
Event Service Specification

October 2004
Version 1.2

formal/04-10-02

An Available Specification of the Object Management Group, Inc

Copyright 1993, DEC
Copyright 1993, Groupe Bull
Copyright 1993, Hewlett-Packard
Copyright 1993, HyperDesk
Copyright 1993, Itasca
Copyright 1993, Novell
Copyright 1993, O2
Copyright 1993, Object Design
Copyright 2000, Object Management Group, Inc.
Copyright 1993, Objectivity
Copyright 1993, Ontos
Copyright 1993, Oracle
Copyright 1993, Servio
Copyright 1993, SunSoft
Copyright 1993, Tivoli
Copyright 1993, Versant

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Contents
Preface . iii

1. Service Description . 1-1
1.1 Overview . 1-1

1.2 Event Communication . 1-2

1.3 Example Scenario. 1-3

1.4 Design Principles . 1-4

1.5 Resolution of Technical Issues . 1-5

1.6 Quality of Service . 1-6

1.7 Generic Event Communication . 1-7
1.7.1 Push Model. 1-7
1.7.2 Pull Model . 1-7

2. Modules and Interfaces . 2-1
2.1 The CosEventComm Module . 2-1

2.1.1 The PushConsumer Interface 2-2
2.1.2 The PushSupplier Interface. 2-2
2.1.3 The PullSupplier Interface 2-3
2.1.4 The PullConsumer Interface 2-3
2.1.5 Disconnection Behavior 2-4

2.2 Event Channels . 2-4
2.2.1 Push-Style Communication with an

Event Channel . 2-4
2.2.2 Pull-Style Communication with an

Event Channel . 2-5
October 2004 Event Service, v1.2 i

Contents
2.2.3 Mixed Style Communication with an
Event Channel . 2-5

2.2.4 Multiple Consumers and Multiple Suppliers . . 2-6
2.2.5 Event Channel Administration 2-6

2.3 The CosEventChannelAdmin Module 2-8
2.3.1 The EventChannel Interface 2-9
2.3.2 The ConsumerAdmin Interface 2-10
2.3.3 The SupplierAdmin Interface 2-10
2.3.4 The ProxyPushConsumer Interface 2-10
2.3.5 The ProxyPullSupplier Interface 2-11
2.3.6 The ProxyPullConsumer Interface 2-11
2.3.7 The ProxyPushSupplier Interface 2-12

2.4 Typed Event Communication . 2-12
2.4.1 Typed Push Model . 2-12
2.4.2 Typed Pull Model . 2-13

2.5 The CosTypedEventComm Module 2-14
2.5.1 The TypedPushConsumer Interface 2-15
2.5.2 The TypedPullSupplier Interface 2-15

2.6 Typed Event Channels . 2-16

2.7 The CosTypedEventChannelAdmin Module 2-16
2.7.1 The TypedEventChannel Interface 2-17
2.7.2 The TypedConsumerAdmin Interface. 2-18
2.7.3 The TypedSupplierAdmin Interface 2-19
2.7.4 The TypedProxyPushConsumer Interface. 2-19
2.7.5 The TypedProxyPullSupplier Interface. 2-20

2.8 Composing Event Channels and Filtering 2-20

2.9 Policies for Finding Event Channels 2-20

Appendix A - Implementing Typed Event Channels A-1

Appendix B - An Event Channel Use Example B-1
ii Event Service, v1.2 October 2004

Preface
About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

Associated OMG Documents

The CORBA documentation is organized as follows:
October 2004 Event Service, v1.2 i

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services, a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important application
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

You may contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue

Needham, MA 02494

USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org
ii Event Service, v1.2 October 2004

Acknowledgments

The following companies submitted and/or supported parts of the Event Service
specification:

• DEC

• Groupe Bull

• Hewlett-Packard

• HyperDesk

• Itasca

• Novell

• O2

• Object Design

• Object Management Group, Inc.

• Objectivity

• Ontos

• Oracle

• Servio

• SunSoft

• Tivoli

• Versant
October 2004 Event Service: Acknowledgments iii

iv Event Service, v1.2 October 2004

Service Description 1
Contents

This chapter contains the following topics.

1.1 Overview

A standard CORBA request results in the synchronous execution of an operation by an
object. If the operation defines parameters or return values, data is communicated
between the client and the server. A request is directed to a particular object. For the
request to be successful, both the client and the server must be available. If a request
fails because the server is unavailable, the client receives an exception and must take
some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

Topic Page

“Overview” 1-1

“Event Communication” 1-2

“Example Scenario” 1-3

“Design Principles” 1-4

“Resolution of Technical Issues” 1-5

“Quality of Service” 1-6

“Generic Event Communication” 1-7
October 2004 Event Service, v1.2 1-1

1

• A system administration tool is interested in knowing if a disk runs out of space.
The software managing a disk is unaware of the existence of the system
administration tool. The software simply reports that the disk is full. When a disk
runs out of space, the system administration tool opens a window to inform the user
which disk has run out of space.

• A property list object is associated with an application object. The property list
object is physically separate from the application object. The application object is
interested in the changes made to its properties by a user. The properties can be
changed without involving the application object. That is, in order to have
reasonable response time for the user, changing a property does not activate the
application object. However, when the application object is activated, it needs to
know about the changes to its properties.

• A CASE tool is interested in being notified when a source program has been
modified. The source program simply reports when it is modified. It is unaware of
the existence of the CASE tool. In response to the notification, the CASE tool
invokes a compiler.

• Several documents are linked to a spreadsheet. The documents are interested in
knowing when the value of certain cells have changed. When the cell value
changes, the documents update their presentations based on the spreadsheet.
Furthermore, if a document is unavailable because of a failure, it is still interested
in any changes to the cells and wants to be notified of those changes when it
recovers.

1.2 Event Communication

The Event Service decouples the communication between objects. The Event Service
defines two roles for objects: the supplier role and the consumer role. Suppliers
produce event data and consumers process event data. Event data are communicated
between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers and
consumers, and two orthogonal approaches to the form that the communication can
take.

The two approaches to initiating event communication are called the push model and
the pull model. The push model allows a supplier of events to initiate the transfer of
the event data to consumers. The pull model allows a consumer of events to request the
event data from a supplier. In the push model, the supplier is taking the initiative; in
the pull model, the consumer is taking the initiative.

The communication itself can be either generic or typed. In the generic case, all
communication is by means of generic push or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is via
operations defined in OMG IDL. Event data is passed by means of the parameters,
which can be defined in any manner desired.
1-2 Event Service, v1.2 October 2004

1

An event channel is an intervening object that allows multiple suppliers to
communicate with multiple consumers asynchronously. An event channel is both a
consumer and a supplier of events. Event channels are standard CORBA objects and
communication with an event channel is accomplished using standard CORBA
requests.

1.3 Example Scenario

This section provides a general scenario that illustrates how the Event Service can be
used.

The Event Service can be used to provide “change notification.” When an object is
changed (its state is modified), an event can be generated that is propagated to all
interested parties. For example, when a spreadsheet cell object is modified, all
compound documents which contain a reference (link) to that cell can be notified (so
the document can redisplay the referenced cell, or recalculate values that depend on the
cell). Similarly, when an engineering specification object is modified, all engineers
who have registered an interest in the specification can be notified that the
specification has changed.

In this scenario, objects that can be “changed” act as suppliers, parties interested in
receiving notifications of changes act as consumers, and one or more event channel
objects are used as intermediaries between consumers and suppliers. Either the push or
the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplier interface so that event communication can be discontinued. Use the
EventChannel, the SupplierAdmin, and the ProxyPushConsumer interfaces to
register as suppliers of events, and use the ProxyPushConsumer interface to push
events to event channels.

When a change occurs to an object, a changeable object invokes a push operation on
the channel. It provides as an argument to the push operation information that
describes the event. This information is of data type any - it can be as simple or as
complex as is necessary. For example, the event information might identify the object
reference of the object that has been changed, it might identify the kind of change that
has occurred, it might provide a new displayable image of the changed object or it
might identify one or more additional objects that describe the change that has been
made.

If the pull model is used by consumers, all client objects that want to be notified of
changes support the PullConsumer interface so communication can be discontinued,
using the EventChannel, ConsumerAdmin, and ProxyPullSupplier interfaces to
register as consumers of events, and using the ProxyPullSupplier interface to pull
events from event channels.

