® CORBA 3

Michaetl Stal
Siemens AG, Dept. CT SE 2
E-Mail:
Michael.Stal@mchp.siemens.de

[{e> CORBA.

Motivation
Architectural View
OMG Organization

Agenda

CORBA ORBs and Services
CORBA 3

Internet
Quality ‘of Service
CORBA Components

Portable Interceptor
Framework

Design Issues
Platform Comparison
Summary
References

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Buildiag distributed
apptications Is/complex

® How to cope with\heterogeneity?

® How to access remote services in a.location-
transparent way?

® How to handle (de-)marshaling issues?

®» How to find remote objects?

® How to activate remote objects?

» How to keep state persistent and consistent?
®» How to solve security issues?

» Synchronous/asynchronous communication?

(c) 2001, Michael Stak;
All Rights*Reserved

Distributed Objects
are the answer

@ \What we need'is an architecture that ...
e supports a remote method invocation paradigm
e provides location transparency

e allows to add, exchange, or remove services
dynamically

e hides system details from the developer

N

R

(c) 2001, Michael Stak;
All Rights*Reserved

Architectural Solution

@ Here Is the architectural solution:

Client-side Proxy
marshal main_loop marshal
unmarhal Srv_registration unmarshal
receive result srv_lookup dispatch

service p transmit_message receive request

start_up
main_|loop

service |

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

method (proxy)

>

DyAaamics of
Breker-based systems

S Ciene. TR Ciert Procy

locate server

register_service

S &5
(7

(..............

shal
3 mar

receive request

receive result

>

..........................)

unmarshal

method (impl.)

—

(c) 2001, Michael Stak;
All Rights*Reserved

OMGReference
Architecture

Application Interfaces g Domain Interfaces Common Facilities

*BA 2.0 Object Request Br

Object Services (COSS)

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA Architecture

Y

|mplementation
Repository

Repository

O

Common Object Request Broker Architecture Core: 110P

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Interface Repository

The interface repository service is defined'as a set of objects
specified in IDL:

Repository

ConstantDef ModuleDef Excgption Def InterfaceDef

ConstantDef InterfaceDef Excgption Def ModuleDef

ConstantDef OperationDef Excgption Def TypeDef
(or Attribute)

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Implementation
Repository

The/Implementation Repoitory used for configuration
iInfarmation and for dynamic server activation

L ogical Name

Object Adapter

Command

Host

Additional
| nfor mat.

Bank

POA(“MyPOA”)

c:/winnt/test/bank.exe

lotus.muc.bank.de
Port: 1234h

SHARED

Account

POA(* XPOA”);

d:\account.exe

lotus.muc.bank.de
Port: 1340h

SHARED

ATM

POA(“RemB”);

main.fra.bank.de
Port: 1340h

SHARED

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA IDL

Interfaces are specified in the Interface Definition Language
IDL. IDL is programming-language independent and does
only contain data descriptions;

® An IDL-Compiler translates/the IDL-specifications into IDL-
stubs (for callers) and IDL-skeletons. (for object
Implementations) in the appropriate programming
language.

» The CORBA Object Model supports multiple Interface
iInheritance. Attributes and Methods may not be redefined,
Implementation inheritance is not supported !

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

CORBA IDL (cont'd)

IDL-File

Y

Stub Code 4 &N Skeleton Code

(c) 2001, Michael Stak;
All Rights*Reserved

How to build and deploy
a-CORBA application

If different ORB or different language use IDL
compiler.
Create client and compile it.

Run client.

SIEMENS

[{e> CORBA.

Example:
A-Remote Hashtable

t ypedef unsi gned | ong Cooki e;
interface Iterator {
exception InvalidAccess{};
void reset();
voi d skip(in unsigned |ong n);

voi d next();
any current() raises(lnvali dAccess);
bool ean end_of () ;
}
I nterface HashTabl e {
exception Unknown { string reason; };
|terator searchKey(in string key);
voi d renoveKey(in string key) raises(Unknown);
voi d renmoveEntry(in string key, in Cookie c) raises(Unknown);
Cookie insertEntry(in string key, in any val ue);

Hi

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

#i ncl'ude "hashS. h"
#i ncl ude "hel per. h"
class Hash_ i : public virtual PQOA HashTabl e {
KeyTabl e tabl e_;
Cookie c_;
CORBA: : ORB ptr orb_;
publ i c:
Hash_i() : c_(0) {}
void orb(CORBA: : ORB ptr 0) { this->orb_ = CORBA :ORB:: duplicate(o); }
virtual void shutdown(CORBA: : Environnent & { this->orb_->shutdown(); }
virtual Iterator ptr searchKey (const char * key);
virtual void renoveKey (const char * key);
virtual void renoveEntry (const char * key, Cookie c);
virtual Cookie insertEntry (const char * key,const CORBA: : Any & val ue);

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

Iterator _ptr Hash i::searchKey (const char * key) {
KeyTable::iterator iter = table .find(key);
I1f (iter == table_.end())
return lIterator:: _nil();
Iterator i *it = new lterator i (*((*iter).second));
Iterator _ptr it _ptr = (*it). this();
return it _ptr;

voi d Hash_i::renpoveKey (const char * key) {
KeyTable::iterator iter = table .find(key);
if (iter == table .end()) {
t hr ow new HashTabl e: : Unknown(CORBA: : stri ng_dup("key not
found"));

}

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

int main(int argc, char **argwv) {
MySer ver server;
try {
I f (server.init("test2", argc, argv) == -1)
return 1;
el se
server.run(CORBA: : Envi ronnment : : defaul t _envi ronnent ());

}
catch (CORBA:: Syst entException sysex) {

- }
catch (CORBA: : User Exception) {
}

return O;

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

i nt main(int argc, char **argv) {

M/Client client;

If (client.init("test2", argc, argv) == -1)
return -1;

cout << "lInserting ... " << endl;

CORBA: : Any a;

a <<= "http://ww.si enens. cont';

Cookie cl = client->insertEntry("Si enens", a);

a <<= "http://ww.si enens. de";

Cookie c2 = client->insertEntry("Si enens", a);

cout << "lterating ... " << endl;
Iterator _var iter = client->searchKey("Si enmens");
print_all("sienmens", iter);

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA Types

Exceptions Constructed Value

Object Reference Basic Halue
, — Sruct Sequence Union Array

Short Long UShort UL ong Float Double (w)Char (w)Sring Boolean Octal Enum Any

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA Types (cont'd)

Type

Range

Size

short

-2 t0 2151

>=116 bits

long

- 28140281

>= 32 bits

unsigned short

0to 2161

>= 16 bits

unsigned long

Oto 2°%1

>= 32 bits

float

|EEE Single Precision

>= 32 bits

double

|EEE Double Precision

>= 64 bits

char

ISO Latin 1

>= 8 hits

string

|SO Latin 1, w.o. NUL

Variable-length

boolean

TRUE, FALSE

Unspecified

octet

0-255

>= 8 hits

any

Run-time type

Variable-length

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

ANy

For implementing generic services we need a generic type.

Example: a generic hash table where all kinds of entries can be stored.

This is where Any is used.

Overuse of Any is considered harmful due to. potential efficiency
problems.

DynAny even allows to build generic values on the fly.

CORBA::typeCode

Actua Vaue

CORBA::Any &

a<<= (CORBA::UShort) 42;
CORBA::UShort inAny;
a>>=IinAny;

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Structures and Unions

uniion Result sw tch(ROLE) {
case ADM N. string thelnfo;
default: unsigned | ong theError;

b

uni on Opti onal Val ue switch(bool ean) {
case TRUE: unsigned short theValue;

3
struct Person {
string nane;
unsi gned | ong age
3
struct LoveAffair {
Person pl
Person p2;

}s

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Arrays and Sequences

t ypedef string text]20][80];
t ypedef \sequence<Per son>, Persons;
t ypedef sequence<Person, 11> Soccer Team
struct Tree {
sequence<Tree> chi |l dren;

'

@ Use arrays for fixed length structures where the values lifecycle is
coupled with that of the array (Whole-Part relationship).

