Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Bionic Buffalo Tech Note #50
Effects of Portable Object Adapter Policies

last revised Wednesday 2003.06.18
©2003 Bionic Buffalo Corporation. All Rights Reserved.
Tatanka andTOAD are trademarks of Bionic Buffalo Corporation

I ntroduction

ThePor t abl eSer ver module from in the CORBA specification defines B@A (PortableObject
Adapter) interface. When an instance &oat abl eSer ver : : POAis created, it is associated with
certain policies. These policies affect the behaviour oP@%and also of other, related objects. This
Tech Note summarizes tiR©A policies, how they are used, and the implications for request
processing, object identifiers, and other activities and entities.

The information in the Tech Note pertains to CORBA in general and not to any specific CORBA
implementation. It is current with the CORBA 3.0. specification (OMG formal/02-11-01). This
information is explanatory, and does not include details such as the relevant IDL. For such details, the
reader is refered to the specification, especially to the chapter on Portable Object Adapters.

The POA Tree, Object Identifiersand Object References

The varioudPOAs are arranged in a tree, beginning atRbet POA. EachPQA has a name, unique
among its siblings, although the children of two diffefe@As might have the same narR&A names
are null-terminated strings. This scheme allows €¥@hto be identified uniquely by a path starting at
theRoot POA, similar to the way files are named in a traditional file system by a path from the file
system root.

Within a givenPQA, each of the objects belonging to tR&A is identified by a sequence of octets, the
(bj ect 1 d. TheObj ect | d for an object is unique within thROA, so there is a one-to-one
correspondence betwe€hbj ect | d and object within theQA.

Taken together, these properties imply that each object belongingRBamay be uniquely
identified by knowing that objectr¥0A (path from théRoot POA) andCbj ect | d (octet sequence).

(One way to implement the key of B@R is to encode the path from tReot POA, and the
hj ect | d, into the key.)

Pagelof 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Policy Objectsand POA Creation

Policy objects, which inherit th@ORBA: : Pol i cy interface, are used throughout CORBA and
related specifications. THeor t abl eSer ver module defines seven specializations ofGORBA: :
Pol i cy interface. Each of these has a policy value attribute which is an enumeration.

When aPQA is created, zero or more of these seven classes of policy objects can be associated with the
PQA. For each policy object, the associated policy value is associated with tiR©OAefor each class

not explicitly indicated, a default value applies. OnceR@a has been created, the associated policies
cannot be changed. Note that eREM may use different policy combinations.

In the following tables, th®lin column indicates whether or not support for the associated value is

required by the Minimum CORBA specification. The default value is indicated imtidrer etation
column.

Thr eadPol i cy

TheThr eadPol i cy specifies the behaviour of thread$”@As. The policy is relevant to
multithreadedORBs. The values are:

ThreadPolicyValue | nterpretation Min
ORB_CTRL_ MODEL (default) the ORB assigns requests to threads yes
SI NGLE_THREAD MODEL no more than one thread may enter any one no

SI NGLE_THREAD MODEL POQA at any given time
(multiple requests for any oA will be queued)

MAI N THREAD MODEL no more than one thread at a time may enter all no
MAI N THREAD MODEL PQAs taken together (multiple
requests for any sudPOA will be queued)

The distinction betwee8l NGLE_THREAD MODEL andMAI N_THREAD MODEL is important when
a servant makes an invocation which is handled by someRAées servant. In the
SI NGLE_THREAD MODEL, servants of two differefROAs might call each other and deadlock.

