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ABSTRACT The success of the Object Management 
Group’s General Inter-ORB Protocol (GIOP) is 
leading to the desire to deploy GIOP in an ever-
wider range of application areas, many of which are 
significantly more demanding than traditional areas 
in terms of performance. The well-known 
performance limitations of present day GIOP-based 
object request brokers (ORBs) are therefore 
increasingly being seen as a problem. To help 
address this problem, this paper discusses a GIOP 
implementation which has high performance and 
quality of service support as explicit goals. The 
implementation, which is embedded in a research 
ORB called GOPI, is modular and extensible in 
nature and includes novel optimization techniques 
which should be separately portable to other ORB 
environments. This paper focuses on the message 
protocol aspects of GOPI’s GIOP implementation; 
higher layer issues such as marshalling and 
operation demultiplexing are not covered in detail. 
Figures are provided which position GOPI’s GIOP 
performance against comparable ORBs. The paper 
also discusses some of the design decisions that have 
been made in the development of the GIOP protocol 
in the light of our implementation experience.  

Key words: Middleware, Distributed Systems, OMG 
CORBA, GIOP, IIOP, Protocol Engineering and 
Performance Optimization. 

1. Introduction 
In recent years, distributed middleware 

platforms such as the Open Group’s DCE [OG,99], 
the Java RMI [Sun,99], Microsoft’s DCOM 
[Microsoft,99] and the Object Management Group’s 
CORBA [OMG,99a] have achieved both technical 
maturity and commercial acceptance. Among these 
platforms, which are also commonly known as 
object request brokers or ORBs, CORBA has to date 
been the clear market leader.  

Much of the initial success of CORBA was due 
to the early standardization of its object invocation 
protocol, the General Inter-ORB Protocol (GIOP), 
and the latter’s subsequently widespread deployment 
in the TCP/IP environment (GIOP over TCP/IP is 
referred to as the Internet Inter-ORB Protocol or 
IIOP). Subsequently, while GIOP was originally 
envisaged as a protocol for communication between 
CORBA ORBs from different vendors, each of 
which would internally use its own proprietary 
protocol, it has in the event been almost universally 
deployed within CORBA implementations as well as 
between them. Today, GIOP is a widely deployed 
protocol and is increasingly being used in areas 
beyond CORBA; for example, in the WWW 
environment [Sun,99]. 

Although GIOP is a well-designed and widely 
implemented protocol, it is not always implemented 
efficiently [OMG,99b,c]. This is particularly true in 
the case of commercially successful GIOP-based 
ORBs such as Inprise’s Visibroker or Iona’s Orbix 
(a version of Orbix is evaluated in section 6.4) 
which, according to the literature (see, for example, 
[CC,99]), are significantly slower than research 
ORBs such as TAO [Schmidt,97], OmniORB 
[Lo,98], or GOPI [Coulson,99a]. One reason for this 
performance deficit is that the commercial vendors, 
quite understandably, have traditionally focused on 
facilities and reliability rather than on performance. 
Indeed, optimal performance was scarcely an issue 
in traditional application domains such as banking 
and database integration. Today, however, there is 
an increasing desire to apply GIOP-based ORB 
technology in more demanding areas such as 
interactive, multimedia and mobile systems 
[Blair,97], and to deploy ever larger and more 
complex distributed applications. In such 
environments high performance becomes crucial.  

This paper shares experience in efficiently 
implementing GIOP. More specifically, the paper 
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discusses GIOP implementation issues in the context 
of a high performance research ORB called GOPI 
[Coulson,99a]. The implementation is modular and 
extensible, supports flexible quality of service (QoS) 
configurability, and includes a number of 
optimization techniques that should be separately 
portable to other environments. Some of these 
techniques have been implemented elsewhere and 
we include them for the sake of completeness; 
others, to the best of our knowledge, are novel. The 
focus of the paper is on the low-level messaging 
protocol aspects of GIOP; we intend to address 
higher-level aspects such as marshalling in a 
forthcoming paper.  

The remainder of the paper is structured as 
follows. Sections 2 and 3 contain essential 
background on the GIOP messaging protocol and on 
the GOPI ORB respectively. Sections 4 and 5 then 
discuss aspects of GOPI’s GIOP implementation in 
detail, focusing particularly on performance 
engineering issues. Section 4 addresses standard 
IIOP implementation, while section 5 discusses non-
standard extensions that enable the use of GIOP in a 
QoS configurable environment. Following this, 
section 6 presents performance measures and section 
7 discusses related work. Finally, we discuss our 
impressions of the GIOP protocol in section 8 in the 
light of our implementation experience, and offer 
concluding remarks in section 9. 

2. Background on CORBA GIOP  
2.1 Architecture 

The OMG’s GIOP specification1 can be viewed 
as comprising three distinct standards. Firstly, a 
messaging standard defines packet headers, 
protocols for remote communication, and 
requirements on the underlying transport service. 
Secondly, the Common Data Representation (CDR) 
standard defines on-the-wire encodings for primitive 
and structured data-types in messages. Finally, the 
specification defines the structure and content of 
Interoperable Object References (IORs) which act as 
location transparent object identifiers. In this 
section, we focus exclusively on the messaging 
standard. The CDR and IOR parts of the 
specification are not discussed further because issues 

                                                           
1
  Although this paper is based on version 1.1 of the specification (as 

this is the version currently implemented by GOPI) a more recent 
version, v1.2, is now available. However, the main changes in 
GIOP v1.2 (e.g. the option for servers as well as clients to initiate 
requests) primarily affect the stub/ skeleton layer; there is little 
impact on the essentials of the message protocol area that is the 
focus of this paper. Those aspects of v1.1 that do impact this paper 
are discussed in footnotes in section 8. 

relating to their implementation are not addressed in 
the paper. 
2.2 Message Types 

The GIOP messaging standard defines an object 
request protocol that incorporates eight message 
types: Request, Reply, LocateRequest, LocateReply, 
CancelRequest, CloseConnection, MessageError 
and Fragment. The definitions of these messages 
and the protocols governing their exchange are 
independent of the underlying message transport 
layer; it is, however, required that the underlying 
transport layer be reliable2.  

GIOP is a client-server protocol. Request 
messages, which carry all the information necessary 
to invoke a remote object, are sent by clients, and 
Reply messages, which are sent in response to 
Request messages, are sent by servers. Client and 
server roles (respectively) are similarly assigned to 
the LocateRequest and LocateReply messages; this 
pair is used to query the current location of an 
object. It is permissible to multiplex requests on 
connections; i.e. one can issue new Request (or 
LocateRequest) messages on a given connection 
before replies to previously issued requests on the 
same connection have been received.  

The remaining four messages are self-standing 
rather than paired. CancelRequest, a client-side 
message, is used to advise servers that a reply is no 
longer required for the (still pending) request whose 
identifier is specified in the message. 
CloseConnection is a server-side message used to 
advise the client not to send further requests on the 
connection on which the CloseConnection message 
was received, as this connection is about to be 
closed. Finally, MessageError and Fragment 
messages can be sent by either clients or servers. 
The former is sent in response to any message with a 
bad header, and the latter is used to support multi-
fragment messages. Fragment messages follow an 
incomplete preceding message (of type Request, 
Reply, LocateRequest, LocateReply or Fragment) 
which has its ‘following fragment’ bit set (see 
section 2.3 below). The last Fragment message in a 
multi-fragment message has its ‘following fragment’ 
bit unset. 
2.3 Message Headers 

All GIOP message types employ a fixed-sized 
message header (see figure 1). The magic field in 
this header is used to identify messages as GIOP 
messages, the version field specifies the GIOP 

                                                           
2
  Nevertheless, efforts have recently been initiated within the OMG 

to define GIOP-like services over unreliable protocols such as 
multicast IP. See http://cgi.omg.org/cgi-bin/doc?orbos/99-11-14. 



 

- 3 - 

protocol version and the message type field 
identifies the message’s type (i.e. as one of the eight 
possible types described above). The flags field 
includes a bit to specify whether the sender is 
running on a little or a big-endian architecture and 
also a ‘following fragment’ bit to specify whether or 
not this message is complete or only a fragment (see 
section 2.2). The message size field contains the 
length of the whole message in octets, excluding the 
12 octets of the fixed-sized message header itself. 

‘G’

magic version

flags
m

sg type

msg size

‘I’ ‘O’ ‘P’ 1 1

chars octets unsigned long

...
 