® Use sequences for recursive types, sparse arrays and variable
length structures.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Qbject by Value

® CORBA introduces anew value typeavhiech inherits from
CORBA: : Val ueBase:

val ue Bi naryTree {

| ong val ue;

Bi naryTree | eft;

Bi naryTree right;

[l initializer

init(in long w;

/'l 1 ocal operations
};

@ A value has no IOR and cannot be accessed remotely. However,
value types might also inherit from other CORBA interfaces.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

2. send ovenwi re»

3. create local instance

Y
Value
Factory

Y| 4. unmarshal
Q)

N\
/' \
/ 0\

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Objectby Value (cont'd)

Values can define any recursive (cyclic)structures that/might be
null.

Value types can be single inherited from other value types.

They are local to the recelver and are "marshalled when
transmitted across the wire.

Benefits of ObV:

Values allow to exchange complex state.

Consistent semantics across different programming languages.
Natural support for C++ and Java.

Minimal impact on GIOP/IDL.

Enables RMI over IIOP.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA ORB'\Interfaces

The ORB interface contains functionality‘that might be required by
clients or servers.

The Dynamic Invocation Interface provides a means for
dynamically invoking CORBA/objects that were not known at
design-time.

The Dynamic Skeleton Interface helps to implement generic
CORBA servants.

The Basic Object Adapter is the APl used by the servers to
register their object implementations. In addition, it is the
immediate layer between the ORB Core and the IDL skeleton.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

ORB Interface

The ORB interface mainly provides helper/functions to clients and servers.

I nterface ORB {

string object to string(in Object obj);
(bj ect string to object(in string str);

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Dynamic Inyvocation

€ Dynamic Invocation allows to invoke servers without linking stub
code.

@ /Each CORBA interface is derived from the ‘interface Object and
therefore needs to implement the method:

ORBSt at us create_request (
i n Context ctx, // context object
in ldentifier operation, // operation
in NVList arg |list, // argunents
| nout NanedVal ue result, // result
out Request request, // new request
in Flags req flags // flags

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

DynampicC Invocation
(cont‘d)

® Example:

CORBA: : Fl oat f;

CORBA: : Obj ect _ptr obj) = ...

CORBA: : Request _ptr req =/0bj-> request (* net hod”);
req << CORBA::out Mode << f;

req- >send_deferred();

/[l some tinme |ater:

req- >get _response();

CORBA: : Fl oat res;

req >> res;

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Dynamic Skeleton
Interface

® The DSI corresponds to the Dynamic Invocation Interface. Used
when a server wants to dispatch requests itself: CORBA
Bridges, Debuggers, Interpreter Environments.

For this purpose, a generic /interface is "available: Dynamic
Invocation Routine:

nodul e CORBA {

i nterface Server Request ({
| dentifier op_name(); // operation nane
Oper ati onDef op_def(); // operation definition
Context ctx();
voi d parans(i nout NVLi st parans);
NanmedVal ue result;

¥

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA Messaging

CORBA Messaging extends CORBA with asynchronous method
invocations:

Asynchronous Method Invocation (AMI) allows to decouple client
from server operation (non-blocking communication). There are
two models: Polling model, Callback Model.

“Store and forward” semantics supported by TII (Time-
Independent Invocations).. Invocations might outlive client
process. For this purpose, IRP (Interoperable Routing Protocol)
based upon GIOP is introduced. Integration into existing MOM
products possible.

Quality of Service on thread, object reference or ORB level. For
Instance, timeouts, priority and ordering, rebinding, “store-and-
forward”, ...

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA Messaging
(cont‘d)

€ Callback Model Sample:
exception | DoNot Li keToSpeak;
I nterface Tal k {
string talk(in string nsg) raises(lDoNotLi keToSpeak);

b

val ue AM _Tal kExcepti onHol der : Messagi ng: : Excepti onHol der {
void raise _talk() raises (|IDoNotLi keToSpeak) ;

3

I nterface AM _Tal kHandl er : Messagi ng: : Repl yHandl er {
void talk(in string am _return_val);
voi d tal k_excep(in AM _Tal kExcepti onHol der eh);

}

exception | DoNot Li keToSpeak;

I nterface Tal k {
string talk(in string nsg) raises(lDoNotLi keToSpeak);
voi d sendc_talk(in AM _Tal kHandl er h, in string nsQ);

i

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

hitialization

® Question: How do l\connect to my CORBA system?

@ The following steps are necessary:

e CORBA: :ORB ptr orb = GRB init(..., “ORBI D) will return
a pseudo object for accessing the broker.

e orb->resolve initial references(parans) will return
fundamental objects such as the COSS Naming Service
depending on the parameter passed.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

ORB-Interoperability

€ If two ORBs cooperate, they need a common language.

I nternet
Inter-ORB
Protocol
(1HOP)

TCP/IP

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

GItOP-Protocol

GIOR (General Inter-ORB, Protocol) implementations consist/of:

® The Common Data Representatigh: transfer syntax from IDL to
low-level representation (byte ordering, aligned primitive types,
mapping for IDL types).

GIOP Message Formats: Format of messages exchanged between
ORBs such as Request,/ Reply, Fragment, CancelRequest,
LocateRequest, LocateReply, CloseConnection, MessageError,
LocationForward.

GIOP Message Transport: Designed to work on various transport
protocols that are connection-oriented, reliable, can be considered as
byte stream, notify about disorderly connection lost, model for initiating
connections can be mapped on the TCP/IP model.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

[HOP

The Internet IOP Message Transport describes how agents/open TCP/ IP
connections and use them to transfer GIOP messages.

lIOP is not a separate specification but a specialization and mapping of the
GIOP for TCP/IP.

nmodule 11OP { // Definiition of |OR
struct Version/{ char nmmjor; char mnor; },;
struct Profil eBody {
Version iiop_version,
string host; unsigned short port;
sequence<oct et > obj ect _key;

'

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

|IOR

Bridges need information on object references: Is it null? What
type is it? What protocols are supported?"What ORB Services are
available?

IORs (Interoperable Object References) are introduced to integrate
this information. They are not visible to programmers.

IORs contain a type id and a'tagged profile per protocol supported
(needed by the protocol to identify an object).

IORs are created from object references before the request
crosses a domain boundary.

IORs can be stringified / destringified.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Portabte Object/ Adapter

The Portable Object Adapter overcomes the limitations of the BOA.

A POA instance is the place where CORBA objects and servants
live.

Servants are running implementations of “virtual® CORBA objects.
Policies specify how servants map to object references.

POAs are the places where CORBA objects live. All CORBA objects
within a POA share the same policies. POAs may be nested in a tree
structure.

Object IDs identify servants within their POA.

POAs manage, activate and deactivate servants.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

POQA Hierarchy

(SERVER

Root ROA

:

DANN

—:FII\/I ySubPOA w(Sevant)

Policies

Active Object Map

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Servants and Objects

€ CORBA objects are implemented by servants.

Servant.isincarnated Servant.is etherealized
I - s 1

[
[
| —
P \ 7
//I '\'<

Servant2

Object iscreated Object isdestroyed
@ Transient CORBA objects do not survive their creator process.

@ Persistent CORBA object persist across multiple processes.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

POA-Responsibilities

® POAs are responsible for ...
e Creating object references.

e uniquely identifying objects by Object IDs where either the
POA or the implementation can supply the Object IDs.

managing the servants which are registered by an
application. It stores all servants in an Active Object Map.
All requests where no servant exists, can be routed to a
user-defined default servant or to a user-defined servant-
manager.

® When a request arrives the target ORB dispatches it to the
POA hosting the target object.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

POA Policies

Each POA defines its,own set of policies- Root POA has/standard
set.