Li f espanPol i cy

ThelLi f espanPol i cy value specifies the lifespan of objects implemented byP@#e The values
are:

Page?2 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

LifespanPolicyValue | nterpretation Min
TRANSI ENT (default) objects created by the POA cannot survive the POA | yes
itself: once the POA is destroyed, the objects must cease to
exist
PERSI| STENT objects created by the POA may survive the POA: once the yes
PQA is destroyed, the objects may or may not cease to exist

The implications of either of these policy values are discussed in more detail, below.

| dUni guenessPol i cy

Thel dUni quenessPol i cy value specifies how many Qbj ect | d values may be associated with a
given servant. The possible values are:

I dUniquenessPolicyValue | nter pretation Min
UNI QUE_I D (default) each servant may be associated with no morethana| yes
single Obj ect | d value (that is, no more than one object per
servant)
MULTI PLE_I D each servant may be associated with multiple Cbj ect | d yes
values (in other words, there may be more than one object
per servant)

Note that, in either case, there may be times when a servant might be associated with no Gbj ect | d
values.

| dAssi gnnment Pol i cy

Thel dAssi gnnent Pol i cy value determines who assigns the Cbj ect | d values: the ORB, or the
servant.

| dAssignmentPolicyValue | nter pretation Min
SYSTEM | D (default) the ORB assigns Obj ect | d values yes
USER I D the servant assigns Qbj ect | d values yes

Ser vant Ret enti onPol i cy

The Ser vant Ret ent i onPol i cy value specifies whether or not the POA maintains an active

Page3of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

object map. This determines how the POA associates incoming requests (invocations on the methods
of specified objects) with servants.

ServantRetentionPolicyValue | nterpretation Min

RETAI N (default) the POA maintains an active object map, associatiggs
hj ect | d values with servants; the map can be used to
associate a give@bj ect | d with a specific servant

NON_RETAI N the POA does not maintain an active object map; to find theno
servant for a give@bj ect | d, thePOA either uses a default
servant Request Processi ngPol i cy =
USE_DEFAULT_SERVANT), or lets &Ser vant Manager
locate the servant gRjuest Processi ngPol i cy =
USE_SERVANT _VANAGER)

Request Pr ocessi ngPol i cy

The RequestProcessingPolicy value specifies how requests are handled by the POA. The possible
values are:

ReguestProcessingPolicyValue | nter pretation Min

USE_ACTI VE_OBJECT_MAP_ONLY |(default) thePOA looks for servants in the active yes
object map

USE_DEFAULT_ SERVANT the POA looks for servants in the active object map (iho

any); if not found, then theQA then forwards the
request to the default servant

USE_SERVANT _MANAGER the POA looks for servants in the active object map (iho
any); if not found, then thROA has the
Ser vant Manager find the servant

These procedures are explained in more detail, below.

| nplicitActivati onPolicy

Thel nplicitActivationPol i cy value specifies whether or not implicit activation of servants
is supported by thBOA. Servants may be activated explicitly using sevie@f operations, or (if
implicit activation is allowed) they may be implicitly activated. There A mapping operation,
servant _to_reference(), which takes a servant and returns an object reference. In implicit
activation, if the servant isn't found in the active object maR@#ewill automatically create a new
object id and reference. This (of course) requiresltdassi gnnment Pol i cy = SYSTEM | D (so

Page4 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

that the system can create the object id) and that Ser vant Ret ent i onPol i cy = RETAI N(so
thereis an active object map in the first place).

I mplicitActivationPolicyValue | nterpretation Min
NO_I MPLI CI T_ACTI VATI ON|(default) the POA does not support implicit activation yes
| MPLI CI T_ACTI VATI ON the POA supports implicit activation no

Root POA Policy Values

The Root POA is created during ORB initialization, so there is no opportunity to specify policy values
for it. Certain values are defined for the Root PQA policies. These are:

ThreadPol i cy = ORB_CTRL_MODEL

Li f espanPol i cy = TRANSI ENT

(bj ect | dUni quenessPolicy = UNIQUE I D

| dAssi gnnent Pol i cy = SYSTEM | D

Servant Retenti onPolicy = RETAIN

Request Processi ngPol i cy = USE_ACTI VE_OBJECT_NMAP_ONLY
| mplicitActivationPolicy = | MPLI Cl T_ACTI VATI ON

Note that these values are the same as the default values, except for the
| mplicitActivationPolicy.

