURRENT SERVER

(T DR

UC Irvine > UC Irvine at

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt
Overview of the Thread Policy Threading in TAO

e This policy controls whether requests are dispatched serially (i.e.,

single-threaded) or whether they are dispatched using an e An application can choose to ignore threads and if it creates none, it
ORB-defined threading model need not be thread-safe

enum ThreadPolicyValue
{ SINGLE_THREAD_MODEL, ORB_CTRL_MODEL /* DEFAULT * }; e TAO can be Conflgured with various concurrency Strategles:

interface ThreadPolicy : CORBA:Policy { — Thread-per-Connection
readonly attribute ThreadPolicyValue value; — Thread Pool

— Thread-per-Endpoint
The SINGLE_THREAD_MODHbolicy value serializes all requests
within a particular POA (but not between POAs, so beware of
“servant sharing”...) — TAO doesn’t automatically synchronize access to application
The ORB_CTRL_MODEtan be used to allow the ORB to select the objects

type of threading model and synchronization for a particular POA — Therefore, applications must synchronize access to their own
(which is not very portable, of course...) objects

e TAO also provides many locking strategies

DC-C DG

UC Irvine UC Irvine - at

CORBA Tutorial Douglas C. Schmidt

TAO Multi-threading Examples

e Each example implements a concurrent CORBA stock quote service
— Show how threads can be used on the server
e The server is implemented in two different ways:

1. Thread-per-Connection — Every client connection causes a new
thread to be spawned to process it

2. Thread Pool — A fixed number of threads are generated in the
server at start-up to service all incoming requests

¢ Note that clients are unaware which concurrency model is being
used...

UC Irvine

orb->run()

omscons 333337 3

(Servant)

Object
Object Adapter

OOOOOQ

in args
operation()

short-duration requests
number of concurrent

requests

out args +
return

e Excessive overhead for
e Permits unbounded

Concurrency Architecture

TAQO’s Thread-per-Connection

long-duration
requests

implement and
efficient for

CORBA Tutorial
e Simple to
UC Irvine

CORBA Tutorial Douglas C. Schmidt
Thread-per-Connection Main Program

Server creates a Quoter_Factory and waits in ORB’s event loop

int main (void) {
ORB_Manager orb_manager (argc, argv);

const char *factory_name = "my quoter factory";

/I Create servant (registers with rootPOA and Naming Service).
My_Quoter_Factory factory (factory_name);

/I Block indefinitely dispatching upcalls.
orb_manager.run ();

/I After run() returns, the ORB has shutdown.
}

The ORB’s svc.conf file

static Advanced_Resource_Factory "-ORBReactorType select_ mt"
static Server_Strategy_Factory "-ORBConcurrency thread-per-connection”

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Thread-per-Connection Quoter Interface

Implementation of the Quoter IDL interface
typedef u_long COUNTER; // Maintain request count.

class My_Quoter : virtual public POA_Stock::Quoter,
virtual public PortableServer::RefCountServantBase

{
public:
My_Quoter (const char *name); // Constructor.

/I Returns the current stock value.
long get_quote (const char *stock_name)
throw (CORBA::SystemException, Quoter::InvalidStock);

private:
ACE_Thread_Mutex lock_; /I Serialize access to database.
static COUNTER reqg_count_; // Maintain request count.

L

D

UC Irvine B’

CORBA Tutorial Douglas C. Schmidt CORBA Tutorial Douglas C. Schmidt
Thread-per-Connection Quoter Implementation Thread Pool

Implementation of multi-threaded Quoter callback invoked by the e This approach creates a thread pool to amortize the cost of
CORBA skeleton dynamically creating threads

long My_Quoter::get_quote (const char *stock_name) { e In this scheme, before waiting for input the server code creates the
ACE_GUARD_RETURN (ACE_Thread_Mutex, g, lock_, -1); following'

++My_Quoter::req_count_; // Increment the request count. 1. A Quoter_Factory (as before)
/I Obtain stock price (beware...). 2. A pool of threads based upon the command line input

long value =

Quote_Database::instance ()->lookup_stock_price (stock_name); e Note the use of the ACE_Thread_Manager::spawn_n() method

to spawn multiple pool threads
if (value == -1)
throw Stock::Invalid_Stock (); // Skeleton handles exceptions.

return value;

r ''Ys
UC Irvine E E L UC Irvine

Deadlock

e May

n

orb->run()

*

Object
(Servant)
Object Adapter

{

ger orb_manager (argc, argv);

orb->run()) orb->run()

in args
operation()
out args +

return

ger:instance ()->spawn
ger:instance ()->wait ();

ORB CORE

=l

(pool_size,

TAQO'’s Thread Pool

Concurrency Architecture

(void *) orb_manager.orb ());

/I Block indefinitely waiting for other

/I threads to exit.

