
Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Bionic Buffalo Tech Note #50

Effects of Portable Object Adapter Policies

last revised Wednesday 2003.06.18
©2003 Bionic Buffalo Corporation. All Rights Reserved.
Tatanka and TOAD are trademarks of Bionic Buffalo Corporation

Introduction

The PortableServer module from in the CORBA specification defines the POA (Portable Object
Adapter) interface. When an instance of a PortableServer::POA is created, it is associated with
certain policies. These policies affect the behaviour of the POA and also of other, related objects. This
Tech Note summarizes the POA policies, how they are used, and the implications for request
processing, object identifiers, and other activities and entities.

The information in the Tech Note pertains to CORBA in general and not to any specific CORBA
implementation. It is current with the CORBA 3.0. specification (OMG formal/02-11-01). This
information is explanatory, and does not include details such as the relevant IDL. For such details, the
reader is refered to the specification, especially to the chapter on Portable Object Adapters.

The POA Tree, Object Identifiers and Object References

The various POAs are arranged in a tree, beginning at the RootPOA. Each POA has a name, unique
among its siblings, although the children of two different POAs might have the same name. POA names
are null-terminated strings. This scheme allows each POA to be identified uniquely by a path starting at
the RootPOA, similar to the way files are named in a traditional file system by a path from the file
system root.

Within a given POA, each of the objects belonging to that POA is identified by a sequence of octets, the
ObjectId. The ObjectId for an object is unique within that POA, so there is a one-to-one
correspondence between ObjectId and object within the POA.

Taken together, these properties imply that each object belonging to an ORB may be uniquely
identified by knowing that object's POA (path from the RootPOA) and ObjectId (octet sequence).

(One way to implement the key of an IOR is to encode the path from the RootPOA, and the
ObjectId, into the key.)

Page 1 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Policy Objects and POA Creation

Policy objects, which inherit the CORBA::Policy interface, are used throughout CORBA and
related specifications. The PortableServer module defines seven specializations of the CORBA::
Policy interface. Each of these has a policy value attribute which is an enumeration.

When a POA is created, zero or more of these seven classes of policy objects can be associated with the
POA. For each policy object, the associated policy value is associated with the new POA. For each class
not explicitly indicated, a default value applies. Once the POA has been created, the associated policies
cannot be changed. Note that each POA may use different policy combinations.

In the following tables, the Min column indicates whether or not support for the associated value is
required by the Minimum CORBA specification. The default value is indicated in the Interpretation
column.

ThreadPolicy

The ThreadPolicy specifies the behaviour of threads in POAs. The policy is relevant to
multithreaded ORBs. The values are:

ThreadPolicyValue Interpretation Min

ORB_CTRL_MODEL (default) the ORB assigns requests to threads yes

SINGLE_THREAD_MODEL no more than one thread may enter any one
SINGLE_THREAD_MODEL POA at any given time
(multiple requests for any one POA will be queued)

no

MAIN_THREAD_MODEL no more than one thread at a time may enter all
MAIN_THREAD_MODEL POAs taken together (multiple
requests for any such POA will be queued)

no

The distinction between SINGLE_THREAD_MODEL and MAIN_THREAD_MODEL is important when
a servant makes an invocation which is handled by some other POA's servant. In the
SINGLE_THREAD_MODEL, servants of two different POAs might call each other and deadlock.

LifespanPolicy

The LifespanPolicy value specifies the lifespan of objects implemented by the POA. The values
are:

Page 2 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

LifespanPolicyValue Interpretation Min

TRANSIENT (default) objects created by the POA cannot survive the POA
itself: once the POA is destroyed, the objects must cease to
exist

yes

PERSISTENT objects created by the POA may survive the POA: once the
POA is destroyed, the objects may or may not cease to exist

yes

The implications of either of these policy values are discussed in more detail, below.

IdUniquenessPolicy

The IdUniquenessPolicy value specifies how many ObjectId values may be associated with a
given servant. The possible values are:

IdUniquenessPolicyValue Interpretation Min

UNIQUE_ID (default) each servant may be associated with no more than a
single ObjectId value (that is, no more than one object per
servant)

yes

MULTIPLE_ID each servant may be associated with multiple ObjectId
values (in other words, there may be more than one object
per servant)

yes

Note that, in either case, there may be times when a servant might be associated with no ObjectId
values.

IdAssignmentPolicy

The IdAssignmentPolicy value determines who assigns the ObjectId values: the ORB, or the
servant.

IdAssignmentPolicyValue Interpretation Min

SYSTEM_ID (default) the ORB assigns ObjectId values yes

USER_ID the servant assigns ObjectId values yes

ServantRetentionPolicy

The ServantRetentionPolicy value specifies whether or not the POA maintains an active

Page 3 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

object map. This determines how the POA associates incoming requests (invocations on the methods
of specified objects) with servants.

ServantRetentionPolicyValue Interpretation Min

RETAIN (default) the POA maintains an active object map, associating
ObjectId values with servants; the map can be used to
associate a given ObjectId with a specific servant

yes

NON_RETAIN the POA does not maintain an active object map; to find the
servant for a given ObjectId, the POA either uses a default
servant (RequestProcessingPolicy =
USE_DEFAULT_SERVANT), or lets a ServantManager
locate the servant (RequestProcessingPolicy =
USE_SERVANT_MANAGER)

no

RequestProcessingPolicy

The RequestProcessingPolicy value specifies how requests are handled by the POA. The possible
values are:

RequestProcessingPolicyValue Interpretation Min

USE_ACTIVE_OBJECT_MAP_ONLY (default) the POA looks for servants in the active
object map

yes

USE_DEFAULT_SERVANT the POA looks for servants in the active object map (if
any); if not found, then the POA then forwards the
request to the default servant

no

USE_SERVANT_MANAGER the POA looks for servants in the active object map (if
any); if not found, then the POA has the
ServantManager find the servant

no

These procedures are explained in more detail, below.

