
TradingObjectServiceSpecification

Version1.0
NewEdition:May2000

Copyright 1995 AT&T
Copyright 1995 BNR
Copyright 1995 Hewlett-Packard
Copyright 2000 Object Management Group, Inc.
Copyright 1995 Sun Soft

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

 iii
 iii

 iv

 iv

1-1

1-1
-2
-3
-3

-3

1-4
-4
-4

1-4
1-6
-7

-8
-9

-16
6

-17
19
20

-21
Preface .

About the Object Management Group .
What is CORBA? .

Associated OMG Documents. .

Acknowledgments .

1. Service Description .

1.1 Overview .
1.1.1 Diversity and Scalability. 1
1.1.2 Linking Traders . 1
1.1.3 Policy . 1
1.1.4 Additional ObjectID . 1

1.2 Concepts and Data Types .
1.2.1 Exporter . 1
1.2.2 Importer . 1
1.2.3 Service Types .
1.2.4 Properties .
1.2.5 Service Offers . 1
1.2.6 Offer Identifier . 1
1.2.7 Offer Selection . 1

1.3 Interworking Mechanisms . 1
1.3.1 Link Traversal Control 1-1
1.3.2 Federated Query Example 1
1.3.3 Proxy Offers . 1-
1.3.4 Trader Attributes . 1-

1.4 Exceptions . 1
Trading Object Service V1.0 May 2000 i

Contents

21
24
-24

1

 2-1
2-1
-2
-2
-3

2-3
-3
-8
2-9
17
18
20
-24

-29

-36

-37

-38

-40
1.4.1 For CosTrading Module 1-
1.4.2 For CosTradingDynamic module 1-
1.4.3 For CosTradingRepos module 1

2. Trading Object Service Interfaces . 2-

2.1 Abstract Interfaces .
2.1.1 TraderComponents .
2.1.2 SupportAttributes . 2
2.1.3 ImportAttributes . 2
2.1.4 LinkAttributes. 2

2.2 Functional Interfaces .
2.2.1 Lookup . 2
2.2.2 Offer Iterator . 2
2.2.3 Register .
2.2.4 Offer Id Iterator . 2-
2.2.5 Admin . 2-
2.2.6 Link . 2-
2.2.7 Proxy . 2

2.3 Service Type Repository . 2

2.4 Dynamic Property Evaluation interface 2

2.5 Conformance Criteria . 2
2.5.1 Conformance Requirements for Trading

Interfaces as Server . 2
2.5.2 Conformance Requirements for Implementation

Conformance Classes . 2

Appendix A - OMG IDL . A-1

Appendix B - OMG Constraint Language BNF B-1

Appendix C - OMG Constraint Recipe Language C-1
ii Trading Object Service V1.0 May 2000

Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Trader Service V1.0 May 2000 iii

ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
iv Trader Service V1.0 May 2000

s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Trader Service V1.0 Associated OMG Documents April 2000 v

n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Trader Service V1.0 May 2000

ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Trader Service V1.0 Service Design Principles April 2000 vii

gle

to
cts

ents

aces

g
th an

uest
e

ent

a

o a

n

ext.

within
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An ev
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Trader Service V1.0 May 2000

ices

s

to be

l

tion

eter

de

nts
Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted parts of theTrader Objectspecification:

• AT&T

• BNR

• Hewlett-Packard Company

• SunSoft, Inc.
Trader Service V1.0 Interface Style Consistency April 2000 ix

x Trader Service V1.0 May 2000

ServiceDescription 1
ces
t

ther

g
e

an
Contents

This chapter contains the following sections.

1.1 Overview

The OMG trading object service facilitates the offering and the discovery of instan
of services of particular types. A trader is an object that supports the trading objec
service in a distributed environment. It can be viewed as an object through which o
objects can advertise their capabilities and match their needs against advertised
capabilities. Advertising a capability or offering a service is called “export.” Matchin
against needs or discovering services is called “import.” Export and import facilitat
dynamic discovery of, and late binding to, services.

To export, an object gives the trader a description of a service and the location of
interface where that service is available. To import, an object asks the trader for a
service having certain characteristics. The trader checks against the service

Section Title Page

“Overview” 1-1

“Concepts and Data Types” 1-4

“Interworking Mechanisms” 1-16

“Exceptions” 1-21
Trading Object Service V1.0 May 2000 1-1

1

g

ities
r

ng
this
ility

teria

s. A
ed
as a

d

and
descriptions it holds and responds to the importer with the location of the selected
service’s interface. The importer is then able to interact with the service. These
interactions are shown in Figure 1-1.

Figure 1-1 Interactions between a trader and its clients

Due to the number of service offers that will be offered worldwide, and the differin
requirements that users of a trading service will have, it is inevitable that a trading
service will be split up and the service offers will be partitioned.

Each partition will, in the first instance, meet the trading needs of a community of
clients (exporters and importers). Where a client needs a scope for its trading activ
that is wider than that provided by one partition, it will access other partitions eithe
directly or indirectly. Directly means that the client interacts with the traders handli
those partitions. Indirectly means that the client interacts with one trader only and
trader interacts with other traders responsible for other partitions. The latter possib
is referred to as interworking (or federation) of traders.

The trading object service in an OMG environment allows interworking between
traders and objects to:

• export (advertise) services

• import information about one or more exported services, according to some cri

1.1.1 Diversity and Scalability

The concept of trading to discover new services applies to a wide range of scenario
trader may contain numerous offers of service and its implementation may be bas
upon a database. Or, a trader may contain only a few offers and be implementable
memory resident trader. These two cases exhibit different qualities: availability an
integrity in the first case and performance in the second. The variation in these
scenarios illustrates the need for scalability, both upwards for very large systems
downwards for small, fast systems.

T

E I

Sequence of interactions:

1. Export
2. Import
3. Service interaction1 2

3

1-2 Trading Object Service V1.0 May 2000

1

it.
in

.

on
d

ect
rs, it

d.
hable
e
the

me
o
licy
ect

; as
To discover any arbitrary offer of service, a trader needs all offers to be visible to
One partition cannot hold every offer, many are held at other partitions; therefore,
addition to a number of offers, a trader must possess information about other
partitions. However, there is no need for a trader to know about all other partitions
Some of this knowledge can be utilized indirectly via other traders.

The partitioning of the offer space and the limited knowledge held within one partiti
about other partitions is the basis for meeting requirements for both distribution an
contextualisation of the trading object service.

1.1.2 Linking Traders

The requirements to contextualise the offer space and to distribute the trading obj
service are both met by linking traders together. When a trader links to other trade
makes the offer spaces of those traders implicitly available to its own clients.

Each trader has a horizon limited to those other traders to which it is explicitly linke
As those traders are linked to yet more traders, a large number of traders are reac
from a given starting trader. The traders are linked to form a directed graph with th
information describing the graph distributed among the traders. This graph is called
trading graph.

Links may cross domain boundaries (e.g., administrative, technological, etc.);
therefore, trading is a federated system (i.e., one that spans many domains).

1.1.3 Policy

To meet the diverse requirements likely to be placed upon the trading function, so
degree of freedom is necessary when specifying the behavior of a trader object. T
accomplish this, and yet still meet the goals of this specification, the concept of po
is used to provide a framework for describing the behavior of any OMG trading obj
service implementation.

This specification identifies a number of policies and gives them semantics. Each
policy partly determines the behavior of a trader.

Policies may be communicated during interaction, in which case they relate to an
expectation on subsequent behavior.

1.1.4 Additional ObjectID

A trading object service may be used by an object to bootstrap itself into operation
such, this specification mandates an additionalObjectId for use in the
resolve_initial_references() operation defined in the ORB Initialization
Specification, OMG Document 94-10-24.

The following ObjectId is reserved for finding an initial trading object service:

TradingService
Trading Service V1.0 Overview May 2000 1-3

1

tion

ider

ter

ace,

y,
riple
As described in 94-10-24, a client object wishing to obtain an initial trading object
service object reference will invoke theresolve_initial_references() operation,
which has the following OMG IDL signature:

typedef string ObjectId;
exception InvalidName {};

Object resolve_initial_references (in ObjectId identifier)
raises (InvalidName);

The object reference returned as the result of a successful invocation of this opera
when “TradingService” is specified as theObjectId parameter must be narrowed to an
object reference of the appropriate type; for the trading object service this type is
CosTrading::Lookup .

No other extensions are proposed to OMG IDL, CORBA, and/or the OMG object
model.

1.2 Concepts and Data Types

1.2.1 Exporter

An exporter advertises a service with a trader. An exporter can be the service prov
or it can advertise a service on behalf of another.

1.2.2 Importer

An importer uses a trader to search for services matching some criteria. An impor
can be the potential service client or it can import a service on behalf of another.

1.2.3 Service Types

A service type, which represents the information needed to describe a service, is
associated with each traded service. It comprises:

• an interface type which defines the computational signature of the service interf
and

• zero or more named property types. Typically these represent behavioral, non-
functional, and non-computational aspects that are not captured by the
computational signature.

The property type defines the property value type, whether a property is mandator
and whether a property is readonly. That is, associated with a property type is the t
of <name, type, mode>, where the modes are:

enum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY
1-4 Trading Object Service V1.0 May 2000

1

and
e of
re

pe

itute

is

se
};

A service type repository is used to hold the type information.

typedef Object TypeRepository;

Each service type in a repository is identified by a uniqueServiceTypeName .

typedef Istring ServiceTypeName; // similar to IR::Identifier

An exporter specifies the service type of the service it is advertising; an importer
specifies the service type it is seeking.

Service types can be related in a hierarchy that reflects interface type inheritance
property type aggregation. This hierarchy provides the basis for deciding if a servic
one type may be substituted for a service of another type. These considerations a
described more fully in the following service type model.

1.2.3.1 Service Type Model

The service type model is illustrated by the following BNF:

service <ServiceTypeName>[:<BaseServiceTypeName>
[,<BaseServiceTypeName>]*]{

interface <InterfaceTypeName>;
[[mandatory] [readonly] property <IDLType> <PropertyName>;]*

};

The keyword “service” introduces a newServiceTypeName . Its structure is similar
to that of interface repository identifiers (::First::Second::Third ...). As the service ty
is visible to end users and not just to programmers, it is internationalizable.

The list ofBaseServiceTypeNames lists those service types from which this service
type is derived, which in turn defines where services of this service type can subst
for other service.

The “interface” keyword introduces theInterfaceTypeName for this service. It is
related by equivalence or by derivation to theInterfaceTypeNames in each of the
BaseServiceTypeNames .

The properties clause is a list of property declarations. Each property declaration
marked by the keyword “property” and may be preceded by mode attributes
“mandatory” and/or “readonly.” A property declaration is completed by an IDLType
and aPropertyName . A service must support all the properties of each of its base
service types, they must have identical property value types, and they must not lo
any property mode attributes.

The property mode attributes have the following connotations:

• mandatory - an instance of this service typemust provide an appropriate value for
this property when exporting its service offer.
Trading Service V1.0 Concepts and Data Types May 2000 1-5

1

his

er
f it

ust

may
and

a

he

with
• readonly - if an instance of this service type provides an appropriate value for t
property when exporting its service offer, the value for this property may not be
changed by a subsequent invocation of theRegister::modify() operation.

The property strength graph is shown in Figure 1-2..

Figure 1-2 Property Strength

Summarizing, if a property is defined without any modifiers, it is optional (i.e., an off
of that service type is not required to provide a value for that property name, but i
does, it must be of the type specified in the service type), and the property value
subsequently may be modified. The “mandatory” modifier indicates that a value m
be provided, but that subsequently it may be modified. The “readonly” modifier
indicates that the property is optional, but that once given a value, subsequently it
not be modified. Specifying both modifiers indicates that a value must be provided
that subsequently it may not be modified.

From the above discussion, one can state the rules for service type conformance;
service typeβ is a subtype of service typeα, if and only if:

• the interface type associated withβ is either the same as, or derived from, the
interface type associated withα

• all the properties defined inα are also defined inβ

• for all properties defined in bothα andβ, the mode of the property inβ must be the
same as, or stronger than, the mode of the property inα

• all properties defined inβ that are also defined inα shall have the same property
value type inβ as their corresponding definitions had inα

1.2.4 Properties

Properties are <name, value> pairs. An exporter asserts values for properties of t
service it is advertising. An importer can obtain these values about a service and
constrain its search for appropriate offers based on the property values associated
such offers.

typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {

(default)

mandatory readonly

mandatory, readonly

Increasing
Strength
1-6 Trading Object Service V1.0 May 2000

1

t

n
h

PropertyName name;
PropertyValue value;

};
typedef sequence<Property> PropertySeq;

enum HowManyProps { none, some, all };
union SpecifiedProps switch (HowManyProps) {

case some: PropertyNameSeq prop_names;
};

1.2.5 Service Offers

A service offer is the information asserted by an exporter about the service it is
advertising. It contains:

• the service type name,

• a reference to the interface that provides the service, and

• zero or more property values for the service.

An exporter must specify a value for all mandatory properties specified in the
associated service type. In addition, an exporter can nominate values for named
properties that are not specified in the service type. In such case, the trader is no
obliged to do property type checking.

struct Offer {
Object reference;
PropertySeq properties;

};
typedef sequence<Offer> OfferSeq;

struct OfferInfo {
Object reference;
ServiceTypeName type;
PropertySeq properties;

};

1.2.5.1 Modifiable Properties

The value of a property in a service offer can be modified, if

• the property mode is not readonly, whether optional or mandatory, and

• the trader supports the modify property functionality.

Such property values can be updated by explicit modify operations to the trader. A
exporter can control a service offer to be non-modifiable by exporting services wit
service types that have readonly properties. The modify operation will return a
NotImplemented exception if a trader does not support the modify property
functionality. An importer can also specify whether or not a trader should consider
offers with modifiable properties during matching.
Trading Service V1.0 Concepts and Data Types May 2000 1-7

1

is

a

rned
r

the

this
ed
amic
1.2.5.2 Dynamic Properties

A service offer can contain dynamic properties. The value for a dynamic property
not held within a trader, it is obtained on-demand from the interface of a dynamic
property evaluator nominated by the exporter of the service. That is, a level of
indirection is required to obtain the value for a dynamic property. The structure of
dynamic property value is:

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in CORBA::TypeCode returned_type,
in any extra_info

) raises (
DPEvalFailure

);
};

struct DynamicProp {
 DynamicPropEval eval_if;
 CORBA::TypeCode returned_type;
 any extra_info;

};

It contains the interface to the dynamic property evaluator, the data type of the retu
dynamic property, and any extra implementation dependent information. The trade
recognizes this structure and, when the value of the property is required, invokes
evalDP operation from the appropriateDynamicPropEval interface. The dynamic
property evaluator interface has only one operation, whose signature is defined in
standard for portability but its behavior is not specified. The only restrictions impos
are that the property must not be readonly and that the trader must support the dyn
property functionality.