Fig. 1: The GIOP fixed-sized message header 
In addition to the fixed-sized message header, all 

message types except CloseConnection, 
MessageError and Fragment additionally employ a 
message specific header situated between the 
message header and the payload. For example, the 
Request message’s message specific header 
comprises the following sequence of fields: 
•  an unsigned long l followed by a list of l service 

contexts (l is 0 for an empty service context list); 
service contexts contain auxiliary information 
(e.g. a transaction or security identifier or 
priority information) that may need to be passed 
to an operation invocation; they are each 
encoded as an unsigned long m followed by m 
octets of data; 

•  an unsigned long containing a unique request 
identifier; this is used to match Requests with 
their corresponding replies and to identify 
Requests in CancelRequest messages; 

•  an octet interpreted as a boolean that specifies 
whether or not a response to this Request is 
expected; 

•  three octets that are currently unused but serve 
to pad the previous field so that the following 
field is appropriately aligned; 

•  an unsigned long l followed by l octets 
representing the object key; this is the unique 
identifier of the target object; 

•  an unsigned long l followed by l−1 octets 
representing the operation string, followed by a 
null octet; the operation string identifies the 
target operation name (this is assumed to refer to 
an operation supported by the target object); 

•  an unsigned long l followed by l octets 
representing the requesting principal (l is 0 for 
empty requesting principals); this field identifies 
the requesting object (e.g. for security or 
accounting purposes). 
The fields comprising the message-specific 

headers of the other message types are largely 
subsets of the above set of fields. More specifically, 
the fields of the remaining message types are as 
follows. Reply: service context, request identifier 
and reply status (the latter is an unsigned long); 
LocateRequest: request identifier and object key; 
LocateReply: request identifier and reply status; 
CancelRequest: request identifier (of the request to 
be cancelled). In the LocateReply case, if the reply 
status field indicates success, the message payload is 
assumed to contain a marshalled IOR that specifies 
the current location of the queried object.  

Note finally that the CancelRequest and 
LocateReply messages employ fixed length message-
specific headers whereas the Request, Reply and 
LocateRequest headers are of variable length 
because they include variable length fields (i.e. one 
or more of: service context, object key, operation 
string or requesting principal fields).  

3. Background on the GOPI ORB  
3.1 Overall Architecture 

The GOPI ORB architecture comprises two 
levels:  

•  the GOPI-core level and  
•  a higher-level personality level.  
GOPI-core offers a generic support infrastructure 

and application programmer’s interface (API) for 
core ORB functions. It includes a set of concurrency 
services and a generic communication protocol 
framework, both of which are QoS configurable and 
both of which attempt to honor QoS specifications 
through (configurable) resource management 
strategies. Personality layers build on GOPI-core to 
offer some particular higher-level platform-specific 
API. To date, a standard CORBA personality and a 
multimedia-capable personality, based on CORBA/ 
RM-ODP [ITU-T,95], have been developed 
[Coulson,99b], [Coulson,00].  
3.2 GOPI-core 

3.2.1 Architecture 
GOPI-core consists of approximately 12,000 

lines of C and runs on a variety of platforms 
including SunOS, Linux and Win32. It is 
implemented in an object-oriented style that could 
be straightforwardly translated into C++ or Java. 
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The software is structured as the following set of 
independent modules:  
•  the thread module is a sophisticated concurrency 

package which supports application scheduler 
contexts (ASCs). ASCs are pluggable modules 
which provide user-level threads with varying 
semantics and QoS. Each ASC is defined as a 
tuple: <set of user-level threads, set of kernel 
threads, scheduling policy, QoS-schema>, and 
its function is to multiplex its set of user-level 
threads over its kernel threads (referred to as 
‘virtual processors’) according to its associated 
scheduling policy. The QoS-schema defines 
parameters through which the scheduling policy 
may be configured on a per-thread basis (e.g. the 
QoS-schema associated with an earliest deadline 
first policy may include deadline and period 
parameters). ASCs are highly dynamic: they can 
be created or destroyed at run-time and both 
threads and virtual processors can be added/ 
removed at will or migrated across ASCs 
[Coulson,99a].  

•  the buf/ chan modules respectively manage 
buffers and provide an efficient inter-thread 
buffer passing service;  

•  the tp/ asp modules deal with communications; 
tp provides a common abstraction layer over a 
selection of OS supported transport protocols 
and also notifies interested parties of message 
arrivals; asp then provides a framework above 
the transport layer for accommodating stacks of 
application specific protocols (known as ASPs; 
see below); the GIOP message protocol is 
implemented as an ASP;  

•  the iref module supports location transparent 
communication endpoints known as interface 
references (or irefs); these are employed in the 
implementation of IORs in the CORBA 
personality; 

•  the iiop module provides a set of support 
services for IIOP bindings (see section 3.2.3 
below) which are layered over the GIOP ASP;  

•  the bind module supports a generic two-phase 
binding protocol through which QoS bindings 
between irefs can be established (again, see 
section 3.2.3 below). 
Although only a minimally necessary amount of 

detail is given on GOPI-core internals in this paper, 
certain aspects do require further elaboration3. In 

                                                           
3
  Detailed descriptions are available in [Coulson,98], [Coulson,99a], 

[Coulson,99b] and [Coulson,00] and definitive documentation of 

particular, ASPs, as supported by the asp module, 
and the three styles of binding supported by the iiop/ 
bind/ asp modules, are further described in the 
following subsections.  

3.2.2 Application Specific Protocols 
ASPs are communication protocol modules 

(classes) that support three interfaces:  
•  a data transfer interface with calls such as 

send(), recv() and call(),  
•  a connection management interface, inspired 

by the listen()/ connect()/ accept()-style 
Berkeley sockets API, and,  

•  an (optional) auxiliary interface with 
arbitrary ASP-specific calls (e.g. the various 
giop_*() calls discussed in section 4.2.3). 

Instances of each ASP are QoS configurable in 
terms of specifications written in an ASP-specific 
QoS-schema, analogous to the ASC framework’s 
QoS-schema. Each ASP maps QoS-schema 
specifications passed to its connection management 
operations either to primitive GOPI-core resources 
such as threads, ASCs, buffers or transport 
connections, or to the QoS-schema of a further ASP 
or ASPs which it may choose to instantiate below 
itself (stacks of ASPs are created in this manner). 
More details on QoS mapping and negotiation are 
given in section 5 below.  

The ASPs implemented in the current release of 
GOPI comprise the GIOP ASP described in this 
paper, an alternative request/ reply protocol called 
FRAG which is simpler and faster than GIOP, 
‘adaptive’ ASPs for audio and video 
communications and a reliable message-oriented 
multicast ASP [Coulson,99a]. 

3.2.3 Binding Styles 
GOPI supports three distinct binding styles 

which are classified according the nature of the ‘end-
points’ involved in the binding; these can be either 
capsules (also known as processes or address 
spaces) or irefs.  

                                                                                              
the GOPI-core API can be found at: 
http://www.comp.lancs.ac.uk/computing/users/geoff/GOPI. 



 

- 5 - 

client capsule server capsule

used by any
client

used by any
client

specific
‘proxy’
iref

used to access
any server iref

specific
server iref

specific
server
iref

capsule-to-capsule IIOP binding

capsule-to-iref IIOP binding

iref-to-iref QoS binding

(standard, CORBA compliant)

state and
resources

state and
resources

state and
resources

(two phase negotiation)

 
Fig. 2: Binding styles 

The three binding styles, which are illustrated in 
figure 2, are described as follows: 
•  capsule-to-capsule IIOP bindings These are 

‘conventional’ CORBA bindings and can be 
used to bind to services supported by any 
standard CORBA ORB. These bindings are 
styled ‘capsule-to-capsule’ because they support 
communication between any object in the client 
capsule and any iref (or CORBA IOR) in the 
server capsule. 

•  capsule-to-iref IIOP bindings These are 
‘enhanced’ IIOP bindings which aim to improve 
performance and predictability by maintaining 
binding-related state and resources at the server; 
they are non-standard and operate only in the 
GOPI environment. They are styled ‘capsule-to-
iref’ because they support communication 
between any object in the client capsule and a 
single specific iref (or CORBA IOR) in the 
server capsule. 

•  iref-to-iref QoS bindings These bindings support 
communication between a single specific 
‘proxy’ iref in the client capsule and a single 
specific iref in the server capsule. Like capsule-
to-iref IIOP bindings, they are non-standard and 
only operate in the GOPI environment. Unlike 
capsule-to-iref bindings, iref-to-iref QoS 
bindings hold state and resources at both ends 
which is negotiated between proxy and server 
irefs using the bind module’s binding protocol. 
They are especially suited to stream based 
communication using media-specific ASPs 
[Coulson,99a]. However, they can also be used 
for request/ reply based communication, 
including the use of the GIOP ASP in non-IIOP 
configurations as discussed in section 5. 
The implementation of standard (capsule-to-

capsule) IIOP bindings is discussed in detail in 
section 4. The other two, non standard, binding 
styles are covered in section 5. 

