
DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 1 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

DCOM and CORBA Side by Side,

Step by Step, and Layer by Layer

P. Emerald Chung Yennun Huang Shalini Yajnik

Bell Laboratories, Lucent Technologies

Murray Hill, New Jersey

Deron Liang Joanne C. Shih Chung-Yih Wang

Institute of Information Science

Academia Sinica
Republic of China, Taiwan

Yi-Min Wang
AT&T Labs, Research

Florham Park, New Jersey

Abstract

DCOM (Distributed Component Object Model) and CORBA (Common Object

Request Broker Architecture) are two popular distributed object models. In this
paper, we make architectural comparison of DCOM and CORBA at three different

layers: basic programming architecture, remoting architecture, and the wire
protocol architecture. A step-by-step description of remote object activation and

method invocation is provided to demonstrate the similarities and differences of the
two frameworks. A primary goal is for people who are already familiar with one

model to quickly understand the basic architecture of the other.

1. Introduction

The explosive growth of the Web, the increasing popularity of PCs and the advances
in high-speed network access have brought distributed computing into the main

stream. To simplify network programming and to realize component-based software
architecture, two distributed object models have emerged as standards, namely,

DCOM (Distributed Component Object Model) and CORBA (Common Object
Request Broker Architecture).

DCOM is the distributed extension to COM (Component Object Model) [COM

95] that builds an object remote procedure call (ORPC) layer on top of DCE RPC
[DCE 95] to support remote objects. A COM server can create object instances of

multiple object classes. A COM object can support multiple interfaces, each
representing a different view or behavior of the object. An interface consists of a set

of functionally related methods. A COM client interacts with a COM object by

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 2 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

acquiring a pointer to one of the object's interfaces and invoking methods through

that pointer, as if the object resides in the client's address space. COM specifies that
any interface must follow a standard memory layout, which is the same as the C++

virtual function table [Rogerson 96]. Since the specification is at the binary level, it
allows integration of binary components possibly written in different programming

languages such as C++, Java and Visual Basic.

CORBA is a distributed object framework proposed by a consortium of 700+
companies called the Object Management Group (OMG) [CORBA 95]. The core of

the CORBA architecture is the Object Request Broker (ORB) that acts as the
object bus over which objects transparently interact with other objects located locally

or remotely [Vinoski 97]. A CORBA object is represented to the outside world by an
interface with a set of methods. A particular instance of an object is identified by an

object reference. The client of a CORBA object acquires its object reference and
uses it as a handle to make method calls, as if the object is located in the client's

address space. The ORB is responsible for all the mechanisms required to find the
object's implementation, prepare it to receive the request, communicate the request to

it, and carry the reply (if any) back to the client. The object implementation interacts
with the ORB through either an Object Adapter (OA) or through the ORB interface.

The following terminology will be used to refer to the entities in both frameworks.

Interface
A named collection of abstract operations (or methods) that represent one

functionality.

Object class (or class)
A named concrete implementation of one or more interfaces.

Object (or object instance)
An instantiation of some object class.

Object server
A process responsible for creating and hosting object instances.

Client
A process that invokes a method of an object.

Both DCOM and CORBA frameworks provide client-server type of

communications. To request a service, a client invokes a method implemented by a

remote object, which acts as the server in the client-server model. The service
provided by the server is encapsulated as an object and the interface of an object is

described in an Interface Definition Language (IDL). The interfaces defined in an
IDL file serve as a contract between a server and its clients. Clients interact with a

server by invoking methods described in the IDL. The actual object implementation
is hidden from the client. Some object-oriented programming features are present at

the IDL level, such as data encapsulation, polymorphism and single inheritance.
CORBA also supports multiple inheritance at the IDL level, but DCOM does not.

Instead, the notion of an object having multiple interfaces is used to achieve a similar
purpose in DCOM. CORBA IDL can also specify exceptions.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 3 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

In both DCOM and CORBA, the interactions between a client process and an object

server are implemented as object-oriented RPC-style communications [Birrell 84].
Figure 1 shows a typical RPC structure. To invoke a remote function, the client

makes a call to the client stub. The stub packs the call parameters into a request
message, and invokes a wire protocol to ship the message to the server. At the server

side, the wire protocol delivers the message to the server stub, which then unpacks
the request message and calls the actual function on the object. In DCOM, the client

stub is referred to as the proxy and the server stub is referred to as the stub. In
contrast, the client stub in CORBA is called the stub and the server stub is called the

skeleton. Sometimes, the term "proxy" is also used to refer to a running instance of
the stub in CORBA.

Figure 1: RPC structure

The overall architectures of DCOM and CORBA are illustrated in Figure 2 and

Figure 3, respectively. In the following sections, we describe a single example
implemented in both DCOM and CORBA, and provide a step-by-step description of

object activations and method invocations at the three different layers shown in the
figures. The top layer is the basic programming architecture, which is visible to

the developers of the client and object server programs. The middle layer is the
remoting architecture, which transparently makes the interface pointers or object

references meaningful across different processes. The bottom layer is the wire
protocol architecture, which further extends the remoting architecture to work

across different machines.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 4 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Figure 2: DCOM overall architecture.

Figure 3: CORBA overall architecture.

Throughout this paper, the description about DCOM is based on the COM
specification [COM 95] and the DCOM specification [Brown 96]. The CORBA

description is based on the CORBA specification [CORBA 95] whenever possible.
For information not specified by CORBA, we use Iona Orbix [Iona 95]

implementation to complete the description.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 5 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

2. Sample Application

We use an example called Grid throughout this paper. The Grid server object
maintains a two-dimensional grid of integers and supports two groups of methods.

The first group consists of two methods: get() and set(), which are invoked to get
and set the value at a particular grid point, respectively. The second group has only

one method: reset(), which sets the value at every grid point to the supplied value.