POAs are derived from existing POAs, but do not inherit any
policies.

e Thread (ORB_CTRL_MODEL, SINGLE_THREAD_ MODEL)
o Lifespan (TRANSIENT, PERSISTENT)

Object ID Uniqueness (UNIQUE_ID, MULTIPLE_ID)

ID Assignment (USER_ID, SYSTEM_ID)

Servant Retention (RETAIN, NON_RETAIN)

Requests (USE_ACTIVE_OBJECT_MAP_ONLY, USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER)

Implicit Activation (IMPLICIT_ACTIVATION, NO_IMPLICIT_ACTIVATION)

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Servant Managers

The user-supplied Servant Manager ‘is invoked by the POA
if the POA cannot find a servant implementing a requested
object.

This happens, for instance, 4f the server process wants to
create references at start-up, but incarnate servants only on
demand.

Two types of Servant Managers:

e Servant Activator is used when RETAIN policy is used. Servant
Is inserted in Active Object Map.

e Servant Locator is used when NON_RETAIN is used instead.
Servant is used for invocation only and is not retained.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Default servants

Default servants are used to/ incarnate objects when
USE _DEFAULT _SERVANT policy or "NON_RETAIN policy
are applied.

% They are used to incarnate /multiple objects with the same
interface, e.g., objects providing the Dynamic Skeleton
Interface.

® They must not hold any object-specific state.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

POA Manager

® With each POA a POA Manager is assoclated.
@ /The POA Manager allows to:

e activate a POA (start itswork)
e deactivate a POA (stop its work)

e hold requests (incoming requests are queued but not
executed)

e discard requests (incoming and queued requests are
discarded)

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

POA " Sample/Code

CORBA: : ORB . var orb = CORBA ORB init(argc, argv, “nyCORB’);
CORBA: : (bj ect _var root PoaCh] = orb->resolve_initial references(”Raoot POA");

Port abl eServer:: POA var poa = PRortabl eServers: POA: : \narrow r oot PeaQbj) ;
Port abl eSer ver: : POAManager var ngr = poa- >t he PQOAManager () ;
CORBA: : Pol i cyLi st pol Li st;

pol Li st.length(l);

pol Li'st[0]

= poa- >create request processing policy(Portabl eServer:: USE SERVANT MANAGER)
Port abl eServer:: POA var nyPoa = poa->create POA(“M/Poa”, ngr, polList);
MyQbj ect Manager mnyCbj ect Myr;

Port abl eSer ver: : Ser vant Manager var nySer Mgr = nyCbhjectMgr. this();
myPoa- >set _servant _manager (nySer Myr)

MyQbj ect _inpl * servant = new MyCbj ect _i npl (myPoa) ;

Port abl eServer:: Qbjectld var oid = nyPoa->activate object(servant);

ngr - >activate();

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Is that all we/nheed?

So far we have intraduced a messenger component called the
Broker that locates servers and feeds them,with client requests.

Real-world applications need more than just a Remote Method
Invocation paradigm.

We need to use advanced /services such as Events, Naming,
Database Access, Transaction Processing, Lifecycle Support, ...

Fortunately, the OMG already has standardized a rich set of
additional services with even more to come.

CORBAservices are fundamental services provided by IDL
interfaces and CORBA objects. These services aim at the physical
modeling and storing of objects.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Naming Service

€ Question: Where do you get object references?
@ Answer: Use the Naming Service
@ /The Naming Service is similar to a file system directory:

Object Name:
Root/Accounting/Department 2/Account_1234

Department 2 Department 1

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Naming Service (cont'‘d)

Fundamental concepts:

® A name binding (name, object) associates a name with an obj ect.

® A naming context denotes a set of name bindingswith each name being
unique. Name contexts themselves are CORBA objects. Hence, they can
also be bound to a name.

Name bindings are alwaysrelative to a naming context.

» A name is a sequence of name components each of them consisting of an
Identifier and a kind: Root/Accounting/Department 2/Account_1234

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Naming Service (cont'‘d)

Some/methods from\the CosNaming module:

nodul e CosNam ng { //

I nt erface Nam ngCont ext {
void bind(in Nanme n, in Qobject obj) raises ...;
void rebind(in Nanme n, in Cbject obj) raises ...;
voi d bind _context(in Nanme n, in Nam ngContext nc) raises ...
voi d rebi nd _context(in Nane n, in Nam ngContext nc) raises ...,;
bj ect resolve(in Nane n) raises ...
voi d unbi nd(in Nane n) raises ...
Nam ngCont ext new cont ext () ;
Nam ngCont ext bi nd _new context(in Nane n) raises ...;
voi d destroy() raises ...;

}

}

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Naming Service (cont'‘d)

Example Code:

/1l Initialize the ORB pseudo object:

CORBA: : ORB var orb = CORBA: : ORB init(argc, argv);

/1l get initial reference to the nane service

CORBA: : (bj ect _var obj = orb->resolwve initial _references(“NaneService”);
/1l use initial context:

CosNam ng: : Nam ngCont ext _var root = CosNam ng:: Nam ngCont ext:: narrowobj);
CosNam ng: : Nanme n;

n.length(l);

Nn[0].id = CORBA: :string _dup(“MCbjectl”);

// and try to resol ve nane

CORBA: : Obj ect _var objInDr = root->resolve(n);

/1l narrow to object type

MyType var nyCbj = MyType:: narrowobjInDr);

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Event Service

® Usually, a specific client calls a specific
remote server and blocks untihthe result
returns.

€ Sometimes, this strategy Is not sufficient.

Consider a server that reports share values.
e A polling strategy leads to performance bottlenecks.

e The share values could be spread across different
Servers.

e More than one client may be interested in the
information.

® How can we decouple clients and servers?

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

EventService (cont'd)

Decouple suppliers (publishers) and
consumers (subscribers) of events:

Event Queue

Publisher I Subscriber An Event Queue is storing events.

detachPublisher Publishers create events and store them in
attachSubscriber

erierseeos Il an event queue with which they have
| previously registered.

produce

Consumers register with event queues
K ' from which they retrieve events.

Event

Events are objects used to transmit state
change information from publishers to
consumers.

For event transmission push-models and
pull-models are possible.

Filters could be used to filter events on
behalf of subscribers.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

EventService (cont'd)

® Dynamics (simplified)

attachSubscriber

produce

iushEvent 3

pushEvent >

detachSubscriber

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

EventService (cont'd)

Some characteristics:

Event consumers and event suppliershiare decoupled from
each other.

€ A many-to-many relationship between consumers and
suppliers is supported.

Push-style as well as Pull-style communication is available.
Typed and untyped events are possible.

The Notification Service extends the Event Service. It
enables developers to add filters to event channels.

(c) 2001, Michael Stak;
All Rights*Reserved

CORBA 3

@ |n the year 2000 the OMG has
published CORBA 3/which‘offers
solutions in 3 areas:

e Internet
e Quality of Service
e Components

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

INnternet

® The Interoperable Name Service (INS) specifies
URL-based naming schemes such'as

e iioploc://1. 1@ynachine. sienens. de: 9999/ bi n/ t r adi ngservi ce
e iiopnane://nmymachi ne. si enens. de/ root/accounting/ depart nent A/ al

@ Java Reverse Mapping allows to omit usage of
CORBA IDL. Developers just follow the RMI
conventions.

Bidirectional GIOP allows clients and servers to
share the same connection in contrast to traditional
GIOP.

® CORBA Firewall introduces GIOP Proxies.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Quality of\Service

® CORBA Messaging defines asynehrnous calls (AMI)
as well as time-independent/calls (1)

@/ Minimum CORBA is CORBA without all dynamic
features such as
DI
DSI
DynAny
Interface Repository
Some of the POA policies and options

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Qualblity of Service
(cont‘d)

® Some facts about Realtime CORBA:

(c) 2001, Michael Stak;
All Rights*Reserved

Threads are dispatched by a special dispatcher that supports
static scheduling.