4. Standard IIOP Bindings 
4.1 Architecture 

4.1.1 CORBA Personality Level 
Stubs and skeletons comprise the major 

functionality at the personality level. These are 
responsible for marshalling and unmarshalling C++ 
application data-types to and from GOPI-core 
buffers; stubs operate at the client side and skeletons 
at the server side. Both stubs and skeletons interface 
to the GOPI-core iiop module and the GIOP ASP 
auxiliary interface using the APIs discussed in 
section 4.2. Traditionally, skeletons are also 
responsible for operation-level demultiplexing - i.e. 
selecting the operation specified in incoming 
Request messages. However, optional support for 
operation-level demultiplexing is also provided at 
the GOPI-core level (see section 4.2.8 below).  

As mentioned, the present paper focuses on the 
message protocol aspects of GIOP in GOPI-core and 
only refers in passing to personality-level 
functionality.  

4.1.2 GOPI-core Level 
The IIOP binding architecture at the GOPI-core 

level (i.e. excluding stubs and skeletons) is 
illustrated in figure 3. The heart of the architecture, 
the GIOP message protocol, is situated in the GIOP 
ASP in the asp module. This ASP is used in both 
IIOP bindings and in non-standard QoS bindings 
(see section 5 for discussion of its role in the latter).  

binding
table

IOR-to
-iref

binding 
cache

buffer mgr

GIOP 
ASP

data
trans

conn
mgmtaux

GIOP 
ASP

buffer mgr

location
service

iref-level demux

op-level
demux

tp/ asp
modules

buf/ chan
modules

CLIENT
SIDE

SERVER
SIDE

iiop 
module

thread pool

data
trans

conn
mgmtaux

irefs handler

TCP/IPTCP/IP ... ...

 
Fig. 3: The GOPI-core level IIOP binding 

architecture 
IIOP bindings further rely on buffer 

management services in the buf module and on a 
range of iiop module services. In the client-side iiop 
module, a binding cache is provided for client-side 
IIOP bindings, and a mapping of CORBA IORs to 
GOPI irefs is maintained. At the server side, the 
following services are implemented:  

•  a binding table of current server-side IIOP 
bindings,  
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•  a thread pool which contains threads on 
which incoming requests are serviced,  

•  an iref-level demultiplexor which 
demultiplexes incoming requests to the 
target iref,  

•  an operation-level demultiplexor which 
demultiplexes requests to the target 
operation (as mentioned, use of this is 
optional; operation level demultiplexing 
may also be carried out by personality-level 
skeletons), and  

•  a location service which resolves IOR 
location requests (LocateRequest messages) 
for the GIOP ASP.  

With the exception of thread pool and the 
operation-level demultiplexor, none of the above 
services are discussed in detail in this paper, despite 
their importance in efficient GIOP implementation. 
For a good discussion of demultiplexing and binding 
cache management refer to [Gokhale,97] and 
[Gokhale,98]. GOPI’s approach to the optimization 
of buffer management, together with other efficiency 
related concerns such as thread context switching, 
inter-thread communication, notification of 
incoming messages, use of scatter/ gather IO etc., 
has been discussed in [Coulson, 98] and 
[Coulson,99a].  
4.2 Design Aspects 

4.2.1 Scope of Discussion 
We now discuss detailed aspects of the design of 

the GOPI-core IIOP binding infrastructure. The 
discussion focuses on noteworthy and novel aspects 
of the design, particularly those that significantly 
impact performance. The areas addressed are  

•  the caching of headers,  
•  the use of non-multiplexed connections,  
•  the use of a subset of GIOP while remaining 

GIOP conformant,  
•  an optimization to reduce the overhead of 

the OS level recv() call in receiving 
messages,  

•  the data path used in request handling, and  
•  the above mentioned scheme for efficient 

operation level demultiplexing.  
To form a basis for the subsequent discussion, 

we begin the section by describing the general GOPI-
core API for connection management and 
communications. In addition to this API, which is 
provided by the iiop module and used by stubs and 
skeletons, the GIOP ASP provides additional API 
services, to be discussed below in section 4.2.3, 
through its auxiliary interface. 

4.2.2 Connection and Communication API 
/* client side APIs */
int iiop_getbinding(Iref *serv,

boolean exclusive);
int iiop_invoke(int asap,

Buffer *req, **rep);
int iiop_putbinding(int asap);
int iiop_close(int asap);

/* server side APIs */
typedef struct {

CharSeq serv_ctx_list[MAX_SC],
ULONG serv_ctx_list_length,
OCTET *object_key;
ULONG object_key_length;
char *operation_string;
OCTET *req_principal;
ULONG req_principal_length;

} ReqState;

typedef int (*Handler)(Iref *iref,
ReqState *state,
Buffer *req, Buffer **rep);

Iref *iref_create(Aspname asp,
Handler h, ...);

int iiop_send(int asap, Buffer *rep);

Client side stubs use iiop_getbinding() to obtain 
an ASP service access point identifier (asap) which 
represents a binding to an address specified in the 
call’s iref argument (the exclusive argument is 
discussed in section 4.2.4 below). When a binding is 
no longer required it is either returned to the binding 
cache using iiop_putbinding() or torn down using 
iiop_close().  

Before issuing an invocation on a binding, stubs 
use the GIOP ASP’s auxiliary interface (to be 
discussed in section 4.2.3) to set up per-asap 
invocation context such as the target iref and 
operation name. Subsequently, the invocation is 
issued using iiop_invoke(). The req parameter to 
iiop_invoke() contains the request arguments, and 
the reply in received into *rep.  

Note that separation of the invocation process 
into three distinct stages (i.e. obtaining a binding, 
setting up the invocation context, and issuing the 
invocation) lends itself well to performance 
optimizations. In particular, the separation of 
binding and invocation allows stubs to hold bindings 
over multiple invocations, and the separation of 
setting the invocation context and issuing the 
invocation allows this context to be reused for 
subsequent invocations that use the same context 
(see section 4.2.3).  

The server side personality level creates service 
instances (irefs) using the iref_create()4 call. This 

                                                           
4
  Some arguments of this call are omitted here for clarity; see 

http://www.comp.lancs.ac.uk/-
computing/users/geoff/GOPI/index.html for full details. 
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call specifies a Handler to be upcalled when requests 
on the new iref are received. Handlers are used to 
pass the request arguments up to the skeleton layer 
and to receive the address of a reply buffer on 
completion of the invocation. In addition, the 
associated invocation context is passed to the 
skeleton in a ReqState struct. This holds only 
pointers to request header data; no copy overhead is 
incurred. The server side replies to the invocation 
using iiop_send(). 

4.2.3 Use of Cached Headers  
As mentioned, before an invocation or reply is 

issued on a binding, services in the GIOP ASP’s 
auxiliary interface are used to set the context of the 
forthcoming request or reply; i.e. to pre-select a 
message type and to fill in the header of the selected 
message type. For example, the giop_hdrrequest() 
call below pre-selects and initializes a Request 
message header. Similar calls are provided for other 
message types. When an invocation (or reply etc.) is 
issued, the pre-selected header is transmitted, along 
with the given request buffer, in a single scatter/ 
gather IO call. 

typedef struct {
OCTET *data;
ULONG length;

} CharSeq;

int giop_hdrrequest(int asap,
CharSeq serv_ctx_list[],
ULONG serv_ctx_list_length,
boolean response_expected,
char *operation,
OCTET *object_key,
ULONG object_key_length,
OCTET *req_principal,
ULONG req_principal_length);

The following pair of services offer an 
alternative to giop_hdrrequest() which implements a 
useful optimization that can be employed by stubs 
when series of invocations are to be made on the 
same target object:  

int giop_setdefaulttarget(int asap,
OCTET *object_key,
ULONG object_key_length

int giop_hdrdefaultreq(int asap,
char *operation);

The first call of giop_setdefaulttarget() on a 
given binding allocates and caches a default Request 
header in which all fields except the operation name 
are pre-filled. In particular, the fixed-sized message 
header’s magic, version, and endian flag fields are 
statically filled according to fixed implementation/ 
runtime environment properties, the following 
fragment flag is set to FALSE in line with our policy 
of not sending fragmented messages (see section 
4.2.5), and the message type field is set to Request. 

In addition, the header’s Request-message-specific 
response expected field is set to TRUE, the service 
context and requesting principal fields to empty and 
the object key field to the value provided.  

Having built and cached this header, a series of 
invocations can subsequently be made on the same 
target object without incurring any additional 
header-related overhead5.  

The giop_hdrdefaultreq() call supplements 
giop_setdefaulttarget() by allowing the calling stub 
to inexpensively tailor the cached header to invoke a 
different operation on the same object. Even if 
giop_setdefaulttarget() is called again to select a 
new target object, all the other non-target-related 
pre-filled fields remain unchanged.  