Thread Pool Main Program

&run_orb,

const char *factory_name = "my quoter factory";
/I Create the servant, which registers with

/I the rootPOA and Naming Service implicitly.
My_Quoter_Factory factory (factory_name);

/I After run() returns, the ORB has shutdown.

} catch (...) { /* handle exception ...

/I Create a thread pool.
ACE_Thread_Mana
ACE_Thread_Mana

ORB_Mana
int pool_size

platforms, e.g., permits load balancing

requests

try {

e Bounds the number of concurrent
e Scales nicely for multi-processor

int main (int argc, char *argv[])

UC Irvine
UC Irvine

CORBA Tutorial
CORBA Tutorial

ot}

file
"-ORBReactorType tp"

(CORBA::ORB_ptr, arg);

adapter function
y

_ptr orb

0
(void *arg)

Thread Pool Configuration

ACE_static_cast

/I After run() returns, the ORB has shutdown.

/I Block indefinitely waiting for incoming
/I invocations and dispatch upcalls.

orb->run ();

CORBA::ORB
} catch (...) { /* handle exception

try {

CORBA Tutorial

The run_orb

void run_orb

The ORB'’s svc.conf
static Resource Factor
UC Irvine

{
}

CORBA Tutorial Douglas C. Schmidt

Additional Information on CORBA Threading

See Real-time CORBA 1.0 specification
— Now adopted as part of CORBA specifications
See our papers on CORBA Threading

www.cs.wustl.edu/~schmidt/PDF/CACM-arch.pdf
www.cs.wustl.edu/~schmidt/PDF/RTAS-02.pdf
www.cs.wustl.edu/~schmidt/PDF/RT-perf.pdf
www.cs.wustl.edu/~schmidt/PDF/COOTS-99.pdf
www.cs.wustl.edu/~schmidt/PDF/orc.pdf
www.cs.wustl.edu/~schmidt/report-doc.html

e See TAO release to experiment with working threading examples
— $TAO_ROOT/tests/

N O™
UC Irvine D f:“' L

CORBA Tutorial Douglas C. Schmidt
Implementation Repository

e Allows the ORB to activate servers to process operation invocations
e Store management information associated with objects

— e.g., resource allocation, security, administrative control, server
activation modes, etc.

e Primarily designed to work with persistent object references

e From client’'s perspective, behavior is portable, but administrative
details are highly specific to an ORB/OS environment

— Ie., not generally portable

e www.cs.wustl.edu/~schmidt/PDF/binding.pdf

N O™
UC Irvine D f:“' L

CORBA Tutorial Douglas C. Schmidt
Typical Implementation Repository Use-case

1. some_request
iiop ://ringil:5000/poa_name/object_name
4. LOCATION_FORWARD
<

server.exe ringil:5500

I iiop ://ringil:5500/poa_name/object_name I airplane_poa | plane.exe ringil:4500

Y
2. ping

3.is_running
2.1 start

5. some_request

6. some_response

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Server Activation via Implementation Repository

If the server isn’t running when a client invokes an operation on an
object it manages, the Implementation Repository automatically
starts the server
Servers can register with the Implementation Repository
- e.g., in TAO

% tao_imr add airplane_poa -c "plane.exe"

Server(s) may be installed on any machine

Clients may bind to an object in a server by using the Naming
Service or by explicitly identifying the server

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Server Activation Modes

e An idle server will be automatically launched when one of its objects
is invoked

e TAO’s Implementation Repository supports four types of activation

1. Normal — one server, started if needed but not running
2. Manual — one server, will not be started on client request, i.e.,
pre-launched
3. Per-client call — one server activated for each request to the
Implementation Repository
. Automatic — like normal, except will also be launched when the
Implementation Repository starts

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt

The CORBA Component Model
0 et o Features

Interface
|

et O oottt O= — Navigation among
O <1 interfaces supported by
Q¢ components
e et Standardized
e system-component
¢ PP interaction
ORB Standardized component
\ \ life-cycle management
Component
interconnections
Standardized component
configuration
Standardized ORB
services interfaces

)
o CORBA | ({1
cOMPONENT| J O—
rO=

Transactions Persistent

‘ Security ‘ Notification

~schmidt/PDF/CBSE.pdf

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Evaluating CORBA

INTERFACE IDL IMPLEMENTATION Criteria

REPOSITORY COMPILER REPOSITORY

Learning curve

in args
O————»
operation() OBJECT -
REF | ot args + retarn vaiis (SERVANT) l Interoperability
+—O0

Portability

;/lDL v
ORB SKELETON Feature
OBJECT H . -
(iAPTER Limitations
Performance
ORB CORE GloP/llOP/ESIOPS

OSTANDARD INTERFACE OSTANDARD LANGUAGE MAPPING

.ORB-SPECIFIC INTERFACE OSTANDARD PROTOCOL

www.cs.wustl.edu/~schmidt/corba.html

D-O-C

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Learning Curve

e CORBA introduces the following:

1. New concepts
— e.g., object references, proxies, and object adapters
2. New components and tools
— e.g., interface definition languages, IDL compilers, and
object-request brokers
3. New features
— e.g., exception handling and interface inheritance

e Time spent learning this must be amortized over many projects

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Interoperability

e The first CORBA 1 spec was woefully incomplete with respect to
interoperability

— The solution was to use ORBs provided by a single supplier

e CORBA 2.x defines a useful interoperability specification
— Later extensions deal with portability issues for server
x [.e., the POA spec
e Most ORB implementations now support IIOP or GIOP robustly...