Configuration is done using RT _CORBA: : RTORB.

Thread Pools can be created and thread priorities changed.

RT CORBA supports a specific priority scheme that is mapped
to the native scheme.

Priority inversions are prevented by different strategies such as
sending priorities using IIOP, synchronizing resource access by
mutexes.

Clients can initiiate different connections to servers such as
channels with different priorities, dedicated connections, and
specify time-outs for invocations.

|{e> CORBA..

Qualblity of Service
(cont‘d)

Object Group

dispatchRequest
enterGroup
leaveGroup
selectCoordinator

Q

@ 1

|

Coordinator

service

Fault toleranct CORBA:

An Object Group represents a group of
objects that all provide the same
service.

Object provides a specific service to
clients.

The coordinator is selected by the Object
Group to dispatch requests.

Wor ker s receive requests from their
coordinator and return results.

Each member of the object group
maintains its own state.

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Qualblity of Service
(cont‘d)

enterGroup

>

newWorker
Object N freezeState

>
synchronizeState

request

dispatchRequest

returnResult

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Qualblity of Service
(cont‘d)

® Some facts about Fault-tolerant GORBA:

e FT CORBA supports reliability by replication.

e Replicated objects are part of an object group which behaves to
the clients as if it were a single object. Thus, client is oblivious

to FT mechanisms.

e Object groups are created by replication managers. There can
be more than one replication manager per host.

e Local and global agents are responsible for detecting error
conditions.

e Errors are reported to the reoplication manager using the fault
notifier.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Qualblity of Service
(cont‘d)

® More facts about Fault-tolerapt CORBA:

e There are two options for handling errok conditions:

e In active configurations/all members of an object group
receive all requests in‘the same order using a reliable

multicast protocol. If only one object succeeds, a result can
be returned to the client.

In passive configurations a primary object handles the
request. If the primary object fails, the system uses a
backup object instead. The state synchronization is
committed either:

after each request (warm passive replication) or
using a recovery file (cold passive replication).
o All activities are logged by the system.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA Components

(c) 2001, Michael Stak;
All Rights*Reserved

@ What you will learn in this, part:
e Overview of CORBA/Components

€ What you will not learn:

e How to design and implement CORBA
components

e Concrete Language Mappings

@ Note: CORBA Components Spec. Is
currently under construction!

(c) 2001, Michael Stak;
All Rights*Reserved

Motivation

@ Why Components?

)

A

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Component\Software

@ Mulu-tier architectures lead to separation of
concerns (presentation, application, data).

@ But presentation / application tiers ‘are complex.

® Thus, an additional separation of these tiers Is
necessary!

Siemens Info Svstem

Name: Miller

Presentation Layer Business Objects Database Layer

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Flavors of Components

® Presentation tier ® Middle tier

components: components:

e they typically represent

sophisticated GUI e they typically provide

rver-side functionality.
elements. server-side y

o they share the same e they run in their own
address space with their address space.
clients. e they are integrated into a
e their clients are container that hides all

containers that provide system details.
all the resources.

e they send events to their
containers.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

AppHCation Servers

An application server can be
- a Web Server,

- a Database Server

- a CORBA Server

- a TP-Monitor

Imperative‘
Programming

Declarative Transaction Transaction

Programming ¢ Security Security
Resources Resources

(c) 2001, Michael Stak;
All Rights*Reserved

/&> CORBA..

CORBA based
Application [EEm

Transaction
Security

S e rve r Resources

on

L]
L]
L]
L]
L]
L]
L]

-
Transaction

Client

Security

State
Management

Activation/
Deactivation

®©
=
-
S
S
&
o)
@)

(c) 2001, Michael Stak;
All Rights*Reserved

CORBA-Components -
EJB made Ubiquitious

|{e> CORBA..

ClienttUsage Example

[l Get hone finder:

or g. ong. CORBA. Ohj ect objref' =
orb.resolve_initial _references(, Conponent HoneFi nder*) ;

/'l ,cast® it to correct type:

Conponent HonmeFi nder hf = Conponent HoneFi nder Hel per.. narrow obj ref);
/1 find home using type:

org. ong. CORBA. (bj ect of = hf.find honme by type(BankHoneHel per.id());
/] ,cast” it to correct type:

BankHonme bh = BankHoneHel per. narrow of);

/]l create instance and narrow it:

or g. ong. Conponent s. Conponent Base bankl nst ance = bh. create();

Bank nyBank = BankHel per. narrow bankl nst ance);

/'l invoke operations:

| ong how nuch_npbney = nyBank. anount () ;

(c) 2001, Michael Stak;
All Rights*Reserved

Equivalent/IDL

@ All component definitions\are specified

using Com

€ Client map
equivalent

oonent IDL.

nings are described using
DL.

® Thus, all features can be described with
CORBA 2.3 compliant IDL grammatr.

Equivalent IDL (cont'd)

component MyConp A

| nterface MyComp
Conponent s:: Conponent Base { ... },;

BTW, this is the distinguished interface of the CORBA
component!

(c) 2001, Michael Stak;
All Rights*Reserved

Supported Interfaces

@ Similar to Java, a component (interface)
may support other interfaces:

interface WhoAml {
String getName();

%

component UnixUser supports WhoAml {

}

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Inheritance

@ Components'may singly mherit from
other components:

component BaseComponent supports A{
/[implement A methods
/[implement further methods

j#

component DerivedComponent : BaseComponent supports B {
/I implement BaseComponent methods incl. A methods
/[implement B methods
/[implement further methods

(c) 2001, Michael Stak;
All Rights*Reserved

Ports

@ Components'specify interfaces (ports)
to interact with their environment:

o are provided interfaces.for clients
denote connection points

for configuration purposes

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Ports (cont‘d)

receptacles
component reference supports

component’s equivalent interface

» ——

facets / -
N —

event sink
«

/v;

attributes DERINNNE N

event source

(c) 2001, Michael Stak;
All Rights*Reserved

Facets

@ Each component has a single
distinguished
€ It may additionally provide multiple

object references/().

@ Equivalent Interface used by clients for
navigation and connection.

(c) 2001, Michael Stak;
All Rights*Reserved

Eacets (cont'd)

Equivalent interface

Facet
| mplementations

-

(c) 2001, Michael Stak;
All Rights*Reserved

Eacets (cont'd)

@ Facet implementations encapsulated by
components; opague to clients.

@ Clients navigate from facet to.equivalent
iInterface (get _conponent ()) and ...

@ obtain facets from equivalent interface
(provi de. .. methods).

|{e> CORBA..

Eacets (cont'd)

@ Component IDL: ¢ Equivalent IDL:

interface Invoice { ... }; interface Invoice { ... };
interface Customer { ... }; interface Customer { ... };

component ShoppingTour { interface ShoppingTour :
Components::ComponentBase {
provides Invoice the invoice; Invoice provide the_invoice();
provides Customer the customer; Customer provide_the customer();

(c) 2001, Michael Stak;
All Rights*Reserved

Receptacles

L denote component's abllity
to use other object (references).

€ When component accepts object
reference, this is called a

@ Typically, connections are set during
assembly.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Receptacles (cont'd)

@ Component IDL: ¢ Equivalent IDL:

interface Printer {... }; interface Printer { ... };

component ShoppingTour { interface ShoppingTour :
Components::ComponentBase {
uses Printer the_printer; void
connect_the printer(in Printer co);
Printer
disconnect_the_printer();
Printer
get_connection_the_printer();

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Events

® Components can send and receive event
notifications.

& An emitter sends events to exactly one
subscriber. A publisher is not restricted to one
subscriber.

® CORBA Push Model used; value types are
sent as an any.

® Container responsible for QoS and channel
management.

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Publisher/Subscriber
Pattern

attachSubscriber

roduce
Z Event

ushEvent

B ol

pushEvent 5

event

detachSubscriber

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Publishhers and Emitters

@ Publisher

e pushes events to multiple consumers vin event
channel.

e Subscribers delegated to event channel.
e Component is only source.