As a simple demonstration, the Grid client first invokes the get() method to obtain

the value at coordinate (0,0), increases the value by one, and then calls reset() to
set the entire grid to the new value.

We design the DCOM and CORBA implementations in different ways to
demonstrate that DCOM supports objects with multiple interfaces, while CORBA

allows an interface to inherit from multiple interfaces. Note that DCOM and
CORBA are basically oblivious to the inheritance relationship between the C++

implementation classes.

In CORBA, we define three interfaces: (1) interface grid1 supports get() and

set(); (2) interface grid2 supports reset(); (3) interface grid multiply inherits

from grid1 and grid2. In contrast, we define two interfaces in DCOM, IGrid1 and

IGrid2, for the two groups of methods. The implementation of the Grid object uses

multiple inheritance from IGrid1 and IGrid2 to implement an object with the two
interfaces. Note that we could have merged all three methods into one interface by

using interface single inheritance, which then looks very similar to its CORBA
counterpart. But DCOM's support for objects with multiple interfaces allows each

distinct feature of an object to have a separate interface.

For each implementation, we list the source code from five files. To simplify
presentation, only essential code is shown. The first file, shown in Table 1, is the

IDL file that defines the interfaces and its methods. The DCOM IDL file also

associates multiple interfaces with an object class, as shown in the coclass block.
Running the IDL file through an IDL compiler in both DCOM and CORBA

generates the proxy/stub/skeleton code and the interface header file (grid.h or

grid.hh) that are used by both the server and the client. Note that, in DCOM, each
interface is assigned a globally unique identifier (GUID) called the interface ID

(IID). Similarly, each object class is assigned a unique class ID (CLSID). Also, every

COM interface must inherit from the IUnknown interface that consists of a

QueryInterface() method for navigating between different interfaces of the same

object, and two other methods AddRef() and Release() for reference counting.

Reference counting provides a lifetime control mechanism that allows a COM object
to keep track of its clients and can delete itself when it is no longer needed.

The second file shown in Table 2 is the implementation header file that shows how
the server implementation class is derived from the interfaces. The DCOM file

includes the definition of a class factory CClassFactory, which is commonly used

but not required. As mentioned previously, the implementation class CGrid multiply

inherits from the two pure abstract base classes IGrid1 and IGrid2 which are

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 6 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

defined in the IDL-generated interface header file grid.h (not shown). In the CGrid

class, AddRef() increments the reference count and Release() decrements it. When
the reference count drops to zero, the server object deletes itself. Again, this is
commonly used but not required. Ultimately, it is the server object itself which

controls its own life time.

In the CORBA implementation, the IDL compiler generates from the interface

definition the interface class grid in the header file grid.hh(not shown). The

application developer writes the implementation class grid_i. There are two ways
of associating the implementation class with the interface class - the inheritance

approach and the delegation approach. In this example, we chose the inheritance
approach. In this approach, the IDL compiler in Orbix also generates a class called

gridBOAImpl that is responsible for instantiating the skeleton class. Class

gridBOAImpl inherits from the interface class grid, which inherits from class

CORBA::Object. The implementation class grid_i inherits from class gridBOAImpl

to complete the mapping between the interface class and the implementation class.

Note that the type gridBOAImpl is Orbix specific, since current CORBA do not
specify what the skeleton class looks like and what the name of the base class is.

This makes the server code not portable to other ORB products. To resolve this
issue, Portable Object Adaptor (POA) was recently introduced [POA 97]. POA

corrects this problem and specifies the name for the base class. In this example,

when POA becomes available, the class grid_i would inherit from a base class

called POA_grid. More descriptions of POA are given in Section 4.

The third file shown in Table 3 implements the methods of the server class. The
DCOM file also implements some methods of the class factory. The fourth file

shown in Table 4 is the main program for the server. The DCOM program creates an
event and waits on that event which is signaled when all active server objects are

deleted and so the server can exit. The actual client requests are handled concurrently
by different threads from a thread pool. (Another DCOM threading model handles

requests serially using one thread.)

Similarly, the CORBA server program instantiates an instance of class grid_i and

then blocks at impl_is_ready() to receive the incoming client requests. If the
server does not receive any requests during a default timeout period (which can be

set by the programmer), it gracefully closes down. The client requests are handled
either serially or by different threads, depending on the activation policy used for the

object server. The last file shown in Table 5 is the client code. The readers may
observe that DCOM client code tends to be longer than CORBA client code due to

the additional IUnknown method calls. This may not be true for DCOM clients
written in Java or Visual Basic, where the virtual machine layer takes care of the

IUnknown method calls and hides them from the programmers [Chappell 97]. Even
in a C++ client, smart interface pointers can be used to hide the reference counting

[Rogerson 96].

After compiling and before executing the programs, both DCOM and CORBA
require a registration process for the server. In CORBA, the association between the

interface name and the path name of the server executable is registered with the

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 7 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

implementation repository. In DCOM, the association between the CLSID and the

path name of the server executable is registered with the registry. In addition, since
a DCOM interface proxy/stub is itself a COM object, its associated server (in the

dynamic link library (DLL) form) also needs to be similarly registered.

Due to space limitation, we do not cover dynamic invocation, which does not require
static type information at compile time. In DCOM, type information for interface

methods is stored in a type library generated by the IDL compiler and assigned a

GUID. It can be used through the IDispatch interface to perform dynamic
invocation [Rogerson 96]. It can also be used for type library-driven marshaling

[Grimes 97]: instead of using a separate proxy/stub DLL that contains information
specific to an interface, a generic marshaler can perform marshaling by reading type

library information. In CORBA, the IDL compiler generates the type information for
each method in an interface and stores it in the Interface Repository (IR). A client

can query the interface repository to get run-time information about a particular
interface and then use that information to create and invoke a method on the object

dynamically through the dynamic invocation interface (DII). Similarly, on the
server side, the dynamic skeleton interface (DSI) allows a client to invoke an

operation on an object that has no compile time knowledge of the type of object it is
implementing [CORBA 95].