The consumer may use either a blocking or non-blocking mechanism for receiving
notification of changes. Using the try_pull operation, the consumer can periodically
poll the channel for events. Alternatively, the consumer can use the pull operation
which will block the consumer’s execution thread until an event is generated by some
supplier.
October 2004 Event Service: Example Scenario 1-3

1

Event channels act as the intermediaries between the objects being changed and objects
interested in knowing about changes. The channels that provide change notification
can be general purpose, well-known objects (e.g., “persistent server-based objects” that
are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objects (e.g., temporary objects that are created when
needed). Objects that use event channels may locate the channels by looking for them
in a persistently available server (e.g., by looking for them in a naming service) or they
may be given references to these objects as part of a specific-to-task object protocol
(e.g., when an “open” operation is invoked on an object, the object may return the
reference to an event channel which the caller should use until the object is closed).

Event channels determine how changes are propagated between suppliers and
consumers (i.e., the qualities of service). For example, an event channel determines
the persistence of an event. The channel may keep an event for a specified period of
time, passing it along to any consumer who registers with the channel during that
period of time (e.g., it may keep event notifications about changes to engineering
specifications for a week). Alternatively, the channel may only pass on events to
consumers who are currently waiting for notification of changes (e.g., notifications of
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basic
building block used in providing higher-level services specific to an application or
common facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have been
used.

1.4 Design Principles

The Event Service design satisfies the following principles:

• Events work in a distributed environment. The design does not depend on any
global, critical, or centralized service.

• Event services allow multiple consumers of an event and multiple event suppliers.

• Consumers can either request events or be notified of events, whichever is more
appropriate for application design and performance.

• Consumers and suppliers of events support standard OMG IDL interfaces; no
extensions to CORBA are necessary to define these interfaces.

• A supplier can issue a single standard request to communicate event data to all
consumers at once.

• Suppliers can generate events without knowing the identities of the consumers.
Conversely, consumers can receive events without knowing the identities of the
suppliers.

• The Event Service interfaces allow multiple qualities of service, for example, for
different levels of reliability. It also allows for future interface extensions, such as
for additional functionality.
1-4 Event Service, v1.2 October 2004

1

• The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in the OMG Object
Services Architecture1 document as follows:

• Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected from time to time, and do not require
centralized event identification, processing, routing, or other services that might be
a bottleneck or a single point of failure.

Events themselves are not objects because the CORBA distributed object model
does not support passing objects by value.

Event generation: The specification describes how events are generated and delivered
in a very general fashion, with event channels as intermediate routing points. It does
not require (or preclude) polling, nor does it require that an event supplier directly
notify every interested party.

Events involving multiple objects: Complex events may be handled by constructing a
notification tree of event consumer/suppliers checking for successively more specific
event predicates. The specification does not require a general or global event predicate
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed, heterogeneous (potentially decoupled) environment.

Scoping, grouping, and filtering events: The specification takes advantage of
CORBA’s distributed scoping and grouping mechanisms for the identifier and type of
events. Event filtering is easily achieved through event channels that selectively
deliver events from suppliers to consumers. Event channels can be composed; that is,
one event channel can consume events supplied by another. Typed event channels can
provide filtering based on event type.

Registration and generation of events: Consumers and suppliers register with event
channels themselves. Event channels are objects and they are found by any fashion that
objects can be found. A global registration service is not required; any object that
conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of type any that can be
delivered with an event, used for application-specific data.

Forgery and secure events: Because event suppliers are objects, the specification
leverages any ORB work on security for object references and communication.

1.Object Services Architecture, Document Number 92-8-4, Object Management Group,
Framingham, MA, 1992.
October 2004 Event Service: Resolution of Technical Issues 1-5

1

Performance: The design is a minimalist one, and requires only one ORB call per
event received. It supports both push-style and pull-style notification to avoid
inefficient event polling. Since event suppliers, consumers, and channels are all ORB
objects, the service directly benefits from a Library Object Adapter or any other ORB
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be beneficial to formalize the data associated with an event
(defined in this specification as type any). This can be accomplished by defining a
typed structure for this information. Depending on the needs of the environment, the
kinds of information included might be a priority, timestamp, origin string, and
confirmation indicator. This information might be solely for the benefit of the event
consumer or might also be interpreted by particular event channel implementations.

Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of reception back to the supplier. This can be
supported effectively using a “reverse” event channel through which consumers send
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivery between all suppliers and all
consumers requires additional interfaces.

1.6 Quality of Service

Application domains requiring event-style communication have diverse reliability
requirements, from “at-most-once” semantics (best effort) to guaranteed “exactly-
once” semantics, availability requirements, throughput requirements, performance
requirements (i.e., how fast events are disseminated), and scalability requirements.

Clearly no single implementation of the Event Service can optimize such a diverse
range of technical requirements. Hence, multiple implementations of event services are
to be expected, with different services targeted toward different environments. As such,
the event interfaces do not dictate qualities of service. Different implementations of the
Event Service interfaces can support different qualities of service to meet different
application needs.

For example, an implementation that trades at most once delivery to a single consumer
in favor of performance is useful for some applications; an implementation that favors
performance but cannot preclude duplicate delivery is useful for other applications.
Both are acceptable implementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all events is not a useful
implementation. Useful implementations will at least support “best-effort” delivery of
events.

Note that the interfaces defined in this chapter are incomplete for implementations that
support strict notions of atomicity. That is, additional interfaces are needed by an
implementation to guarantee that either all consumers receive an event or none of the
consumers receive an event; and that all events are received in the same order by all
consumers.
1-6 Event Service, v1.2 October 2004

1

1.7 Generic Event Communication

There are two basic models for communicating event data between suppliers and
consumers: the push model and the pull model.

1.7.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invoking push operations on the PushConsumer
interface.

To set up a push-style communication, consumers and suppliers exchange
PushConsumer and PushSupplier object references. Event communication can be
broken by invoking a disconnect_push_consumer operation on the
PushConsumer interface or by invoking a disconnect_push_supplier operation
on the PushSupplier interface. If the PushSupplier object reference is nil, the
connection cannot be broken via the supplier.

Figure 1-1 illustrates push-style communication between a supplier and a consumer.

Figure 1-1 Push-style Communication Between a Supplier and a Consumer

1.7.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invoking pull operations on the PullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange
PullConsumer and PullSupplier object references. Event communication can be
broken by invoking a disconnect_pull_consumer operation on the PullConsumer
interface or by invoking a disconnect_pull_supplier operation on the
PullSupplier interface. If the PullConsumer object reference is nil, the connection
cannot be broken via the consumer.

Figure 1-2 illustrates pull-style communication between a supplier and a consumer.

PushSupplier

PushConsumer

supplierconsumer
October 2004 Event Service: Generic Event Communication 1-7

1

Figure 1-2 Pull-style Communication Between a Supplier and a Consumer

PullConsumer

PullSupplier

supplierconsumer
1-8 Event Service, v1.2 October 2004

Modules and Interfaces 2
Contents

This chapter contains the following topics.

2.1 The CosEventComm Module

The communication styles shown in Chapter 1 are both supported by four simple
interfaces: PushConsumer, PushSupplier, and PullSupplier and PullConsumer.
These interfaces are defined in an OMG IDL module named CosEventComm, as
shown below.

module CosEventComm {

exception Disconnected{};

Topic Page

“The CosEventComm Module” 2-1

“Event Channels” 2-4

“The CosEventChannelAdmin Module” 2-8

“Typed Event Communication” 2-12

“The CosTypedEventComm Module” 2-14

“Typed Event Channels” 2-16

“The CosTypedEventChannelAdmin Module” 2-16

“Composing Event Channels and Filtering” 2-20

“Policies for Finding Event Channels” 2-20
October 2004 Event Service, v1.2 2-1

2

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

 interface PushSupplier {
void disconnect_push_supplier();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};

};

2.1.1 The PushConsumer Interface

A push-style consumer supports the PushConsumer interface to receive event data.

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

A supplier communicates event data to the consumer by invoking the push operation
and passing the event data as a parameter.