@ Emitter
e can be connected to at most one subscriber
e direct registration with event source
e direct push to subscriber

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Publisher Example

© Component IDL: ® Equivalent IDL:

valuetype Limit : valuetype Limit:
Components::EventBase Components::EventBase { ... };
{..} module ShoppingTourEventConsumers {
interface LimitConsumer :

STTSIE ST CqmponehtsEyehtConsumerBase {
_ void push(in Limit evt);
publishes

Limit lim;) ’
interface ShoppingTour :
Components::ComponentBase {
Components::Cookie
subscribe_lim (in
ShoppingTourEventConsumers::LimitConsumer
c);
ShoppingTourEventConsumers::LimitConsumer
unsubscribe_lim (in Components::Cookie ck);

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Emrtter Example

© Component IDL: ® Equivalent IDL:

valuetype SingleOffer : valuetype SingleOffer : Components::EventBase { ... };
Components::EventBase module ShoppingTourEventConsumers {
{..} interface SingleOfferConsumer :
ComponentsEventConsumerBase {

component ShoppingTour { | void push(in SingleOffer evt);
emits

2
SingleOffer prd;

interface ShoppingTour :
Components::ComponentBase {

void connect_prd (in
ShoppingTourEventConsumers::

SingleOfferConsumer c);
ShoppingTourEventConsumers::
SingleOfferConsumer

disconnect_prd ();

(c) 2001, Michael Stak;
All Rights*Reserved

Subscribers

@ A subscriber can be connected to any
number of event sources.

@ Externally established connections.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Subscriber-Example

© Component IDL: ® Equivalent IDL:

valuetype SingleOffer : valuetype SingleOffer : Components::EventBase { ... };
Components::EventBase module CustomerEventConsumers {
{..} interface SingleOfferConsumer :
ComponentsEventConsumerBase {

component Customer { ' void push(in SingleOffer evt);
consumer ’

2
SingleOffer prd;

interface Customer :
Components::ComponentBase {

CustomerEventConsumers::
SingleOfferConsumer
get_consumer_prd ();

(c) 2001, Michael Stak;
All Rights*Reserved

Attributes

@ Used primarily for configuration
purposes.
e Customization of components
e Support by visual'tools

e Homes can apply collections of settings to
all components.

(c) 2001, Michael Stak;
All Rights*Reserved

Component ldentity

@ Components'identified by.component
reference.

€ Operations to check whether\two
references belong to same component.

@ Sameness” Is up to implementor.

@ Components may be associated with
primary keys.

(c) 2001, Michael Stak;
All Rights*Reserved

Camponent Homes

e meta-type.

@ /Component home responsible for
managing instances of one type.

@ Operations to manage component life-
cycles, and (optionally) primary keys.

@ Homes and Components are defined In
ISolation.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Heme Example

© Component IDL: ® Equivalent IDL:

home ShoppingTourHome interface ShoppingTourHomelmplicit {
manages ShoppingTour ShoppingTour create();

%

interface ShoppingTourHomeExplicit: {

Il explicit operations s)
/I explicit operations

2

interface ShoppingTourHome :
ShoppingTourHomelmplicit,
ShoppingTourHomeEXxplicit,
HomeBase // Life-Cycle Operations

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Primary. Keys

@ A home can provide a‘primary key to
uniquely identify components:

o Used to find/remove components
e assigned on creation, or through database

o valuetype derived from
Conponent s: : Pri mar yKeyBase

Primary key usually not part of component

Different homes may use different primary keys for
same component type

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Primary Key. Example

@ Component IDL: @ Equivalent IDL:

interface ShoppingTourHomelmplicit {

valuetype Key : ShoppingTour create(in Key k);
Components::PrimaryKeyBase { ShoppingTour find_by_primary_key(in Key K);
public long value; void remove(in Key K);
e } Key get_primary_key(in ShoppingTour st);
interface ShoppingTourHomeEXxplicit {
home ShoppingTourHome /I explicit operations
manages ShoppingTour |5
primaryKey Key interface ShoppingTourHome :
ShoppingTourHomelmplicit,
ShoppingTourHomeEXxplicit,

Il explicit operations _ _
ComponentHome // Life-Cycle Operations

(c) 2001, Michael Stak;
All Rights*Reserved

Home Finders

@ But how does a clientf/ind a home?
e Homes register with home finders.
e Clients use home finders to obtain homes.

e Home finder might select one of several homes
using client request and configuration data.

e Home finder itself is obtained using
ORB: :resolve initial _references

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Containers are a~developers's best friend

XML Configuration

Component = POA

Containers shield clients and
components from the details
of the underlying ORB,
services, network + operating

system specifics. Transactions Security Persistence

CORBA ORB

(c) 2001, Michael Stak; Operati ng %/Stem

All Rights*Reserved

Container Programming
Model

@ Container IS a runtime’environment for a
CORBA component i/mplementation.

€ Environment may be a deployment

platform (app server) or IDE.

e IDE: Highly customizable, no concurrent
users

e App. Server: Many concurrent users, but
not highly customizable.

Events

(c) 2001, Michael Stak;
All Rights*Reserved

Elements

@ External Types

@/Container Type

@ Container Implementation Type
® Component Category

(c) 2001, Michael Stak;
All Rights*Reserved

External\Types

@ Contract between component and,/client

e to obtain mterface
references and

® Two design patterns supported:
e Home with primary key: finder + factory
e Home without primary key: factory

~ analogous to EJBHome, EJBODbject

Centainer Type

@ API framework between component and
container:

o defines transient
object references for components.

o defines persistent
object references for components.

(c) 2001, Michael Stak;
All Rights*Reserved

Centainer
Implementation Type

@ |nteraction patterns between container,
POA, and CORBA services:

o . transient/object references; one

POA servant for multiple components.

o . transient object references,
one POA servant per component.

o . persistent object references; one
POA servant per component.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Compaonent Categories

© Valid combinations:

Container Container Primary Key Component
Implementation Type Categories

Type
stateless transient Service

conversational transient Session Session

durable persistent Process

durable persistent Entity

(c) 2001, Michael Stak;
All Rights*Reserved

Server-Programming
Environment

Threading

® CORBA Components/support two
threading models:

e Serialize: container prevents multiple
threads from entering the component
simultaneously.

e Multithread: Component is thread-safe.
EJB supports only serialize.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Servant Lifetime
Management

® Servants are programming objects used to execute
method requests.

@/ Memory for servants should be managed efficiently.

& Server programmer has different design choices:
e Selection of container type.
e Selection of container implementation type.
e Selection of servant lifetime policy.

e Implementation of callback interfaces associated
with choices.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Servant Lifetime

& A/different policies available:

o . component activated by,container on
every request and then/passivated.

o . activation on first request within
transaction; passivation on transaction completion.

o . activation on first request; passivation
when component asks to.

o . activation on first request; passivation
when container decides to passivate.

(c) 2001, Michael Stak;
All Rights*Reserved

Contalaer Types and
Servant Lifetime

® Possible variations:

Container Container Type Valid Servant
Implementation Lifetime Policies

Type

(c) 2001, Michael Stalk;
All Rights*Reserved

SIEMENS
| {e> CORBA .

Fransactions

@ Transaction policies:

Transaction Attribute Client Transaction Component Transaction

(c) 2001, Michael Stalk;
All Rights"Reserved

Security

® Security Is consistently applied to all
component categories.

€ Container extracts policy from
deployment descriptor.

@ |t checks active credentials and adjusts
them to accomodate requested policy.

@ Policy remains unchanged until change
request.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Events

» CORBA Components use subset\of notification
service.

' /Event data structure mapped to an any.
Events are passed as valuetypes.
Push model used.

» Events may have transactional behavior depending
on container implementation type and deployment
descriptor.