Similar services to the above are provided for 
Reply headers. In addition the giop_hdrrequest() 
call, and its peers, cache headers in a similar way so 
that some at least of the header filling overhead can 
be avoided (in particular, most of the fixed-sized 
message header’s fields do not need to change from 
invocation to invocation).  

4.2.4 Control of Multiplexing  
Although the GIOP specification allows new 

requests to be issued on bindings on which 
previously issued requests are still pending (see 
section 2.2), our implementation does not encourage 
exploitation of this possibility. One problem with 
such multiplexing is that it incurs additional per-
request overhead to ensure that replies are correctly 
demultiplexed; i.e., passed to the thread that issued 
the corresponding request. Other problems/ 
overheads are discussed in sections 4.2.6 and 8. To 
avoid these overheads, we prefer that concurrent 
invocations to the same target capsule be carried on 
separate bindings. This leaves the demultiplexing to 
the operating system (which, of course, needs to 
demultiplex anyway) and thus simplifies and 
streamlines the ORB implementation. 

The exclusive argument to iiop_getbinding() is 
used to control whether or not a multiplexed 
connection is to be returned. If exclusive is true, 
iiop_getbinding() atomically removes a binding 
from the binding cache if it finds one there or creates 
a new binding if it fails to find one. 

4.2.5 Use of a Subset of GIOP  
Our client-side API only supports the sending of 

Request and LocateRequest messages, despite that 
fact that the GIOP standard additionally allows 
                                                           
5
  Of course, the cached header cannot be used for invocations for 

which these defaults are inappropriate. For example, the stub for a 
one-way Request would have to use the less efficient 
giop_hdrrequest() call rather than giop_hdrdefaultreq() to build a 
header with the response expected field set to FALSE. 
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Fragment and CancelRequest messages to be issued 
by clients. We do not support the sending of 
Fragment messages (i.e. we don’t provide a 
giop_hdr*() service for them) because we have as 
yet discovered no real motivation to do so (see 
section 8). Furthermore, our preference for non-
multiplexed bindings renders the CancelRequest 
message largely redundant as there is only ever one 
outstanding request per binding on a non-
multiplexed binding. If it is required to cancel an 
outstanding request, this can simply be achieved on 
both non-multiplexed and multiplexed bindings by 
calling iiop_close() from a thread other than the one 
blocked on iiop_invoke(). This causes an error return 
from iiop_invoke() and a corresponding exception at 
the server handler, and the request (or possibly 
multiple requests in the case of a multiplexed 
binding) is thus effectively aborted. 

The GIOP standard also allows that the client-
side may legally receive CloseConnection or 
MessageError messages in addition to the expected 
replies to Request or LocateRequest messages. Our 
client-side implementation deals with these 
(presumably infrequent) eventualities simply by 
returning an appropriate error code to iiop_invoke(), 
which is ultimately passed up to the calling stub.  

Our handling of CloseConnection messages is 
unorthodox in that we make no attempt to act on 
these messages in a timely manner (i.e. despite that 
fact that they may be issued asynchronously by the 
server, we receive them only incidentally when 
expecting a reply to a pending request). Our strategy 
is to allow the server to asynchronously terminate 
the binding and to detect and recover from this the 
next time the client side attempts to use the binding. 
This satisfies the required GIOP semantic while 
significantly streamlining the client-side 
implementation (in particular, we do not need a 
dedicated thread to deal with CloseConnection 
messages). 

4.2.6 Message Receipt Optimization  
GIOP implementations typically employ two 

recv() calls to receive each message at the OS-level: 
one to read the 12 octet fixed-sized message header 
and a second to read the remainder of the message 
(the length of which can be found in the fixed-size 
header). However, calling recv() twice per message 
incurs a non-trivial overhead6.  

                                                           
6
  We implemented a TCP/IP based client/ server pair in which the 

client repeatedly sent 1024 byte packets to the server which 
subsequently echoed them back. A 17% overhead was observed 
when the programs were modified to each receive 12 bytes and 
then 1024−12 bytes in separate recv() calls as opposed to receiving 
the whole 1024 bytes in a single recv(). 

Our approach to alleviating this overhead is to 
attempt to receive messages using only a single 
recv() call, by receiving a heuristically pre-
determined number of bytes, b, into a pre-allocated 
buffer of size b, using a single non-blocking recv() 
call. The effectiveness of this strategy is highly 
dependent on the actual size, msize, of incoming 
messages. There are two cases to consider: 
•  with msize > b we must allocate a new buffer of 

size msize, copy the already received b bytes 
into the new buffer, and issue a second recv() 
call to receive the remaining msize − b bytes; i.e. 
we still incur two recv() calls plus some 
additional overhead due to buffer management 
complexities;  

•  however, with msize ≤ b, we have read the 
whole message in one non-blocking call, thus 
saving the overhead of a second recv() call. 
Clearly, the choice of b is critical; it should be 

large enough to maximize the probability of the 
msize ≤ b case, but not so large that buffer space 
wastage becomes an issue. In our current 
experimentation we are varying b adaptively so that 
its value is informed by the actual size of previously 
received messages.  

An additional complexity is that the msize ≤ b 
case may incur a slight additional overhead in 
circumstances when part of a following message is 
received along with the current message, and the 
following message (or part thereof) must therefore 
be copied to a new buffer. In multiplexed bindings, 
this additional overhead would be incurred relatively 
frequently as the following message could be of any 
type. However, it should be incurred far less often 
on non-multiplexed bindings where the only 
message types that can follow (i.e. Fragment, 
CancelRequest and CloseConnection) are those 
which tend to occur relatively infrequently.  

For multiplexed bindings, a potentially useful 
variation of the scheme is as follows7: The very first 
recv() call on a binding reads just enough data to 
obtain a fixed-length GIOP message header (12 
octets). Then, all subsequent recv() calls read the 
length of data indicated in the last GIOP message 
header plus the size of the fixed-length GIOP 
message header. In this way, if there are a number of 
clients writing to a connection, the number of recv() 
calls per message will ideally converge to 1. 

4.2.7 Request Handling  
When an incoming message arrives at a server 

                                                           
7
  This variation was suggested by one of the anonymous reviewers 

of this paper.  
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capsule, its availability is detected by a poll() system 
issued by a ‘sentinel’ thread in the tp module and 
notified to one of a dedicated pool of user-level 
server threads [Coulson,99a]. The size of this pool, 
which is implemented as an ASC (see section 3.2.1), 
can be dynamically resized as a function of the 
number of open bindings. Any thread in the pool can 
receive from any server-side connection.  

The fact that the thread pool is implemented as 
an ASC allows a spectrum of possibilities for 
concurrent request handling. At one end of the 
spectrum each user-level thread may be directly 
supported by its own virtual processor (kernel 
thread), and at the other a single virtual processor 
can be used to support all user-level threads in the 
ASC (or the whole capsule if only one ASC per 
capsule is deployed). To inform the appropriate 
tradeoff, it can be observed that configurations 
involving relatively few virtual processors are more 
efficient in terms of context switch overhead, but is 
less scalable where threads perform blocking IO 
operations, or where multiprocessor support is 
available. It is also possible to dynamically change 
the scheduling policy in use by creating a new ASC 
with the appropriate policy, and then migrating the 
threads from the old ASC into it. 

When a pool thread receives notification of the 
arrival of a message, it (indirectly) calls the GIOP 
ASP’s recv() operation to receive the message and 
then performs iref-level demultiplexing and upcalls 
the iref’s handler before eventually blocking to await 
receipt of further messages. Thus the architecture 
employs a combination of downcall and upcall 
structuring. If a fragmented message has being 
received, or if the message was erroneous, 
appropriate action in taken within the downcall to 
the ASP (i.e. storing the fragment or sending a 
MessageError message) before the thread blocks 
again.  

4.2.8 Operation-level Demultiplexing 
The following iiop module calls provide a 

service whereby skeletons can delegate operation-
level demultiplexing responsibilities to the iiop 
module (alternatively, skeletons may choose to 
implement their own operation-level demultiplexing 
as is done traditionally):  

typedef int (*Opskel)(Iref *target,
Buffer *req, Buffer **rep);

int iiop_demuxreginterface(
char *interface_typename,
char *opnameset[],
Opskel opskel[]);

int iiop_demuxreginstance(
char *interface_typename,
Iref *iref);

The iiop_demuxreginterface() call is used to 
describe an IDL interface to the iiop module in terms 
of its opnameset (i.e. the set of operation name 
strings it supports) and a congruent set of opskels. 
Opskels are C-functions responsible for interfacing 
to one specific method of their associated class. It is 
assumed that they are automatically generated by the 
IDL compiler. The task of each opskel is to 
unmarshal its req argument (assumed to contain 
marshalled arguments for a call to its dedicated 
method), upcall its dedicated method 
implementation on the specified target service (iref), 
and finally marshal any results into a reply buffer, 
*rep, when this upcall has returned.  