The disconnect_push_consumer operation terminates the event communication; it
releases resources used at the consumer to support the event communication. The
PushConsumer object reference is disposed. Calling disconnect_push_consumer
causes the implementation to call the disconnect_push_supplier operation on the
corresponding PushSupplier interface (if that interface is known).

2.1.2 The PushSupplier Interface

A push-style supplier supports the PushSupplier interface.

interface PushSupplier {
void disconnect_push_supplier();

};

The disconnect_push_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PushSupplier object reference is disposed. Calling disconnect_push_supplier
causes the implementation to call the disconnect_push_consumer operation on
the corresponding PushConsumer interface (if that interface is known).
2-2 Event Service, v1.2 October 2004

2

2.1.3 The PullSupplier Interface

A pull-style supplier supports the PullSupplier interface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

A consumer requests event data from the supplier by invoking either the pull operation
or the try_pull operation on the supplier.

• The pull operation blocks until the event data is available or an exception is
raised.1 It returns the event data to the consumer.

• The try_pull operation does not block: if the event data is available, it returns the
event data and sets the has_event parameter to true; if the event is not available,
it sets the has_event parameter to false and the event data is returned as long with
an undefined value.

The disconnect_pull_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PullSupplier object reference is disposed. Calling disconnect_pull_supplier
causes the implementation to call the disconnect_pull_consumer operation on the
corresponding PullConsumer interface (if that interface is known).

2.1.4 The PullConsumer Interface

A pull-style consumer supports the PullConsumer interface.

interface PullConsumer {
void disconnect_pull_consumer();

};

The disconnect_pull_consumer operation terminates the event communication; it
releases resources used at the consumer to support the event communication.

The PullConsumer object reference is disposed. Calling
disconnect_pull_consumer causes the implementation to call the
disconnect_pull_supplier operation on the corresponding PullSupplier interface
(if that interface is known).

2.1.5 Disconnection Behavior

Calling a disconnect operation on a consumer or supplier interface may cause a call to
the corresponding disconnect operation on the connected supplier or consumer.
Implementations must take care to avoid infinite recursive calls to these disconnect

1. This, of course, may be a standard CORBA exception.
October 2004 Event Service: The CosEventComm Module 2-3

2

operations. If a consumer or supplier has received a disconnect call and subsequently
receives another disconnect call, it shall raise a CORBA::OBJECT_NOT_EXIST
exception.

2.2 Event Channels

The event channel is a service that decouples the communication between suppliers
and consumers. The event channel is itself both a consumer and a supplier of the event
data.

An event channel can provide asynchronous communication of event data between
suppliers and consumers. Although consumers and suppliers communicate with the
event channel using standard CORBA requests, the event channel does not need to
supply the event data to its consumer at the same time it consumes the data from its
supplier.

2.2.1 Push-Style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, pushes
event data to the consumer. Figure 2-1 illustrates a push-style communication between
a supplier and the event channel, and a consumer and the event channel.

Figure 2-1 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

2.2.2 Pull-Style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn, pulls
event data from the supplier. Figure 2-2 illustrates a pull-style communication between
a supplier and the event channel, and a consumer and the event channel.

event channel

supplierconsumer

PushConsumerPushConsumer

PushSupplier PushSupplier
2-4 Event Service, v1.2 October 2004

2

Figure 2-2 Pull-style communication between a supplier and an event channel and a consumer
and the event channel

2.2.3 Mixed Style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communication,
and communicate with a consumer using a different style of communication.

Figure 2-3 illustrates a push-style communication between a supplier and an event
channel, and a pull-style communication between a consumer and the event channel.
The consumer pulls the event data that the supplier has pushed to the event channel.

Figure 2-3 Push-style Communication Between a Supplier and an Event Channel, and Pull-
style Communication Between a Consumer and an Event Channel

2.2.4 Multiple Consumers and Multiple Suppliers

Figure 2-1, Figure 2-2, and Figure 2-3 illustrate event channels with a single supplier
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events from one or more suppliers, and
supplies events to one or more consumers. Subject to the quality of service of a
particular implementation, an event channel provides an event to all consumers.

Figure 2-4 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

event channel

supplierconsumer

PullConsumerPullConsumer

PullSupplier PullSupplier

event channel

supplierconsumer

PushSupplier

PushConsumer

PullConsumer

PullSupplier
October 2004 Event Service: Event Channels 2-5

2

Figure 2-4 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communication
models.

If an event channel has pull suppliers, it continues to pull events from the suppliers,
regardless of whether any consumers are connected to the channel.

2.2.5 Event Channel Administration

The event channel is built up incrementally. When an event channel is created, no
suppliers or consumers are connected to the event channel. Upon creation of the
channel, the factory returns an object reference that supports the EventChannel
interface, as illustrated in Figure 2-5.

event channel

supplier

consumer

PushSupplier

PushConsumer

PushSupplier

PushConsumer

consumer

PushSupplier

PushConsumer

supplier

PushSupplier

PushConsumer
2-6 Event Service, v1.2 October 2004

2

Figure 2-5 A newly created event channel. The channel has no suppliers or consumers.

The EventChannel interface defines three administrative operations: an operation
returning a ConsumerAdmin object for adding consumers, an operation returning a
SupplierAdmin object for adding suppliers, and an operation for destroying the
channel.

The operations for adding consumers return proxy suppliers. A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface of a supplier), but includes
an additional method for connecting a consumer to the proxy supplier.

The operations for adding suppliers return proxy consumers. A proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of a producer or consumer is a two step process. An event-generating
application first obtains a proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains a proxy supplier from a channel, then “connects” to the proxy
supplier by providing it with a consumer.

The reason for the two-step registration process is to support composing event
channels by an external agent. Such an agent would compose two channels by
obtaining a proxy supplier from one and a proxy consumer from the other, and passing
each of them a reference to the other as part of their connect operation.

event channel

EventChannel
October 2004 Event Service: Event Channels 2-7

2

Proxies are in one of three states: disconnected, connected, or destroyed. Figure 2-6
gives a state diagram for a proxy. The nodes of the diagram are the states and the edges
are labelled with the operations that change the state of the proxy. Push/pull
operations are only valid in the connected state.

Figure 2-6 State diagram of a proxy.

2.3 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making connections
between suppliers and consumers. The CosEventChannelAdmin module is defined
below.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)

disconnected connected destroyed
obtain connect disconnect

event
communication
2-8 Event Service, v1.2 October 2004

2

raises(AlreadyConnected, TypeError);
};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

};

2.3.1 The EventChannel Interface

The EventChannel interface defines three administrative operations: adding
consumers, adding suppliers, and destroying the channel.

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

Any object that possesses an object reference that supports the EventChannel
interface can perform these operations:

• The ConsumerAdmin interface allows consumers to be connected to the event
channel. The for_consumers operation returns an object reference that supports
the ConsumerAdmin interface.

• The SupplierAdmin interface allows suppliers to be connected to the event
channel. The for_suppliers operation returns an object reference that supports the
SupplierAdmin interface.

• The destroy operation destroys the event channel. Destroying an event channel
destroys all ConsumerAdmin and SupplierAdmin objects that were created via
that channel. Destruction of a ConsumerAdmin or SupplierAdmin object causes
the implementation to invoke the disconnect operation on all proxies that were
created via that ConsumerAdmin or SupplierAdmin object.
October 2004 Event Service: The CosEventChannelAdmin Module 2-9

2

Consumer administration and supplier administration are defined as separate objects so
that the creator of the channel can control the addition of suppliers and consumers. For
example, a creator might wish to be the sole supplier of event data but allow many
consumers to be connected to the channel. In such a case, the creator would simply
export the ConsumerAdmin object.

2.3.2 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to the
event channel; clients use it to obtain proxy suppliers.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

The obtain_push_supplier operation returns a ProxyPushSupplier object. The
ProxyPushSupplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns a ProxyPullSupplier object. The
ProxyPullSupplier object is then used to connect a pull-style consumer.

2.3.3 The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the
event channel; clients use it to obtain proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

The obtain_push_consumer operation returns a ProxyPushConsumer object.
The ProxyPushConsumer object is then used to connect a push-style supplier.

The obtain_pull_consumer operation returns a ProxyPullConsumer object. The
ProxyPullConsumer object is then used to connect a pull-style supplier.