' Channel management by container.
Possible policies normal, default, transaction

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Persistence

® A persistent container type supports use of
persistence mechanism:

e Container-managed persistence: component developer
defines state. Container saves and stores state
automatically.

e Component-managed persistence: component in charge of
saveing and storing state.

e Itis possible to use the PSS or a user-defined service.
@{I}“
u

(c) 2001, Michael Stak;
All Rights*Reserved

Operation Invocation

@ Components'provide (multiple) supported
and provided interfaces.

€ Operations may raise exceptions.

@ User exceptions are forwarded to clients
directly and do not affect transactions.

@ Other exceptions intercepted by container
and lead to rollback (exception).

Interfaces between
components and/containers

@ There are twao kinds of interfaces:

e Internal interfaces are provided by the
container and called by the component.

e Callback interfaces are provided by the
component and called by the container.

[{e> CORBA.

Interfaces for all
Container\Jrypes

@ ComponentContext is an external interface to
access runtime services;

exception Illegal State {};
| ocal Conponent Cont ext {
/'l get reference used to i nvoke conponent:
CORBA: : (bj ect get _reference() raises (Illegal State);
HOVEBase get _hone(); // get reference to hone
Transaction get transaction(); // get a Transaction interface
HomeRegi stration get _hone registration(); // get reference to HR
Security get security(); // get Security interface
Events get _events(); // get Events interface

(c) 2001, Michael Stak;
All Rights*Reserved

Internal Interfaces

@ Home: find/locate components

@/BaseOrigin interface: used by
component to request passivation:

exception PolicyMsmatch {};

| ocal BaseOrigin {
voi d req_passivate() raises (PolicyM smatch);

'

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Internakinterfaces (cont‘d)

® Transaction Interface:

excepti/on NoTransaction {}; exception InvalidCookie\{};

enum Status {ACTI VE, MARKED ROLLBACK, PREPARED, COMMTTED, ROLLED BACK,
NO_TRANSACTI ON, PREPARI NG COW TTI NG, ROLLI NG _BACK} ;

| ocal Transaction {
voi d begin();
void commt() raises(NoTransacti on);
voi d rol | back() rai ses(NoTransacti on);
voi d set _roll back _only() raises(NoTransaction);
bool ean get roll back _only() rai ses(NoTransacti on);
Local Cooki e suspend() raises(NoTransaction);
voi d resune(i n Local Cooki e cookie) raises(lnvalidCookie);
Status get status();
void set _tineout(in long to);

(c) 2001, Michael Stak;
All Rights*Reserved

Internakinterfaces (cont‘d)

@ HomeRegistration Interface: internal
Interface used by component to register
Its home so it can be located.

® Security Interface:

t ypedef SecuritylLevel 2::Credentials Principal;
| ocal Security {
Principal get caller _identity();
boolean is caller in role(in Principal role);

(c) 2001, Michael Stak;
All Rights*Reserved

Internakinterfaces (cont‘d)

@ Events interface: externalinterface to
support emitting and/publishing events.

€ Components must implement a callback
interface derived from:

| ocal EnterpriseConponent {

'

(c) 2001, Michael Stak;
All Rights*Reserved

ClientProgramming
Model

i &
7Es

\

~

l
w

-

Client/Component
Interaction

@ The client interacts through two forms of
external interfaces:

e One or more application interfaces

e Home Interface

® The home supports two patterns:

e If primaryKey Is defined: factories and
finders

e If primaryKey is not defined: factories

|{e> CORBA..

Compenent-aware
clients

@ Clients that know\that they deal with components are
component-aware.

'/ They know how to use all of the interfaces and the
home interface.

® They locate these interfaces using
Components::HomeFinder or the naming service.

» The starting point is
resolve_initial references().

@ Use ,ComponentHomeFinder” to locate home finder.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Same example again

[l Get hone finder:

or g. ong. CORBA. Ohj ect objref' =
orb.resolve_initial _references(, Conponent HoneFi nder*) ;

/'l ,cast® it to correct type:

Conponent HonmeFi nder hf = Conponent HoneFi nder Hel per.. narrow obj ref);
/1 find home using type:

org. ong. CORBA. (bj ect of = hf.find honme by type(BankHoneHel per.id());
/] ,cast” it to correct type:

BankHonme bh = BankHoneHel per. narrow of);

/]l create instance and narrow it:

or g. ong. Conponent s. Conponent Base bankl nst ance = bh. create();

Bank nyBank = BankHel per. narrow bankl nst ance);

/'l invoke operations:

CORBA: : ULong how nuch_nponey = nyBank. anount () ;

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Component-unaware
clients

® Clients that do not know they/deal with a component.

® These clients only see one interface, namely the
supported interface of a component.

* They obtain initial references to the home by using
the name service or trader service.

@ After creation of the component, they use its standard
Interface.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Persistence . Concepts

® The CIF defines:

o A IS an abstract state of an executor,
managed by the component or the\framework.

o are instances of storage types.
They are managed by a object store and created
through a storage home.

e An IS a programming interface that
manifests a storage object in an execution
context. It hides all the system detalls.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Persistence Concepts
(cont‘d)

LA defines an interface to manage a
specified storage type, find incarnations, create
storage objects and destroy instances.

are the primary point of contact
between the application and the storage
mechanisms. They maintain the state of storage
objects, and the ACID attributes. They also
provide storage homes.

are values that uniquely
identify storage objects within a persistent store.

o can be optionally defined in storage
homes.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

st orage Account {
| ong account _nunber ;
| ong anount;

'

st or age Custoner {
string owner;
Account account;

};

| S MAPPED TO Java:

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

i nt erface Account Abstract State {
| ong account nunber () ;
voi d account nunber (|l ong val);
| ong anount () ;
voi d anount (| ong val);

}

I nterface Account extends ‘Account Abstract St at e,
| ncar nati onBase {}

I nterface CustonerAbstractState {
string owner();
voi d owner (owner val);
Account account();
voi d account (Account val);

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

Cust omer custionmer = Cust omer Hone. creat e();
[/ account nmenber in custoner ynplicitely
/| created.

cust oner. account (). aceount nunber(1234);
cust oner. account () . anmount (0) ;

cust oner. owner (,M chael Stal“);

(c) 2001, Michael Stak;
All Rights*Reserved

composition

@ The composition denotes\the collection
of all necessary artifacts of\an
Implementation:

e Home / home executor
e Component / component executor

e Abstract storage home
e storage

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Simple Composition
IDL CIDL
Component Home Lmplements Home Executor

| manages l manages

\4

Component g Impyfnents Executor

conposition entity MyConponent {

home executor MyHonmeExecut or Nane
| npl enments MyHone
manages MyConponent Execut or

(c) 2001, Michael Stak;
All Rights*Reserved

Packaging and
Deployment

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Packaging

represents one or
more implementations of an/abstract component.

/It may be installed or grouped together with other
components to form an assembly.

® A package consists of a and a set of files.

@ All files of a package are either part of an
or stored separately.

» In the last case the descriptor points to the file
locations.

@ Descriptors are documents.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CcCM and EJB

® CORBA Components strives\for compatibility
with Enterprise JavaBeans:

e (1) CORBA Components can be used by Java
clients; EJBs can be used by CORBA Clients.

e (2) CORBA Component containers can support
EJBs.

e (3) CORBA components written in Java that follow
the EJB patterns are deployable in EJB
containers:

e Either the component is an EJB; or

e The component has two different faces: that of an EJB
and that of a CORBA component.

(c) 2001, Michael Stak;
All Rights*Reserved

Portable Interceptor
Framework

@ Interceptors are used to add‘out-of-the-band
functionality during ORB processing.

@ Previously, this functionality could either not

ne integrated into existing ORBs or only in a
oroduct specific way.