Internally, the iiop_demuxreginterface() call 
creates a demultiplexor object (essentially an 
opnameset → opskel mapping; see below) and 
associates this with the name interface_typename in 
preparation for a subsequent call of 
iiop_demuxreginstance(). The latter call associates a 
particular iref with a previously generated 
<interface_typename, demultiplexor> pair. In 
addition, iiop_demuxreginstance() links its iref 
argument to the associated demultiplexor and 
replaces the iref’s default handler (see section 4.2.2) 
with a built-in generic replacement. This generic 
replacement handler performs the following steps:  

i) it queries the associated demultiplexor 
object (obtained via the target iref which 
itself was obtained from iref-level 
demultiplexing) with the ‘operation name’ 
field of the incoming Request to obtain the 
address of the target opskel,  

ii) it upcalls the target opskel with the request’s 
target iref as its first parameter and the 
request’s payload buffer as its second 
parameter, and,  

iii) after the opskel has returned, it replies to the 
request by passing the opskel’s *rep result 
parameter to iiop_send(). 

Underlying the iiop_demux*() services is an 
extensible repository of built-in demultiplexor 
classes, each of which is optimized for opnamesets 
with particular characteristics. For example, the 
most efficient (although not the most generally 
applicable) class assumes that the n’th character of 
each name in the opnameset is unique. The 
implementation here is simply an array of 256 
opskel pointers accessed by the n’th byte of the 
name. On the other hand, the least efficient class 
which, however, works with any opnameset, 
performs a brute force comparison of the target 
operation string with each name in turn until a match 
is obtained. A range of alternative demultiplexors 
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with varying efficiency/ applicability trade-offs 
between these two extremes is also provided (e.g. for 
opnamesets in which the nth two-character sequence 
viewed as an integer is unique).  

To determine the applicability of the various 
demultiplexor classes to a given opnameset, each 
demultiplexor class supports an applicability testing 
method which takes an opnameset as its argument 
and returns a boolean value indicating whether or 
not the demultiplexor class will work with that 
opnameset. The iiop_demuxreginterface() call 
selects an appropriate demultiplexor by placing all 
the demultiplexor classes in a list ranked in order of 
efficiency and then successively calling the 
applicability testing methods of successive classes 
until a suitable one is found. This ensures that the 
best available demultiplexor is applied in all cases. 

5. Non-Standard Bindings 
5.1 Capsule-to-iref IIOP Bindings 

Capsule-to-iref IIOP bindings (see section 3.2.3) 
are optimized and QoS configurable variants of 
standard (capsule-to-capsule) IIOP bindings. The 
potential for optimization arises from the fact that 
these bindings are associated directly with a target 
iref rather than only indirectly via the target capsule. 
The client-side API for capsule-to-iref IIOP bindings 
is the same as that of standard IIOP bindings except 
that variants of the client-side iiop_getbinding() and 
iiop_putbinding() calls are provided: 

int iiop_getirefbinding(
Iref *serv, boolean exclusive);

int iiop_putirefbinding(int asap,
Buffer *request, **reply);

The iiop_getirefbinding() and 
iiop_putirefbinding() calls work similarly to their 
capsule-to-capsule counterparts. The difference is 
that they operate on a separate binding cache which 
is indexed by iref identifier rather than by IP 
address/ port pairs.  

Capsule-to-iref IIOP bindings essentially build a 
simple ‘meta-protocol’ on top of the standard IIOP 
binding to pass state from the client to the server and 
thereby improve performance. The first time 
iiop_invoke() is called on a new capsule-to-iref 
binding, the iiop module adds a special ‘marker’ to 
the service context field of the request. 
Subsequently, the server-side iiop module, on 
detecting this marker, takes some non-standard 
action. In particular, it may create a dedicated thread 
for the server side of the binding on which all 
subsequent invocations will be serviced, and 
associate this with the target iref and with the 

binding identifier (asap). The creation of this 
dedicated thread improves performance in two ways:  

•  by appropriately setting the priority of the 
thread it allows invocations on the binding 
to take precedence over those on other 
bindings, and,  

•  it avoids the need for iref-level 
demultiplexing.  

The server side is at liberty to ignore the marker 
if it does not have sufficient resources to create a 
new thread; thus capsule-to-iref IIOP bindings, 
unlike iref-to-iref QoS bindings discussed below, do 
not necessarily provide any guarantee of enhanced 
service. If an attempt is made to create a capsule-to-
iref binding to an ORB other than GOPI, a fully 
functional binding will result, although the binding 
will clearly not be performance enhanced (i.e. 
capsule-to-iref IIOP bindings are backwardly 
compatible with standard CORBA ORBs). 

The basic scheme just described can fairly easily 
be adapted or extended in a large number of ways 
(although none of these have yet been empirically 
evaluated). For example, to reduce the overhead of 
the scheme, the dedicated thread could be per-iref 
rather than per-binding so that all bindings to the 
target iref shared the same thread. Alternatively, the 
server could create a pool of threads for the 
designated iref on receipt of a first marker and then 
add to the pool on receiving further markers from 
different client capsules. Further, the Request could 
include QoS parameters for the dedicated thread, or 
the corresponding Reply message could return 
information (e.g. on whether or not a dedicated 
thread had been created) to the client. A more 
complex extension could optimize operation-level 
demultiplexing by having the client side pass an 
operation-name-to-small-integer mapping 
[Gokhale,98] in its first request and then send the 
requisite small integer instead of the name-string in 
subsequent requests. The server-side iiop module 
would use the small integers and the given mapping 
to map more efficiently to the target operation.  

A final idea would be to exploit the fact that 
bindings are cached on a per-iref basis to optimize 
the choice of the b parameter in the message receipt 
optimization of section 4.2.6. For example, in cases 
where the associated IDL interface employs only 
fixed-sized data-types, it would be possible for the 
IDL level to calculate and pass down at bind-time a 
worse case buffer size for incoming messages so that 
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the msize > b case would never occur8.  
5.2 Iref-to-iref QoS Bindings 

Iref-to-iref QoS bindings, supported by the 
GOPI-core bind module, involve an explicit QoS-
negotiated association between a specific ‘proxy’ 
iref9 in a client capsule and a specific server iref in a 
remote capsule. QoS bindings may or may not 
involve the GIOP ASP; they are primarily useful in a 
GIOP context where it is desired to use GIOP over 
lower-level protocols other than TCP/IP10. Of course, 
because they involve negotiation, QoS bindings can 
only be instantiated between GOPI clients and GOPI 
servers; it is not possible to create a QoS binding 
involving a standard GIOP ORB. In addition, they 
carry a higher binding establishment overhead than 
either capsule-to-capsule or capsule-to-iref IIOP 
bindings. 

QoS bindings bypass the iiop module’s GIOP-
specific services discussed in section 4.1.2 (with the 
exception of the location service) because a 
dedicated connection is maintained together with a 
dedicated per-binding thread11 at the server side. This 
obviates the need for the client-side binding cache 
and the server-side iref-level demultiplexor with a 
corresponding reduction in overhead.  

The client-side API for QoS bindings is as 
follows12:  

int bind_negotiate(Iref *prox, *serv,
CharSeq *qos, Iref *ctl);

In addition, the previously discussed 
giop_hdr*() family of calls are used, together with 
bind_invoke() and bind_close() calls which are 
analogous to iiop_invoke() and iiop_close() in the 
IIOP binding case (see section 4).  

The bind_negotiate() call, which is the 
counterpart of iiop_getbinding() in IIOP bindings, 
binds a client-side ‘proxy’ iref prox to the remote 
service represented by iref serv using an ASP (which 
may be GIOP or any other ASP) that was associated 
                                                           
8
  This could also be done in standard IIOP bindings, albeit at the 

client-side only, if connections were cached on an per-iref rather 
than a per-port/address basis. 

9
  Building on the fact that irefs are location independent, the use of 

an explicit proxy iref at the client side has the additional benefit 
that it enables third-party binding; i.e. bindings between arbitrarily 
located client and server irefs can be created from any capsule in 
the distributed system. 

10  It is actually possible to configure the GIOP ASP at any position in 
a QoS binding stack, not only at the top. The ASP can also be 
directly layered on top of alternate transport protocols in iref-to-
iref QoS bindings. 

11
  The QoS of this thread is derived (by the binding’s ASP(s)) from 

the binding’s overall QoS specification. 
12

  The API given here represents only a subset of the available 
services. In particular, services for stream bindings are omitted. 
See [Coulson,99a] for details of the full API. 

with the serv iref when it was created (see section 
4.2.2). The qos argument contains a QoS 
specification for the binding which is expressed in 
terms of the selected ASP’s QoS-schema (see 
section 3.2.2). The bind_negotiate() call returns an 
asap together with, in ctl, an iref through which the 
binding can be controlled (in particular, to 
dynamically alter its QoS). 