2.3.4 The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push
suppliers to the event channel.

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};
2-10 Event Service, v1.2 October 2004

2

A nil object reference may be passed to the connect_push_supplier operation; if so
a channel cannot invoke the disconnect_push_supplier operation on the supplier;
the supplier may be disconnected from the channel without being informed. If a non-
nil reference is passed to connect_push_supplier, the implementation calls
disconnect_push_supplier via that reference when the ProxyPushConsumer is
destroyed.

If the ProxyPushConsumer is already connected to a PushSupplier, then the
AlreadyConnected exception is raised.

2.3.5 The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull
consumers to the event channel.

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

A nil object reference may be passed to the connect_pull_consumer operation; if
so a channel cannot invoke a disconnect_pull_consumer operation on the
consumer; the consumer may be disconnected from the channel without being
informed. If a non-nil reference is passed to connect_pull_consumer, the
implementation calls disconnect_pull_consumer via that reference when the
ProxyPullSupplier is destroyed.

If the ProxyPullSupplier is already connected to a PullConsumer, then the
AlreadyConnected exception is raised.

2.3.6 The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull
suppliers to the event channel.

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

};

The implementation calls disconnect_pull_supplier on the reference passed to
connect_pull_supplier when the ProxyPullConsumer is destroyed.

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to the connect_pull_supplier operation.

If the ProxyPullConsumer is already connected to a PullSupplier, then the
AlreadyConnected exception is raised.
October 2004 Event Service: The CosEventChannelAdmin Module 2-11

2

An implementation of a ProxyPullConsumer may put additional requirements on
the interface supported by the pull supplier. If the pull supplier does not meet those
requirements, the ProxyPullConsumer raises the TypeError exception. (See
Section 2.5.2, “The TypedPullSupplier Interface,” on page 2-15 for an example.)

2.3.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push
consumers to the event channel.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

The implementation calls disconnect_push_consumer on the reference passed to
connect_push_consumer when the ProsyPushSupplier is destroyed.

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to the connect_push_consumer operation.

If the ProxyPushSupplier is already connected to a PushConsumer, then the
AlreadyConnected exception is raised.

An implementation of a ProxyPushSupplier may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet those
requirements, the ProxyPushSupplier raises the TypeError exception. (See
Section 2.5.1, “The TypedPushConsumer Interface,” on page 2-15 for an example.)

2.4 Typed Event Communication

Section 1.7, “Generic Event Communication,” on page 1-7 discusses generic event
communication using push and pull operations. The next few sections describe how
event communication can be described in OMG IDL and how typed event channels can
support such typed event communication.

2.4.1 Typed Push Model

In the typed push model, suppliers call operations on consumers using some mutually
agreed interface I. The interface I is defined in IDL, and may contain any operations
subject to the following restrictions:

• All parameters must be in parameters only.
• No return values are permitted

These are the same restrictions as CORBA imposes on oneway operations, and for
similar reasons: event communication is unidirectional, and does not directly support
responses. The operations can be declared oneway, but need not be. (Note that, if a
2-12 Event Service, v1.2 October 2004

2

consumer operation is declared oneway, there is no way for the caller to find out if
the consumer is in the disconnected state because, for oneway calls, the servant
cannot raise exceptions.

To set up typed push-style communication, consumers and suppliers exchange
TypedPushConsumer and PushSupplier object references. (Note that the supplier
interface is the same as the untyped case.) The supplier then invokes the
get_typed_consumer operation of the TypedPushConsumer interface, which
returns an object reference supporting the typed interface, I, referred to as an I-
reference. The particular interface, I, that the reference supports is dependent on the
particular TypedPushConsumer, and must be mutually agreed by supplier and
consumer. Once the supplier has obtained the I-reference, it can call operations in
interface I on the consumer.

As in the case of the generic push-style, event communication can be broken by
invoking a disconnect_push_consumer operation on the TypedPushConsumer
interface or by invoking a disconnect_push_supplier operation on the
PushSupplier interface. If the PushSupplier object reference is nil, the connection
cannot be broken via the supplier.

Figure 2-7 illustrates typed push-style communication between supplier and consumer.

Figure 2-7 Typed Push-style Communication Between a Supplier and a Consumer

2.4.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliers, requesting event
information, using some mutually agreed interface Pull<I>2. For every interface I
having the properties described in Section 2.4.1, “Typed Push Model,” on page 2-12,
an interface Pull<I> is defined as follows:

• For every operation o in I, Pull<I> contains two operations:

• pull_o, with all in parameters changed to out parameters. When called, this
operation will return with the event data in the out parameters. If no o-event is
currently available, it will block.

2. Pull<I> is used as notation for a computed interface from interface I. Thus, if I is an interface
DocumentEvents, Pull<I> is an interface PullDocumentEvents.

PushSupplier

TypedPushConsumer

supplierconsumer

I

October 2004 Event Service: Typed Event Communication 2-13

2

• boolean try_o, with all in parameters changed to out parameters. When called,
this operation will check whether an o-event is currently available. If so, it will
return true, with the event data in the out parameters. If not, it will return false,
with the out parameters undefined

The interface Pull<I> is designed to allow pulling of exactly the same events that can
be pushed using interface I.

To set up typed pull-style communication, consumers and suppliers exchange
PullConsumer and TypedPullSupplier object references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of the TypedPullSupplier, which returns an object
reference supporting the typed interface, Pull<I>, referred to as a Pull<I>-reference.
The particular interface, Pull<I>, that the reference supports is dependent on the
particular TypedPullSupplier, and must be mutually agreed by supplier and
consumer. Once the consumer has obtained the Pull<I>-reference, it can call
operations in interface Pull<I> on the supplier.

Figure 2-8 illustrates typed pull-style communication between supplier and consumer.

Figure 2-8 Typed Pull-style Communication Between a Supplier and a Consumer

2.5 The CosTypedEventComm Module

The typed communication styles shown in Figure 2-7 and Figure 2-8 are both
supported by two new interfaces, TypedPushConsumer and TypedPullSupplier
and two existing interfaces, PushSupplier and PullConsumer. The first two
interfaces are defined in an OMG IDL module named CosTypedEventComm, as
shown below. The last two are the same as for untyped event communication, and were
defined in the CosEventComm module.

#include “CosEventComm.idl”

module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

PullConsumer

TypedPullSupplier

supplierconsumer

Pull<I>
2-14 Event Service, v1.2 October 2004

2

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

};

2.5.1 The TypedPushConsumer Interface

A typed push-style consumer supports the TypedPushConsumer interface both to
receive event data in the generic manner, and to supply a specific typed interface
through which to receive it in typed form.

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

The TypedPushConsumer can behave just like an untyped PushConsumer,
described in Section 2.1.1, “The PushConsumer Interface,” on page 2-2. In addition, if
the supplier wishes to communicate event data to the consumer in typed rather than
generic form, it first invokes the get_typed_consumer operation. This returns an I-
reference supporting an interface I. The particular interface I that the reference
supports is dependent on the particular TypedPushConsumer. The return type of the
operation is Object, because different TypedPushConsumers will return references
of different types, so the actual type cannot be specified in a general definition. Once
the supplier has obtained the I-reference, it can narrow it to I, and then call operations
in interface I on the consumer. Mutual agreement about I is needed between the
supplier and consumer. If they do not agree, the narrow operation will fail.

As noted above, a TypedPushConsumer must support the push operation, inherited
from CosEventComm::PushConsumer. Implementing push fully is an
unnecessary burden if the consumer is intended for typed use only. It is therefore
permissible to implement a TypedPushConsumer with a null implementation of
push that merely raises the standard CORBA exception NO_IMPLEMENT. Clearly,
suppliers must know this and confine themselves to typed communication with such
consumers.

If a TypedPushConsumer is in the disconnected state and a supplier attempts to
deliver a typed event, the consumer shall raise a BAD_INV_ORDER exception.

2.5.2 The TypedPullSupplier Interface

A typed pull-style supplier supports the TypedPullSupplier interface both to allow
consumers to pull event data in the generic manner, and to supply a specific typed
interface through which they can pull it in typed form.