ImplicitActivationPolicy

The ImplicitActivationPolicy value specifies whether or not implicit activation of servants
is supported by the POA. Servants may be activated explicitly using several POA operations, or (if
implicit activation is allowed) they may be implicitly activated. There is a POA mapping operation,
servant_to_reference(), which takes a servant and returns an object reference. In implicit
activation, if the servant isn't found in the active object map, the POA will automatically create a new
object id and reference. This (of course) requires that IdAssignmentPolicy = SYSTEM_ID (so

Page 4 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

that the system can create the object id) and that ServantRetentionPolicy = RETAIN (so
there is an active object map in the first place).

ImplicitActivationPolicyValue Interpretation Min

NO_IMPLICIT_ACTIVATION (default) the POA does not support implicit activation yes

IMPLICIT_ACTIVATION the POA supports implicit activation no

RootPOA Policy Values

The RootPOA is created during ORB initialization, so there is no opportunity to specify policy values
for it. Certain values are defined for the RootPOA policies. These are:

ThreadPolicy = ORB_CTRL_MODEL
LifespanPolicy = TRANSIENT
ObjectIdUniquenessPolicy = UNIQUE_ID
IdAssignmentPolicy = SYSTEM_ID
ServantRetentionPolicy = RETAIN
RequestProcessingPolicy = USE_ACTIVE_OBJECT_MAP_ONLY
ImplicitActivationPolicy = IMPLICIT_ACTIVATION

Note that these values are the same as the default values, except for the
ImplicitActivationPolicy.

Minimum CORBA is not required to support IMPLICIT_ACTIVATION, so the values for a
Minimum CORBA ORB RootPOA have ImplicitActivationPolicy =
NO_IMPLICIT_ACTIVATION, and thus are the same as the default values for a new POA.

Valid Policy Value Combinations

Because of the way the policies affect each other, certain combinations of values are invalid, and
certain values require other values. The rules are:

IMPLICIT_ACTIVATION requires SYSTEM_ID and RETAIN

UNIQUE_ID is incompatible with NON_RETAIN

NON_RETAIN requires either USE_DEFAULT_SERVANT or
USE_SERVANT_MANAGER

USE_ACTIVE_OBJECT_MAP_ONLY requires RETAIN

Page 5 of 8

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Servant Resolution in the POA

Within a POA, servant resolution (finding the servant for an ObjectId) consists of the following
steps, or of some other set of steps which attains the same end:

Page 6 of 8

locate the servant associated
with an object id or reference

[RETAIN]
[in active
object map] return servant

from active
object map

[NON_RETAIN]
[not in active
object map]

[USE_DEFAULT_SERVANT]

[USE_ACTIVE_
OBJECT_MAP_ONLY] raise

OBJECT_
NOT_EXIST

[default
servant

registered] return default
servant

raise
OBJ_ADAPTER

[default servant
not registered]

[no servant manager registered]

[USE_
SERVANT_
MANAGER]

return value
from servant
manager

[servant
manager

registered]

Copyright 2003
Bionic Buffalo

check ServantRetentionPolicy

check RequestProcessingPolicy

is object id in active
object map?

is a default
servant
registered?

has a servant manager
been registered?

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Varieties of ServantManager

When the RequestProcessingPolicy is USE_SERVANT_MANAGER, then a
ServantManager is used to get the servant associated with an object reference.

The ServantManager itself interface has no interfaces defined. Its purpose is to generalize two
other interfaces, ServantActivator and ServantLocator. When the
ServantRetentionPolicy is RETAIN, then a ServantActivator is used as a
ServantManager. When the policy is NON_RETAIN, then a ServantLocator is used as a
ServantManager.

In other words, ServantActivator and ServantLocator are the two varieties of
ServantManager.

Page 7 of 8

PortableServer::ServantManager

PortableServer::ServantActivator PortableServer::ServantLocator

incarnate ()
etherealize ()

preinvoke ()
postinvoke ()

Copyright 2003
Bionic Buffalo

used when
ServantRetentionPolicy
is NON_RETAIN

used when
ServantRetentionPolicy
is NON_RETAIN

Bionic Buffalo Tech Note #50: Effects of Portable Object Adapter Policies

Transient and Persistent Objects

The LifespanPolicy value of a POA determines whether or not the objects created by that POA can
outlive the POA itself.

Although the POA associated with a persistent object might no longer exist, the object remains
associated with that POA. If an invocation is made on a persistent object whose POA doesn't exist, the
implementation may elect to create the necessary POA. However, procedures for such automatic
resuscitation of a dead POA are beyond the scope of the basic CORBA specification. The Persistent
State Service specification does not cover such details.

This Tech Note may be reproduced and distributed (including by means of the Internet) without
payment of fees or without notification to Bionic Buffalo, as long as it is not changed, altered, or
edited in any way. Any distribution or copy must include the entire Tech Note, with the original title,
copyright notice, and this paragraph. For available Tech Notes, please see the Bionic Buffalo web site
at http://www.tatanka.com/doc/technote/index.htm, or e-mail query@tatanka.com. PGP/GnuPG key
fingerprint: a836 e7b0 24ad 3259 7c38 b384 8804 5520 2c74 1e5a. Most Bionic
Buffalo Tech Notes are available in both HTML and PDF form.

Page 8 of 8