Underlying bind_negotiate() is the bind 
module’s QoS negotiation protocol which performs 
the two-way QoS negotiation illustrated in figure 4. 
The same ASP calls that are used to establish IIOP 
bindings, listen()/ connect()/ accept(), are used by 
the QoS negotiation protocol. However, they are 
used differently: IIOP binding establishment 
employs connect() at the client side and listen()/ 
accept() at the server side whereas the QoS 
negotiation protocol calls listen()/ accept() at the 
client side and connect() at the server side (as 
described below).  

listen accept connect
QoS2 QoS3

QoS1 QoS4

client ASP server ASP  
Fig. 4: The GOPI QoS negotiation protocol 
In figure 4, QoS1 is the QoS argument initially 

passed to the bind_negotiate() call. This QoS is 
passed to the listen() call of the client-side ASP 
which returns a new QoS, QoS2, which may differ 
from QoS1 (e.g. it may return a lower QoS if QoS1 is 
too ‘demanding’ in some sense)13. The negotiation 
protocol then forwards QoS2 (using an embedded 
IIOP invocation) to the server-side ASP where a 
similar mapping is performed by the connect() call. 
Subsequently, the resulting QoS3 is returned to the 
client side where it is submitted to the accept() call 
of the client-side ASP for final approval or rejection 
of the negotiated QoS (and hence the binding itself).  

Crucially, an ASP’s listen(), connect() and 
accept() operations may choose (presumably on the 
basis of their QoS-schema parameters) to configure 
other ASP instances below themselves by 
recursively calling the corresponding connection 
management operations of some other ASP. This is 
the means by which a stack of ASPs is instantiated. 
Eventually, some ASP will terminate this recursive 
process by calling listen()/ connect()/ accept() on an 
underlying GOPI transport service in the tp module.  

                                                           
13

  Of course, the listen() call, and similarly the connect() and accept() 
calls, will usually do more than simply return a new QoS. In 
particular, it will typically perform admission tests and allocate 
resources for the binding. The actions taken by these calls are 
entirely ASP dependent. 
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The QoS-schema adopted by the GIOP ASP is a 
pair <aspname, aspname_qos_spec>. This schema 
allows the caller of bind_negotiate() to layer GIOP 
on top of any arbitrary ASP stack configured to any 
arbitrary QoS. Aspname is the name of the ASP type 
to be placed directly under GIOP (the aspname 
instance may, of course, recursively instantiate a 
stack of other ASPs below itself), and 
aspname_qos_spec is a QoS specification, expressed 
in terms of aspname’s schema, which is to be passed 
through the GIOP ASP to the aspname instance. 
Thus the GIOP ASP’s QoS-schema does not contain 
any information that is actually interpreted by GIOP 
itself; all the ASP does in terms of QoS management 
is either:  

i) configure TCP/IP connection below itself if 
the QoS specification is empty (as in 
capsule-to-capsule or capsule-to-iref 
bindings), or,  

ii)  configure an aspname instance below itself 
otherwise. 

6. Performance Evaluation 
6.1 Motivation and Scope 

The objectives of our performance evaluation 
experiments were as follows: 

i) to individually evaluate some of the key 
optimizations, 

ii) to evaluate the overhead of the GOPI-core 
GIOP implementation relative to simple 
packet communication at the OS level, 

iii) to evaluate the overhead of the full GOPI 
ORB relative to GOPI-core, and, 

iv) to compare the performance of GOPI with 
that of other ORBs. 

Some aspects of our GIOP implementation were 
specifically not subjected to a detailed evaluation. 
Firstly, we have not undertaken a detailed evaluation 
of demultiplexing overheads, because this area has 
already been comprehensively addressed in the 
literature [Gokhale,97]. Regarding operation-level 
demultiplexing, it is enough to say that the GOPI 
implementation is, as expected, indefinitely scalable 
in cases where the optimal demultiplexor of section 
4.2.8 can be applied, and correspondingly less 
scalable in other cases. Similarly, iref-level 
demultiplexing performs as expected (e.g., we 
measured an approximate overhead of 5% using the 
basic configuration of section 6.2 when 512 objects 
are supported in a server capsule as opposed to the 
case of one object). Secondly, because their primary 
purpose is to provide flexibility rather than 
performance, we have not provided a detailed 

performance evaluation of the non-standard binding 
types. As a simple indication, we found that iref-to-
iref QoS bindings yield a speedup of approximately 
2% over standard IIOP bindings using the 
configuration of section 6.2 with 1 octet payloads. 
6.2 Experimental Setup 

In all cases the following experiments were 
executed on a single machine, an otherwise unloaded 
360MHz Sun SPARC Ultra 5 with 64MB of main 
memory and running SunOS 5.7. The experiments 
all involved the same basic configuration: a client-
server pair in which the client repeatedly makes 
round-trip calls on the server, passing an n octet 
payload in each direction. The number of calls-per-
second was measured at the client, averaged over 
multiple runs of 10,000,000 calls. In all cases, the 
underlying transport was TCP/IP. All C/C++ 
systems, including all the ORBs considered (with 
the exception of Orbix 3.0; we did not have access to 
sources for this ORB), were compiled using GNU 
gcc/g++ version 2.8.1 with the -O2 optimization flag 
enabled. 
6.3 GOPI-core Performance 

This section measures the relative effects of the 
Request/ Reply header caching optimization and the 
non-blocking recv() optimization (objective i). It 
also relates the performance of GOPI-core-with-
GIOP to ‘baseline reference’ levels (objective ii). 
More specifically, we compare the GIOP 
implementation with a C-language sockets program, 
a Java sockets program and a GOPI-core program 
configured with a simple request/ reply ASP called 
FRAG14.  

In these experiments, the payload buffers, which 
in all cases were 1 octet in size, were not touched in 
any way; in particular, no marshalling/ 
unmarshalling was performed. The C-language 
sockets programs were built directly on the UNIX 
send() and recv() system calls. The Java sockets 
programs accessed their sockets’ InputStreams and 
OutputStreams using the read(byte[], offset, length) 
and write(byte[]) methods respectively; they were 
written in Java 1.2.1 and executed on the Solaris 
1.2.1 VM with sunwjit. 

                                                           
14

  FRAG (see [Coulson,99a]) is a request/ reply protocol that is 
essentially a simplified version of GIOP. It has only one message 
type with a 20 byte fixed-sized header. Requests and replies are 
distinguished by context and fixed size object identifiers are used, 
together with integer identifiers for operation names. Like GIOP, it 
assumes a reliable underlying protocol (e.g. TCP/IP). 
Fragmentation and endian transparency are supported but not error 
notification, request cancellation, object location or GIOP-like 
connection management. It is assumed that functions such as these 
will be layered on top of the basic protocol if required. 
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Fig. 5: GOPI-core Performance 

The results of the experiments are shown in 
figure 5. The columns in this figure respectively 
illustrate the number of calls per second achieved for 
(from left to right):  

i) the minimal C-language sockets program,  
ii)  a version of the above with a poll() call 

inserted before each recv()
15

,  
iii)  the Java sockets program,  
iv)  GOPI-core/FRAG,  
v)  GOPI-core /GIOP with both optimizations,  
vi) GOPI-core /GIOP with the header caching 

optimization only,  
vii) GOPI-core /GIOP with the non-blocking 

recv() optimization only (in the msize ≤ b 
case),  

viii)GOPI-core /GIOP with the non-blocking 
recv() optimization only (in the msize > b 
case), and,  

ix)  GOPI-core /GIOP with neither optimization. 
It can be concluded from figure 5 that the two 

optimizations have a small but significant impact on 
GIOP performance. As expected, the non-blocking 
recv() optimization incurs a very slight liability in 
the pathological msize > b case. More generally, it 
can be seen that, despite its inherent overhead (e.g. 
repeated use of the poll() system call, buffer 
management, ASC thread management, inter-thread 
communication, ASP layer execution, GIOP header 
processing, iref-level demultiplexing, etc.), GOPI-
core-with-GIOP delivers a throughput of around 
43% (i.e. 2319 ÷ 5464) of that of the minimal C-
language sockets program, 57% (i.e. 2319 ÷ 4043), 
of that of the poll() version, and around 72% (i.e. 
2319 ÷ 3220) of that of the minimal Java sockets 
program. Furthermore, despite its higher complexity 
GOPI-core/ GIOP approaches the performance of the 

                                                           
15

  It is instructive to include this version of the program as a baseline 
reference because all ORBs need to use either poll() or multiple 
kernel threads to handle multiple connections; see also section 6.4. 

simpler FRAG protocol. 
6.4 Comparative Performance 

This section relates the performance of GOPI-
core/GIOP to that of the full GOPI ORB (objective 
iii), and then compares the performance of the latter 
to that of three other prominent ORBs (objective iv). 
The selected ORBs are Washington University’s 
TAO 1.1/ ACE 5.1, AT&T’s OmniORB 2.8.0, and 
Iona’s Orbix 3.0. TAO was selected because of its 
prominence in ORB research and OmniORB 
because it is often cited as the fastest ORB available 
[CC,99], [Lo,98]. Orbix was selected as it is the 
market leader in the commercial arena. We note, 
however, that Iona have more recent products to 
which we do not have access (e.g. Orbix 2000) 
which may well be faster. 