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};
October 2004 Event Service: The CosTypedEventComm Module 2-15

2

The TypedPullSupplier can behave just like an untyped PullSupplier, described in
Section 2.1.3, “The PullSupplier Interface,” on page 2-3. In addition, if the consumer
wishes to pull event data from the supplier in typed rather than generic form, it first
invokes the get_typed_supplier operation. This returns a Pull<I>-reference
supporting an interface Pull<I>. The particular interface, Pull<I>, that the reference
supports is dependent on the particular TypedPullSupplier. The return type of the
operation is Object, because different TypedPullSuppliers will return references of
different types, so the actual type cannot be specified in a general definition. Once the
consumer has obtained the Pull<I>-reference, it can narrow it to Pull<I>, and then
call operations in interface Pull<I> on the supplier. Mutual agreement about Pull<I> is
needed between the supplier and consumer. If they do not agree, the narrow operation
will fail.

As noted above, a TypedPullSupplier must support the pull and try_pull operations,
inherited from CosEventComm::PullSupplier. Implementing these operations fully
is an unnecessary burden if the supplier is intended for typed use only. It is therefore
permissible to implement a TypedPullSupplier with null implementations of pull
and try_pull that merely raise the standard CORBA exception NO_IMPLEMENT.
Clearly, consumers must know this and confine themselves to typed communication
with such suppliers.

If a TypedPullSupplier is in the disconnected state and a consumer attempts to
retrieve a typed event, the supplier shall raise a BAD_INV_ORDER exception.

2.6 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support both
typed and generic event communication. These forms can be mixed at will. A single
channel can handle events supplied and consumed in any combination of the forms
defined earlier (push/pull, generic/typed). An event supplied in typed form can be
consumed in generic form, or vice versa.3

2.7 The CosTypedEventChannelAdmin Module

The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. Most of its interfaces are specializations of the corresponding
interfaces in the CosEventChannel module.

#include “CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

3.Doing this does require an understanding on the part of the generic suppliers and consumers
of how the channel packages parameters of typed calls when converting them to generic
form. Details of this packaging are dependent on the implementation of the channel.
2-16 Event Service, v1.2 October 2004

2

exception InterfaceNotSupported {};
exception NoSuchImplementation {};
typedef string Key; // Repository ID

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};
};

2.7.1 The TypedEventChannel Interface

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};

This interface is analogous to CosEventChannelAdmin::EventChannel. However,
it returns typed versions of the consumer and supplier administration interfaces, which
are capable of providing proxies for either generic or typed communication.
October 2004 Event Service: The CosTypedEventChannelAdmin Module 2-17

2

2.7.2 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the first step for connecting
consumers to typed event channel; clients use it to obtain proxy suppliers.

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

The obtain_typed_pull_supplier operation takes a Key parameter that identifies an
interface, Pull<I>. The key specifies the repository ID of the supported interface. The
scope of the key is the typed event channel. It returns a TypedProxyPullSupplier for
interface Pull<I>. The TypedProxyPullSupplier will allow an attached pull
consumer to pull events either in generic form or using operations in interface Pull<I>.
It is up to the implementation of obtain_typed_pull_supplier to create or find an
appropriate TypedProxyPullSupplier. If it cannot, it raises the exception
InterfaceNotSupported.

The obtain_typed_push_supplier operation takes a Key parameter that identifies
an interface, I. The key specifies the repository ID of the interface used. The scope of
the key is the typed event channel. It returns a ProxyPushSupplier that calls
operations in interface I, rather than push operations. It is up to the implementation of
obtain_typed_push_supplier to create or find an appropriate
ProxyPushSupplier4. If it cannot, it raises the exception
NoSuchImplementation.

Such a ProxyPushSupplier is guaranteed only to invoke operations defined in
interface I. Any event on the channel that does not correspond to an operation defined
in interface I is not passed on to the consumer. Such a ProxyPushSupplier is
therefore an event filter based on type.

4.See Appendix A for implementation considerations.
2-18 Event Service, v1.2 October 2004

2

2.7.3 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the first step for connecting suppliers to
the typed event channel; clients use it to obtain proxy consumers.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

The obtain_typed_push_consumer operation takes a Key parameter that identifies
an interface, I. The key specifies the repository ID of the supported interface. The
scope of the key is the typed event channel. It returns a
TypedProxyPushConsumer for I. An attached supplier can provide events by using
operations in interface I. It is up to the implementation of
obtain_typed_push_consumer to create or find an appropriate
TypedProxyPushConsumer. If it cannot, it raises the exception
InterfaceNotSupported.

The obtain_typed_pull_consumer operation takes a Key parameter that identifies
an interface, Pull<I>. The key specifies the repository ID of the interface used. The
scope of the key is the typed event channel. It returns a ProxyPullConsumer that
calls operations in interface Pull<I>, rather than pull operations. It is up to the
implementation of obtain_typed_pull_consumer to create or find an appropriate
ProxyPullConsumer. If it cannot, it raises the exception NoSuchImplementation.

Such a ProxyPullConsumer is guaranteed only to invoke operations defined in
interface Pull<I>. Any event request that does not correspond to an operation defined
in interface Pull<I> is not pulled from the supplier. Such a ProxyPullConsumer is
therefore an event filter based on type.

2.7.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface defines the second step for connecting
push suppliers to the typed event channel.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

By inheriting from both CosEventChannelAdmin::ProxyPushConsumer and
CosTypedEventComm::TypedPushConsumer, this interface supports:

• connection and disconnection of push suppliers, exactly as in the generic event
channel,

• generic push operation, and
October 2004 Event Service: The CosTypedEventChannelAdmin Module 2-19

2

• obtaining the typed view, so that the supplier can use typed push communication.
The reference returned by get_typed_consumer has the interface identified by
the Key used when this TypedProxyPushConsumer was obtained. (See
Section 2.7.3, “The TypedSupplierAdmin Interface,” on page 2-19.)

2.7.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface defines the second step for connecting pull
consumers to the typed event channel.

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };

By inheriting from both CosEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier, this interface supports:

• Connection and disconnection of pull consumers, exactly as in the generic event
channel,

• generic pull and try_pull operations, and

• obtaining the typed view, so that the consumer can use typed pull communication.
The reference returned by get_typed_supplier supports the interface identified by
the Key used when this TypedProxyPullSupplier was obtained. (See
Section 2.7.2, “The TypedConsumerAdmin Interface,” on page 2-18.)

2.8 Composing Event Channels and Filtering

The event channel administration operations defined in Section 2.3, “The
CosEventChannelAdmin Module,” on page 2-8 support the composition of event
channels. That is, one event channel can consume events supplied by another. This
architecture allows the implementation of an event channel that filters the events
supplied by another.

Since the ProxyPushSupplier for interface I of a typed event channel only pushes
events that correspond to I, it acts as a filter based on type. Similarly, the
ProxyPullConsumer for interface Pull<I> of a typed event channel only pulls
events that correspond to Pull<I>, it also acts as a filter based on type.

2.9 Policies for Finding Event Channels

The Event Service does not establish a policy for finding event channels. Finding a
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers will
dictate when an event channel is created and how references to the event channel are
obtained. By representing the event channel as an object, it has all of the properties
that apply to objects, including support by finding mechanisms.
2-20 Event Service, v1.2 October 2004

2

For example, when a user performs a drag-and-drop or cut-and-paste operation, an
event channel could be created and identified to suppliers and consumers.
Alternatively, the event channel could be named in a naming context, or it could be
exported through an operation on an object.
October 2004 Event Service: Policies for Finding Event Channels 2-21

2

2-22 Event Service, v1.2 October 2004

Lightweight Event Service 3
Note – This chapter is based on the Lightweight Services specification (ptc/04-07-03).

Contents

This chapter contains the following topics.

3.1 Platform Independent Model

3.1.1 Overview

This section defines the Platform Independent Model (PIM) for the Lightweight Event
Service. The Lightweight Event Service is intended to be a subset of the full CORBA
Event Service. The packages, interfaces, and classes appearing in this chapter are
intended to model this subset and should map to the IDL for their counterparts in the
Event Service Specification (Version 1.1, March 2001). The descriptions of the
interfaces, operations and their semantics are also intended to be identical to those
defined by the Event Service Specification (Version 1.1, March 2001) over this same
subset.