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 8 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

DCOM IDL CORBA IDL

// uuid and definition of IGrid1
 [object,
 uuid(3CFDB283-CCC5-11D0-BA0B-
00A0C90DF8BC),
 helpstring("IGrid1 Interface"),
 pointer_default(unique)
]
 interface IGrid1 : IUnknown {
 import "unknwn.idl";
 HRESULT get([in] SHORT n,
 [in] SHORT m,
 [out] LONG *value);
 HRESULT set([in] SHORT n,
 [in] SHORT m,
 [in] LONG value);
 };

// uuid and definition of IGrid2
 [object,
 uuid(3CFDB284-CCC5-11D0-BA0B-
00A0C90DF8BC),
 helpstring("IGrid2 Interface"),
 pointer_default(unique)
]
 interface IGrid2 : IUnknown {
 import "unknwn.idl";
 HRESULT reset([in] LONG value);

 };

// uuid and definition of type library
[uuid(3CFDB281-CCC5-11D0-BA0B-00A0C90DF8BC),
 version(1.0),
 helpstring("grid 1.0 Type Library)
]
library GRIDLib
{
 importlib("stdole32.tlb");
 // uuid and definition of class
 [uuid(3CFDB287-CCC5-11D0-BA0B-
00A0C90DF8BC),
 helpstring("Grid Class")
]
 // multiple interfaces
 coclass CGrid
 { [default] interface IGrid1;
 interface IGrid2;
 };
};

interface grid1
{
 long get(in short n,
 in short m);
 void set(in short n,

 in short m,
 in long value);
};

interface grid2
{
 void reset(in long value);

};

// multiple inheritance of interfaces
interface grid: grid1, grid2

{
};

Table 1: The IDL files.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 9 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

DCOM server class definition (cgrid.h)
CORBA server class definition

(grid_i.h)

#include "grid.h" // IDL-generated interface header

file

class CClassFactory : public IClassFactory {
 public:
 // IUnknown
 STDMETHODIMP QueryInterface(REFIID riid, void** ppv);
 STDMETHODIMP_(ULONG) AddRef(void) {
 return 1;
 };
 STDMETHODIMP_(ULONG) Release(void) {
 return 1;
 }

 // IClassFactory
 STDMETHODIMP CreateInstance(LPUNKNOWN punkOuter,

REFIID iid, void **ppv);
 STDMETHODIMP LockServer(BOOL fLock) {
 return E_FAIL;
 };
};

class CGrid : public IGrid1, public IGrid2 {

 public:
 // IUnknown
 STDMETHODIMP QueryInterface(REFIID riid, void** ppv);
 STDMETHODIMP_(ULONG) AddRef(void) {
 return InterlockedIncrement(&m_cRef);

 }
 STDMETHODIMP_(ULONG) Release(void) {
 if (InterlockedDecrement(&m_cRef) == 0) {
 delete this; return 0;
 }
 return 1;
 }
 // IGrid1
 STDMETHODIMP get(IN SHORT n, IN SHORT m,
 OUT LONG *value);
 STDMETHODIMP set(IN SHORT n, IN SHORT m,
 IN LONG value);
 // IGrid2
 STDMETHODIMP reset(IN LONG value);

 CGrid(SHORT h, SHORT w);
 ~CGrid();
 private:
 LONG m_cRef, **m_a;
 SHORT m_height, m_width;
};

#include "grid.hh" // IDL-generated

interface header file

class grid_i : public gridBOAImpl {

public:

 virtual CORBA::Long get(CORBA::Short n,

CORBA::Short m,
 CORBA::Environment &env);
 virtual void set(CORBA::Short n,
CORBA::Short m,
 CORBA::Long value,
CORBA::Environment &env);

 virtual void reset(CORBA::Long value,

CORBA::Environment &env);
 grid_i(CORBA::Short h, CORBA::Short w);
 virtual ~grid_i();
private:
 CORBA::Long **m_a;
 CORBA::Short m_height, m_width;
};

Table 2: The server implementation header files.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 10 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

DCOM server implementation CORBA server implementation

#include "cgrid.h"

STDMETHODIMP
CClassFactory::QueryInterface(REFIID riid,
void** ppv) {
 if (riid == IID_IClassFactory || riid ==
IID_IUnknown) {
 *ppv = (IClassFactory *) this;
 AddRef(); return S_OK;
 }
 *ppv = NULL;
 return E_NOINTERFACE;
}

STDMETHODIMP
CClassFactory::CreateInstance(LPUNKNOWN p,
REFIID riid, void** ppv) {
 IGrid1* punk = (IGrid1*) new CGrid(100, 100);
 HRESULT hr = punk->QueryInterface(riid, ppv);
 punk->Release();
 return hr;
}

STDMETHODIMP CGrid::QueryInterface(REFIID riid,
void** ppv) {
 if (riid == IID_IUnknown || riid ==
IID_IGrid1)
 ppv = (IGrid1) this;
 else if (riid == IID_IGrid2) *ppv = (IGrid2*)
this;

 else { *ppv = NULL; return E_NOINTERFACE; }
 AddRef();

 return S_OK;
}

STDMETHODIMP CGrid::get(IN SHORT n, IN SHORT m,
OUT LONG* value) {
 *value = m_a[n][m];
 return S_OK;
}
STDMETHODIMP CGrid::set(IN SHORT n, IN SHORT m,
IN LONG value) {
 m_a[n][m] = value;
 return S_OK;
}
STDMETHODIMP CGrid::reset(IN LONG value) {
 SHORT n, m;
 for (n=0; n < m_height; n++)
 for (m=0; m < m_width; m++)
 m_a[n][m] = value;
 return S_OK;
}