The use of such Properties has implications on the performance of a trader. An
importer can specify whether or not a trader should consider offers with dynamic
properties during matching.

1.2.6 Offer Identifier

An offer identifier is returned to an exporter when a service offer is advertised in a
trader. It identifies the exported service offer and is quoted by the exporter when
withdrawing and modifying the offer (where supported). It only has meaning to the
trader with which the service offer is registered.
1-8 Trading Object Service V1.0 May 2000

1

ers

uce

hich

wer
traint

is
>>

ted

,
e

typedef string OfferId;
typedef sequence<OfferId> OfferIdSeq;

1.2.7 Offer Selection

The total service offer space for an offer selection may be very large, including off
from all linked traders. Logically, the trader uses policies to identify the set S1 of
service offers to examine. The service type and constraint is applied to S1 to prod
the set S2 that satisfies the service type and constraint. Then this is ordered using
preferences before returning the offers to the importer.

1.2.7.1 Standard Constraint Language

Importers use service type and a constraint to select the set of service offers in w
they have an interest. The constraint is a well formed expression conforming to a
constraint language.

This document defines the standard, mandatory language which is necessary for
interworking between traders. Appendix B defines the syntax and the expressive po
of the constraint language. This constraint language is used to write standard cons
expressions.

typedef Istring Constraint;

Its main features are:

Note – If a proprietary constraint language (outside the scope of this specification)
used, then the name and version of the constraint language is placed between <<
at the start of the constraint expression, The remainder of the string is not interpre
by a trader that does not support the quoted proprietary constraint language.

Property Value Types These manipulations are restricted to int, float, boolean
Istring/string, Ichar/char types, and sequences thereof. Th
character based types are ordered using the collating
sequence in effect for the given character set. Types out-
side of this range can only be the subject of the “exist”
operator.

Literals In the constraint, literals are dynamically coerced as
required for the properties they are working with. Literals
can contain Istring.

Operators The operators are comparison, boolean connective, set
inclusion, substring, arithmetic operators, property exist-
ence.
Trading Service V1.0 Concepts and Data Types May 2000 1-9

1

nces

rds:

be

ted
rs
to a

e

e

 a

 an

are

g
,

d

1.2.7.2 Preferences

Preferences are applied logically to the set of offers matched by application of the
service type, constraint expression, and various policies. Application of the prefere
can determine the order used to return matched offers to the importer.

typedef Istring Preference;

Consider the preference string as being composed of two portions.

• The first portion can be comprised of any of the following case-sensitive keywo

max min with random first

• The interpretation for the second portion is dependent on the first portion; it may
empty. Table 1-1 describes the preferences.

Table 1-1 Preferences

If no preference is specified, then the default preference of first applies. No
combinations of the preferences are permitted.

The expression associated with max, min, and with can refer to properties associa
with the matching offers. When applying a preference expression to the set of offe
that match the service type and constraint expression, the offer set is partitioned in
group of offers for which the preference expression

• could be evaluated (ordered according to min, max, with), and

• could not be evaluated (e.g., the preference expression refers to a property nam
that is optional for that service type).

The offers are returned to the importer in the order of first group in their preferenc
order, followed by those in the second group.

Preference Description

max expression The expression is numeric. The matched offers are returned in
descending order of the expression.

min expression The expression is numeric. The matched offers are returned in
ascending order of the expression.

with expression The expression is a constraint expression. The matched offers
ordered such that those that are TRUE precede those that are
FALSE.

random The order of returned matched offers is according to the followin
algorithm: select an offer at random from the set of matched offers
select another offer at random from the remaining set of matche
offers, ..., select the single remaining offer.

first The order of returned matched offers is in the order as the offers
are discovered.
1-10 Trading Object Service V1.0 May 2000

1

) is
< >>
ader

ader.
ers.
it
the

n

to

et
Note – If a proprietary preference language (outside the scope of this specification
used, the name and version of the preference language used is placed between <
at the start of the preference. The remainder of the string is not interpreted by a tr
that does not support the quoted proprietary language.

1.2.7.3 Links

Links represent paths for propagation of queries from a source trader to a target tr
Each link corresponds to an edge in a trading graph, in which the vertices are trad
A link describes the knowledge that one trader has of another trading service that
uses. It also includes information of when to propagate or forward an operation to
target trader. A link has the following information associated with it:

• A Lookup interface provided by the target trader, which supports the query
operation.

• A Register interface provided by the target trader, which supports the resolve
operation.

• The link’s default follow behavior, which may be used and is passed on when a
importer does not specify alink_follow_rule policy.

• The link’s limiting follow behavior, which overrides an importer’s
link_follow_rule if the importer’s request exceeds the limit set by the link.

enum FollowOption {
local_only,
if_no_local,
always

};
struct LinkInfo {

Lookup target;
Register target_reg;
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

};

The above information is set for each link when it is created. A link name is given
the link when it is created. The name uniquely identifies a link in a trader.

typedef Istring LinkName;
typedef sequence<LinkName> LinkNameSeq;

A link is unidirectional. Only the source trader is directly aware of a link; it is the
source trader that supports theLink interface.

Additional information may be kept with a link to describe characteristics of the targ
trading service as perceived by the source trader.
Trading Service V1.0 Concepts and Data Types May 2000 1-11

1

ries:

ing

d if

id-

f no
1.2.7.4 Policies

Policies provide information to affect trader behavior at run time. Policies are
represented as name value pairs.

typedef string PolicyName; // policy names restricted to Latin1
typedef sequence<PolicyName> PolicyNameSeq;
typedef any PolicyValue;
struct Policy {

PolicyName name;
PolicyValue value;

};
typedef sequence<Policy> PolicySeq;

Some policies cannot be overridden, while other policies apply in the absence of
further information and can be overridden. Policies can be grouped into two catego

1. Policies that scope the extent of a search.

2. Policies that determine the functionality applied to an operation.

Different policies are associated with different roles in the performance of the trad
function. These roles are:

T = Trader

L = Link

I = Import

Standardized Scoping Policies:

The following table lists the standardized scoping policies.

Table 1-2 Scoping Policies

Name Where IDL Type Description
def_search_card T unsigned long Default upper bound of offers to be searched; used if no

search_card is specified.

max_search_card T unsigned long Maximum upper bound of offers to be searched.

search_card I unsigned long Nominated upper bound of offers to be searched; will be
overridden by max_search_card.

def_match_card T unsigned long Default upper bound of matched offers to be ordered; use
no match_card is specified.

max_match_card T unsigned long Maximum upper bound of matched offers to be ordered.

match_card I unsigned long Nominated upper bound of offers to be ordered; will be overr
den by max_match_card.

def_return_card T unsigned long Default upper bound of ordered offers to be returned; used i
return_card is specified.

max_return_card T unsigned long Maximum upper bound of ordered offers to be returned.
1-12 Trading Object Service V1.0 May 2000

1

al
e are
arch
ich
he

the
by

be

ill

k

d

r
-

he
The IDL types forTraderName andOctetSeq are:

typedef LinkNameSeq TraderName;
typedef sequence<octet> OctetSeq;

The results received by an importer are affected by the scoping policies. The
hop_count andlink follow policies set the scope of the traders to visit. N1 is the tot
service offer space of those traders. Those offers that have conformant service typ
gathered into the set N2; the actual size of N2 may be further restricted by the se
cardinality policies. Constraints are applied to N2 to produce a set N3 of offers wh
satisfy both the service type and the constraints; N3 may be further restricted by t
match cardinality policies. The set N3 is then ordered using preferences to produce
set N4. The final set of offers returned to the importer, N5, may be further reduced
the returned cardinality policies.

return_card I unsigned long Nominated upper bound of ordered offers to be returned; will
overridden by max_return_card.

def_hop_count T unsigned long Default upper bound of depth of links to be traversed if
hop_count is not specified.

max_hop_count T unsigned long Maximum upper bound of depth of links to be traversed.

hop_count I unsigned long Nominated upper bound of depth of links to be traversed; w
be overridden by the trader’s max_hop_count.

def_pass_on_follow_rule L FollowOption Default link-follow behavior to be passed on for a particular lin
if an importer does not specify its link_follow_rule; it must not
exceed limiting_follow_rule.

limiting_follow_rule L FollowOption Limiting link follow behavior for a particular link.

def_follow_policy T FollowOption Default link follow behavior for a particular trader.

max_follow_policy T FollowOption Limiting link follow policy for all links of the trader - overrides
both link and importer policies.

max_link_follow_policy T FollowOption Upper bound on the value of a link’s limiting follow rule at the
time of creation or modification of a link.

link_follow_rule I FollowOption Nominated link follow behavior; it will be overridden by the
trader’s max_follow_policy and the link’s limiting_follow_rule.

starting_trader I TraderName An importer scopes its search by nominating that the query
operation starts at a remote trader; a trader is obliged to forwar
the request down a link even if the link behavior is local_only.

request_id I OctetSeq An identifier for a query operation initiated by a source trade
acting as an importer on a link; a trader is not obliged to gener
ate an id, but is obliged to pass one received down a link.

exact_type_match I boolean If TRUE, only offers of exactly the service type specified by t
importer are considered; if FALSE (or if unspecified), offers of
any serviced type that conforms to the importer’s service type
are considered.

Name Where IDL Type Description
Trading Service V1.0 Concepts and Data Types May 2000 1-13

1

N5

f a

y.

n.

es
This is illustrated by the following diagram, where |N1| >= |N2| >= |N3| = |N4| >= |

Figure 1-3 Pipeline View of Trader Query Steps and Cardinality Constraint Application

Standardized Capability Supported Policies

There are three optional capabilities (proxy offer, dynamic properties, and modify
offers) that a trader may or may not wish to support. If a trader does not support a
capability, then an importer cannot override it with its policy parameter. However, i
trader supports a capability and an importer does not wish to consider offers that
require such functionality, then the trader must respect the importer’s wish.

The following table lists the standardized policies related to supported functionalit

Table 1-3 Capability Supported Policies

Name Where IDL Type Description

supports_modifiable_properties T boolean Whether the trader supports property modificatio

use_modifiable_properties I boolean Whether to consider offers with modifiable
properties in the search.

supports_dynamic_properties T boolean Whether the trader supports dynamic properties.

use_dynamic_properties I boolean Whether to consider offers with dynamic properti
in the search.

supports_proxy_offers T boolean Whether the trader supports proxy offers.

use_proxy_offers I boolean Whether to consider proxy offers in the search.

Potential
Offers

Consid-
ered

offers

Matched
Offers

Ordered
Offers

Returned
Offers

gather match

order

return

search
cardinality

match
cardinality

return
cardinalityN5 N4

N3N2N1
1-14 Trading Object Service V1.0 May 2000

1

s of
e

ed.

r to

e

1.2.7.5 Trader Policies

Policies can be set for a trader as a whole. Trader policies are defined as attribute
the trader object. They are specified initially when the trader is created, and can b
modified/interrogated via theAdmin interface. An importer can interrogate these
trader policies via its Lookup interface. An exporter can interrogate a trader’s
functionality supported policies via its Register interface.

1.2.7.6 Link Follow Behavior

Each link in a trader has its own follow behavior policies. A trader has a limiting
follow policy, max_follow_policy , that overrides all the links of that trader for any
given query. Follow behavior policies are specified for each link when a link is creat
These policies,def_pass_on_follow_rule and limiting_follow_rule , can be
interrogated/modified via theLink interface. The values they can have are limited by
another trader policy,max_link_follow_policy , at the time of creation or
modification. An importer can specify alink_follow_rule in a query. In the absence
of an importer’slink_follow_rule , the trader’sdef_follow_policy is used.

After searching its local offers in response to a query, a trader must decide whethe
propagate the query along its links and, if so, what value for thelink_follow_rule to
pass on in the policies argument.

Recall that the OMG IDL forFollowOption is:

enum FollowOption {
local_only,
if_no_local,
always

};

wherelocal_only indicates that the link is followed only by explicit navigation
(starting_trader policy), if_no_local indicates that the link is followed only if there
are no local offers that satisfy the query, andalways has the obvious semantics. Thes
values are ordered as follows:

local_only < if_no_local < always

The follow policy for a particular link is:

if the importer specified a link_follow_rule policy
min(trader.max_follow_policy, link.limiting_follow_rule,

query.link_follow_rule)
else

min(trader.max_follow_policy, link.limiting_follow_rule,
trader.def_follow_policy)

If this value isif_no_local and there were no local offers that match the query, the
nested query is performed; if this value isalways , the nested query is performed.
Trading Service V1.0 Concepts and Data Types May 2000 1-15

1

nes

n
r
the

his

ith

ing
the

e

g on
.

If the nested query is permitted by the above rule, then the following logic determi
the value for thelink_follow_rule policy to pass on to the linked trader.

If the importer specified a link_follow_rule policy
pass on min(query.link_follow_rule, link.limiting_follow_rule,

 trader.max_follow_policy)
else

pass on min(link.def_pass_on_follow_rule,
 trader.max_follow_policy)

1.2.7.7 Importer Policies

An importer can specify zero or more importer policies in its policy parameter. If a
importer policy is not specified, then the trader uses its default policy. If an importe
policy exceeds the limiting policy values set by the trader, then the trader overrides
importer expectations with its limiting policy value.

If a starting_trader policy parameter is used, trader implementations shall place t
policy parameter as the first element of the sequence when forwarding the query
request to linked traders.

1.2.7.8 Exporter Policies

There are no exporter policies specified in this standard.

1.2.7.9 Link Creation Policies

At the time that a link is created, the default and limiting follow rules associated w
the link are specified. These rules can be constrained by themax_link_follow_policy
of the trader.

The trader first checks to see that the default rule is less than or equal to the limit
rule. If not, then an exception is raised. It then compares the limiting rule against
trader’smax_link_follow_policy , again raising an exception if the limiting rule is
greater than the trader’smax_link_follow_policy .

1.3 Interworking Mechanisms

1.3.1 Link Traversal Control

The flexible nature of trader linkage allows arbitrary directed graphs of traders to b
produced. This can introduce two types of problem:

• A single trader can be visited more than once during a search due to it appearin
more than one path (i.e., distinct set of connected edges) leading from a trader
1-16 Trading Object Service V1.0 May 2000

1

nt
er
the

t the

, a
tiates

to

nt to
its

ery
t the

des

ys.
f

• Loops can occur. The most trivial example of this is where two previously disjoi
trader spaces decide to join by exchanging links. This can result in the first trad
propagating a query to the second and then having it returned immediately via
reverse link.