Topic Page

“Platform Independent Model” 3-1

“Platform Specific Model: CORBA Service” 3-16
October 2004 Event Service, v1.2 3-1

3

Figure 3-1 - Lightweight Event Service Packages

CosEventComm
<<CORBAModule>>

CosEventChannelAdmin
<<CORBAModule>>
3-2 Event Service, v1.2 October 2004

3

3.1.2 The CosLightweightEventComm Package

The CosLightweightEventComm package defines the interfaces for push consumers
and push suppliers. Only the push model is supported by the Lightweight Event
Service.

Figure 3-2 - Lightweight Event Service Interfaces and Classes

PushConsumer

p ush ()
d isconn ect_pu sh_ con sumer()

(from CosEventComm)

<<CORBAInterface>>
PushSupplier

disconnect_push_supplier()

(from CosEventComm)

<<CORBAInterface>>

ProxyPushCon sume r

connect_push_supplier()

(from CosEventChannelAdmin)

0..*

1

-pu shSuppl ie r

0..*

1

SupplierAdmin

o bta in_ push_consum er()

(from CosEventChannelAdmin)

<<CORBAInterface>>

0...

1

-proxyPushConsumer0...

-suppl ierAd min 1

EventChannel

for_consumers()
for_supp li ers()
destroy()

(from CosEventChannelAdmin)

1

1

-supplierAdmin1

-eventChannel 1

ConsumerAdmin

obtain_push_supplier()

(from CosEventChannelAdmin)

<<CORBAInterface>>

1

1

-consumerAdmin 1

-eventChannel1

PushConsumer

p ush ()
d isconn ect_pu sh_ con sumer()

(from CosEventComm)

<<CORBAInterface>>

ProxyPushSupplier

connect_push_consumer()

(from C osEventChannelAdmin)

0...

1

-proxyPushSupplier 0...

-consumerAdmin1

0..*

1

-pushConsumer

0..*

1

October 2004 Event Service: Platform Independent Model 3-3

3

3.1.2.1 Push Consumer

Description

A push-style consumer supports the PushConsumer interface to receive event data.

Attributes

No attributes.

Operations

push(in data:Any)

A supplier communicates event data to the consumer by invoking the push operation
and passing the event data as an in parameter. The operation raises the exception
Disconnected if the event communication has already been terminated.

disconnect_push_consumer ()

The disconnect_push_consumer operation terminates the event communication; it
releases resources used at the consumer to support the event communication. The
PushConsumer object reference is disposed.

Associations

No associations.

Constraints

No Constraints.

Semantics

Calling disconnect_push_consumer causes the implementation to call the
disconnect_push_supplier operation on the corresponding PushSupplier
interface (if that interface is known).

PushConsumer

push()
disconnect_push_consumer()

<<CORBAInterface>>
3-4 Event Service, v1.2 October 2004

3

3.1.2.2 Push Supplier

Description

A push-style supplier supports the PushSupplier interface.

Attributes

No attributes.

Operations

disconnect_push_supplier ()

The disconnect_push_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PushSupplier object reference is disposed.

Associations

No associations

Constraints

No Constraints.

Semantics

Calling disconnect_push_supplier causes the implementation to call the
disconnect_push_consumer operation on the corresponding PushConsumer
interface (if that interface is known).

PushSupplier

disconnect_push_supplier()

<<CORBAInterface>>
October 2004 Event Service: Platform Independent Model 3-5

3

3.1.2.3 Disconnected Exception

Description

Disconnected is the exception raised when an attempt is made to transfer an event
after event communication has been terminated. It is a kind of CORBA
UserException.

Attributes

No attributes.

Operations

No additional operations.

Associations

No association.

Constraints

No constraints.

Semantics

Raised in response to an attempt to push an event after event communication has been
terminated. Event communication may be terminated by the operation
disconnect_push_consumer.

3.1.3 The CosLightweightEventChannel Package

The CosLightweightEventChannelAdmin package defines the interfaces for
making connections between supplier and consumers. Only the push model is
supported by the Lightweight Event Service.

UserException
(from CORBA)

Disconnected
<<exception>>
3-6 Event Service, v1.2 October 2004

3

3.1.3.1 EventChannel

Description

The EventChannel interface defines three administrative operations: adding
consumers, adding suppliers, and destroying the channel.

Any object that possesses an object reference that supports the EventChannel
interface can perform the operations listed below.

Consumer administration and supplier administration are defined as separate objects so
that the creator of the channel can control the addition of suppliers and consumers. For
example, a creator might wish to be the sole supplier of event data but allow many
consumers to be connected to the channel. In such a case, the creator would simply
export the ConsumerAdmin object.

Attributes

No attributes.

ProxyPushSupplier

connect_ push_consumer()

ConsumerAdmin

ob tain_ push_suppl ie r()

<<CORBAInterface>>

0.. .

1

-proxyPushSupp lier0.. .

-consumerAdmin1

EventChannel

for_consumers() : Con sumerAdmi n
for_suppl iers() : SupplierAdmi n
destroy()

1

1

-consumerAdmin 1

-eventChan nel1

ProxyPushConsumer

connect_push_supplier()

SupplierAdmin

obtain_push_consumer()

<<CORBAInterface>>

1

1

-supplierAdmin1

-eventChannel 1

0...

1

-proxyPushConsumer 0...

-supplierAdmin 1
October 2004 Event Service: Platform Independent Model 3-7

3

Operations

for_consumers(): ConsumerAdmin

The ConsumerAdmin interface allows consumers to be connected to the event
channel. The for_consumers operation returns an object reference that supports the
ConsumerAdmin interface.

for_suppliers(): SupplierAdmin

The SupplierAdmin interface allows suppliers to be connected to the event channel.
The for_suppliers operation returns an object reference that supports the
SupplierAdmin interface.

destroy()

The destroy operation destroys the event channel.

Associations

supplierAdmnin: SupplierAdmin [1]

Each event channel has a single associated SupplierAdmin object.

consumerAdmin: ConsumerAdmin [1]

Each event channel has a single associated ConsumerAdmin object.

Constraints

No constraints.

Semantics

Destroying an event channel destroys all ConsumerAdmin and SupplierAdmin
objects that were created via that channel. Destruction of a ConsumerAdmin or
SupplierAdmin object causes the implementation to invoke the disconnect operation
on all proxies that were created via that ConsumerAdmin or SupplierAdmin
object.
3-8 Event Service, v1.2 October 2004

3

3.1.3.2 ConsumerAdmin

Description

The ConsumerAdmin interface defines the first step for connecting consumers to the
event channel; clients use it to obtain proxy suppliers.

Attributes

No attributes.

Operations

obtain_push_supplier(): ProxyPushSupplier

The obtain_push_supplier operation returns a ProxyPushSupplier object. The
ProxyPushSupplier object is then used to connect a push-style consumer.

Associations

eventChannel: EventChannel [1]

The EventChannel object with which the ConsumerAdmin object is associated.

proxyPushSupplier: ProxyPushSupplier [0..*]

A proxy push supplier returned by the obtain_push_supplier operation.

EventChannel

for_consumers()
for_suppliers()
destroy()

ProxyPushSupplier

connect_push_consumer()

ConsumerAdmin

ob tain_ push _su ppl ier()

<<CORBAInterface>>

1

1

-consumerAdmin 1

-eventChannel 1

0...

1

-proxyPushSuppl ier 0...

-consumerAdmin1
October 2004 Event Service: Platform Independent Model 3-9

3

Constraints

No constraints.

Semantics

The ConsumerAdmin interface for the Lightweight Event Service defines only the
full Event Service operations need to support the push model of event communication.
It provides a logical link between the EventChannel object with which it is
associated and the ProxyPushSupplier object to which consumers connect in order
to receive events.

3.1.3.3 SupplierAdmin

Description

The SupplierAdmin interface defines the first step for connecting suppliers to the
event channel; clients use it to obtain proxy consumers.

Attributes

No attributes.

Operations

obtain_push_consumer(): ProxyPushConsumer

The obtain_push_consumer operation returns a ProxyPushConsumer object.
The ProxyPushConsumer object is then used to connect a push-style supplier.

EventChannel

for_consumers()
for_suppliers()
destroy()

ProxyPushConsumer

connect_push_supplier()

SupplierAdmin

obtain_push_consumer()

<<CORBAInterface>>

1

1

-supplierAdmin1

-eventChannel1

0...