CGrid::CGrid(SHORT h, SHORT w) {

 m_height = h;
 m_width= w;
 m_a = new LONG*[m_height];
 for (int i=0; i < m_height; i++)
 m_a[i] = new LONG[m_width];
 m_cRef = 1;
}
extern HANDLE hevtDone;

CGrid::~CGrid () {

 for (int i=0; i < m_height; i++)
 delete[] m_a[i];
 delete[] m_a;
 SetEvent(hevtDone);
}

#include "grid_i.h"

CORBA::Long grid_i::get(CORBA::Short n,
CORBA::Short m, CORBA::Environment &) {
 return m_a[n][m];
}

void grid_i::set(CORBA::Short n, CORBA::Short m,
 CORBA::Long value, CORBA::Environment &) {
 m_a[n][m] = value;
}

void grid_i::reset(CORBA::Long value,
CORBA::Environment &) {
 short n, m;
 for (n = 0; n < m_height; n++)
 for (m = 0; m < m_width; m++)
 m_a[n][m]=value;
 return;
}

grid_i::grid_i(CORBA::Short h, CORBA::Short w) {

 m_height=h; // set up height
 m_width=w; // set up width
 m_a = new CORBA::Long* [h];
 for (int i = 0; i < h; i++)
 m_a[i] = new CORBA::Long[w];
}

grid_i::~grid_i () {

 for (int i = 0; i < m_height; i++)
 delete[] m_a[i];
 delete[] m_a;
}

Table 3: The server implementation files.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 11 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

DCOM server main program CORBA server main program

HANDLE hevtDone;

void main()
{
 // Event used to signal this main thread
 hevtDone = CreateEvent(NULL, FALSE, FALSE, NULL);
 hr = CoInitializeEx(NULL, COINIT_MULTITHREADED);
 CClassFactory* pcf = new CClassFactory;
 hr = CoRegisterClassObject(CLSID_CGrid, pcf,

 CLSCTX_SERVER, REGCLS_MULTIPLEUSE ,
&dwRegister);
 // Wait until the event is set by CGrid::~CGrid()
 WaitForSingleObject(hevtDone, INFINITE);
 CloseHandle(hevtDone);
 CoUninitialize();
}

int main()
{
 // create a grid object using the
implementation class grid_i

 grid_i ourGrid(100,100);

 try {
 // tell Orbix that we have completed the
server's initialization:
 CORBA::Orbix.impl_is_ready("grid");
 } catch (...) {
 cout << "Unexpected exception" << endl;
 exit(1);
 }
}

Table 4: The server main programs.

DCOM Client code CORBA Client code

#include "grid.h"

void main(int argc, char**argv)
{
 IGrid1 *pIGrid1;

 IGrid2 *pIGrid2;
 LONG value;

 CoInitialize(NULL); // initialize COM
 CoCreateInstance(CLSID_CGrid, NULL, CLSCTX_SERVER,
 IID_IGrid1, (void**) &pIGrid1);
 pIGrid1->get(0, 0, &value);
 pIGrid1->QueryInterface(IID_IGrid2, (void**)
&pIGrid2);
 pIGrid1->Release();
 pIGrid2->reset(value+1);

 pIGrid2->Release();
 CoUninitialize();
}

#include "grid.hh"

void main (int argc, char **argv)
{
 grid_var gridVar;

 CORBA::Long value;

 // bind to "grid" object; Orbix-
specific
 gridVar = grid::_bind(":grid");

 value = gridVar->get(0, 0);

 gridVar->reset(value+1);

}

Table 5: The client main programs.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 12 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

3. Top Layer: Basic Programming Architecture

At the top layer, we show the programmers' view of DCOM and CORBA. More
specifically, we describe how a client requests an object and invokes its methods,

and how a server creates an object instance and makes it available to the client.
Exactly how the client is connected to the server is totally hidden from the

programmers. The client and the server programs interact as if they reside in the
same address space on the same machine. The main differences between DCOM and

CORBA at this layer include how a client specifies an interface and COM's class

factories and the IUnknown methods. A step-by-step description is given in Table 6

and illustrated in Figure 4 and Figure 5 for DCOM and CORBA, respectively.

(Numbers in parenthesis are for object activation steps; those in square

brackets are for method invocation steps.)

Although Table 6 gives a common DCOM invocation sequence, we would like to

point out two things. First, the use of class factories in COM is optional. A server

object can actually call CoRegisterClassObject() to register any interface pointer,

and clients can invoke another COM API named CoGetClassObject() to retrieve
that pointer. (A class object is a named singleton object that acts as the metaclass for

a COM object class.) Second, CoCreateInstance() does not necessarily create a

fresh instance. Inside IClassFactory::CreateInstance(), a server can choose to

always return the same interface pointer so that different clients can connect to the
same object instance with a particular state. Another way of binding to a named

server object instance is to use monikers [Box2 97] and/or the Running Object Table
(ROT) [COM 95].

In CORBA, an object can be activated by invoking any method on an existing object

reference. Some vendors provide special method calls, e.g. _bind() operation in

Orbix, to activate a server object and obtain its object reference. The client may
attach to an existing instance instead of a new instance, if there is any existing

instance matching the requested type. Note that a client can store an object reference

by stringifying it using object_to_string() and can later use it again by

converting it back by string_to_object().

Another difference to note between DCOM and CORBA at the programming layer is
the way they perform exception handling. CORBA provides support for standard

C++ exceptions and some CORBA specific exceptions. In addition, user defined
exceptions are also allowed and are declared in the IDL. The IDL compiler maps a

user defined exception to a C++ class.