® Portable Interceptors solve this problem.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Example’ Client-Side
Interceptor

@ |.et us consider an example. A client
sends a request to a’server:

send_r equest
send_pol | —;———>

receive_request_sgyvice_context

recei ve_request

recei ve reply < send reply
recei ve exception < send exception

send ot her < send ot her

Client-side interception points Server-side interception points

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

® For a specific kind of ORB processing (e.g., client
requests) points in\the event flow (Interception points)
are identified where an interceptor should be able to
Intercept.

® An interceptor is registered with the ORB. For each
Interception point a separate method is available in
the interceptor interface.

» Interception points might be interrelated by the
control flow. There might be starting points,
Intermediate points, ending points.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Example (cont‘d)

@ |n a client request there are different interception
points:
e send_request: interceptor might query information on
reguest, raise a system exception.
send_poll: Tl polling request. May raise system exception.

receive _exception: query exception before exception is
raised to client. May raise a system exception or a
ForwardRequest exception.

receive_other: allows to query information when request is
something other than normal reply or exception. For
example a request colld result in a retry. May raise system
exception.

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Example (cont‘d)

nodul e Port abl el nterceptor {
| ocal interface Interceptor {
readonly attribute’string name;

| ocal interface CientRequestlntierceptor : Interceptor {

voi d send request(in CientRequestinfo ri) raises
(For war dRequest) ;

void send poll(in CientRequestinfo ri); // TII
void receive reply(in dientRequestlinfo ri);

voi d recei ve_exception(in CientRequestinfo ri) raises
(For war dRequest) ;

void receive other(in CientRequestinfo ri) raises
(For war dRequest) ;

(c) 2001, Michael Stak;
All Rights*Reserved

Example (cont‘d)

@ More than one interceptor can be
registered with an ORB fori\the same

event.

@ Interceptors are logically put on a virtual
stack one after another and then one of

the starting points gets called.

@ An ending point is only called for all
iInterceptors pushed on the virtual stack.

|{e> CORBA..

Registration of
Interceptors

@ Example:

public cllass Loggi ngService inplenments ORBInitializery{
/[l pre_init is called during ORB initialization.
void pre_init(ORBInitlInfo info) {
| nterceptor interceptor = new Loggi ngl nterceptor;
I nfo.add _client _request _interceptor(interceptor);
}
[/l all initial references are avail able
void post init(CORBInitInfo info) {
Il

set initializer class with —D option at program start

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Summany

®& Famous last words

CORBA
Components

Once upon atime an
Ofgaﬂ.\ zat\ on

called OM G
decided t :

new techno

goal was 0 defeat
dangerous Arago"

(c) 2001, Michael Stak;
All Rights*Reserved

Summany

@ CORBA Components is an easy-to-use,
powerful technology for building platform-
iIndependent middle-tier components.

@ Enterprise JavaBeans and CORBA
Components are two sides of the same coin.

@ With , the OMG offers a full range of
enterprise technologies.

@ What we need now are products, products, ...

Thanks alot for attending
thistalk!!

SIEMENS

[{e> CORBA.

Any Questions ?

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

CORBA Book
References

® Henning, Vinoski: Advanced CORBA Pregramming with C++,
Addison Wesley, 1999. (The ,bible* for CORBA programmers).

Puder, Romer: Middleware fur verteilte Systeme, dpunkt, 2000.
Ruh, Herron, Klinker: IIOP Complete, Wiley, 1999.

Pritchard: COM and CORBA Side by Side: Architectures,
Strategies, and Implementations, 1999, Addison-Wesley.

Siegel (ed.): CORBA 3 Fundamentals and Programming, 2nd
Edition, 2000, Wiley.

Advanced CORBA
Program g

with (a

Michi Henning
Steve Vinoski

&

() 2001, Michael Stal; Yot
All Rights*Reserved

[{e> CORBA.

Patterns References

Buschmann, Meunier, Rohnert, Sommerlad, Stal: Pattern-
Oriented Software Architecture - A'System of Patterns, Wiley,
1996.

Schmidt, Stal, Rohnert, Buschmann: Pattern-Oriented Software
Architecture Vol. 2 — Patterns/or Concurrent and Networked
Objects, Wiley, 2000.

Gamma, Helm, Johnson, Vlissides: Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

_i : o f'i.

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE
[T Fenemsim Eamummmaan

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Internet References

+ OMG
BEA:
IBM:
Inprise/Borland:
IONA:

Bean Homepage:

~ The ACE ORB

ht t p:

[[www. Qig.er g

nttp:

[| wwigbeasys, conh

htt p:
ht t p:
htt p:
htt p:
htt p:

[wwww 4.1 bm com sof t war e/ ad/ cb/
[| www. bor | and. com

[[awwww. i ona. com

///j ava. sun. com products/ejb

[/ www. cs. wust | . edu/ ~schm dt

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Additronal Bonus
Matenal

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Standardized CORBA
Services

Naming: creation of name spaces and translation of nhames to object
references.

Lifecycle: creation, modification, cepying, movement and removal of
objects.

Events: asynchronous messaging.
Persistence: persistent store and retrieval of objects.

Concurrency: parallel access to objects by standard mechanism like
locks and semaphores.

Externalization: export of objects to system external files.

Relationship: object relations (f.i. 1:n, n:m).

Transaction: transaction oriented access with 2 level commit.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Standardized CORBA
Services (cont‘d)

Licensing: framework ‘for specification’ and management of license
servers.

Query: predicate based and declarative operations on collections of
objects.

Time: synchronization of clocks in distributed environments.
Security: authorizing and supervising at object level.

Properties: typed and attributed values, statically or dynamically
attached to an object.

Trading: Clients can ask for services and specify properties. They do
not care about servers.

Collections: Collections a la CORBA.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Event-Service Example

Supplier:

CORBA: : ORB_var orb = CORBA:: ORB_init(argc,,argv);

CORBA: : bj ect _var obj = orb->resolvelinitialyreferences("NaneService");
CosNami ng: : Nam ngContext _var inc;

I nc = CosNam ng: : Nam ngCont ext:: _narrow obj);

assert (!CORBA: :is_nil(inc.in()));

CosNani ng: : Nane ec_nane;

ec_nane. |l ength(1);

ec_nanme[0].id = CORBA: :string_dup("CosEvent Servi ce");

obj = inc->resolve(ec_nane);

if (CORBA::is_nil(obj.in())) {
cerr << "Could not find Event Service" << endl;
return 1,

}

CosEvent Channel Admi n: : Event Channel var echoEC =
CosEvent Channel Admi n: : Event Channel : : _narrow obj) ;

I f (CORBA::is_nil(echoEC.in())) {
cerr << "Invalid reference for event channel" << endl;
return 1,

} /1l .. to be continued

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Event Service Example
(cont'd)

Sample supplier (continued):

[/ continued ...
CosEvent Channel Adm n: : Suppl i er Adm n_var supplierAdm n =
echoEC->for _suppliers();
CosEvent Channel Adm n: : ProxyPushConsuner _var consuner =
suppl i er Adm n->obt ai n_push_consuner ();
consuner - >connect _push_suppl i er (CosEvent Comm : PushSupplier:: nil());
/1 Now, we can fire an event:
CORBA: : Any event;
event <<= CORBA::string dup("insertEntry");
consuner - >push(event) ;

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Event Service Example
(cont'd)

Sample consumer (consumer declaration):

#i ncl ude <orbsvcs/ CosEvent Conmt. h>

cliass HashConsuner i : public virtual POA CosEvent Comm : PushConsuner
{
publ i c:
HashConsuner i (CORBA: : ORB ptr orb);
virtual void push(const CORBA:: Any & dat a,

CORBA: : Envi ronnent &ACE TRY ENV = CORBA: : default _environnment ());
virtual void disconnect push_consuner (

CORBA: : Envi ronnment &ACE TRY ENV = CORBA: : default _environnment ());
privat e:

CORBA: : ORB var orb_;

};

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Event Service Example
(cont'd)

Sample consumer (consumer definition);