To ensure that a search does not enter into an infinite loop, ahop_count is used to
limit the depth of links to propagate a search. Thehop_count is decremented by one
before propagating a query to other traders. The search propagation terminates a
trader when thehop_count reaches zero.

To avoid the unproductive revisiting of a particular trader while performing a query
RequestId can be generated by a source trader for each query operation that it ini
for propagation to a target trader. The trader attribute ofrequest_id_stem is used to
form RequestId .

typedef sequence<octet> OctetSeq;
attribute OctetSeq request_id_stem;

A trader remembers theRequestId of all recent interworking query operations that it
has been asked to perform. When an interworking query operation is received, the
trader checks this history and only processes the query if it is the operation’s first
appearance.

In order for this to work, the administrator for a set of federated traders must have
initialized the respectiverequest_id_stems to non-overlapping values.

The RequestId is passed in an importer’s policy parameter on the query operation
the target trader. If the target trader does not support the use of theRequestId policy,
the target trader need not process theRequestId , but must pass theRequestId onto
the next linked trader if the search propagates further.

1.3.2 Federated Query Example

To propagate a query request in a trading graph, each source trader acts as a clie
the Lookup interface of the target trader and passes its client’s query operation to
target trader.

The following example illustrates the modification of hop count parameter as a qu
request passes through a set of linked traders in a trading graph. We assume tha
link follow policies in the traders will result inalways follow behavior.

1. A query request is invoked at the trading interface of T1 with an importer’s hop
count policy expressed as hop_count = 4. The trader scoping policy for T1 inclu
max_hop_count = 5. The resultant hop_count applied for the search (after the
arbitration action that combines the trader policy and the importer policy) is
hop_count = 4.

2. We assume that no match is found in T1 and the resulting follow policy is alwa
That is, T1 is to pass the request to T3. A modified importer hop_count policy o
hop_count = 3 is used. The local trader scoping policy for T3 includes
Trading Service V1.0 Interworking Mechanisms May 2000 1-17

1

lic
ch at

,

e

ing
e

max_hop_count = 1 and the generation of T3_Request_id to avoid repeat or cyc
searches of the same traders. The resultant scoping policy applied for the sear
T3 is hop_count = 1 and the T3_Request_id is stored.

3. Assuming that no match is found in T3 and the resulting follow policy is always
the modified scoping parameter for the query request at T4 is: hop_count = 0 and
request_id = T3_Request_id.

4. Assuming that no match is found in T4. Even though the max_hop_count = 4 for
T4, the search is not propagated further. An unsuccessful search result will be
passed back to T3, to T1, and finally to the user at T1.

Of course, if a query request is completed successfully at any of the traders on th
linked search path, then the list of matched service offers will be returned to the
original user. Whether the query request is propagated through the remaining trad
graph depends upon the link follow policies; in this case, where it is assumed to b
always, the query will still visit all of the traders commensurate with the hop count
policy.

Figure 1-4 Flow of a query through a trader graph

Legend

Service Offer

Link

Trader Attribute

query.hop_count = 4

query.hop_count = 3

query.hop_count = 0

max_hop_count = 5

max_hop_count = 1

max_hop_count = 4

request_id_stem

query.request_id = T3_request_id

T1

T2
T3

T4

def_follow_policy = always

def_follow_policy = always

def_follow_policy = always
1-18 Trading Object Service V1.0 May 2000

1

d in
ther

xy

m of

l

ctory
ce of

of
he
1.3.3 Proxy Offers

A proxy offer is a cross between a service offer and a form of restricted link. It
includes the service type and properties of a service offer and, as such, is matche
the same way. However, if the proxy offer matches the importer’s requirements, ra
than returning details of the offer, the query request (modified) is forwarded to the
Lookup interface associated with the proxy offer.

typedef Istring ConstraintRecipe;

struct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

};

If an importer’s query results in a match to a proxy offer, the trader holding the pro
offer performs a nested query on the trader hiding behind the proxy offer with the
following parameters:

• The original type parameter is passed on unchanged.

• A new constraint parameter is constructed following theConstraintRecipe
associated with the proxy offer.

• The original preference parameter is passed on unchanged.

• A new policies parameter is constructed by appending thepolicies_to_pass_on
associated with the proxy offer to the original policies parameter.

• The originaldesired_props parameter is passed on unchanged.

• The calling trader supplies a value ofhow_many that makes sense given its
resource constraints.

Proxy offers are a convenient way to package the encapsulation of a legacy syste
“objects” into the trading system. It permits clients to lookup these “objects” by
matching the proxy offer. The nested call to the proxy trader, together with the
rewritten constraint expression and the additional policies appended to the origina
policy parameter, permits the dynamic creation of a service instance which
encapsulates the legacy object. Another possible use of proxies is for a service fa
to be advertised as a proxy offer; the nested call to the factory causes a new instan
the particular service to be manufactured.

A query may have matched a proxy offer due to a particular value of a property
associated with the proxy offer. Any offer returned by the proxy trader as a result
the nested query must have the same value for that property so as not to violate t
client’s expectations regarding the constraint.
Trading Service V1.0 Interworking Mechanisms May 2000 1-19

1

rt

fined

ry

uery

n

d in

 an

d to

d

d

the
A trader does not have to support the proxy offer functionality. Traders that suppo
such functionality must provide the Proxy interface for the export, withdraw, and
describe of proxy offers. An importer can specify whether or not a trader should
consider proxy offers during matching.

1.3.4 Trader Attributes

Each trader has its own characteristics, policies for supported functionalities, and
policies for scoping the extent of search. These characteristics and policies are de
as attributes to the trader. These attributes are described in Table 1-4.

Table 1-4 Trader Attributes

Name IDL Type Description

def_search_card unsigned long Default upper bound of offers to be searched for a que
operation

max_search_card unsigned long Maximum upper bound of offers to be searched for a q
operation

def_match_card unsigned long Default upper bound of matched offers to be ordered i
applying a preference criteria

max_match_card unsigned long Maximum upper bound of matched offers to be ordere
applying a preference criteria

def_return_card unsigned long Default upper bound of ordered offers to be returned to
importer

max_return_card unsigned long Maximum upper bound of ordered offers to be returne
an importer

def_hop_count unsigned long Default upper bound of depth of links to be traversed

max_hop_count unsigned long Maximum upper bound of depth of links to be traverse

max_list unsigned long The upper bound on the size of any list returned by the
trader, namely the returned offers parameter in query, an
the next_n operations in OfferIterator and OfferIdIterator.

def_follow_policy FollowOption Default link follow behavior for a particular trader

max_follow_policy FollowOption Limiting link follow policy for all links of the trader - over-
rides both link and importer policies

max_link_follow_policy FollowOption Most permissive follow policy allowed when creating new
links

supports_modifiable_properties boolean Whether the trader supports property modification

supports_dynamic_properties boolean Whether the trader supports dynamic properties

supports_proxy_offers boolean Whether the trader supports proxy offers

type_repos TypeRepository Interface to trader’s service type repository

request_id_stem OctetSeq Identification of the trader, to be used as the stem for
production of an id for a query request from one trader to
another
1-20 Trading Object Service V1.0 May 2000

1

efer

e of
These attributes are initially specified when a trader is created and can be
modified/interrogated via theAdmin interface.

1.4 Exceptions

This specification defines the exceptions raised by operations. Exceptions are
parameterized to indicate the source of the error. The OMG IDL segments below r
to some of the typedef’s defined in Section 1.2, “Concepts and Data Types,” on
page 1-4.

When multiple exception conditions arise, only one exception is raised. The choic
exception to raise is implementation-dependent.

1.4.1 For CosTrading Module

1.4.1.1 Exceptions used in more than one interface

exception UnknownMaxLeft {};

exception NotImplemented {};

exception IllegalServiceType {
ServiceTypeName type;

};

exception UnknownServiceType {
ServiceTypeName type;

};

exception IllegalPropertyName {
PropertyName name;

};

exception DuplicatePropertyName {
PropertyName name;

};

exception PropertyTypeMismatch {
ServiceTypeName type;
Property prop;

};

exception MissingMandatoryProperty {
ServiceTypeName type;
PropertyName name;

};

exception IllegalConstraint {
Trading Service V1.0 Exceptions May 2000 1-21

1

Constraint constr;
};

exception InvalidLookupRef {
Lookup target;

};

exception IllegalOfferId {
OfferId id;

};

exception UnknownOfferId {
OfferId id;

};

exception ReadonlyDynamicProperty {
ServiceTypeName type;
PropertyName name;

};

exception DuplicatePolicyName {
PolicyName name;

};

1.4.1.2 Additional Exceptions for Lookup Interface

exception IllegalPreference {
Preference pref;

};

exception IllegalPolicyName {
PolicyName name;

};

exception PolicyTypeMismatch {
Policy the_policy;

};

exception InvalidPolicyValue {
Policy the_policy;

};
exception IllegalPreference {

Preference pref;
};
exception IllegalPolicyName {

PolicyName name;
};
exception PolicyTypeMismatch {

Policy policy;
};
1-22 Trading Object Service V1.0 May 2000

1

1.4.1.3 Additional Exceptions For Register Interface

exception InvalidObjectRef {
Object ref;

};

exception UnknownPropertyName {
PropertyName name;

};

exception InterfaceTypeMismatch {
ServiceTypeName type;
Object reference;

};

exception ProxyOfferId {
OfferId id;

};

exception MandatoryProperty {
ServiceTypeName type;
PropertyName name;

};

exception ReadonlyProperty {
ServiceTypeName type;
PropertyName name;

};

exception NoMatchingOffers {
Constraint constr;

};

exception IllegalTraderName {
TraderName name;

};

exception UnknownTraderName {
TraderName name;

};

exception RegisterNotSupported {
TraderName name;

};

1.4.1.4 Additional Exceptions for Link Interface

exception IllegalLinkName {
LinkName name;

};
Trading Service V1.0 Exceptions May 2000 1-23

1

one
exception UnknownLinkName {
LinkName name;

};

exception DuplicateLinkName {
LinkName name;

};

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;
FollowOption max_link_follow_policy;

};

1.4.1.5 Additional Exceptions for Proxy Offer Interface

exception IllegalRecipe {
ConstraintRecipe recipe;

};

exception NotProxyOfferId {
OfferId id;

};

1.4.2 For CosTradingDynamic module

There is only a DynamicPropEval interface in this module. The interface has only
operation which raises the exception:

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

1.4.3 For CosTradingRepos module

There is only the ServiceTypeRepository interface in this module. The following
interface-specific exceptions can be raised:

exception ServiceTypeExists {
CosTrading::ServiceTypeName name;

};
exception InterfaceTypeMismatch {
1-24 Trading Object Service V1.0 May 2000

1

CosTrading::ServiceTypeName base_service;
Identifier base_if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;

};
exception HasSubTypes {

CosTrading::ServiceTypeName the_type;
CosTrading::ServiceTypeName sub_type;

};
exception AlreadyMasked {

CosTrading::ServiceTypeName name;
};
exception NotMasked {

CosTrading::ServiceTypeName name;
};
exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;
PropStruct definition_1;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

};
exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;
};
Trading Service V1.0 Exceptions May 2000 1-25

1

1-26 Trading Object Service V1.0 May 2000

TradingObjectService Interfaces 2
f the
Contents

This chapter contains the following sections.

2.1 Abstract Interfaces

To enable the construction of traders with varying support for the different trader
interfaces, this specification defines several abstract interfaces from which each o
trading object service functional interfaces (Lookup, Register, Link, Proxy, and
Admin) are derived. Each of these abstract interfaces are documented below.

2.1.1 TraderComponents

interface TraderComponents {
readonly attribute Lookup lookup_if;
readonly attribute Register register_if;
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin_if;

};

Section Title Page

“Abstract Interfaces” 2-1

“Functional Interfaces” 2-3

“Service Type Repository” 2-29

“Dynamic Property Evaluation interface” 2-36

“Conformance Criteria” 2-37
Trading Object Service V1.0 May 2000 2-1

2

ne

this,

y to

e.

the

this

nd
e

A trader’s functionality can be configured by composing the defined interfaces in o
of several prescribed combinations. The composition is not modeled through
inheritance, but rather by multiple interfaces to an object. Given one of these
interfaces, a way of finding the other associated interfaces is needed. To facilitate
each trader functional interface is derived from the TraderComponents interface.

The TraderComponents interface contains five readonly attributes that provide a wa
get a specific object reference.

The implementation of the_get_<interface>_if() operation must return a nil object
reference if the trading service in question does not support that particular interfac

2.1.2 SupportAttributes

interface SupportAttributes {
readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

};

In addition to the ability of a trader implementation to selectively choose which
functional interfaces to support, a trader implementation may also choose not to
support modifiable properties, dynamic properties, and/or proxy offers. The
functionality supported by a trader implementation can be determined by querying
readonly attributes in this interface.

The type repository used by the trader implementation can also be obtained from
interface.

2.1.3 ImportAttributes

interface ImportAttributes {
readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_return_card;
readonly attribute unsigned long max_return_card;
readonly attribute unsigned long max_list;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_policy;
readonly attribute FollowOption max_follow_policy;

};

Each trader is configured with default and maximum values of certain cardinality a
link follow constraints that apply to queries. The values for these constraints can b
obtained by querying the attributes in this interface.
2-2 Trading Object Service V1.0 May 2000

2

t
n

up,
2.1.4 LinkAttributes

interface LinkAttributes {
readonly attribute FollowOption max_link_follow_policy;

};

When a trader creates a new link or modifies an existing link the
max_link_follow_policy attribute will determine the most permissive behavior tha
the link will be allowed. The value for this constraint on link creation and modificatio
can be obtained from this interface.

2.2 Functional Interfaces

This section describes the five functional interfaces to a trading object service: Look
Register, Link, Admin, and Proxy. The two iterator interfaces needed for these
functional interfaces are also described.