Minimum CORBA is not required to support | MPLI Cl T_ACTI VATI ON, so the valuesfor a

Minimum CORBA ORB Root POQAhavel nplicitActivationPolicy =
NO_I MPLI CI T_ACTI VATI ON, and thus are the same as the default values for a new POA.

Valid Policy Value Combinations

Because of the way the policies affect each other, certain combinations of values areinvalid, and
certain values require other values. Therules are:

| MPLI CI T_ACTI VATI ONrequires SYSTEM | Dand RETAI N
UNI QUE_I Disincompatible with NON_RETAI N

NON_RETAI Nrequires either USE_DEFAULT _SERVANT or
USE_SERVANT_NMANAGER

USE_ACTI VE_OBJECT_MAP_ONLY requires RETAI N

Page5of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies
Servant Resolution in the POA

Within a POA, servant resolution (finding the servant for an Obj ect | d) consists of the following
steps, or of some other set of steps which attains the same end:

|ocate the servant associated

- with anobject id or reference Copyright 2003

7 Bionic Buffalo

’ _| check ServantRetentionPolicy %

[inactive
object map]

return servant
from active
object map

[NON_RETAIN]

[notin active

object map | .| isobjectidin active

object map?

check RequestProcessingPolicy %

/" [USE_ACTIVE_
, OBJECT_MAP_ONLY]

raise
OBJECT _

/ NOT_EXIST
//
/ [default

: servant

isadefault .

servant registered | return default -

registered? - servant
[USE AN [default servant
SERVANT [USE_ DEFAULT_SERVANT] > not registered |
MANAGER]

[no servant manager registered | raise

OBJ ADAPTER =

has a servant manager
been registered?

return value
from servant
manager

Page 6 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Varietiesof Ser vant Manager

When the Request Processi ngPol i cy isUSE_SERVANT _MANACER, then a
Ser vant Manager isused to get the servant associated with an object reference.

The Ser vant Manager itself interface has no interfaces defined. Its purpose isto generalize two
other interfaces, Ser vant Act i vat or and Ser vant Locat or . When the

Servant Ret enti onPol i cy iSRETAI N, thenaSer vant Act i vat or isused asa

Ser vant Manager . When the policy isSNON_RETAI N, then aSer vant Locat or isused asa
Ser vant Manager .

In other words, Ser vant Act i vat or and Ser vant Locat or arethe two varieties of
Ser vant Manager .

Portabl eServer:: ServantM anager

AN

Portabl eServer::ServantActivator Portabl eServer:: ServantL ocator
incarnate () preinvoke ()
etherealize () | postinvoke () .,
/ 7/
// . s e
/ e
/ 7
/ P 4
used when ' 7
ServantRetentionPolicy .7
isSNON_RETAIN 7 Copyright 2003
e Bionic Buffalo
used when ’
ServantRetentionPolicy
isNON_RETAIN

Page7 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies
Transient and Persistent Objects

The LifespanPolicy value of a POA determines whether or not the objects created by that POA can
outlive the POA itself.

Although the POA associated with a persistent object might no longer exist, the object remains
associated with that POA. If an invocation is made on a persistent object whose POA doesn't exist, the
implementation may elect to create the necessary POA. However, procedures for such automatic
resuscitation of a dead POA are beyond the scope of the basic CORBA specification. The Persistent
State Service specification does not cover such details.

This Tech Note may be reproduced and distributed (including by means of the Internet) without
payment of fees or without notification to Bionic Buffalo, as long as it is not changed, altered, or
edited in any way. Any distribution or copy must include the entire Tech Note, with the original title,
copyright notice, and this paragraph. For available Tech Notes, please see the Bionic Buffalo web site
at http://www.tatanka.convdoc/technote/index.htm, or e-mailquery@tatanka.com. PGP/GnuPG key
fingerprint:a836 e7b0 24ad 3259 7c¢38 b384 8804 5520 2c74 le5a. Most Bionic

Buffalo Tech Notes are available in both HTML and PDF form.

Page 8 of 8