1

-proxyPushConsum er 0...

-supplierAdmin 1

EventChannel

for_consumers()
for_suppliers()
destroy()

ProxyPushConsumer

connect_push_supplier()

SupplierAdmin

obtain_push_consumer()

<<CORBAInterface>>

1

1

-suppl ie rAdmin1

-eventChannel1

0...

1

-proxyPushConsumer 0...

-suppl ie rAdmin 1
3-10 Event Service, v1.2 October 2004

3

Associations

eventChannel: EventChannel [1]

The EventChannel object with which the SupplierAdmin object is associated.

proxyPushConsumer: ProxyPushConsumer [0..*]

A proxy push consumer returned by the obtain_push_consumer operation.

Constraints

No constraints.

Semantics

The SupplierAdmin interface for the Lightweight Event Service defines only the full
Event Service operations needed to support the push model of event communication. It
provides a logical link between the EventChannel object with which it is associated
and the ProxyPushConsumer object to which suppliers push events.
October 2004 Event Service: Platform Independent Model 3-11

3

3.1.3.4 ProxyPushConsumer

Description

The ProxyPushConsumer class defines the second step for connecting push
suppliers to the event channel. It realizes the interface defined by PushConsumer
and extends it to support the connection of push suppliers.

Attributes

No attributes.

Operations

connect_push_supplier(in pushSupplier: PushSupplier)

A nil object reference may be passed to the connect_push_supplier operation; if so
a channel cannot invoke the disconnect_push_supplier operation on the supplier;
the supplier may be disconnected from the channel without being informed.

PushConsumer

push()
disconnect_push_consumer()

(f rom CosEventComm)

<<CORBAInterface>>

EventChannel

for_consumers()
for_suppliers()
destroy()

Su ppl ie rAd min

obtain_push_consumer()

<<CORBAInterface>>

1

1

-supplierAdmin1

-eventChannel1

ProxyPushConsumer

connect_push_supplier(in push_supplier : PushSuppl ier)

0..*

1

-proxyPushConsumer0..*

-supplierAdmin 1

PushSupplier

disconnect_push_supplier()

(from CosEventComm)

<<CORBAInterface>>

1 0..*1

-pushSupplier

0..*
3-12 Event Service, v1.2 October 2004

3

If a non-nil reference is passed to connect_push_supplier, the implementation calls
disconnect_push_ supplier via that reference when the ProxyPushConsumer is
destroyed.

If the ProxyPushConsumer is already connected to the given PushSupplier, then
the AlreadyConnected exception is raised.

Associations

supplierAdmin: SupplierAdmin [1]

The SupplierAdmin object with which the ProxyPushConsumer object is
associated.

pushSupplier: PushSupplier [0..*]

The PushSupplier objects (if any) connected to the ProxyPushConsumer object.

Constraints

No constraints.

Semantics

The ProxyPushConsumer object acts as a surrogate (proxy) to which suppliers push
events.
October 2004 Event Service: Platform Independent Model 3-13

3

3.1.3.5 ProxyPushSupplier

Description

The ProxyPushSupplier class defines the second step for connecting push
consumers to the event channel. It realizes the interface defined by PushSupplier and
extends it to support the connection of push consumers.

Attributes

No attributes.

Operations

connect_push_consumer(in pushConsumer: PushConsumer)

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to the connect_push_consumer operation.

PushSupplier

d isconnect_push_suppl ier()

(from CosEventComm)

<<CORBAInterface>>

EventChannel

for_consumers()
for_suppliers()
destroy()

ConsumerAdmin

obtain_push_supplier()

<<CORBAInterface>>

1

1

-consumerAdmin 1

-eventChannel 1

ProxyPushSupplier

connect_push_consumer(in push_consumer : PushConsumer)

0..*

1

-proxyPushSupplier0..*

-consumerAdmin1

PushConsumer

push()
disconnect_push_consumer()

(from CosEventComm)

<<CORBAInterface>>

1 0..*1

-pushConsumer

0..*
3-14 Event Service, v1.2 October 2004

3

If the ProxyPushSupplier is already connected to the given PushConsumer, then
the AlreadyConnected exception is raised.

Associations

consumerAdmin: ConsumerAdmin [1]

The ConsumerAdmin object with which the ProxyPushSupplier object is
associated.

pushConsumer: PushConsumer [0..*]

The PushConsumer objects (if any) connected to the ProxyPushSupplier object.

Constraints

No constraints.

Semantics

The implementation calls disconnect_push_consumer on the reference passed to
connect_push_ consumer when the the ProxyPushSupplier is destroyed.

3.1.3.6 AlreadyConnected Exception

Description

AlreadyConnected is the exception raised when an attempt is made to connect a
consumer/producer to a proxy that is already has a connection to the same object. It is
a kind of CORBA UserException.

Attributes

No attributes.

Operations

No additional operations.

UserException
(from CORBA)

<<CORBAException>>

AlreadyConnected
<<CORBAException>>
October 2004 Event Service: Platform Independent Model 3-15

3

Associations

No associations.

Constraints

No constraints.

Semantics

Raised if an attempt is made to connect a PushConsumer object to a
ProxyPushSupplier object when the two are already connected, or when an attempt
is made to connect a PushSupplier object to a ProxyPushConsumer object when
the two are already connected.

3.2 Platform Specific Model: CORBA Service

3.2.1 Overview

The following sections specify a platform specific mapping of the Lightweight Event
Service onto the CORBA platform. The resulting CORBA service is specified in
CORBA IDL and represents a fully compatible subset of the CosEventService.

3.2.2 CosEventChannelAdmin Module

#include <CosEventComm.idl>
#pragma prefix "omg.org"
module CosEventChannelAdmin {
ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

 exception AlreadyConnected {};
exception TypeError {};

3.2.2.1 ProxyPushConsumer

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

3.2.2.2 ProxyPushSupplier

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
3-16 Event Service, v1.2 October 2004

3

raises(AlreadyConnected, TypeError);
};

3.2.2.3 ConsumerAdmin

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();

};

3.2.2.4 SupplierAdmin

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();

};

3.2.2.5 EventChannel

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
};
#endif /* ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_ */

3.2.3 CosEventComm Module

//File: CosEventComm.idl
//Part of the Event Service

#ifndef _COS_EVENT_COMM_IDL_
#define _COS_EVENT_COMM_IDL_
#pragma prefix "omg.org"
module CosEventComm
{

ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";

endif // _PRE_3_0_COMPILER_

exception Disconnected{};

3.2.3.1 PushConsumer

interface PushConsumer
{

void push (in any data) raises(Disconnected);
October 2004 Event Service: Platform Specific Model: CORBA Service 3-17

3

void disconnect_push_consumer();
};

3.2.3.2 PushSupplier

 interface PushSupplier
{

void disconnect_push_supplier();
};

};
#endif /* ifndef _COS_EVENT_COMM_IDL_ */
3-18 Event Service, v1.2 October 2004

Implementing Typed Event Channels A
A.1 Introduction

Note – Implementation details do not form part of an OMG specification, and should
not be standardized. On the other hand, it is not obvious that typed channels can be
implemented without extensions to CORBA. This section indicates one strategy for
implementing typed event channels. It is included to show that typed event channels
can be implemented; it is not intended in any way to constrain implementations.
Optimized implementations are certainly possible.

Figure A-1 demonstrates a possible implementation of a typed event channel. This
appendix concentrates on push style communication. The implementation of pull-style
communication is analogous.

The implementation interposes an encoder between typed-style suppliers and the
channel and a decoder between the channel and typed-style consumers.

Figure A-1 A possible implementation of a typed event channel.

At the supplier end, an encoder converts operation calls to push calls.

event

typedtyped
supplierconsumer

I
channel

PCPCI

PC = PushConsumer

encoderdecoder

 I = interface I
October 2004 Event Service, v1.2 1

At the consumer end, a decoder converts push calls back to operation calls.

The effect of such a communication is thus that the original operation is eventually
called on the consumer, but the communication is routed via the channel. Of course,
there can be multiple suppliers and multiple consumers on the same channel.
Whenever one of the suppliers calls an operation, it is delivered by the channel to all
consumers.

The encoder must package the operation identification and the parameters in a manner
that the decoder can unpack them correctly.