2.2.1 Lookup

interface Lookup:TraderComponents,SupportAttributes, ImportAttributes {

typedef Istring Preference;

enum HowManyProps {none, some, all };

union SpecifiedProps switch (HowManyProps) {
case some: PropertyNameSeq prop_names;
};

exception IllegalPreference {
Preference pref;

};

exception IllegalPolicyName {
PolicyName name;

};

exception PolicyTypeMismatch {
Policy the_policy;

};

exception InvalidPolicyValue {
Policy the_policy;

};

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
Trading Service V1.0 Functional Interfaces May 2000 2-3

2

in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out OfferIterator offer_itr,
out PolicyNameSeq limits_applied

) raises (
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
IllegalPreference,
IllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
IllegalPropertyName,
DuplicatePropertyName,
DuplicatePolicyName

);
};

2.2.1.1 Query Operation

Signature

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out OfferIterator offer_itr,
out PolicyNameSeq limits_applied

) raises (
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
IllegalPreference,
IllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
IllegalPropertyName,

DuplicatePropertyName,
DuplicatePolicyName

);
2-4 Trading Object Service V1.0 May 2000

2

er

ose

e.

he

e
well-

.

of
ts
s,

fies

e

e
r

Function

The query operation is the means by which an object can obtain references to oth
objects that provide services meeting its requirements.

The type parameter conveys the required service type. It is key to the central purp
of trading: to perform an introduction for future type safe interactions between
importer and exporter. By stating a service type, the importer implies the desired
interface type and a domain of discourse for talking about properties of the servic

• If the string representation of thetype does not obey the rules for service type
identifiers, then anIllegalServiceType exception is raised.

• If the type is correct syntactically but is not recognized as a service type within t
trading scope, then anUnknownServiceType exception is raised.

The trader may return a service offer of a subtype of thetype requested. Sub-typing of
service types is discussed in Section 1.2.3, “Service Types,” on page 1-4. A servic
subtype can be described by the properties of its supertypes. This ensures that a
formed query for thetype is also a well-formed query with respect to any subtypes
However, if the importer specifies the policy ofexact_type_match = TRUE, then
only offers with the exact (no subtype) service type requested are returned.

The constraintconstr is the means by which the importer states those requirements
a service that are not captured in the signature of the interface. These requiremen
deal with the computational behavior of the desired service, non-functional aspect
and non-computational aspects (such as the organization owning the objects that
provide the service). An importer is always guaranteed that any returned offer satis
the matching constraint at the time of import. If theconstr does not obey the syntax
rules for a legal constraint expression, then anIllegalConstraint exception is raised.

Thepref parameter is also used to order those offers that match theconstr so that the
offers returned by the trader are in the order of greatest interest to the importer. Ifpref
does not obey the syntax rules for a legal preference expression, then an
IllegalPreference exception is raised.

The policies parameter allows the importer to specify how the search should be
performed as opposed to what sort of services should be found in the course of th
search. This can be viewed as parameterizing the algorithms within the trader
implementation. Thepolicies are a sequence of name-value pairs. The names
available to an importer depend on the implementation of the trader. However, som
names are standardized where they effect the interpretation of other parameters o
where they may impact linking and federation of traders.

• If a policy name in this parameter does not obey the syntactic rules for legal
PolicyName’s, then anIllegalPolicyName exception is raised.

• If the type of the value associated with a policy differs from that specified in this
specification, then aPolicyTypeMismatch exception is raised.

• If subsequent processing of a PolicyValue yields any errors (e.g., the
starting_trader policy value is malformed), then anInvalidPolicyValue
exception is raised.
Trading Service V1.0 Functional Interfaces May 2000 2-5

2

he

ers

me

).

to

its
• If the same policy name is included two or more times in this parameter, then t
DuplicatePolicyName exception is raised.

Thedesired_props parameter defines the set of properties describing returned off
that are to be returned with the object reference. There are three possibilities, the
importer wants one of the properties, all of the properties (but without having to na
them), or some properties (the names of which are provided).

1. If any of thedesired_props names do not obey the rules for identifiers, then an
IllegalPropertyName exception is raised.

2. If the same property name is included two or more times in this parameter, the
DuplicatePropertyName exception is raised. Thedesired_props parameter
may name properties which are not mandatory for the requested service type.

3. If the named property is present in the matched service offer, then it shall be
returned.

The desired_props parameter does not affect whether or not a service offer is
returned. To avoid “missing” desired properties, the importer should specify “exists
prop_name” in the constraint.

The returned offers are passed back in one of two ways (or a combination of both

• The “offers” return result conveys a list of offers and theoffer_itr is a reference to
an interface at which offers can be obtained.

• The how_many parameter states how many offers are to be returned via the
“offers” result, any remaining offers are available via the iterator interface. If the
how_many exceeds the number of offers to be returned, then theoffer_itr will be
nil.

If any cardinality or other limits were applied by one or more traders in responding
a particular query, then thelimits_applied parameter will contain the names of the
policies which limited the query. The sequence of names returned inlimits_applied
from any federated or proxy queries must be concatenated onto the names of lim
applied locally and returned.

Importer Policy Specifications

struct LookupPolicies {
unsigned long search_card;
unsigned long match_card;
unsigned long return_card;
boolean use_modifiable_properties;
boolean use_dynamic_properties;
boolean use_proxy_offers;
TraderName starting_trader;
FollowOption link_follow_rule;
unsigned long hop_count;
boolean exact_type_match;

};
2-6 Trading Object Service V1.0 May 2000

2

tch.

alue

r
h

ype
y is
t

nt
ill

the
be
n.

ld in

r’s
The search_card policy indicates to the trader the maximum number of offers it
should consider when looking for type conformance and constraint expression ma
The lesser of this value and the trader’smax_search_card attribute is used by the
trader. If this policy is not specified, then the value of the trader’sdef_search_card
attribute is used.

The match_card policy indicates to the trader the maximum number of matching
offers to which the preference specification should be applied. The lesser of this v
and the trader’smax_match_card attribute is used by the trader. If this policy is not
specified, then the value of the trader’sdef_match_card attribute is used.

The return_card policy indicates to the trader the maximum number of matching
offers to return as a result of this query. The lesser of this value and the trader’s
max_return_card attribute is used by the trader. If this policy is not specified, then
the value of the trader’sdef_return_card attribute is used.

Theuse_modifiable_properties policy indicates whether the trader should conside
offers which have modifiable properties when constructing the set of offers to whic
type conformance and constraint processing should be applied. If the value of this
policy is TRUE, then such offers will be included; if FALSE, they will not. If this
policy is not specified, such offers will be included.

The use_dynamic_properties policy indicates whether the trader should consider
offers which have dynamic properties when constructing the set of offers to which t
conformance and constraint processing should be applied. If the value of this polic
TRUE, then such offers will be included; if FALSE, they will not. If this policy is no
specified, such offers will be included.

The use_proxy_offers policy indicates whether the trader should consider proxy
offers when constructing the set of offers to which type conformance and constrai
processing should be applied. If the value of this policy is TRUE, then such offers w
be included; if FALSE, they will not. If this policy is not specified, such offers will be
included.

The starting_trader policy facilitates the distribution of the trading service itself. It
allows an importer to scope a search by choosing to explicitly navigate the links of
trading graph. If the policy is used in a query invocation it is recommended that it
the first policy-value pair; this facilitates an optimal forwarding of the query operatio
A policies parameter need not include a value for thestarting_trader policy. Where
this policy is present, the first name component is compared against the name he
each link. If no match is found, theInvalidPolicyValue exception is raised.
Otherwise, the trader invokesquery() on theLookup interface held by the named
link, but passing thestarting_trader policy with the first component removed.

The link_follow_rule policy indicates how the client wishes links to be followed in
the resolution of its query. See the discussion in Section 1.2.7.6, “Link Follow
Behavior,” on page 1-15 for details.

The hop_count policy indicates to the trader the maximum number of hops across
federation links that should be tolerated in the resolution of this query. The
hop_count at the current trader is determined by taking the minimum of the trade
max_hop_count attribute and the importer’shop_count policy , if provided, or the
Trading Service V1.0 Functional Interfaces May 2000 2-7

2

nted

e
fer

n the

or.

e

on
trader’sdef_hop_count attribute if it is not. If the resulting value is zero, then no
federated queries are permitted. If it is greater than zero, then it must be decreme
before passing on to a federated trader.

The exact_type_match policy indicates to the trader whether the importer’s servic
type must exactly match an offer’s service type; if not (and by default), then any of
of a type conformant to the importer’s service type is considered.

2.2.2 Offer Iterator

2.2.2.1 Signature

interface OfferIterator {
unsigned long max_left (
) raises (

UnknownMaxLeft
);
boolean next_n (

in unsigned long n,
out OfferSeq offers

);
void destroy ();

};

2.2.2.2 Function

The OfferIterator interface is used to return a set of service offers from the query
operation by enabling the service offers to be extracted by successive operations o
OfferIterator interface.

The next_n operation returns a set of service offers in the output parameteroffers .
The operation returnsn service offers if there are at leastn service offers remaining in
the iterator. If there are fewer thann service offers in the iterator, then all remaining
service offers are returned. The actual number of service offers returned can be
determined from the length of theoffers sequence. Thenext_n operation returns
TRUE if there are further service offers to be extracted from the iterator. It returns
FALSE if there are no further service offers to be extracted.

Themax_left operation returns the number of service offers remaining in the iterat
The exceptionUnknownMaxLeft is raised if the iterator cannot determine the
remaining number of service offers (e.g., if the iterator determines its set of servic
offers through lazy evaluation).

The destroy operation destroys the iterator. No further operations can be invoked
an iterator after it has been destroyed.
2-8 Trading Object Service V1.0 May 2000

2

2.2.3 Register

interface Register : TraderComponents, SupportAttributes {

struct OfferInfo {
Object reference;
ServiceTypeName type;
PropertySeq properties;

};

exception InvalidObjectRef {
Object ref;

};

exception UnknownPropertyName {
PropertyName name;

};

exception InterfaceTypeMismatch {
ServiceTypeName type;
Object reference;

};

exception ProxyOfferId {
OfferId id;

};

exception MandatoryProperty {
ServiceTypeName type;
PropertyName name;

};

exception ReadonlyProperty {
ServiceTypeName type;
PropertyName name;

};

exception NoMatchingOffers {
Constraint constr;

};

exception IllegalTraderName {
TraderName name;

};

exception UnknownTraderName {
TraderName name;

};

exception RegisterNotSupported {
Trading Service V1.0 Functional Interfaces May 2000 2-9

2

TraderName name;
};

OfferId export (
in Object reference,
in ServiceTypeName type,
in PropertySeq properties

) raises (
InvalidObjectRef,
IllegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
IllegalPropertyName, // e.g. prop_name = “<foo-bar”
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
DuplicatePropertyName

);

void withdraw (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
ProxyOfferId

);

OfferInfo describe (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
ProxyOfferId

);

void modify (
in OfferId id,
in PropertyNameSeq del_list,
in PropertySeq modify_list

) raises (
NotImplemented,
IllegalOfferId,
UnknownOfferId,
ProxyOfferId,
IllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,
DuplicatePropertyName
2-10 Trading Object Service V1.0 May 2000

2

o a

d

);

void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

) raises (
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
NoMatchingOffers

);

Register resolve (
in TraderName name

) raises (
IllegalTraderName,
UnknownTraderName,
RegisterNotSupported

);
};

2.2.3.1 Export Operation

Signature

OfferId export (
in Object reference,
in ServiceTypeName type,
in PropertySeq properties

) raises (
InvalidObjectRef,
IllegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
IllegalPropertyName, // e.g. prop_name = “<foo-bar”
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
DuplicatePropertyName

);

Function

The export operation is the means by which a service is advertised, via a trader, t
community of potential importers. TheOfferId returned is the handle with which the
exporter can identify the exported offer when attempting to access it via other
operations. TheOfferId is only meaningful in the context of the trader that generate
it.
Trading Service V1.0 Functional Interfaces May 2000 2-11

2

ect

the
ng

ne

lue

ects

y,

a

The reference parameter is the information that enables a client to interact with a
remote server. If a trader implementation chooses to consider certain types of obj
references (e.g., a nil object reference) to be unexportable, then it may return the
InvalidObjectRef exception in such cases.

The type parameter identifies the service type, which contains the interface type of
reference and a set of named property types that may be used in further describi
this offer (i.e., it restricts what is acceptable in the properties parameter).

• If the string representation of thetype does not obey the rules for identifiers, then
an IllegalServiceType exception is raised.

• If the type is correct syntactically but a trader is able to unambiguously determi
that it is not a recognized service type, then anUnknownServiceType exception
is raised.

• If the trader can determine that the interface type of thereference parameter is not
a subtype of the interface type specified intype , then an
InterfaceTypeMismatch exception is raised.

Theproperties parameter is a list of named values that conform to the property va
types defined for those names. They describe the service being offered. This
description typically covers behavioral, non-functional, and non-computational asp
of the service.

• If any of the property names do not obey the syntax rules forPropertyNames ,
then anIllegalPropertyName exception is raised.

• If the type of any of the property values is not the same as the declared type
(declared in the service type), then aPropertyTypeMismatch exception is
raised.

• If an attempt is made to assign a dynamic property value to a readonly propert
then theReadonlyDynamicProperty exception is raised.

• If the properties parameter omits any property declared in the service type with
mode of mandatory, then aMissingMandatoryProperty exception is raised.

• If two or more properties with the same property name are included in this
parameter, theDuplicatePropertyName exception is raised.

2.2.3.2 Withdraw Operation

Signature

void withdraw (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
ProxyOfferId

);
2-12 Trading Object Service V1.0 May 2000

2

w
by

n

ld

n

Function

Thewithdraw operation removes the service offer from the trader (i.e., after withdra
the offer can no longer be returned as the result of a query). The offer is identified
the id parameter which was originally returned by export.

• If the string representation ofid does not obey the rules for offer identifiers, then a
IllegalOfferId exception is raised.

• If the id is legal but there is no offer within the trader with thatid , then an
UnknownOfferId exception is raised.

• If the id identifies a proxy offer rather than an ordinary offer, then aProxyOfferId
exception is raised.

2.2.3.3 Describe Operation

Signature

OfferInfo describe (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
ProxyOfferId

);

Function

The describe operation returns the information about an offered service that is he
by the trader. It comprises thereference of the offered service, thetype of the service
offer, and theproperties that describe this offer of service. The offer is identified by
the id parameter, which was originally returned by export.

• If the string representation ofid does not obey the rules for object identifiers, the
an IllegalOfferId exception is raised.

• If the id is legal but there is no offer within the trader with thatid , then an
UnknownOfferId exception is raised.

• If the id identifies a proxy offer rather than an ordinary offer, then aProxyOfferId
exception is raised.