The experiments employed the following IDL 
interface (the value SIZE was set to 1, 1024, 2048, 
4096 and 8192 in successive runs to observe the 
effects of varying payload sizes):  

typedef octet Data[SIZE];
interface test {

void call(Data I, out Data O);
}

A ‘minimal’ interface was used to focus the 
evaluation as much as possible on the message 
protocol aspects of the GIOP implementations and 
as little as possible on the higher levels.  

The results, in terms of payload size versus 
throughput in calls per second, are shown in figure 
6. Firstly, comparing the results with those in figure 
5 we observe that, for 1 byte payloads at least, 
GOPI’s CORBA personality adds a relatively modest 
overhead of less than 9% ((2515 − 2319) ÷ 2319) 
over GOPI-core. Although our tests involved only a 
minimal IDL interface and GOPI ORB does not fully 
implement CORBA v2.2 (e.g. it omits the Portable 
Object Adapter−the POA, together with other higher 
layer CORBA services such as the dynamic 
invocation/ skeleton interfaces−DII/DSI), this result 
is interesting as it mitigates against the conventional 
wisdom that most ORB overhead is incurred at the 
higher levels such as demultiplexing and 
marshalling. While this is no doubt true for complex 
data types which require complex marshalling, our 
results suggest that aggressive optimization at the 
message protocol level can be expected yield 
worthwhile speedup−particularly for small/ simple 
messages. 
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Fig. 6: General Performance Comparison  
Secondly, these figures suggest that GOPI’s 

performance compares favorably with that of other 
representative ORBs. In particular, it is very much 
on a par with OmniORB despite its relative lack of 
maturity and the inherent overhead of GOPI’s ASC 
architecture (see below). OmniORB 2.8.0 is the 
most directly comparable ORB because, like GOPI, it 
does not implement the full CORBA specification. 

It can also be seen that GOPI performs well in 
relation to TAO 1.1 and Orbix 3.0. While it is 
inappropriate to make direct comparisons between 
GOPI and these ORBs (e.g. because TAO 
implements both the POA and DII/DSI, and because 
Orbix 3.0 is an aging product and implements 
DII/DSI, although not the POA) the results are 
encouraging as far as they go.  

Returning to the comparison between GOPI and 
OmniORB, we observe that OmniORB employs a 
kernel-thread-per-connection architecture. In 
contrast, GOPI, as part of its ASC architecture, 
employs a poll() system call before receiving each 
message in these tests (see section 4.2.7). This is 
clearly an additional overhead for GOPI in the 
specific context of these tests (see section 6.3 for an 
indication of the extent of this overhead). However, 
this overhead buys GOPI far greater flexibility than 
the kernel-thread-per-connection model, and we 
believe that it is a cost worth incurring. For example, 
it is a simple matter to configure GOPI to scale better 
than OmniORB where multiple clients in one 
capsule interact with multiple servers in another. 

7. Related Work 
Working groups within the OMG are currently 

considering ORB/ GIOP performance issues, 
although the work is at an early stage. In particular, 
the CORBA Real-Time PSIG has a working group 
on ‘high-performance CORBA’ [OMG,99b] which 
is investigating, among other issues, internal 
performance enhancement techniques and 
componentization. There is also a Benchmark SIG 
[OMG,99c] which is looking at standard ways of 

comparing the performance of ORB 
implementations. 

Also from the OMG, the Real-Time CORBA 
specification [OMG,99e] defines various policies for 
real-time aspects of ORB communication such as 
invocation priorities, mapping bindings to multiple 
transports or non-multiplexed transports, and 
instantiating thread pools in servers to handle 
requests with improved predictability. However, the 
specification does not, of course, prescribe the 
implementation of these policies at the GIOP level 
which is the focus of our work. Many of our 
mechanisms would be of relevance to a Real-Time 
CORBA implementation. For example, ASCs could 
be used to implement Real-Time CORBA 
threadpools, and our non-multiplexed connections 
could form the basis of the various transport 
mappings. 

In the academic research field, workers at 
Washington University, St. Louis have reported on 
an impressive body of work on the TAO ORB. For 
example, [Gokhale,98] gives a detailed performance 
analysis of TAO’s Sunsoft-based IIOP 
implementation and proposes numerous 
optimizations. This work is complementary to the 
present paper in that it focuses primarily on 
marshalling/ unmarshalling issues rather than lower-
level message handling issues. Another TAO paper 
[Pyarali,99] reports on a GIOP variant called GIOP-
Lite which boosts performance by omitting the 
magic, version, service context and requesting 
principal fields from Requests. This, however, 
results in a non-standard, non-interoperable version 
of GIOP. Our approach in a situation where GIOP 
conformance is not required would be to use an ASP 
other than GIOP that is specifically optimized to the 
job at hand. A third TAO paper, [Gokhale,97], 
focuses on demultiplexing strategies. Their approach 
to operation-level demultiplexing is to employ the 
perfect hashing technique in the IDL compiler to 
automatically generate O(1) hash functions and 
mapping tables. While not precluding the use of this 
technique in GOPI, we offer the additional option of 
off-the-shelf demultiplexing classes below the 
skeleton layer as described in section 4.2.8. This 
approach is not as general as the perfect hashing 
technique although it should deliver superior best-
case performance and will probably also take up less 
memory (i.e. our classes are written by hand, not by 
a code generator, and our scheme does not require a 
dedicated demultiplexing class for each IDL 
interface class).  

TAO provides QoS in a GIOP environment 
[Schmidt,98] through three separate mechanisms:  
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i) the use of server threads with different 
priorities on which different classes of 
request can be serviced,  

ii) the use of multiple statically configured 
server ports to which clients can connect, 
each of which is associated with a distinct 
QoS classification and thread priority, and,  

iii) the use of per-request meta-information (e.g. 
a deadline for the current request) which is 
passed in the Request header’s service 
context field.  

GOPI’s capsule-to-iref bindings also use the 
service context field for QoS related meta-
information, but whereas TAO communicates 
information on a per-request basis, GOPI performs a 
once-only communication to request the dynamic 
establishment of a ‘pseudo-connection’ with a given 
QoS. For more general or more demanding QoS 
support, e.g. supporting continuous media streams, 
the GOPI approach is to use specialized QoS 
bindings, probably in conjunction with dedicated 
protocols (ASPs) other than GIOP. In contrast, TAO 
has, until recently, attempted to provide the full 
range of QoS behavior using the GIOP-plus-service-
context technique, although [Kuhns,99] reports on 
more recent work in TAO that takes a more general 
approach to QoS provision. This is based on the 
‘pluggable protocol’ architecture from the ORBacus 
commercial ORB [OOC,99] which, however, is less 
general in its QoS support than GOPI’s ASP 
framework, and is not dynamically reconfigurable. A 
pluggable protocol framework is also just beginning 
to be considered by the OMG [OMG,99d]. 

AT&T’s OmniORB [Lo,98] is another research 
ORB that has GIOP optimization as a prime goal. 
Like GOPI, OmniORB is designed to operate over 
multiple transports. This is achieved in OmniORB 
through the strand abstraction which encapsulates a 
bi-directional data connection and has a per-
transport implementation. Unlike GOPI, however, 
OmniORB does not support general, multi-level, 
‘pluggable’ protocol stacks. Strand instances are 
collected into ropes which encapsulate the caching 
of connections. OmniORB, like GOPI, can operate 
with a thread-per-connection model and elects not to 
run multiple outstanding requests over a single 
connection to avoid demultiplexing overhead. 
Unlike GOPI, however, OmniORB does not provide 
any QoS support beyond running over alternative 
transports, although the authors indicate that this 
issue will be investigated in their future work. Like 
GOPI, OmniORB is multi-threaded but its 
concurrency model is simpler and less flexible than 
that of GOPI; e.g. it does not have an equivalent of 

GOPI’s ASC concept [Coulson,99a] and only uses 
native kernel threads.  