In contrast, DCOM requires that all methods return a 32-bit error code called an
HRESULT (see Table 3) at this layer. At the language/tool level, a set of conventions

and system provided services (called the IErrorInfo object) allows failure
HRESULTs to be converted into exceptions in a way natural to the language. For
example, in Microsoft Visual C++ 5.0, client programmers can use standard C++

try/catch blocks to catch errors from COM method invocations; the compiler
generates the correct code to map the failure HRESULT into a correct usage of

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 13 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

IErrorInfo, effectively translating the failure return code into an exception.

Similarly, tools can allow programmers to "throw exceptions" instead of returning
failure codes. The DCOM wire protocol includes a mechanism known as body

extensions [Brown 96] that allow rich exception information (such as a string
explaining the error) to be carried.

DCOM CORBA

Object activation

1. Client calls COM library's
CoCreateInstance() with
CLSID_Grid and IID_IGrid1.

2. COM infrastructure starts
an object server for
CLSID_Grid.

3. As shown in the server
main program, server
creates class factories
for all supported CLSIDs,
and calls
CoRegisterClassObject() to
register each factory.

Server blocks on waiting
for, for example, an event
to be set to signal that
the server is no longer
needed. Incoming client
requests will be served by
other threads.

4. COM obtains the
IclassFactory pointer to
the CLSID_Grid factory,
and invokes
CreateInstance() on it.

5. In CreateInstance(),
server creates an object
instance and makes a
QueryInterface() call to
obtain an interface
pointer to the IID_IGrid1
interface.

6. COM returns the interface
pointer as pIGrid1 to the
client.

1. Client calls client stub's
grid::_bind(), which is a
static function in the
stub.

2. ORB starts a server that
contains an object
supporting the interface
grid.

3. As shown in the server main
program, Server
instantiates all supported
objects. (In each
constructor, calls are made
to create and register an
object reference.)

Server calls
CORBA::BOA::impl_is_ready()
to tell ORB that it is
ready to accept client
requests.

4. ORB returns the object
reference for grid as
gridVar to the client.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 14 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Method invocation

1. Client calls pIGrid1-
>get() which eventually
invokes CGrid::get() in
the server.

2. To obtain a pointer to
another interface
IID_IGrid2 of the same
object instance, client
calls pIGrid1-
>QueryInterface() which
invokes
Grid::QueryInterface.

3. When finishing using
pIGrid1, client calls
pIGrid1->Release() (which
may not invoke
CGrid::Release() [footnote
1]).

4. Client calls pIGrid2-
>reset() which invokes
CGrid::reset.

5. Client calls pIGrid2-
>Release() which invokes
CGrid::Release().

1. Client calls gridVar->get()
which eventually invokes
grid_i::get() in the
server.

2. Client calls gridVar-
>reset() which invokes
grid_i::reset().

Table 6: The top layer description.

Footnote 1: For performance reason, Release() calls for individual interfaces may not be actually
forwarded to the server side until all interface pointers that a client holds to the same object are all
released. This allows caching interface pointers that may be requested again by the client, and allows

lower layers to bundle multiple Release() calls in a single remote call.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 15 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Figure 4: DCOM steps at the top layer.

Figure 5: CORBA steps at the top layer.

4. Middle Layer: Remoting Architecture

The middle layer consists of the infrastructure necessary for providing the client and
the server with the illusion that they are in the same address space. The description in

Table 7 shows how the infrastructure locates and starts the requested server, and the
entities involved when a method invocation takes place across different processes.

The corresponding illustrations for DCOM and CORBA are shown in Figure 6 and
Figure 7, respectively. The main differences between DCOM and CORBA at this

layer include how server objects are registered and when proxy/stub/skeleton
instances are created.

To send data across different address spaces requires a process called marshaling and

unmarshaling. Marshaling packs a method call's parameters (at a client's space) or
return values (at a server's space) into a standard format for transmission.

Unmarshaling, the reverse operation, unpacks the standard format to an appropriate

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 16 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

data presentation in the address space of a receiving process. Note that the

marshaling process described in this section is called standard marshaling in DCOM
terminology. DCOM also provides a custom marshaling mechanism to bypass the

standard marshaling procedure [Brockschmidt 93] [COM 95] [Box1 97]. By

implementing an IMarshal interface, a server object declares that it wants to control

how and what data are marshaled and unmarshaled, and how the client should
communicate with the server. In effect, custom marshaling provides an extensible

architecture for plugging in application-specific communication infrastructure. It
can be useful for client-side data caching, for fault tolerance, etc.

We describe here some of the additional CORBA terms used in Table 7. As stated in
the Introduction, the ORB acts as the object bus. The Object Adaptor (OA) sits on

top of the ORB, and is responsible for connecting the object implementation to the
ORB. Object Adaptors provide services like generation and interpretation of object

references, method invocation, object activation and deactivation, mapping object
references to implementations. Different object implementation styles have different

requirements and need to be supported by different object adapters, e.g. object-
oriented database adapter for objects in a database. The Basic Object Adapter (BOA)

defines an object adapter which can be used for most conventional object
implementations. CORBA specifications do not mandate how the ORB/BOA

functionality is to be implemented. Orbix built the ORB/BOA functionality into two

libraries and a daemon process (orbixd). The daemon is responsible for location and
activation of objects. The two libraries, a server-side library and a client-side library,

are each linked at compile time with server and client implementations, respectively,
to provide the rest of the functionality [Orbix 96].

It is important to note that the recently introduced POA will be a replacement for

BOA. The POA specifications provide portability for CORBA server code and also
introduce some new features in the Object Adapter. The POA specifications have not

yet been incorporated by any ORB vendors into the products. Thus, our descriptions
are based on the current products which implements the BOA specifications.

However, wherever we discuss BOA specific details we will point out the approach
taken by POA in that context.

DCOM CORBA

Object activation

1. Upon receiving
CoCreateInstance() call,
COM library delegates the
task to Service Control
Manager (SCM).

2. SCM checks if a class
factory for CLSID_Grid has
been registered; if not,
SCM consults the registry
to map CLSID_Grid to its
server path name, and
starts the server.