2.2.3.4 Modify Operation

Signature

void modify (
in OfferId id,
in PropertyNameSeq del_list,
in PropertySeq modify_list

) raises (
Trading Service V1.0 Functional Interfaces May 2000 2-13

2

a
nnot

s

n

NotImplemented,
IllegalOfferId,
UnknownOfferId,
ProxyOfferId,
IllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,
DuplicatePropertyName

);

Function

The modify operation is used to change the description of a service as held within
service offer. The object reference and the service type associated with the offer ca
be changed. This operation may:

• add new (non-mandatory) properties to describe an offer,

• change the values of some existing (not readonly) properties, or

• delete existing (neither mandatory nor readonly) properties.

The modify operation either succeeds completely or it fails completely. The offer i
identified by theid parameter which was originally returned by export.

• If the string representation ofid does not obey the rules for offer identifiers, then a
IllegalOfferId exception is raised.

• If the id is legal but there is no offer within the trader with thatid , then an
UnknownOfferId exception is raised.

• If the id identifies a proxy offer rather than an ordinary offer, then aProxyOfferId
exception is raised.

The del_list parameter gives the names of the properties that are no longer to be
recorded for the identified offer. Future query and describe operations will not see
these properties.

• If any of the names within thedel_list do not obey the rules for PropertyName’s,
then anIllegalPropertyName exception is raised.

• If a name is legal but there is no property for the offer with thatname , then an
UnknownPropertyName exception is raised.

• If the list includes a property that has a mandatory mode, then the
MandatoryProperty exception is raised.

• If the same property name is included two or more times in this parameter, the
DuplicatePropertyName exception is raised.
2-14 Trading Object Service V1.0 May 2000

2

d. If

ce of

e

ce

ing

s a
Themodify_list parameter gives the names and values of properties to be change
the property is not in the offer, then the modify operation adds it. The modified (or
added) property values are returned in future query and describe operations in pla
the original values.

• If any of the names within themodify_list do not obey the rules for
PropertyName’s, then anIllegalPropertyName exception is raised.

• If the list includes a property that has a readonly mode, then the
ReadonlyProperty exception is raised unless that readonly property is not
currently recorded for the offer. TheReadonlyDynamicProperty exception is
raised if an attempt is made to assign a dynamic property value to a readonly
property.

• If the value of any modified property is of a type that is not the same as the typ
expected, then thePropertyTypeMismatch exception is raised.

• If two or more properties with the same property name are included in this
argument, theDuplicatePropertyName exception is raised.

The NotImplemented exception shall be raised if and only if the
supports_modifiable_properties attribute yields FALSE.

Note – It is not possible to change the service type of an offer or the object referen
of the service. This has to be achieved by withdrawing and then re-exporting. The
purpose of modify is to change the description of the offered service while preserv
theOfferId . This might be important where theOfferId has been propagated around a
community of objects.

2.2.3.5 Withdraw Using Constraint Operation

Signature

void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

) raises (
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
NoMatchingOffers

);

Function

The withdraw_using_constraint operation withdraws a set of offers from within a
single trader. This set is identified in the same way that a query operation identifie
set of offers to be returned to an importer.
Trading Service V1.0 Functional Interfaces May 2000 2-15

2

ype
ion,

a

by
me

,

The type parameter conveys the required service type. Each offer of the specified t
will have the constraint expression applied to it. If it matches the constraint express
then the offer will be withdrawn.

• If type does not obey the rules for service types, then anIllegalServiceType
exception is raised.

• If the type is correct syntactically but is not recognized as a service type by the
trader, then anUnknownServiceType exception is raised.

The constraintconstr is the means by which the client restricts the set of offers to
those that are intended for withdrawal.

• If constr does not obey the syntax rules for a constraint, then an
IllegalConstraint exception is raised.

• If the constraint fails to match with any offer of the specified service type, then
NoMatchingOffers exception is raised.

2.2.3.6 Resolve Operation

Signature

Register resolve (
in TraderName name

) raises (
IllegalTraderName,
UnknownTraderName,
RegisterNotSupported

);

Function

This operation is used to resolve a context relative name for another trader. In
particular, it is used when exporting to a trader that is known by a name rather than
an object reference. The client provides the name, which will be a sequence of na
components.

• If the content of the parameter cannot yield legal syntax for the first component
then theIllegalTraderName exception is raised. Otherwise, the first name
component is compared against the name held in each link.

• If no match is found, or the trader does not support links, the
UnknownTraderName exception is raised. Otherwise, the trader obtains the
register_if held as part of the matched link.

• If the Register interface is not nil, then the trader binds to theRegister interface
and invokes resolve but passes theTraderName with the first component removed;
if it is nil, then theRegisterNotSupported exception is raised.
2-16 Trading Object Service V1.0 May 2000

2

, that

E

fer

on
When a trader is able to match the first name component leaving no residual name
trader returns the reference for theRegister interface for that linked trader. In
unwinding the recursion, intermediate traders return theRegister interface reference
to their client (another trader).

2.2.4 Offer Id Iterator

2.2.4.1 Signature

interface OfferIdIterator {

unsigned long max_left (
) raises (

UnknownMaxLeft
);

boolean next_n (
in unsigned long n,
out OfferIdSeq ids

);

void destroy ();
};

2.2.4.2 Function

The OfferIdIterator interface is used to return a set of offer identifiers from the
list_offers operation and thelist_proxies operation in theAdmin interface by
enabling the offer identifiers to be extracted by successive operations on the
OfferIdIterator interface.

Thenext_n operation returns a set of offer identifiers in the output parameterids. The
operation returnsn offer identifiers if there are at leastn offer identifiers remaining in
the iterator. If there are fewer thann offer identifiers in the iterator, then all remaining
offer identifiers are returned. The actual number of offer identifiers returned can be
determined from the length of theids sequence. Thenext_n operation returns TRUE
if there are further offer identifiers to be extracted from the iterator. It returns FALS
if there are no further offer identifiers to be extracted.

The max_left operation returns the number of offer identifiers remaining in the
iterator. The exceptionUnknownMaxLeft is raised if the iterator cannot determine
the remaining number of offer identifiers (e.g., if the iterator determines its set of of
identifiers through lazy evaluation).

The destroy operation destroys the iterator. No further operations can be invoked
an iterator after it has been destroyed.
Trading Service V1.0 Functional Interfaces May 2000 2-17

2

2.2.5 Admin

interface Admin : TraderComponents, SupportAttributes,
ImportAttributes,LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);
unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);
unsigned long set_max_match_card (in unsigned long value);
unsigned long set_def_return_card (in unsigned long value);
unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_modifiable_properties (in boolean value);
boolean set_supports_dynamic_properties (in boolean value);
boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);
unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_max_follow_policy (in FollowOption policy);
FollowOption set_def_follow_policy (in FollowOption policy);

FollowOption set_max_link_follow_policy (in FollowOptionpolicy);

TypeRepository set_type_repos (in TypeRepository repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (
in unsigned long how_many,
out OfferIdSeq ids,
out OfferIdIterator id_itr

) raises (
NotImplemented

);

void list_proxies (
in unsigned long how_many,
out OfferIdSeq ids,
out OfferIdIterator id_itr

) raises (
NotImplemented

);
};
2-18 Trading Object Service V1.0 May 2000

2

ten.

on

ing
tion
re

th).

e

2.2.5.1 Attributes and Set Operations

The admin interface enables the values of the trader attributes to be read and writ
All attributes are defined as readonly in eitherSupportAttributes ,
ImportAttributes , LinkAttributes , or Admin . To set the trader “attribute” to a new
value,set_<attribute_name> operations are defined inAdmin . Each of these set
operations returns the previous value of the attribute as its function value.

If the admin interface operationset_support_proxy_offers is invoked with a value
set to FALSE in a trader which supports the proxy interface, the
set_support_proxy_offer value does not affect the function of operations in the
proxy interface. However, in this case, it does have the effect of making any proxy
offers exported via the proxy interface for that trader unavailable to satisfy queries
that trader’s lookup interface.

2.2.5.2 List Offers Operation

Signature

void list_offers (
in unsigned long how_many,
out OfferIdSeq ids,
out OfferIdIterator id_itr

) raises (
NotImplemented

);

Function

The list_offers operation allows the administrator of a trader to perform housekeep
by obtaining a handle on each of the offers within a trader (e.g., for garbage collec
etc.). Only the identifiers of ordinary offers are returned, identifiers of proxy offers a
not returned via this operation. If the trader does not support theRegister interface,
the NotImplemented exception is raised.

The returned identifiers are passed back in one of two ways (or a combination of bo

• The ids return result conveys a list of offer identifiers and theid_itr is a reference
to an interface at which additional offer identities can be obtained.

• The how_many parameter states how many identifiers are to be returned via th
ids result; any remaining are available via the iterator interface. If thehow_many
exceeds the number of offers held in the trader, then theid_itr is nil.

2.2.5.3 List Proxies Operation

Signature

void list_proxies (
in unsigned long how_many,
Trading Service V1.0 Functional Interfaces May 2000 2-19

2

y

out OfferIdSeq ids,
out OfferIdIterator id_itr

) raises (
NotImplemented

);

Function

The list_proxies operation returns the set of offer identifiers for proxy offers held b
a trader. Mosthow_many offer identifiers are returned viaids if:

• There are more thanhow_many offer identifiers, the remainder are returned via
the id_itr iterator.

• There are onlyhow_many or fewer offer identifiers, theid_itr is nil.

• The trader does not support theProxy interface, theNotImplemented exception
is raised.

2.2.6 Link

interface Link : TraderComponents, SupportAttributes,
LinkAttributes {

struct LinkInfo {
Lookup target;
Register target_reg;
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

};

exception IllegalLinkName {
LinkName name;

};

exception UnknownLinkName {
LinkName name;

};

exception DuplicateLinkName {
LinkName name;

};

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;
2-20 Trading Object Service V1.0 May 2000

2

FollowOption max_link_follow_policy;
};

void add_link (
in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);

void remove_link (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName

);

LinkInfo describe_link (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName

);

LinkNameSeq list_links ();
void modify_link (

in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
UnknownLinkName,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);
};

2.2.6.1 Add_Link Operation

Signature

void add_link (
in LinkName name,
in Lookup target,
Trading Service V1.0 Functional Interfaces May 2000 2-21

2

the

e
nce

f

in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);

Function

The add_link operation allows a trader subsequently to use the service of another
trader in the performance of its own trading service operations.

Thename parameter is used in subsequent link management operations to identify
intended link. If the parameter is not legally formed, then theIllegalLinkName
exception is raised. An exception ofDuplicateLinkName is raised if the link name
already exists. The link name is also used as a component in a sequence of nam
components in naming a trader for resolving or forwarding operations. The seque
of context relative link names provides a path to a trader.

The target parameter identifies theLookup interface at which the trading service
provided by the target trader can be accessed. Should theLookup interface parameter
be nil, then an exception ofInvalidLookupRef is raised. The target interface is used
to obtain the associatedRegister interface, which will be subsequently returned as
part of adescribe_link operation and invoked as part of aresolve operation.

The def_pass_on_follow_rule parameter specifies the default link behavior for the
link if no link behavior is specified on an importer’s query request. If the
def_pass_on_follow_rule exceeds thelimiting_follow_rule specified in the next
parameter, then aDefaultFollowTooPermissive exception is raised.

The limiting_follow_rule parameter specifies the most permissive link follow
behavior that the link is willing to tolerate. The exception
LimitingFollowTooPermissive is raised if this parameter exceeds the trader’s
attribute ofmax_link_follow_policy at the time of the link’s creation. Note it is
possible for a link’slimiting_follow_rule to exceed the trader’s
max_link_follow_policy later in the life of a link, as it is possible that the trader
could set itsmax_link_follow_policy to a more restrictive value after the creation o
the link.

2.2.6.2 Remove Link Operation

Signature

void remove_link (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName
2-22 Trading Object Service V1.0 May 2000

2

tions

r.

pt
);

Function

The remove_link operation removes all knowledge of the target trader. The target
trader cannot be used subsequently to resolve, forward, or propagate trading opera
from this trader.

The name parameter identifies the link to be removed. The exception
IllegalLinkName is raised if the link is formed poorly and the
UnknownLinkName exception is raised if the named link is not in the trader.

2.2.6.3 Describe Link Operation

Signature

LinkInfo describe_link (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName

);

Function

The describe_link operation returns information on a link held in the trader.

The name parameter identifies the link whose description is required. For a
malformed link name, the exceptionIllegalLinkName is raised. An
UnknownLinkName exception is raised if the named link is not found in the trade

The operation returns aLinkInfo structure comprising:

• the Lookup interface of the target trading service,

• the Register interface of the target trading service, and

• the default, as well as the limiting follow behavior of the named link.

If the target service does not support theRegister interface, then that field of the
LinkInfo structure is nil. Given the description of theRegister::resolve() operation
in Section 2.2.3.6, “Resolve Operation,” on page 2-16, most implementations will o
for determining theRegister interface whenadd_link is called and storing that
information statically with the rest of the link state.

2.2.6.4 List Links Operation

Signature

LinkNameSeq list_links ();
Trading Service V1.0 Functional Interfaces May 2000 2-23

2

uch as

n
he

A

r.

r

f

Function

The list_links operation returns a list of the names of all trading links within the
trader. The names can be used subsequently for other management operations, s
describe_link or remove_link .

2.2.6.5 Modify Link Operation

Signature

void modify_link (
in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
UnknownLinkName,

DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);

Function

The modify_link operation is used to change the existing link follow behaviors of a
identified link. TheLookup interface reference of the target trader and the name of t
link cannot be changed.

The name parameter identifies the link whose follow behaviors are to be changed.
poorly formedname raises theIllegalLinkName exception. An
UnknownLinkName exception is raised if the link name is not known to the trade

Thedef_pass_on_follow_rule parameter specifies the new default link behavior fo
this link. If the def_pass_on_follow_rule exceeds thelimiting_follow_rule
specified in the next parameter, then aDefaultFollowTooPermissive exception is
raised.

The limiting_follow_rule parameter specifies the new limit for the follow behavior o
this link. The exceptionLimitingFollowTooPermissive is raised if the value
exceeds the currentmax_link_follow_policy of the trader.