Finally, there exists a significant body of 
research that is less directly related to our work. Our 
use of message header caching is related to classical 
work in TCP implementation [Clark,89]. A number 
of research ORBs exist in addition to those 
discussed above which, unfortunately, do not 
provide much detail on their GIOP implementations. 
These include DIMMA [Donaldson,98] and Flexinet 
[Hayton,97] from APM Ltd., UK, which focus on 
QoS provision and protocol reconfiguration 
respectively, Torbayou [Dang-Tran,96] and Jonathan 
[Dumant,98] from CNET, France Telecom which 
focus on open implementation techniques, and Regis 
[Pryce,98] from Imperial College, UK, which 
supports a sophisticated distributed configuration 
architecture.  

8. Qualitative Assessment of GIOP 
Although we believe GIOP to be a well-

designed standard, our experience has revealed 
aspects of the protocol that appear to mitigate 
against efficient implementation. In particular, the 
variable sized header of most message types leads to 
a non-negligible overhead16 in header parsing, and 
also requires separately allocated header and payload 
buffers and the consequent use of scatter/ gather IO. 
An alternative design (cf. GOPI’s FRAG ASP) would 
have been to employ a fixed-sized generic header 
for all message types which contains only offsets to 
the various fields which are themselves held in the 
rest of the packet. For example, a suitable generic 
header may have the following fields (in addition to 
the currently defined fixed-sized header fields): 
req_identifier, serv_ctx_offset, object_key_offset, 
op_offset, req_principal_offset, payload_offset. The 
stub layer would then be responsible for marshalling 
the variable sized fields into the packet and 
informing the ASP layer of the offsets. This design 
would eliminate the need for header parsing and 
would make GOPI’s ReqState structure redundant 
(i.e. the address of the header itself could be passed 
directly to the skeleton layer which could then 
directly access the required fields). It would also 
eliminate the need to cache multiple headers and 
would enable exploitation of previously developed 
optimizations for fixed-sized header handling 
[Coulson,99a]. 

A related issue is the use of variable sized 
strings for operation names. This leads to a non-
negligible overhead in operation-level 

                                                           
16

  We believe that this is the main reason why GIOP is slower than 
the FRAG protocol. 
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demultiplexing (in the general case at least). It also 
means that it is not easy to extend IDL to use 
overloaded operation names (cf. C++ and Java in 
which multiple operations in an interface may have 
the same name if their arguments or return types are 
different). An alternative design here would have 
been to represent operation names as small integers. 
Another apparently sub-optimal aspect of the header 
design is the use of an octet (boolean) field in the 
Request message to specify whether or not a reply is 
expected. An alternative encoding of this as a bit in 
the flags field of the fixed-size message header 
would have saved four octets in the Request header 
(including the three octets used to pad the response 
expected boolean)17. A final header-related issue is 
the positioning of the requesting principal field at 
the rear of the Request header. This positioning 
obliges the giop_hdrdefaultreq() service to fill in the 
default requesting principal value as well as the 
given operation string, because the position of the 
former cannot be known until the length of the latter 
is known. This (admittedly slight) overhead could 
have been avoided by placing all fields that have 
plausible defaults (i.e. everything except the object 
key and operation string) towards the front of the 
header18. 

As mentioned above, our experience also 
indicates that significant efficiency gains can be 
achieved with negligible loss of functionality by 
foregoing the use of certain aspects of the standard 
while remaining fully GIOP compliant. In particular, 
we have identified the following features as being 
largely redundant, at least for our purposes: 
•  Request multiplexing The facility to multiplex 

requests on a TCP/IP connection is useful in 
environments in which the overhead of 
maintaining many connections is prohibitive 
(e.g. when stubs select CORBA’s asynchronous 
method invocation (AMI) feature [OMG,98]). 
However, we have found that foregoing this, 
where possible, leads to a more streamlined 
implementation, at least in our implementation 
environment. In particular, we avoid the 
overhead of demultiplexing replies to the correct 
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  GIOP v1.2 improves on v1.1 in this respect as it packs additional 
flags into the ‘response expected’ octet (these are used to fine-tune 
the semantics of oneway messages). However, there are sufficient 
bits available to add these to the ‘flags’ field in the fixed-sized 
message header, so it would still have been possible to save these 
four octets (at the cost of leaving only two bits in the ‘flags’ field 
for future extensions).  

18
  This situation has changed in GIOP v1.2 in which the ‘requesting 

principal’ field has been eliminated (due to the availability of the 
security service). Nevertheless, the general point still holds 
because v1.2 now places the ‘service context’ field, which has a 
plausible default value, at the rear of the header. 

blocked thread at the client side, and maximize 
the benefits of the message receipt optimization 
(see section 4.2.6). 

•  Request cancellation When request multiplexing 
is not employed (or only rarely employed) the 
CancelRequest message becomes largely 
redundant and the effect of a CancelRequest can 
be inexpensively achieved simply by breaking 
the connection at the client side (see section 
4.2.5). We therefore streamline our 
implementation by foregoing the sending of this 
message type at the client side (of course, we 
recognize the message at the server side to 
remain compatible with other ORBs, although 
we ignore it as permitted by the standard). On 
non-multiplexed connections it is also possible 
to avoid setting and reading the request identifier 
field as this is not useful for any purpose other 
than matching replies and cancellations to 
requests. 

•  Fragmentation The GIOP standard suggests that 
the ability to fragment messages is useful 
because the sender may have limited memory in 
which to buffer the whole of a large message 
(particularly in embedded and hard real-time 
ORBs with scarce and/or bounded memory), or 
because it is sometimes inconvenient for stubs 
and skeletons to predict the size of a message 
before it is actually built. However, in our 
workstation based environment we do not find 
ourselves constrained by memory limitations 
and can work around the message size prediction 
problem simply by allocating multiple buffers 
per message at the stub/ skeleton level, and 
sending them in a single GIOP message using 
scatter/ gather IO (thus leaving any 
fragmentation to the layers below). Although 
this streamlines the send-side, we must, of 
course, be prepared to expect fragmented 
messages arriving from other ORBs to maintain 
GIOP compatibility. 

•  Connection Management We have found it 
unnecessary to deal promptly with 
CloseConnection messages at the client side (see 
section 4.2.5). Rather, we believe it is sufficient 
to let the server side close connections at will, to 
detect closed connections at the client side when 
attempting to use them (or when a 
CloseConnection happens to be received instead 
of an expected Reply or LocateReply) and to 
recover by transparently creating new 
connections as required. While remaining GIOP 
compatible, this strategy avoids the need to 
dedicate a thread to waiting specifically for 
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incoming CloseConnection messages, while 
incurring no appreciable reduction in 
functionality19.  

9. Conclusions 
This paper has described the implementation of 

GIOP in a high performance ORB environment. The 
implementation is structured in a modular and 
extensible fashion and is integrated with the QoS 
configurable concurrency (ASC) and protocol (ASP) 
frameworks offered by the GOPI platform. It 
includes a number of novel implementation 
techniques (e.g. the header caching scheme, the 
single-recv() optimization, the tailorable operation-
level demultiplexing scheme, and the use of a subset 
of GIOP while maintaining GIOP compatibility). It 
also incorporates numerous other optimizations such 
as connection caching, non-multiplexed connections, 
and scatter/ gather IO, which have been previously 
reported in the literature (see for example, 
[Pyarali,99] and [Lo,98]). Beyond this, it combines 
efficiency with flexible QoS support through the 
ASC and ASP frameworks and the non-standard 
binding services. We have shown that GOPI 
performs well in comparison to related ORBs. 

In the immediate future, we plan to extend our 
design and implementation to take into account 
recent developments in the CORBA standard, 
especially the recently released GIOP v1.2 and the 
asynchronous messaging proposal [OMG,98]. In the 
longer term our future work will address the higher-
level issues of multiplexing and demultiplexing in 
stubs and skeletons. We have already identified a 
number of possible optimizations in this area, most 
of which are directed at the avoidance of redundant 
copy operations. For example, when dealing with 
arrays of basic types, stubs and skeletons can 
unmarshal certain datatypes in-situ and simply pass 
pointers to the receiving application. Secondly, in 
capsule-to-iref bindings, structured datatype 
transfers can be optimized in cases where the sender 
and receiver share a common machine endian type 
and language environment (this can be established 
through the exchange of state in the service context 
field as discussed in section 5.1). In such cases, copy 
operations in skeletons can be avoided by assuming 
that the memory layout of the datatype in the buffer 
is directly usable by the receiver. It should also be 
possible to apply this approach to some pointer 
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  In GIOP v1.2, CloseConnection messages can be sent by the client 
as well as the server. This does not materially affect the argument 
of this section although it does imply that GOPI’s client-side API 
must add the capability to send CloseConnection messages in the 
future to support GIOP v1.2. 

based-datatypes through pointer swizzling 
techniques. 
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