1. Upon receiving grid::_bind()
call, client stub delegates the
task to ORB [footnote 2].

2. ORB consults the Implementation
Repository to map grid to its
server path name, and activates
the server (in Orbix, the orbixd
daemon forks the server
process).

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 17 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

3. Server registers all
supported class factories
in a class object table.

4. SCM retrieves from the
table the IClassFactory
pointer to the CLSID_Grid
factory, and invokes
CreateInstance() on it.

5. When CreateInstance()
returns the IID_IGrid1
pointer, COM
(conceptually) creates an
object stub for the newly
created object instance.

6. The object stub marshals
the interface pointer,
consults the registry to
create an interface stub
for IID_IGrid1, and
associates it with the
server object's actual
IID_IGrid1 interface.

7. When SCM ferries the
marshaled pointer back to
the client side, COM
creates an object proxy
for the object instance.

8. The object proxy
unmarshals the pointer,
consults the registry to
create an interface proxy
for IID_IGrid1, and
associates it with the RPC
channel object connected
to the stub.

9. COM library returns to the
client an IID_IGrid1
pointer to the interface
proxy as pIGrid1.

3. Server instantiates all
supported objects, including a
grid object of class grid_i.
Class grid_i indirectly inherits
from CORBA::Object whose
constructor calls BOA::create()
with a unique reference ID to
get back an object reference.

It then registers the object
reference with ORB by calling
obj_is_ready() [Orfali 97].

4. The constructor for class grid_i
also creates an instance of the
skeleton class. [footnote 3].

5. When the ORB ferries the object
reference back to the client
side, it creates an instance of
the proxy class and registers it
in the proxy object table with
its corresponding object
reference.

6. Client stub returns to the
client an object reference as
gridVar.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 18 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Method Invocation:

1. Upon receiving pIGrid1-
>get() call, interface
proxy marshals necessary
parameters, and invokes
the SendReceive() method
on the RPC channel object
to send the request.

2. The RPC channel sends the
request to the server
side, finds the target
IID_IGrid1 interface stub,
and calls the Invoke()
method on it.

3. Interface stub unmarshals
the parameters, invokes
the method (identified by
a method number) on the
grid object, marshals the
return values, and returns
from the Invoke method.

4. When the RPC channel
ferries the marshaled
return values back to the
client side, the interface
proxy returns from the
SendReceive() call,
unmarshals the return
values, and returns them
to the client to finish
the pIGrid1->set() call.

5. Upon receiving pIGrid1-
>QueryInterface() call,
interface proxy delegates
the request to the object
proxy's IUnknown
interface.

6. The object proxy remotely
invokes the actual
QueryInterface() call on
the grid object through
the same process explained
above.

1. Upon receiving gridVar->get()
call, the proxy creates a
Request pseudo object, marshals
the necessary parameters into
it, and calls Request::invoke(),
which calls
CORBA::Request::send() to put
the message in the channel, and
waits
onCORBA::Request::get_response()
for reply.

2. When the message arrives at the
server, the BOA finds the target
skeleton, rebuilds the Request
object, and forwards it to the
skeleton.

3. The skeleton unmarshals the
parameters from the
Requestobject, invokes the
method (identified by a method
name) on the grid object,
marshals the return values, and
returns from the skeleton
method. The ORB builds a reply
message and places it in the
transmit buffer.

4. When the reply arrives at the
client side,
CORBA::Request::get_response()
call returns after reading the
reply message from the receive
buffer. The proxy then
unmarshals the return values,
checks for exceptions, and
returns them to the client to
finish the gridVar->get() call.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 19 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

7. Upon returning the new
IID_IGrid2 interface
pointer, COM creates the
interface stub and proxy
for it (which share the
same object stub and proxy
with the IID_IGrid1
interface stub and proxy,
respectively).

8. The IID_IGrid1 interface
proxy returns to the
client an IID_IGrid2
pointer to the new
interface proxy.

9. Upon receiving pIGrid1-
>Release() call,
IID_IGrid1 interface proxy
delegates the request to
the object proxy.

10. Upon receiving pIGrid2-
>reset() call, IID_IGrid2
interface proxy makes the
remote call as usual.

11. Upon receiving pIGrid2-
>Release() call,
IID_IGrid2 interface proxy
delegates the request to
the object proxy which
then makes a remote call
to release pIGrid2 (and
possibly pIGrid1).

5. Upon receiving gridVar->reset()
call, the proxy follows a
similar procedure.

Table 7: The middle layer description.

Footnote 2: The stub actually checks its proxy object table first to see if it already has an object

reference for grid. The proxy object table maintains a run-time table of all valid object references on
the client side.

Footnote 3: Steps 3 and 4 somewhat correspond to the implicit activation policy in POA. POA offers

a number of policies related to object activation. Due to lack of space, we will not discuss them in this

paper.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 20 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Figure 6 DCOM steps at the middle layer.

Figure 7 CORBA steps at the middle layer.

5. Bottom Layer: Wire Protocol Architecture

The bottom layer specifies the wire protocol for supporting the client and the server

running on different machines. The description in Table 8 shows how objects on a
remote machine are created and describes the entities involved when a method

invocation is carried out across machines. Figure 8 and Figure 9 illustrate the steps
for DCOM and CORBA, respectively. The main difference between DCOM and

CORBA at this layer include how remote interface pointers or object references are
represented to convey the server endpoint information to the client, and the standard

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 21 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

format in which the data is marshaled for transmission in a heterogeneous

environment. Note that CORBA does not specify a protocol for communication
between a client and an object server running on ORBs provided by the same

vendor. The protocol for inter-ORB communication between the same vendor ORBs
is vendor dependent. However, in order to support the interoperability of different

ORB products, a General Inter-ORB Protocol (GIOP) is specified. A specific
mapping of the GIOP on TCP/IP connections is defined, and known as the Internet

Inter-ORB Protocol (IIOP). For CORBA, we include the descriptions for both IIOP
and the Orbix implementation.