2.2.7 Proxy

interface Proxy: TraderComponents, SupportAttributes {
typedef Istring ConstraintRecipe;
struct ProxyInfo {

ServiceTypeName type;
Lookup target;
PropertySeq properties;
2-24 Trading Object Service V1.0 May 2000

2

boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

};
exception IllegalRecipe {

ConstraintRecipe recipe;
};
exception NotProxyOfferId {

OfferId id;
};
OfferId export_proxy (

in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,
in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on

) raises (
IllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
IllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
IllegalRecipe,
DuplicatePropertyName,
DuplicatePolicyName

);

void withdraw_proxy (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
NotProxyOfferId

);

ProxyInfo describe_proxy (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
NotProxyOfferId

);
};
Trading Service V1.0 Functional Interfaces May 2000 2-25

2

rs.

e

n it

s
(i.e.,
iated

.

the
;

2.2.7.1 Export Proxy Operation

Signature

OfferId export_proxy (
in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,

in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on

) raises (
IllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
IllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
IllegalRecipe,
DuplicatePropertyName,
DuplicatePolicyName

);

Function

The Proxy interface enables the export and subsequent manipulation of proxy offe
Proxy offers enable run-time determination of the interface at which a service is
provided. Theexport_proxy operation adds a proxy offer to the trader’s set of servic
offers.

Like normal service offers, proxy offers have a service typetype and named property
valuesproperties . However, a proxy offer does not include an object reference at
which the offered service is provided. Instead this object reference is obtained whe
is needed for a query operation; it is obtained by invoking another query operation
upon the “target”Lookup interface held in the proxy offer.

The if_match_all parameter, if TRUE, indicates that the trader should consider thi
proxy offer as a match to an importers query based upon type conformance alone
it does not match the importer’s constraint expression against the properties assoc
with the proxy offer). This is most often useful when the constraint expression
supplied by the importer is simply passed along in the secondary query operation

The recipe parameter tells the trader how to construct the constraint expression for
secondary query operation totarget . The recipe language is described in Appendix C
it permits the secondary constraint expression to be made up of literals, values of
properties of the proxy offer, and the primary constraint expression.
2-26 Trading Object Service V1.0 May 2000

2

or

ing

ot

is

”

o

e
t

ny
Thepolicies_to_pass_on parameter provides a static set of <name, value> pairs f
relaying on to thetarget trader. Table 2-1 describes how the secondary policy
parameter is generated from the primary policy parameter and the
“policies_to_pass_on.”

If a query operation matches the proxy offer (using the normal service type match
and property matching and preference algorithms), this primary query operation
invokes a secondary query operation on theLookup interface nominated in the proxy
offer. Although the proxy offer nominates aLookup interface, this interface is only
required to conform syntactically to theLookup interface; it need not conform to the
Lookup interface behavior specified above.

The secondary query operation is detailed in Table 2-1.

Table 2-1 Primary/Secondary Policy Parameters

• The IllegalServiceType exception is raised if the service type name (type) is n
well-formed.

• TheUnknownServiceType exception is raised if the service type name (type)
not known to the trader.

• The InvalidLookupRef exception is raised if target is not a validLookup
interface reference (e.g., if target is a nil object reference).

• The IllegalPropertyName exception is raised if a property name in “properties
is not well-formed.

in ServiceTypeName type The type is copied from primary query.

in Constraint constr The recipe in the proxy offer is evaluated to provide the
constr parameter.

in Preference pref The preference is copied from the primary query.

in PolicySeq policies The “policies” (names and values) contained in the
policies_to_pass_on field of the proxy offer are appended t
the policies of the primary query.

in SpecifiedProps desired_props The desired_props are copied from the primary query.

in unsigned long how_many The how_many parameter is set by the trader to reflect th
trader implementation’s preference for receiving the resultan
offer as a list or through an iterator.

out OfferSeq offers At most how_many offers are returned from the secondary
query operation via offers.

out OfferIterator offer_itr If the secondary query needs to return more than how_ma
offers, then the remaining offers can be accessed via the
iterator offer_itr. If there are only how_many or fewer offers,
then offer_itr is nil.

out PolicyNameSeq limits_applied The names of any policy limits that were applied by the
proxy trader.
Trading Service V1.0 Functional Interfaces May 2000 2-27

2

• The PropertyTypeMismatch exception is raised if a property value is not of an
appropriate type as determined by the service type.

• The ReadonlyDynamicProperty exception is raised if a dynamic property
value was supplied for a property that was flagged as readonly.

• The MissingMandatoryProperty exception is raised if “properties” does not
contain one of the mandatory properties defined by the service type.

• The IllegalRecipe exception is raised if the recipe is not well-formed.

• TheDuplicatePropertyName exception is raised if two or more properties with
the same property name are included in the “properties” parameter.

• The DuplicatePolicyName exception is raised if two or more policies with the
same policy name are included in thepolicies_to_pass_on parameter.

Note – Proxy offers cannot be modified; they must be withdrawn and re-exported.

2.2.7.2 Withdraw Proxy Operation

Signature

void withdraw_proxy (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
NotProxyOfferId

);

Function

The withdraw_proxy operation removes the proxy offer identified byid from the
trader.

The IllegalOfferId exception is raised ifid is not well-formed. The
UnknownOfferId exception is raised ifid does not identify any offer held by the
trader. TheNotProxyOfferId exception is raised ifid identifies a normal service
offer rather than a proxy offer.

2.2.7.3 Describe Proxy Operation

Signature

ProxyInfo describe_proxy (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
2-28 Trading Object Service V1.0 May 2000

2

NotProxyOfferId
);

Function

The describe_proxy operation returns the information contained in the proxy offer
identified by id in the trader.

The IllegalOfferId exception is raised ifid is not well-formed. The
UnknownOfferId exception is raised ifid does not identify any offer held by the
trader. TheNotProxyOfferId exception is raised ifid identifies a normal service
offer rather than a proxy offer.

2.3 Service Type Repository

module CosTradingRepos {

interface ServiceTypeRepository {

// local types
typedef sequence<CosTrading::ServiceTypeName>

 ServiceTypeNameSeq;
enum PropertyMode {

PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY

};
struct PropStruct {

CosTrading::PropertyName name;
CORBA::TypeCode value_type;
PropertyMode mode;

};
typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::Identifier
struct IncarnationNumber {

unsigned long high;
unsigned long low;

};
struct TypeStruct {

Identifier if_name;
PropStructSeq props;
ServiceTypeNameSeq super_types;
boolean masked;
IncarnationNumber incarnation;

};

enum ListOption { all, since };
union SpecifiedServiceTypes switch (ListOption) {

case since: IncarnationNumber incarnation;
Trading Service V1.0 Service Type Repository May 2000 2-29

2

};

// local exceptions
exception ServiceTypeExists {

CosTrading::ServiceTypeName name;
};
exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;
Identifier base_if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;

};
exception HasSubTypes {

CosTrading::ServiceTypeName the_type;
CosTrading::ServiceTypeName sub_type;

};
exception AlreadyMasked {

CosTrading::ServiceTypeName name;
};
exception NotMasked {

CosTrading::ServiceTypeName name;
};
exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;
PropStruct definition_1;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

};
exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;
};

// attributes
readonly attribute IncarnationNumber incarnation;

// operation signatures
IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,
in Identifier if_name,
in PropStructSeq props,
in ServiceTypeNameSeq super_types

) raises (
CosTrading::IllegalServiceType,
ServiceTypeExists,
InterfaceTypeMismatch,
CosTrading::IllegalPropertyName,
CosTrading::DuplicatePropertyName,
ValueTypeRedefinition,
CosTrading::UnknownServiceType,
DuplicateServiceTypeName

);
2-30 Trading Object Service V1.0 May 2000

2

void remove_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
HasSubTypes

);

ServiceTypeNameSeq list_types (
in SpecifiedServiceTypes which_types

);

TypeStruct describe_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType

);

TypeStruct fully_describe_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType

);

void mask_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
AlreadyMasked

);

void unmask_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
NotMasked

);

};
}; /* end module CosTradingRepos */
Trading Service V1.0 Service Type Repository May 2000 2-31

2

ype

or

f the

per
s

ice
2.3.0.1 Add Type Operation

Signature

IncarnationNumber add_type (
in CosTrading::ServiceTypeName name,
in Identifier if_name,
in PropStructSeq props,
in ServiceTypeNameSeq super_types

) raises (
CosTrading::IllegalServiceType,
ServiceTypeExists,
InterfaceTypeMismatch,
CosTrading::IllegalPropertyName,
CosTrading::DuplicatePropertyName,
ValueTypeRedefinition,
CosTrading::UnknownServiceType,
DuplicateServiceTypeName

);

Function

The add_type operation enables the creation of new service types in the service t
repository. The caller supplies thename for the new type, the identifier for the
interface associated with instances of this service type, the properties definitions f
this service type, and the service type names of the immediate super-types to this
service type.

If the type creation is successful, an incarnation number is returned as the value o
operation. Incarnation numbers are opaque values that are assigned to each
modification to the repository’s state. An incarnation number can be quoted when
invoking thelist_types operation to retrieve all changes to the service repository
since a particular logical time. (Note:IncarnationNumber is currently declared as a
struct consisting of two unsigned longs; what we really want here is an unsigned hy
[64-bit integer]. A future revision task force should modify this when CORBA system
support IDL 64-bit integers.)

• If the name parameter is malformed, then theCosTrading::IllegalServiceType
exception is raised.

• If the type already exists, then theServiceTypeExists exception is raised.

• If the if_name parameter is not a sub-type of the interface associated with a serv
type from which this service type is derived, such that substitutability would be
violated, then theInterfaceTypeMismatch exception is raised.

• If a property name supplied in theprops parameter is malformed, the
CosTrading::IllegalPropertyName exception is raised.

• If the same property name appears two or more times in theprops parameter, the
CosTrading::DuplicatePropertyName exception is raised.
2-32 Trading Object Service V1.0 May 2000

2

lue

the
• If a property value type associated with this service type illegally modifies the va
type of a super-type’s property, or if two super-types incompatibly declare value
types for the same property name, then theValueTypeRedefinition exception is
raised.

• If one of theServiceTypeNames in super_types is malformed, then the
CosTrading::IllegalServiceType exception is raised.

• If one of theServiceTypeNames in super_types does not exist, then the
CosTrading::UnknownServiceType exception is raised.

• If the same service type name is included two or more times in this parameter,
DuplicateServiceTypeName exception is raised.

2.3.0.2 Remove Type Operation

Signature

void remove_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
HasSubTypes

);

Function

The remove_type operation removes the named type from the service type
repository.

• If name is malformed, then theCosTrading::IllegalServiceType exception is
raised.

• If name does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If name has a service type which has been derived from it, then the
HasSubTypes exception is raised.

2.3.0.3 List Types Operation

Signature

ServiceTypeNameSeq list_types (
in SpecifiedServiceTypes which_types

);
Trading Service V1.0 Service Type Repository May 2000 2-33

2

ch
f

Function

The list_types operation permits a client to obtain the names of service types whi
are in the repository. Thewhich_types parameter permits the client to specify one o
two possible values:

1. all types known to the repository

2. all types added/modified since a particular incarnation number

The names of the requested types are returned by the operation for subsequent
querying via thedescribe_type or the fully_describe_type operation.

2.3.0.4 Describe Type Operation

Signature

TypeStruct describe_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType

);

Function

The describe_type operation permits a client to obtain the details for a particular
service type.

• If name is malformed, then theCosTrading::IllegalServiceType exception is
raised.

• If name does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

2.3.0.5 Fully Describe Type Operation

Signature

TypeStruct fully_describe_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType

);
2-34 Trading Object Service V1.0 May 2000

2

uper
he

r
es
Function

The fully_describe_type operation permits a client to obtain the details for a
particular service type. The property sequence returned in theTypeStruct includes all
properties inherited from the transitive closure of its super types; the sequence of s
types in theTypeStruct contains the names of the types in the transitive closure of t
super type relation.

• If name is malformed, then theCosTrading::IllegalServiceType exception is
raised.

• If name does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

2.3.0.6 Mask Type Operation

Signature

void mask_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
AlreadyMasked

);

Function

The mask_type operation permits the deprecation of a particular type (i.e., after
being masked, exporters will no longer be able to advertise offers of that particula
type). The type continues to exist in the service repository due to other service typ
being derived from it.

• If name is malformed, then theCosTrading::IllegalServiceType exception is
raised.

• If name does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If the type is currently in the masked state, then theAlreadyMasked exception is
raised.

2.3.0.7 Unmask Type Operation

Signature

void unmask_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
NotMasked
Trading Service V1.0 Service Type Repository May 2000 2-35

2

be

a

e

);

Function

The unmask_type undeprecates a type (i.e., after being unmasked, exporters will
able to resume advertisement of offers of that particular type).

• If name is malformed, then theCosTrading::IllegalServiceType exception is
raised.

• If name does not exist within the repository, then the
CosTrading::UnknownServiceType exception is raised.

• If the type is not currently in the masked state, then theNotMasked exception is
raised.

2.4 Dynamic Property Evaluation interface

module CosTradingDynamic {
exception DPEvalFailure {

CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in TypeCode returned_type,
in any extra_info)

raises (DPEvalFailure);
};

struct DynamicProp {
DynamicPropEval eval_if;
CORBA::TypeCode returned_type;
any extra_info;

};
};

TheDynamicPropEval interface is provided by an exporter who wishes to provide
dynamic property value in a service offer held by the trader.

When exporting a service offer (or proxy offer), the property with the dynamic valu
has anany value which contains aDynamicProp structure rather than the normal
property value. A trader which supports dynamic properties accepts this
DynamicProp value as containing the information which enables a correctly-typed
property value to be obtained during the evaluation of a query. Theexport (or
export_proxy) operation raises thePropertyTypeMismatch if the returned_type
is not appropriate for the property name as defined by the service type.
2-36 Trading Object Service V1.0 May 2000

2

s

,

at

rty

to

ties

ersa.

e:

est
Readonly properties may not have dynamic values. Theexport andmodify operations
on theRegister interface and theexport_proxy operation on theProxy interface
raise theReadonlyDynamicProperty exception if dynamic values are assigned to
readonly properties.

When a query requires a dynamic property value, theevalDP operation is invoked on
the eval_if interface in theDynamicProp structure. The property name parameter i
the name of the property whose value is being obtained. Thereturned_type and
extra_info parameters are copied from theDynamicProp structure. TheevalDP
operation returns an any value which should contain a value for that property. The
value should be of a type indicated byreturned_type .

The DPEvalFailure exception is raised if the value for the property cannot be
determined. If the value is required for the evaluation of a constraint or preference
then that evaluation is deemed to have failed on that service offer (or proxy offer).

Other than the preceding rules, the behavior of theevalDP operation is not specified
by this standard. In particular, the purpose of theextra_info data in determining the
dynamic property value is implementation-specific.