— However, higher-level CORBA services aren’t covered by ORB
interoperability spec...

DR

UC Irvine at

CORBA Tutorial Douglas C. Schmidt

Portability

e To improve portability, the latest CORBA specification standardizes

IDL-to-C++ language mapping
Naming service, event service, lifecycle service
ORB initialization service
Portable Object Adapter API
— Servant mapping
— Server thread pools (Real-time CORBA)

Porting applications from ORB-to-ORB is greatly simplified by
corbaconf

— http://corbaconf.kiev.ua

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Feature Limitations (1/3)

e Standard CORBA doesn'’t yet address all the “inherent” complexities
of distributed computing, e.g.,

— Latency
— Causal ordering
— Deadlock

e |t does address

— Service partitioning
— Fault tolerance
— Security

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Feature Limitations (2/3)

e All ORBs support the following semantics:

— Object references are passed by-reference
x However, all operations are routed to the originator
— C-style structures and discriminated unions may be passed
by-value
x However, these structures and unions do not contain any
methods

e Older ORBs didn’t support passing objects-by-value (OBV)

— However, CORBA 2.3 OBV spec. defines a solution for this and
many ORBs now implement it

e |If OBV is not available, objects can be passed by value using
hand-crafted “factories” (tedious)

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Feature Limitations (3/3)

e Many ORBs do not yet support AMI and/or standard CORBA
timeouts

— However, these capabilities are defined in the OMG Messaging
and are implemented by ORBs like TAO and Orbix 2000
Specification

e Most ORBs do not yet support fault tolerance

— This was standardized by the OMG recently, however

— www.omg.org/techprocess/meetings/schedule/Fault_Tolerance_RFP.html
e \ersioning is supported in IDL via pragmas

— Unlike Sun RPC or DCE, which include in language

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Performance Limitations

e Performance may not be as good as hand-crafted code for some
applications due to

Additional remote invocations for naming
Marshaling/demarshaling overhead

Data copying and memory management
Endpoint and request demultiplexing

Context switching and synchronization overhead

Typical trade-off between extensibility, robustness, maintainability —
micro-level efficiency

Note that a well-crafted ORB may be able to automatically optimize
macro-level efficiency

DR

— ¥

UC Irvine

CORBA Tutorial Douglas C. Schmidt

CORBA Implementations

e Many ORBs are now available

— Orbix2000 and ORBacus from IONA

— VisiBroker from Borland

— BEA Web Logic Enterprise

— Component Broker from IBM

— eORB from Vertel, ORB Express from OIS, and HighComm from
Borland

— Open-source ORBs — TAO, JacORB, omniORB, and MICO

¢ In theory, CORBA facilitates vendor-independent and
platform-independent application collaboration

— In practice, heterogeneous ORB interoperability and portability
still an issue...

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt

CORBA Services

e Other OMG documents (e.g., COSS) specify higher level services

— Naming service
*x Mapping of convenient object names to object references
— Event service
x Enables decoupled, asynchronous communication between
objects
— Lifecycle service
x Enables flexible creation, copy, move, and deletion operations
via factories

e Other CORBA services include transactions, trading, relationship,
security, concurrency, property, A/V streaming, etc.

UC Irvine

CORBA Tutorial Douglas C. Schmidt

Summary of CORBA Features

e CORBA specifies the following functions to support an Object
Request Broker (ORB)

— Interface Definition Language (IDL)

— A mapping from IDL onto C++, Java, C, COBOL, etc.

— A Static Invocation Interface, used to compose operation requests
via proxies

— A Dynamic Invocation Interface, used to compose operation
requests at run-time

— Interface and Implementation Repositories containing meta-data
queried at run-time

— The Portable Object Adapter (POA), allows service programmers
to interface their code with an ORB

D

UC Irvine

CORBA Tutorial Douglas C. Schmidt
Concluding Remarks

e Additional information about CORBA is available on-line at the
following WWW URLSs

— Doug Schmidt's CORBA page

* Www.cs.wustl.edu/~schmidt/corba.html
— OMG’s WWW Page

* Www.omg.org/
— CETUS CORBA Page

* www.cetus-links.org/oo_corba.html

UC Irvine