#i ncl ude "hashconsuner _i . h"
#i ncl ude <i ostream h>
HashConsuner _i :: HashConsuner _i (CORBA: : ORB ptr/iorb) : orb_(CORBA:: ORB:: duplicate(orb)){}

voi d HashConsuner _i:: push(const CORBA:: Any /&dat a, CORBA:: Envi ronnent &ACE TRY_ENV) {
char *event String;
I f (data >>= eventString) ({
cout << "Cot event : " << eventString << endl;

}
voi d HashConsuner _i : : di sconnect _push_consuner (CORBA: : Envi ronnent &ACE_TRY_ENV) {

CORBA: : bj ect _var obj = orb_->resolve_initial _references("POACurrent");

Port abl eServer:: Current _var current = Portabl eServer::Current:: _narrow obj);
Port abl eServer:: POA var poa = current->get_ POA();

Port abl eServer:: Cbjectld var objectld = current->get_object _id();

poa- >deacti vat e_obj ect (obj ect1d);

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Event Service Example
(cont'd)

Sample consumer (main):

CORBA::ORB_var orb = CORBA::ORB .init(argc, argv);
CORBA::Object_var obj = orb->resolve initial .references(" NameService");
CosNaming::NamingContext_var inc;
inc = CosNaming::NamingContext::_narrow(obj);
assert(!CORBA::is nil(inc.in()));
CosNaming::Name ec_name; ec_name.length(1);
ec_name[0].id = CORBA::string_dup(" CosEventService?);
obj = inc->resolve(ec_name);
if (CORBA::is nil(abj.in())) {
cerr <<" Could not find Event Service" << endl;
return 1,
}
CosEventChannelAdmin::EventChannel_var echoEC = CosEventChannelAdmin::EventChannel::_narrow(obj.in());
if (CORBA::is nil(echoEC.in())) {
return 1,
} /1 continued

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Event Service Example
(cont'd)

Sample Consumer (main,cont'‘d)

HashConsunmer _i servant(orb.in());
obj/ = orb->resolve_initial _references("RootPCA");
Port abl eServer:: POA var poa = Portabl eServer::POA : narrow obj);
CosEvent Comm : PushConsuner _var consuner = servant._this();
CosEvent Channel Admi n: : Consuner Adm n_var /consuner Adm n = echoEC->f or _consuners();
CosEvent Channel Adm n: : ProxyPushSuppl i er _var supplier =
consumer Admi n- >obt ai n_push_supplier();
suppl i er->connect _push_consuner (consuner.in());

Port abl eServer:: POAManager _var ngr = poa->t he_POAManager () ;
ngr - >activate();

orb->run();

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

LifeCycle Service

Sometimes, multiple copies of a CORBA type are necessary
with clients capable of controlling lifecycle and location.

The Lifecycle Service is /more a duideline than an
Implementation.

» A Lifecycle object can be moved, removed, or copied.

For each Lifecycle type a factory is provided that creates
Instances of the type.

Factory finders denote the location where factories and
their objects live.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Lifecycle Service
(cont‘d)

CORBA class that supparts LifeCycle gbjects must derive from:

interface LifeCyclelhject {
Li feCycl ebj ect copy(in FactoryFinder/ithere, in Criteria the_criteria)
rai ses(NoFact ory, Not Copyable, ImnvalidCriteria, CannotMeetCriteria);
voi d nove(in FactoryFinder there, in Criteria the criteria)
rai ses(NoFactory, Not Movabl e, /I nvalidCriteria, CannotMeetCriteria);
voi d renove() raises(NotRenovabl e);
3
Factories themselves are diverse. Nonetheless, a generic factory
Interface is provided by the specification. Factory Finders locate
factories:

i nterface FactoryFi nder {
Factories find _factories(in Key factory_key) rai ses (NoFactory);

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

CORBA Time Service

The CORBA Time ‘Service helps/tosynchronize time in a
distributed environment.

Time based on UTC (Universal Tune Coordinated) which specifies
the units of 1/10 msecs elapsed since Oct. 15, 1582 (Gregorian
Calendar).

UTO (Universal Time Object)'specifies a relative or absolute time
and an inaccuracy value.

TIO (Time Interval Objects) specifies time intervals.
The TimerEventService allows to create TimerEventHandlers.

A TimerEventHandler triggers time events using the Push-Style
Event Service.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Trapnsaction Service

A transaction-based paradigm for
Transaction Proxy distributed objects:

commit A Client isresponsible for defining

rollback

begin transaction boundaries as well asfor

gggg(?;?ionamf starting and stopping transaction.

Client Coordinators coordinate the cooperation

initiateTX Coordinator of distributed objects within a
control TX prepare transaction.

call ek A Resource changes its internal state

register during atransaction. It registers with
the coordinator.

register

A Transactional Object participatesin a
Transactional Resurce transaction but its state remains
Object unaffected by the transaction.

service el i i
commit A Transaction Proxy allows clients and
rollback

service objects to retrieve information and
controt-transactions:

Ll

(c) 2001, Michael Stak;
All Rights*Reserved

SIEMENS

[{e> CORBA.

Transaction Service
(cont‘d)

begin

withdrawM oney >
get_control

register

depositMoney

get_control

register

commit

commit

commit

commit

2001, Michael Stak
All Rights*Reserved

|{e> CORBA..

Transaction Service
(cont‘d)

® The OTS reveals,the following features:

e OTS transactions can be combined. with X/OPEN DTP
procedural transactions.

e One ORB can support multiple transaction services.
Transactions might span multiple ORBSs.

e To use transactions in your server objects, just inherit
them from the abstract OTS interface.

e Support for flat transactions mandatory, nested
transactions are optional.

(c) 2001, Michael Stak;
All Rights*Reserved

|{e> CORBA..

Memary Management

Note that CORBA is location trapsparent. Thus, memory is
allocated as if everything were/local. This is trivial in Java
because Java uses Garbage Collectiony but more complex
In C++:

In parameters: caller allocates and deallocates memory. If you
are assigning the value of an i n parameter to a local variable of

a callee, you must duplicate the value:
Myl nterface:: duplicate(inarg).

out parameters: callee allocates memory, caller deallocates
memory.

Inout parameters: caller allocates memory, callee deallocates
and reallocates memory, caller deallocates reallocated memory.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Memory-Management
(cont‘d)

» Sihce string allocation and deallocation is machine-
dependent use methods such as CORBA: : string dup(),

@ |In C++ array types can not/be passed by, value. Thus the
definition: typedef T Tarr[7] becomes: typedef T
Tarr[7] and typedef T* Tarr_slice. in-parameters
and return values are then passed as Tarr _sl i ce.

For releasing references use CORBA: : rel ease() .

For not simple types T the C++ mapping generates T ptr
and T var types. T var as a smart pointer class

automatically deallocates memory when necessary. There
IsalsoaString var type.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Memory-Management
(cont‘d)

® There is one prohlem left. What about out-parameters.
Consider, for instance, f (out string x). If you call this
function two times and pass a char *, orn,a String_var the
called snhould overwrite x in/the first scemario but properly
deallocate and reallocate x in the second scenario.

For this purpose, CORBA introduces _out types. Example:
String_out. This type automatically detects the type of the in-
parameter and behaves properly in both cases.

(c) 2001, Michael Stak;
All Rights*Reserved

[{e> CORBA.

Memory-Management
(cont‘d)

InfJava simple types,such as | ong/areialways passed by value,
complex types are passed by reference.

What if you want to use a | ong-out or an object reference as an
out-parameter? For this purpose, Java-IDL ‘generates Hol der -

classes.

Thus, inout/out-parameters are passed as Holder classes:
interface T { ... };
/1 Anong ot her things the conpil er generates:
public class THol der {
private T val ue_;
public void set value(T val) { value_ = val; }
public T get _value() { return value ; }

}

(c) 2001, Michael Stak;
All Rights*Reserved