If the trader does not support dynamic properties (indicated by the trader attribute
supports_dynamic_properties), theexport andexport_proxy operations should
not be parameterized by dynamic properties. The behavior of such traders in such
circumstances is not specified by this standard.

If the trader does not support dynamic properties or the importer has requested th
dynamic properties are not used (via thepolicies parameter of thequery operation),
then dynamic property evaluation is not performed. If the value of a dynamic prope
is required by the evaluation of a constraint or preference, then that evaluation is
deemed to have failed on that service offer (or proxy offer).

Thedescribe operation of theRegister interface and thedescribe_proxy operation
of the Proxy interface do not perform dynamic property evaluation, but return the
DynamicProp structure as the value of the property. As these interfaces are used
create dynamic properties via theexport andexport_proxy operations, the other
operations on these interfaces must ensure that the dynamic nature of the proper
remains visible to the exporters.

The modify operation on theRegister interface of a trader which supports dynamic
properties must accept the establishment and modification of dynamic properties,
consistent with theexport operation. There is no restriction on a property value
changing from a static value stored by the trader into a dynamic value, and vice v

Note – Readonly static properties may not be modified to be dynamic.

2.5 Conformance Criteria

The following interfaces are programmatic reference points for testing conformanc

• the Lookup interface (as server) provided by the trader implementation under t
Trading Service V1.0 Conformance Criteria May 2000 2-37

2

test

st

t

ion

ll be

of

se
ction
• the Register interface (as server) provided by the trader implementation under

• the Admin interface (as server) provided by the trader implementation under te

• the Link interface (as server) provided by the trader implementation under test

• the Proxy interface (as server) provided by the trader implementation under tes

• a Lookup interface (as client) of a linked trader, used by the trader implementat
under test

• a Register interface (as client) of a linked trader, used by the trader
implementation under test

• a DynamicPropEval interface (as client) of an object, used by the trader
implementation under test during the evaluation of a dynamic property

The behavior defined for each of the operations in the interface specifications sha
exhibited at the conformance points associated with that behavior.

The following taxonomy is defined for specific implementation conformance classes
trading object service implementations:

• query trader - supports theLookup interface

• simple trader - supports theLookup andRegister interfaces

• stand-alone trader - supports theLookup , Register , andAdmin interfaces

• linked trader - supports theLookup , Register , Admin , andLink interfaces; is
also a client forLookup andRegister interfaces

• proxy trader - supports theLookup , Register , Admin , andProxy interfaces; is
also a client forLookup interfaces

• full-service trader - supports theLookup , Register , Admin , Link , andProxy
interfaces; is also a client forLookup andRegister interfaces

Any of these specific trading object service classes may also be a client for the
DynamicPropEval interface if it supports dynamic properties.

2.5.1 Conformance Requirements for Trading Interfaces as Server

Since the interfaces to a trading object service are separable, and support for tho
interfaces is selectable subject to the conformance classes defined above, this se
specifies the conformance requirements on a per-interface basis.

2.5.1.1 Lookup Interface

An implementation claiming conformance to theLookup interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of theLookup interface as documented in
Section 2.2.1, “Lookup,” on page 2-3.
2-38 Trading Object Service V1.0 May 2000

2

r

tion.

ith

er
An implementation claiming conformance to theLookup interface as server shall also
support theOfferIterator interface as server as documented in Section 2.2.2, “Offe
Iterator,” on page 2-8.

2.5.1.2 Register Interface

An implementation claiming conformance to theRegister interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of theRegister interface as documented in
Section 2.2.3, “Register,” on page 2-9, with the following permitted exceptions:

• An implementation which only allows the value of FALSE for the
supports_modifiable_properties attribute is conformant, in which case it may
reject a service offer which includes modifiable properties passed in an export
operation, and may always respond to modify operation requests with an excep

• An implementation which only allows the value of FALSE for the
supports_dynamic_properties attribute is conformant, in which case it may
reject a service offer which includes dynamic properties passed in an export
operation.

• An implementation claiming conformance to the Register interface as server, w
the value of thesupports_dynamic_properties set to TRUE, shall be able to
assume the client role for theDynamicPropEval interface.

• An implementation claiming conformance to theRegister interface as server, with
the value of the readonly attributesupports_proxy_offers set to TRUE, shall
also support theProxy interface.

2.5.1.3 Admin Interface

An implementation claiming conformance to theAdmin interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of the Admin interface as documented in
Section 2.2.5, “Admin,” on page 2-18.

An implementation claiming conformance to theAdmin interface as server shall also
support theOfferIdIterator interface as server as documented in Section 2.2.4, “Off
Id Iterator,” on page 2-17.

2.5.1.4 Link Interface

An implementation claiming conformance to theLink interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of theLink interface as documented in
Section 2.2.6, “Link,” on page 2-20.
Trading Service V1.0 Conformance Criteria May 2000 2-39

2

sses

by

ents
2.5.1.5 Proxy Interface

An implementation claiming conformance to theProxy interface as server shall
implement the complete behavior associated with all the operations and readonly
attributes defined within the scope of theProxy interface as documented in
Section 2.2.7, “Proxy,” on page 2-24.

2.5.2 Conformance Requirements for Implementation Conformance Cla

In the sections below, the following graphical notation is used:

Figure 2-1 Conformance Class Name diagram

The meaning of this notation is as follows:

• The rectangle represents an implementation of “Conformance Class Name.”

• The ellipses on the surface of the rectangle represent the interfaces supported
this implementation.

• The arrows to the right indicate that traders of this conformance class act as cli
to other traders via the named interface.

2.5.2.1 Query Trader

Figure 2-2 Query Trader diagram

A trading object service implementation claiming conformance to the query trader
conformance class shall meet the conformance requirements of theLookup interface
as server.

Interface1 Interface2

Conformance Class Name
Interface3

Lookup

query trader
2-40 Trading Object Service V1.0 May 2000

2

r

2.5.2.2 Simple Trader

Figure 2-3 Simple Trader diagram

A trading object service implementation claiming conformance to the simple trade
conformance class shall meet the conformance requirements of theLookup and
Register interfaces as server.

2.5.2.3 Stand-alone Trader

Figure 2-4 Stand-alone Trader diagram

A trading object service implementation claiming conformance to the stand-alone
trader conformance class shall meet the conformance requirements of theLookup ,
Register , andAdmin interfaces as server.

2.5.2.4 Linked Trader

Figure 2-5 Linked Trader diagram

Lookup Register

simple trader

Lookup Register

stand-alone trader

Admin

Lookup Register

linked trader
Lookup

Admin Link

Register
Trading Service V1.0 Conformance Criteria May 2000 2-41

2

A trading object service implementation claiming conformance to the linked trader
conformance class shall meet the conformance requirements of theLookup ,
Register , Admin , andLink interfaces as server.

2.5.2.5 Proxy Trader

Figure 2-6 Proxy Trader diagram

A trading object service implementation claiming conformance to the proxy trader
conformance class shall meet the conformance requirements of theLookup ,
Register , Admin , andProxy interfaces as server.

2.5.2.6 Full-service Trader

Figure 2-7 Full-service Trader diagram

A trading object service implementation claiming conformance to the full-service
trader conformance class shall meet the conformance requirements of theLookup ,
Register , Admin , Link , andProxy interfaces as server.

Lookup Register

proxy trader
Lookup

Admin Proxy

Lookup Register

full-service trader
Lookup

Admin Link Proxy

Register
2-42 Trading Object Service V1.0 May 2000

OMG IDL A
re
ach
A.1 CORBA OMG IDL based Specification of the Trading Function

This appendix provides the CORBA OMG IDL specification of the interface signatu
for the trading function’s computational specification. It specifies the signature for e
computational operation in OMG IDL, according to the functional description
(signature and semantics) provided in the body of this chapter.

A.2 OMG Trading Function Module

module CosTrading {

// forward references to our interfaces

interface Lookup;
interface Register;
interface Link;
interface Proxy;
interface Admin;
interface OfferIterator;
interface OfferIdIterator;

// type definitions used in more than one interface

typedef string Istring;
typedef Object TypeRepository;

typedef Istring PropertyName;
typedef sequence<PropertyName> PropertyNameSeq;
typedef any PropertyValue;
struct Property {

PropertyName name;
Trading Object Service V1.0 May 2000 A-1

PropertyValue value;
};
typedef sequence<Property> PropertySeq;

struct Offer {
Object reference;
PropertySeq properties;

};
typedef sequence<Offer> OfferSeq;

typedef string OfferId;
typedef sequence<OfferId> OfferIdSeq;

typedef Istring ServiceTypeName; // similar structure to IR::Identifier

typedef Istring Constraint;

enum FollowOption {
local_only,
if_no_local,
always

};

typedef Istring LinkName;
typedef sequence<LinkName> LinkNameSeq;
typedef LinkNameSeq TraderName;

typedef string PolicyName; // policy names restricted to Latin1
typedef sequence<PolicyName> PolicyNameSeq;
typedef any PolicyValue;
struct Policy {

PolicyName name;
PolicyValue value;

};
typedef sequence<Policy> PolicySeq;

// exceptions used in more than one interface

exception UnknownMaxLeft {};

exception NotImplemented {};

exception IllegalServiceType {
ServiceTypeName type;

};

exception UnknownServiceType {
ServiceTypeName type;

};

exception IllegalPropertyName {
A-2 Trading Object Service V1.0 May 2000

PropertyName name;
};

exception DuplicatePropertyName {
PropertyName name;

};
exception PropertyTypeMismatch {

ServiceTypeName type;
Property prop;

};

exception MissingMandatoryProperty {
ServiceTypeName type;
PropertyName name;

};

exception ReadonlyDynamicProperty {
ServiceTypeName type;
PropertyName name;

};

exception IllegalConstraint {
Constraint constr;

};

exception InvalidLookupRef {
Lookup target;

};

exception IllegalOfferId {
OfferId id;

};

exception UnknownOfferId {
OfferId id;

};

exception DuplicatePolicyName {
PolicyName name;

};

// the interfaces

interface TraderComponents {

readonly attribute Lookup lookup_if;
readonly attribute Register register_if;
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin_if;
};
Trading Object Service V1.0 May 2000 A-3

interface SupportAttributes {

readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

};

interface ImportAttributes {

readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_return_card;
readonly attribute unsigned long max_return_card;
readonly attribute unsigned long max_list;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_policy;
readonly attribute FollowOption max_follow_policy;

};

interface LinkAttributes {

readonly attribute FollowOption max_link_follow_policy;
};

interface Lookup:TraderComponents,SupportAttributes,
ImportAttributes {

typedef Istring Preference;

enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {
case some: PropertyNameSeq prop_names;

};

exception IllegalPreference {
Preference pref;

};

exception IllegalPolicyName {
PolicyName name;

};

exception PolicyTypeMismatch {
Policy the_policy;

};
A-4 Trading Object Service V1.0 May 2000

exception InvalidPolicyValue {
Policy the_policy;

};

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out OfferIterator offer_itr,
out PolicyNameSeq limits_applied

) raises (
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
IllegalPreference,
IllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
IllegalPropertyName,
DuplicatePropertyName,
DuplicatePolicyName

);
};

interface Register : TraderComponents, SupportAttributes {

struct OfferInfo {
Object reference;
ServiceTypeName type;
PropertySeq properties;

};

exception InvalidObjectRef {
Object ref;

};

exception UnknownPropertyName {
PropertyName name;

};

exception InterfaceTypeMismatch {
ServiceTypeName type;
Object reference;

};

exception ProxyOfferId {
Trading Object Service V1.0 May 2000 A-5

OfferId id;
};

exception MandatoryProperty {
ServiceTypeName type;
PropertyName name;

};

exception ReadonlyProperty {
ServiceTypeName type;
PropertyName name;

};

exception NoMatchingOffers {
Constraint constr;

};

exception IllegalTraderName {
TraderName name;

};

exception UnknownTraderName {
TraderName name;

};

exception RegisterNotSupported {
TraderName name;

};

OfferId export (
in Object reference,
in ServiceTypeName type,
in PropertySeq properties

) raises (
InvalidObjectRef,
IllegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
IllegalPropertyName, // e.g. prop_name = “<foo-bar”
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
DuplicatePropertyName

);

void withdraw (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
ProxyOfferId
A-6 Trading Object Service V1.0 May 2000

);

OfferInfo describe (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
ProxyOfferId

);

void modify (
in OfferId id,
in PropertyNameSeq del_list,
in PropertySeq modify_list

) raises (
NotImplemented,
IllegalOfferId,
UnknownOfferId,
ProxyOfferId,
IllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,
DuplicatePropertyName

);

void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

) raises (
IllegalServiceType,
UnknownServiceType,
IllegalConstraint,
NoMatchingOffers

);

Register resolve (
in TraderName name

) raises (
IllegalTraderName,
UnknownTraderName,
RegisterNotSupported

);
};

interface Link : TraderComponents, SupportAttributes, LinkAttributes {

struct LinkInfo {
Lookup target;
Trading Object Service V1.0 May 2000 A-7

Register target_reg;
FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

};

exception IllegalLinkName {
LinkName name;

};

exception UnknownLinkName {
LinkName name;

};

exception DuplicateLinkName {
LinkName name;

};
exception DefaultFollowTooPermissive {

FollowOption def_pass_on_follow_rule;
FollowOption limiting_follow_rule;

};

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;
FollowOption max_link_follow_policy;

};

void add_link (
in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);

void remove_link (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName

);

LinkInfo describe_link (
in LinkName name

) raises (
IllegalLinkName,
UnknownLinkName
A-8 Trading Object Service V1.0 May 2000

);

LinkNameSeq list_links ();

void modify_link (
in LinkName name,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

) raises (
IllegalLinkName,
UnknownLinkName,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);
};

interface Proxy : TraderComponents, SupportAttributes {

typedef Istring ConstraintRecipe;

struct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

};

exception IllegalRecipe {
ConstraintRecipe recipe;

};

exception NotProxyOfferId {
OfferId id;

};

OfferId export_proxy (
in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,
in boolean if_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on

) raises (
IllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
IllegalPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
Trading Object Service V1.0 May 2000 A-9

MissingMandatoryProperty,
IllegalRecipe,
DuplicatePropertyName,
DuplicatePolicyName

);

void withdraw_proxy (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
NotProxyOfferId

);

