
DCOM Overview

1

Outline

• COM overview

• DCOM overview

• Comparison DCOM and Corba

2

COM overview

• Standard for component interoperability

• binary standard

– specifies how the component should be represented in the
executable format

• language independent

• Designed for centralized systems

– components within a process or across processes can
communicate

– DCOM generalizes this for the case where components are
distributed

• Ideal for Windows based systems

3

4

Interfaces

• Interface specifies a collection of logically related functions

• Fundamental entity in COM

• Methods only – no variables or implementation

• An interface could be implemented by many components

• A special interface IUnknown

5

Interfaces (continued)

• Each interface has its own unique interface identifier (I-ID)

• 128 bit globally unique identifier (GU-ID)

• Based on the Distributed Computing Environment (DCE)
standard

• Generated using the ethernet card number and exact time of
creation to ensure uniqueness

– No name collisions

– Interface atomicity

– Interfaces are immutable; if the interface is modified, it is
saved as a new interface

6

Interface IUnknown

• A special interface IUnknown

– Every interface must inherit from IUnknown

– Contains three methods: AddRef, Release and
QueryInterface
∗ used for reference counting and managing the lifetime of

an object

interface IUnknown

{

virtual HRESULT QueryInterface(IID &, void **) = 0;

virtual ULONG AddRef() = 0;

virtual ULONG Release() = 0;

}

7

Interface IUnknown (continued)

• Used for interface negotiation; the client can ask an object
about the interfaces it can provide

• Given a particular IID, the client can determine if the object of
that interface supports the required interface

• The value of type HRESULT is used to denote whether the
operation was successful or not.

– 0 = success

– other values = (warning or error)

8

9

Binary standard for COM

• The interface consists of a pointer to an interface node

• The interface node contains a reference to a vtable

• vtable contains references to the methods supported by an
interface (including QueryInterface, AddRef and Release)

10

Binary standard (continued)

• Efficiency

– A call to COM method is as efficient as a C++ virtual
method call

• Language independent

– The source program may be in any language

– The compiler output should conform to the required
memory layout

11

12

13

Class Identifier (CLS-ID)

• Each component also has a globally unique class identifier
(CLSID)

• Based on the interfaces it supports and the development time

• A class implements one or more interfaces

– clients interact with COM objects through the interface

– clients must have a separate pointer to each interface they
want to use

– no access to object state

– only functions in the interface may be called

14

Creating COM objects

• A COM object is a runtime instantiation of a COM class

• Every class must provide a class factory that deals with
creating new instances of that class

• Given a CLSID, a new instance can be requested through
COM library using

– CoCreateInstance

– CoGetInstance

15

16

Typical Execution

• Client uses the COMAPI to obtain information about the DLL
that contains the class factory

• Using the DLL, it obtains the reference to the Classfactory

• The client calls CoCreateInstance on the class factory to obtain
an object with the given interface

• The client uses the object

• The client releases the object

• The client releases the classfactory

17

Version Control

• Not supported by COM directly

• Multiple interfaces are used to solve the version problem

• If an interface is modified, the object may support both the
older and the newer version.

18

Reference Counting

• AddRef and Release methods from IUnknown used for this
purpose

• The clients are responsible for reference counting and doing
memory management.

– Improper use can lead to memory leaks, dangling pointers,

• Can fail to deal with cyclic structures

19

DCOM : Goals

• COM - with a longer wire

• Enable software components to communicate directly over a
network in a reliable, secure and efficient manner

• Designed for use across multiple network transports including
Internet protocols such as TCP, HTTP

• Intended to extend COM, work with Java applets and ActiveX
components

• e.g., Java may be used for front-end graphic interface that
communicates with other databases, other applications on the
network.

20

DCOM : Issues

• Interoperability across network

• Versioning: updating some components without requiring
everything else to be updated!

• Permit components written in different languages to
communicate

• Transparency

21

MS-IDL

• DCOM is also RPC based

– Object Remote Procedure Call

• DCE-RPC defines a standard for converting in-memory data
structures and parameters into network packets

22

Object Remote Procedure Calls (ORPC)

• Microsoft’s object oriented extension of the distributed
computing environment (DCE) remote procedure call (RPC)

• Specifies

– how calls are made on an object

– how object references are communicated, maintained,

• Multiple network protocols

– TCP/UDP/HTTP/..

23

24

Marshaling and Unmarshaling

• required to pass function calls, parameters, and return values

• Marshalling

• Unmarshalling

• Stub and proxy objects

25

Security

• Based on DCE RPC that provides for authentication and
authorization

• Based on access control lists (ACLs) of COM components

• Different security protocols may be used

26