DCOM wire protocol is mostly based on OSF DCE RPC specification [DCE 95],

with a few extensions. That includes remote object reference representation, an

IRemUnknown interface for optimizing the performance of remote IUnknown method
calls, and a pinging protocol [Brown 96]. Pinging allows a server object to garbage-

collect remote object references when a remote client abnormally terminates. When a
client obtains an interface pointer to a remote object for the first time, the ping client

code (see Figure 2) on the client machine adds the object to a ping set and
periodically sends a ping to the server machine to let it know that the client is still

alive. Missing a predetermined number of consecutive pings indicates that the client
has abnormally terminated and the interface pointers that it holds can be released. To

optimize performance, pings are sent on a per-machine basis and in an incremental
way. They can also be piggy-backed on normal messages. Whenever necessary, the

ping functionality can also be turned off to reduce network traffic.

DCOM CORBA

Object activation

1. Upon receiving the delegated
CoCreateInstance() request, if
the client-side SCM consults
local registry and finds out
that the grid object should be
located on another server
machine, it calls a method of
the IRemoteActivation RPC
interface on the server-side
SCM.

2. When the server is started by
the server-side SCM, it is
associated with an object
exporter and assigned an object
exporter identifier (OXID). The
mapping from the OXID to the
RPCbinding that can be used to
reach the server is registered
with the server-side OXID
resolver.

3. When the object stub marshals
the IID_IGrid1 pointer returned
by the CreateInstance(), the
pointer is assigned an

1. Upon receiving the delegated
grid::_bind() request, client-
side ORB consults a locator
file to choose a machine that
supports grid, and sends a
request to the server-side ORB
via TCP/IP.

2. When the server is started by
the server-side ORB, a grid
object is instantiated by the
server, the CORBA::Object
constructor is called and
BOA::create() is invoked.
Inside the BOA::create(), BOA
creates a socket endpoint,
the grid object is assigned a
object ID, unique within the
server, an object reference is
created, that contains the
interface and the
implementation names, the
reference ID, and the endpoint

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 22 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

interface pointer identifier
(IPID), unique within the
server. Also, an object
reference (OBJREF) is created
to represent the pointer. An
OBJREF contains the IPID, OXID,
addresses of OXID resolvers
(one per protocol), etc.

4. When the marshaled interface
pointer is returned to the
client side through the server-
side and client-side SCM's, the
object proxy extracts the OXID
and addresses of OXID resolvers
from OBJREF, and calls the
IOXIDResolver:ResolveOxid()
method of its local OXID
resolver.

5. The clients-side OXID resolver
checks if it has a cached
mapping for the OXID; if not,
it invokes the
IOXIDResolver:ResolveOxid()
method of the server-side OXID
resolver which returns the
registered RPC binding.

6. The client-side resolver caches
the mapping, and returns the
RPC binding to the object
proxy. This allows the object
proxy to connect itself and the
interface proxies that it
creates to an RPC channel that
is connected to the object
exporter.

address. For clients talking
the IIOP protocol, the server
generates an Interoperable
Object Reference (IOR) that
contains a machine name, a
TCP/IP port number, and an
object_key. The BOA registers
the object reference with the
ORB.

3. When the object reference is
returned to the client side,
the proxy extracts the
endpoint address and
establishes a socket
connection to the server.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 23 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Method invocation

1. Upon receiving pIGrid1->get()
call, the interface proxy marshals
the parameters in the Network Data
Representation (NDR) format [DCE
95].

2. The RPC channel sends the request
to the target object exporter
identified by the OXID-resolved
RPC binding.

3. The server-side RPC infrastructure
finds the target interface stub
based on the IPID that is
contained in the RPC header.

4. After invoking the actual method
on the server object, the
interface stub marshals the return
values in the NDR format.

5. Upon receiving the delegated
pIGrid1->QueryInterface() call,
the object proxy invokes the
IRemUnknown::RemQueryInterface
method on the OXID object
[footnote 4] in the target object
exporter. The OXID object then
invokes the QueryInterface()
method on (possibly multiple)
interfaces within the exporter.

6. Upon receiving the delegated
pIGrid2->Release() call, the
object proxy invokes the
IRemUnknown::RemRelease() method
on the OXID object in the target
object exporter. The OXID object
then invokes the Release() method
on (possibly multiple) interfaces
within the exporter.

1. Upon receiving gridVar-
>get() call, the proxy
marshals the parameters in
the Common Data
Representation (CDR) format
[CORBA 95].

2. The request is sent to the
target server through the
established socket
connection.

3. The target skeleton is
identified by either the
reference ID or object_key.

4. After invoking the actual
method on the server
object, the skeleton
marshals the return values
in the CDR format.

Table 8: The bottom layer description.

Footnote 4: There is one OXID object per object exporter. Each OXID object supports an

IRemUnknown interface consisting of three methods: RemQueryInterface(), RemAddRef(),
and RemRelease(). These methods allow multiple remote IUnknown method calls destined for
the same object exporter to be bundled to improve performance. All such calls are first handled by the

OXID object, and then forwarded to the target interface. Note that these and other bottom-layer APIs

are essentially implementation details. Application programmers will not encounter them.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 24 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Figure 8: DCOM steps at the bottom layer.

Figure 9: CORBA steps at the bottom layer.

6. Summary

The three-layer step-by-step descriptions have shown that the architectures of
DCOM and CORBA/Orbix are basically similar. They both provide the distributed

objects infrastructure for transparent activations and accessing of remote objects.
Table 9 summarizes the corresponding terms and entities in the two architectures.