Given the OMG IDL definition of an interface, I, an encoder generator could generate
an implementation that supports the interface I and converts all calls on this interface
to push calls on an event channel.

Similarly, it is possible to generate an I-decoder from the OMG IDL definition of I.

The typed event channel is responsible for finding, creating, or implementing the
appropriate encoders. An appropriate encoder is found or created in response to the
obtain_typed_push_consumer request on the typed event channel. The encoder is
returned in response to the get_typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating, or implementing
the appropriate decoders. An appropriate decoder is found or created in response to the
connect_push_consumer request on the typed event channel.
2 Event Service, v1.2 October 2004

An Event Channel Use Example B
This section illustrates an example use of the event channel, including the following:

• Creating an event channel.

• Consumers and/or suppliers finding the channel.

• Suppliers using the event channel.

• In this example, the document object creates event channels and defines
operations in its interface to allow consumers to be added.

• The Document interface defines two operations to return event channels:

The title_changed operation causes the document to generate an event when its
title is changed; the new_section operation causes the document to generate an
event when a new section is added. Both operations return ConsumerAdmin
object references. This allows consumers to be added to the event channel.

interface Document {

ConsumerAdmin title_changed();

ConsumerAdmin new_section();

:

};
October 2004 Event Service, v1.2 1

• The title_changed implementation contains instance variables for using and
administering the event channels.

• At some point, the document implementation creates the event channel, gets
supplier and consumer administrative references, and adds itself as a supplier1.

• The title_changed operation returns the ConsumerAdmin object reference.

Clients of this operation can add consumers.

• When the title changes, the document implementation pushes the event to the
channel.

The document implementation similarly initializes, exports, and uses the event channel
for reporting new sections.

/* Factory for creating event channels. */
EventChannelFactoryRef ecf;

/* For title changed event channel */
EventChannelRef event_channel;

ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push_supplier(env,
doc_side_connection)

1.For readability, exception handling is omitted from these code fragments.

return consumer_admin;

proxy_push_consumer->push(env,data);
2 Event Service, v1.2 October 2004

Index
A
application object 1-2

C
callback interface

described viii
common facilities iv
compound object vii
concepts of vi
connect 2-11
Consolidated OMG IDL A-1, B-1
consumer 1-2
ConsumerAdmin interface 2-9, 2-10, 2-18

for_consumers operation 2-9
obtain_pull_supplier operation 2-10
obtain_push_supplier operation 2-10

CORBA vi
contributors ix
documentation set v
standard requests 1-1

CORBA OMG IDL based Specification of the Trading
Function A-1, B-1

CosEventChannelAdmin module
OMG IDL 2-8–2-9

CosEventComm module
OMG IDL 2-1

CosTypedEventComm module
OMG IDL 2-14

E
event channel vii, viii, 1-5, 2-6

adding consumers 2-9
adding consumers to 2-10
adding consumers to typed 2-18
adding pull consumer to typed 2-20
adding pull consumers to 2-11
adding pull suppliers to 2-11
adding push consumers to 2-12
adding push suppliers to 2-10
adding push suppliers to typed 2-19
adding suppliers 2-9
adding suppliers to 2-10
adding suppliers to typed 2-19
and CORBA requests 2-4
decoders A-2
defined 1-3, 2-4
encoders A-2
filtering 2-20–2-21
implementing typed A-1–A-2
sample use B-1–B-2

event communication
mixed 2-5
multiple 2-6
pull model 1-2, 1-7, 2-5
push model 1-2, 1-7, 2-4
typed pull model 2-13
typed push model 2-12

event consumer 1-2, 1-7, 2-4
proxy 2-7

event service
and CORBA scoping 1-5

overview 1-1
event supplier 1-2, 1-7, 2-4

proxy 2-7
EventChannel interface vii, 2-6, 2-7, 2-9
exception 2-19
exceptions

described ix

G
global identifier viii

I
interface inheritance.see subtyping

O
Object Management Group iii

address of vi
object model v
object request broker iv, v
object service

context iv
specification defined v

OMG IDL v, vii

P
property list 1-2
ProxyPullConsumer interface 2-11

connect_pull_supplier operation 2-11
ProxyPullSupplier 2-11
ProxyPullSupplier interface 1-3, 2-11

connect_pull_consumer operation 2-11
ProxyPushConsumer interface 1-3, 2-10

connect_push_supplier operation 2-11
disconnect_push_supplier operation 2-11

ProxyPushSupplier interface 2-12
connect_push_consumer operation 2-12

PullConsumer interface 1-3, 2-3, 2-14
disconnect_pull_consumer operation 1-7

PullSupplier interface vii, 1-7, 2-3
disconnect_pull_supplier operation 1-7, 2-3
pull operation 2-3
try_pull operation 2-3

PushConsumer interface vii, 1-7, 2-2
disconnect_push_consumer operation 2-2
push operation 2-2

PushSupplier interface 1-3, 2-2
disconnect_push_supplier operation 1-7, 2-3

Q
quality of service vii, 1-4, 1-6, 2-6

R
reference model iv

S
subtyping vi, ix
supplier 1-2
SupplierAdmin interface 1-3, 2-9, 2-10

for_suppliers operation 2-9
obtain_pull_consumer operation 2-10
obtain_push_consumer operation 2-10
October 2004 Event Service, v1.2 Index-1

Index
T
TypedConsumerAdmin interface

obtain_typed_pull_supplier operation 2-18
obtain_typed_push_supplier operation 2-18

TypedProxyPullSupplier interface 2-20
TypedProxyPushConsumer interface 2-19
TypedPullSupplier interface 2-14

TypedPushConsumer interface 2-13
TypedSupplierAdmin interface 2-19

obtain_typed_pull_consumer operation 2-19
obtain_typed_push_consumer operation 2-19

X
X/Open iv
Index-2 Event Service, v1.2 October 2004

	Preface
	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Event Communication
	1.3 Example Scenario
	1.4 Design Principles
	1.5 Resolution of Technical Issues
	1.6 Quality of Service
	1.7 Generic Event Communication
	1.7.1 Push Model
	1.7.2 Pull Model

	2. Modules and Interfaces
	2.1 The CosEventComm Module
	2.1.1 The PushConsumer Interface
	2.1.2 The PushSupplier Interface
	2.1.3 The PullSupplier Interface
	2.1.4 The PullConsumer Interface
	2.1.5 Disconnection Behavior

	2.2 Event Channels
	2.2.1 Push-Style Communication with an Event Channel
	2.2.2 Pull-Style Communication with an Event Channel
	2.2.3 Mixed Style Communication with an Event Channel
	2.2.4 Multiple Consumers and Multiple Suppliers
	2.2.5 Event Channel Administration

	2.3 The CosEventChannelAdmin Module
	2.3.1 The EventChannel Interface
	2.3.2 The ConsumerAdmin Interface
	2.3.3 The SupplierAdmin Interface
	2.3.4 The ProxyPushConsumer Interface
	2.3.5 The ProxyPullSupplier Interface
	2.3.6 The ProxyPullConsumer Interface
	2.3.7 The ProxyPushSupplier Interface

	2.4 Typed Event Communication
	2.4.1 Typed Push Model
	2.4.2 Typed Pull Model

	2.5 The CosTypedEventComm Module
	2.5.1 The TypedPushConsumer Interface
	2.5.2 The TypedPullSupplier Interface

	2.6 Typed Event Channels
	2.7 The CosTypedEventChannelAdmin Module
	2.7.1 The TypedEventChannel Interface
	2.7.2 The TypedConsumerAdmin Interface
	2.7.3 The TypedSupplierAdmin Interface
	2.7.4 The TypedProxyPushConsumer Interface
	2.7.5 The TypedProxyPullSupplier Interface

	2.8 Composing Event Channels and Filtering
	2.9 Policies for Finding Event Channels

	3. Lightweight Event Service
	3.1 Platform Independent Model
	3.1.1 Overview
	3.1.2 The CosLightweightEventComm Package
	3.1.3 The CosLightweightEventChannel Package

	3.2 Platform Specific Model: CORBA Service
	3.2.1 Overview
	3.2.2 CosEventChannelAdmin Module
	3.2.3 CosEventComm Module

	A. Implementing Typed Event Channels
	B. An Event Channel Use Example
	Index