ProxyInfo describe_proxy (
in OfferId id

) raises (
IllegalOfferId,
UnknownOfferId,
NotProxyOfferId

);
};

interface Admin : TraderComponents, SupportAttributes,
ImportAttributes,LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

unsigned long set_def_search_card (in unsigned long value);
unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);
unsigned long set_max_match_card (in unsigned long value);

unsigned long set_def_return_card (in unsigned long value);
unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_modifiable_properties (in boolean value);
boolean set_supports_dynamic_properties (in boolean value);

boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);
unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_def_follow_policy (in FollowOption policy);
FollowOption set_max_follow_policy (in FollowOption policy);
A-10 Trading Object Service V1.0 May 2000

FollowOption set_max_link_follow_policy (in FollowOption policy);

TypeRepository set_type_repos (in TypeRepository repository);

OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (
in unsigned long how_many,
out OfferIdSeq ids,
out OfferIdIterator id_itr

) raises (
NotImplemented

);

void list_proxies (
in unsigned long how_many,
out OfferIdSeq ids,
out OfferIdIterator id_itr

) raises (
NotImplemented

);
};

interface OfferIterator {

unsigned long max_left (
) raises (

UnknownMaxLeft
);

boolean next_n (
in unsigned long n,
out OfferSeq offers

);

void destroy ();
};

interface OfferIdIterator {
unsigned long max_left (
) raises (

UnknownMaxLeft
);

boolean next_n (
in unsigned long n,
out OfferIdSeq ids

);

void destroy ();
};
Trading Object Service V1.0 May 2000 A-11

}; /* end module CosTrading */

A.2 Dynamic Property Module

module CosTradingDynamic {

exception DPEvalFailure {
CosTrading::PropertyName name;
CORBA::TypeCode returned_type;
any extra_info;

};

interface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in CORBA::TypeCode returned_type,
in any extra_info

) raises (
DPEvalFailure

);
};

struct DynamicProp {
 DynamicPropEval eval_if;
 CORBA::TypeCode returned_type;
 any extra_info;

};
}; /* end module CosTradingDynamic */

A.3 Service Type Repository Module

module CosTradingRepos {

interface ServiceTypeRepository {

// local types
typedef sequence<CosTrading::ServiceTypeName>
ServiceTypeNameSeq;
enum PropertyMode {

PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY

};
struct PropStruct {

CosTrading::PropertyName name;
CORBA::TypeCode value_type;
PropertyMode mode;

};
A-12 Trading Object Service V1.0 May 2000

typedef sequence<PropStruct> PropStructSeq;

typedef CosTrading::Istring Identifier; // IR::Identifier
struct IncarnationNumber {

unsigned long high;
unsigned long low;

};
struct TypeStruct {

Identifier if_name;
PropStructSeq props;
ServiceTypeNameSeq super_types;
boolean masked;
IncarnationNumber incarnation;

};

enum ListOption { all, since };
union SpecifiedServiceTypes switch (ListOption) {

case since: IncarnationNumber incarnation;
};

// local exceptions
exception ServiceTypeExists {

CosTrading::ServiceTypeName name;
};
exception InterfaceTypeMismatch {

CosTrading::ServiceTypeName base_service;
Identifier base_if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;

};
exception HasSubTypes {

CosTrading::ServiceTypeName the_type;
CosTrading::ServiceTypeName sub_type;

};
exception AlreadyMasked {

CosTrading::ServiceTypeName name;
};
exception NotMasked {

CosTrading::ServiceTypeName name;
};
exception ValueTypeRedefinition {

CosTrading::ServiceTypeName type_1;
PropStruct definition_1;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

};
exception DuplicateServiceTypeName {

CosTrading::ServiceTypeName name;
};

// attributes
Trading Object Service V1.0 May 2000 A-13

readonly attribute IncarnationNumber incarnation;

// operation signatures
IncarnationNumber add_type (

in CosTrading::ServiceTypeName name,
in Identifier if_name,
in PropStructSeq props,
in ServiceTypeNameSeq super_types

) raises (
CosTrading::IllegalServiceType,
ServiceTypeExists,
InterfaceTypeMismatch,
CosTrading::IllegalPropertyName,
CosTrading::DuplicatePropertyName,
ValueTypeRedefinition,
CosTrading::UnknownServiceType,
DuplicateServiceTypeName

);

void remove_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
HasSubTypes

);

ServiceTypeNameSeq list_types (
in SpecifiedServiceTypes which_types

);

TypeStruct describe_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType

);

TypeStruct fully_describe_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType

);

void mask_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
AlreadyMasked
A-14 Trading Object Service V1.0 May 2000

);

void unmask_type (
in CosTrading::ServiceTypeName name

) raises (
CosTrading::IllegalServiceType,
CosTrading::UnknownServiceType,
NotMasked

);

};
}; /* end module CosTradingRepos */
Trading Object Service V1.0 May 2000 A-15

A-16 Trading Object Service V1.0 May 2000

OMG Constraint Language BNF B
orted
the
e

” at

h

is a

st
B.1 Introduction

This appendix provides the BNF specification of the CORBA standard constraint
language; it is used for specifying both the constraint and preference expression
parameters to various operations in the trader interfaces.

A statement in this language is an Istring. Other constraint languages may be supp
by a particular trader implementation; the constraint language used by a client of
trader is indicated by embedding “<<Identifier major.minor>>” at the beginning of th
string. If such an escape is not used, it is equivalent to embedding “<<OMG 1.0>>
the beginning of the string.

B.2 Language Basics

B.1.1 Basic Elements

Both the constraint and preference expressions in a query can be constructed from
property names of conformant offers and literals. The constraint language in whic
these expressions are written consists of the following items (examples of these
expressions are shown in square brackets below each bulleted item):

• comparative functions: == (equality), != (inequality), >, >=, <, <=, ~ (substring
match), in (element in sequence); the result of applying a comparative function
boolean value
[“Cost < 5” implies only consider offers with a Cost property value less than 5;
“’Visa’ in CreditCards” implies only consider offers in which the CreditCards
property, consisting of a set of strings, contains the string ’Visa’]

• boolean connectives: and, or, not
[“Cost >= 2 and Cost <= 5” implies only consider offers where the value of the Co
property is in the range 2 <= Cost <= 5]
Trading Object Service V1.0 May 2000 B-1

s

er of

ring,

rty’s

oth

d

• property existence: exist

• property names

• numeric and string constants

• mathematical operators: +, -, *, /
[“10 < 12.3 * MemSize + 4.6 * FileSize” implies only consider offers for which the
arithmetic function in terms of the value of the MemSize and FileSize propertie
exceeds 10]

• grouping operators: (,)

Note that the keywords in the language are case sensitive.

B.2.1 Precedence Relations

The following precedence relations hold in the absence of parentheses, in the ord
highest to lowest:

() exist unary-minus
not
* /
+ -
~
in
== != < <= > >=
and
or

B.2.2 Legal Property Value Types

While one can define properties of service types with arbitrarily complex OMG IDL
value types, only the following property value types can be manipulated using the
constraint language:

• boolean, short, unsigned short, long, unsigned long, float, double, char, Ichar, st
Istring

• sequences of the above types

The “exist” operator can be applied to any property name, regardless of the prope
value type.

B.2.3 Operator Restrictions

exist can be applied to any property

~ can only be applied if left operand and right operand are both strings or b
Istrings

in can only be applied if the left operand is one of the simple types describe
above and the right operand is a sequence of the same simple type
B-2 Trading Object Service V1.0 May 2000

ype

ype

ype

ype

ype

ype

the

.

== can only be applied if the left and right operands are of the same simple t

!= can only be applied if the left and right operands are of the same simple t

< can only be applied if the left and right operands are of the same simple t

<= can only be applied if the left and right operands are of the same simple t

> can only be applied if the left and right operands are of the same simple t

>= can only be applied if the left and right operands are of the same simple t

+ can only be applied to simple numeric operands

- can only be applied to simple numeric operands

* can only be applied to simple numeric operands

/ can only be applied to simple numeric operands

<, <=, >, >= comparisons imply use of the appropriate collating sequence for
characters and strings; TRUE is greater than FALSE for booleans.

B.2.4 Representation of Literals

boolean TRUE or FALSE

integers sequences of digits, with a possible leading + or -

floats digits with decimal point, with optional exponential notation

characters char and Ichar are of the form ‘<char>’, string and Istring are of
form ‘<char><char>+’; to embed an apostrophe in a string, place a
backslash (\) in front of it; to embed a backslash in a string, use \\

B.3 The Constraint Language BNF

B.3.1 The Constraint Language Proper in Terms of Lexical Tokens

<constraint>:=/* empty */
| <bool>

<preference>:=/* <empty> */
| min <bool>
| max <bool>
| with <bool>
| random
| first

<bool>:=<bool_or>

<bool_or>:=<bool_or> or <bool_and>
Trading Object Service V1.0 May 2000 B-3

| <bool_and>

<bool_and>:=<bool_and> and <bool_compare>
| <bool_compare>

<bool_compare>:=<expr_in> == <expr_in>
| <expr_in> != <expr_in>
| <expr_in> < <expr_in>
| <expr_in> <= <expr_in>
| <expr_in> > <expr_in>
| <expr_in> >= <expr_in>
| <expr_in>

<expr_in>:=<expr_twiddle> in <Ident>
| <expr_twiddle>

<expr_twiddle>:=<expr> ~ <expr>
| <expr>

<expr>:=<expr> + <term>
| <expr> - <term>
| <term>

<term>:=<term> * <factor_not>
| <term> / <factor_not>
| <factor_not>

<factor_not>:=not <factor>
| <factor>

<factor>:=(<bool_or>)
| exist <Ident>
| <Ident>
| <Number>
| - <Number>
| <String>
| TRUE
| FALSE

B.3.2 “BNF” for Lexical Tokens up to Character Set Issues

<Ident>:=<Leader> <FollowSeq>

<FollowSeq>:=/* <empty> */
| <FollowSeq> <Follow>

<Number>:=<Mantissa>
| <Mantissa> <Exponent>

<Mantissa>:=<Digits>
B-4 Trading Object Service V1.0 May 2000

,

cter
t.
| <Digits> .
| . <Digits>
| <Digits> . <Digits>

<Exponent>:=<Exp> <Sign> <Digits>

<Sign>:=+
| -

<Exp>:=E
| e

<Digits>:=<Digits> <Digit>
| <Digit>

<String>:=’ <TextChars> ’

<TextChars>:=/* <empty> */
| <TextChars> <TextChar>

<TextChar>:=<Alpha>
| <Digit>
| <Other>
| <Special>

<Special>:=\\
| \’

B.3.3 Character Set Issues

The previous BNF has been complete up to the non-terminals <Leader>, <Follow>
<Alpha>, <Digit>, and <Other>. For a particular character set, one must define the
characters which make up these character classes.

Each character set which the trading service is to support must define these chara
classes. This appendix defines these character classes for the ASCII character se

<Leader>:=<Alpha>

<Follow>:=<Alpha>
| <Digit>
| _

<Alpha> is the set of alphabetic characters [A-Za-z]
<Digit> is the set of digits [0-9]
<Other> is the set of ASCII characters that are not <Alpha>, <Digit>, or
<Special>
Trading Object Service V1.0 May 2000 B-5

B-6 Trading Object Service V1.0 May 2000

OMG Constraint Recipe Language C
traint

with

d by
er is
If

e
to

the
C.1 OMG Constraint Recipe Language

This appendix describes the recipe language used to construct the secondary cons
expression when resolving proxy offers; the secondary constraint expression is
constructed from the primary constraint expression and the properties associated
the proxy offer.

A statement in this language is an Istring. Other recipe languages may be supporte
a particular trader implementation; the recipe language used by a client of the trad
indicated by embedding “<<Identifier major.minor>>” at the beginning of the string.
such an escape is not used, it is equivalent to embedding “<<OMG 1.0>>” at the
beginning of the string.

While the nested invocation of the Trader behind the proxy assumes support for th
Lookup interface, the secondary constraint expression does not necessarily need
conform to the language described in Appendix B.

C.2 The Recipe Syntax

The rewriting from primary to secondary works similarly to formatted output in a
variety of programming languages and systems. It is patterned after the variable
replacement syntax of the Bourne and Korn shells on most UNIX systems.

When it is time to construct the secondary constraint expression from the recipe,
algorithm is as follows:

while not end of recipe
fetch the next character from the recipe
if not a ‘$’ character

append the character to the secondary constraint
else

fetch next character from the recipe
Trading Object Service V1.0 May 2000 C-1

d

if a ‘*’ character
append the entire primary constraint to the secondary constraint

else if not a ‘(’ character
append the character to the secondary constraint

else
collect characters up to a ‘)’ character, discarding ‘)’
lookup property with that name
append formatted value of that property to secondary constraint

C.2 Example

Assume a proxy offer has been exported to a trader with the following properties:

<Name, ‘MyName’>, <Cost, 42>, <Host, ‘x.y.co.uk’>

and with the following recipe:

“Name == $(Name) and Cost == $$$(Cost)”

The above algorithm will generate the following secondary constraint for the neste
call to the trader behind the proxy:

“Name == ‘MyName’ and Cost == $42”
C-2 Trading Object Service V1.0 May 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.1.1 Diversity and Scalability
	1.1.2 Linking Traders
	1.1.3 Policy
	1.1.4 Additional ObjectID

	1.2 Concepts and Data Types
	1.2.1 Exporter
	1.2.2 Importer
	1.2.3 Service Types
	1.2.4 Properties
	1.2.5 Service Offers
	1.2.6 Offer Identifier
	1.2.7 Offer Selection

	1.3 Interworking Mechanisms
	1.3.1 Link Traversal Control
	1.3.2 Federated Query Example
	1.3.3 Proxy Offers
	1.3.4 Trader Attributes

	1.4 Exceptions
	1.4.1 For CosTrading Module
	1.4.2 For CosTradingDynamic module
	1.4.3 For CosTradingRepos module

	2. Trading Object Service Interfaces
	2.1 Abstract Interfaces
	2.1.1 TraderComponents
	2.1.2 SupportAttributes
	2.1.3 ImportAttributes
	2.1.4 LinkAttributes

	2.2 Functional Interfaces
	2.2.1 Lookup
	2.2.2 Offer Iterator
	2.2.3 Register
	2.2.4 Offer Id Iterator
	2.2.5 Admin
	2.2.6 Link
	2.2.7 Proxy

	2.3 Service Type Repository
	2.4 Dynamic Property Evaluation interface
	2.5 Conformance Criteria
	2.5.1 Conformance Requirements for Trading Interfaces as Server
	2.5.2 Conformance Requirements for Implementation Conformance Classes

	Appendix A - OMG IDL
	Appendix B - OMG Constraint Language BNF
	Appendix C - OMG Constraint Recipe Language