Note that many of the correspondences are only approximate. Their main differences
are also summarized below. First, DCOM supports objects with multiple interfaces

and provides a standard QueryInterface() method to navigate among the

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 25 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

interfaces. This also introduces the notion of an object proxy/stub dynamically

loading multiple interface proxies/stubs in the remoting layer. Such concepts do not

exist in CORBA. Second, every CORBA interface inherits from CORBA::Object, the

constructor of which implicitly performs such common tasks as object registration,
object reference generation, skeleton instantiation, etc. In DCOM, such tasks are

either explicitly performed by the server programs or handled dynamically by
DCOM run-time system. Third, DCOM's wire protocol is strongly tied to RPC, but

CORBA's is not. Finally, we would like to point out that DCOM specification
contains many details that are considered as implementation issues and not specified

by CORBA. As a result, we have used the Orbix implementation in many places in
order to complete the side-by-side descriptions.

 DCOM CORBA

Top layer: Basic programming architecture

Common base class IUnknown CORBA::Object

Object class identifier CLSID interface name

Interface identifier IID interface name

Client-side object activation CoCreateInstance() a method call/bind()

[footnote 5]

Object handle interface pointer object reference

Middle layer: Remoting architecture

Name to implementation mapping Registry Implementation Repository

Type information for methods Type library Interface Repository

Locate implementation SCM ORB

Activate implementation SCM OA

Client-side stub proxy stub/proxy

Server-side stub stub skeleton

Bottom layer: Wire protocol architecture

Server endpoint resolver OXID resolver ORB

Server endpoint object exporter OA

Object reference OBJREF IOR (or object reference)

Object reference generation object exporter OA

Marshaling data format NDR CDR

Interface instance identifier IPID object_key

Table 9: Summary of corresponding terms and entities.

Footnote 5: Orbix and most other CORBA vendors provide bind() as a way of activating an object
and getting its object reference. However, bind() is not specified in the CORBA standard. The

standard suggests that a client obtains an object reference from a naming service or a trader service.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 26 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

Acknowledgment

The authors would like to express thanks to Richard Buskens and Yow-Jian Lin at
Bell Labs for their valuable discussions and their assistance in prototyping CORBA

applications, and to Chandra Kintala (Bell Labs), Doug Schmidt (Washington
University), Charlie Kindel (Microsoft), Nat Brown (Microsoft), Don Box

(DevelopMentor), Prem Devanbu (AT&T Labs) for their valuable comments.

References

[Birrell 84]
A. Birrell and B. J. Nelson, Implementing Remote Procedure Calls, ACM

Transactions on Computer Systems, Vol. 2, No. 1, Feb 1984, pp.39-59.
[Box1 97]

D. Box, Q&A ActiveX/COM, Microsoft Systems Journal, March 1997, pp.93-105.
[Box2 97]

D. Box, Q&A ActiveX/COM, Microsoft Systems Journal, July 1997, pp.93-108.
[Brockschmidt 93]

K. Brockschmidt, Inside OLE, Redmond, Washington: Microsoft Press, 1993.
[Brown 96]

N. Brown, C. Kindel, Distributed Component Object Model Protocol -- DCOM/1.0,
http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-01.txt.

[Chappell 96]
D. Chappell, Understanding ActiveX and OLE, Redmond, Washington: Microsoft

Press, 1996.
[Chappell 97]

D. Chappell, The Joy of Reference Counting, in Object Magazine, pp. 16-17, July
1997.

[COM 95]
The Component Object Model Specification,

http://www.microsoft.com/oledev/olecom/title.htm.
[CORBA 95]
The Common Object Request Broker: Architecture and Specification, Revision 2.0,

July 1995, http://www.omg.org/corba/corbiiop.htm.
[DCE 95]

AES/Distributed Computing - Remote Procedure Call, Revision B, Open Software
Foundation, http://www.osf.org/mall/dce/free_dce.htm.

[Grimes 97]
R. Grimes, Professional DCOM Programming, Olton, Birmingham, Canada: Wrox

Press, 1997.
[Iona 96]

Orbix 2.1 Programming guide and Reference guide, Iona technologies Ltd.,
http://www.iona.com/.

[Orbix 96]
The Orbix Architecture - IONA Technologies, November 1996.

http://www.iona.com/Products/Orbix/Architecture/index.html.

DCOM and CORBA Side by Side, Step by Step, Layer by Layer Page 27 of 27

http://www.cs.wustl.edu/~schmidt/submit/Paper.html 28-11-2000

[Orfali 97]

R. Orfali, D. Harkey, J. Edwards, Instant CORBA, Wiley Computer Publishing, John
Wiley & Sons, Inc., 1997.

[POA 97]
ORB Portability Joint Submission, Part 1 of 2, orbos/97-04-14,

http://www.omg.org/library/schedule/Technology_Adoption.htm .
[Rogerson 96]

D. Rogerson, Inside COM, Redmond, Washington: Microsoft Press, 1996.
[Schmidt 97]

D. Schmidt, S. Vinoski, Object Interconnectins - Object Adapters: Concepts and
Terminology (Column 11), to appear in SIGS C++ Report Magazine, October 1997.

http://www.cs.wustl.edu/~schmidt/C++-report-col11.ps.gz .
[Vinoski 97]

S. Vinoski, CORBA: Integrating diverse applications within distributed
heterogeneous environments, in IEEE Communications, vol. 14, no. 2, Feb. 1997.

http://www.iona.com/hyplan/vinoski/ieee.ps.Z.
[Wang1 97]

Y. M. Wang, Introduction to COM/DCOM,
http://akpublic.research.att.com/~ymwang/slides/DCOMHTML/ppframe.htm, 1997.

[Wang2 97]
Y. M. Wang, COM/DCOM Resources,

http://akpublic.research.att.com/~ymwang/resources/resources.htm, 1997.

