
CORBA 3

Michael Stal
Siemens AG, Dept. CT SE 2

E-Mail:
Michael.Stal@mchp.siemens.de

(c) 2001, Michael Stal,
All Rights Reserved

Agenda
Motivation
Architectural View
OMG Organization

CORBA ORBs and Services
CORBA 3
� Internet
� Quality of Service
� CORBA Components
� Portable Interceptor

Framework
Design Issues
Platform Comparison
Summary
References

(c) 2001, Michael Stal,
All Rights Reserved

Building distributed
applications is complex

How to cope with heterogeneity?
How to access remote services in a location-
transparent way?
How to handle (de-)marshaling issues?
How to find remote objects?
How to activate remote objects?
How to keep state persistent and consistent?
How to solve security issues?
Synchronous/asynchronous communication?

(c) 2001, Michael Stal,
All Rights Reserved

Distributed Objects
are the answer

What we need is an architecture that ...
� supports a remote method invocation paradigm
� provides location transparency
� allows to add, exchange, or remove services

dynamically
� hides system details from the developer

(c) 2001, Michael Stal,
All Rights Reserved

Architectural Solution
Here is the architectural solution:

marshal

unmarshal

forward_message

transmit_message

Bridge

calls

1

marshal

unmarhal

receive_result

service_p

Client-side Proxy
marshal

unmarshal

dispatch

receive_request

Server-side Proxy

start_up

main_loop

service_i

Server
call_service_p

start_task

Client

calls*

1

calls
*

1

Message
exchange*

Message
exchange *1

main_loop

srv_registration

srv_lookup

transmit_message

Broker1

(c) 2001, Michael Stal,
All Rights Reserved

Dynamics of
Broker-based systems

method (proxy)
locate_server

server port

receive_request

marshal

unmarshal

dispatch
method (impl.)

result
marshal

receive_result
unmarshal

result

start_upregister_service

BrokerClient Proxy Server ProxyClient Server

assigned port

(c) 2001, Michael Stal,
All Rights Reserved

OMG Reference
Architecture

Object Services (COSS)

CORBA 2.0 Object Request Broker

Application Interfaces Domain Interfaces Common Facilities

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Architecture

Common Object Request Broker Architecture Core: IIOP

ORB Interface

Dynamic
Invocation
Interface

IDL
Stub

Dynamic
Skeleton

IDL
SkeletonIn

te
rf

ac
e

R
ep

os
ito

ry

Im
pl

em
en

ta
tio

n
R

ep
os

ito
ry

Client Servant

(c) 2001, Michael Stal,
All Rights Reserved

Interface Repository
The interface repository service is defined as a set of objects
specified in IDL:

Repository

ConstantDef ExceptionDefModuleDef InterfaceDef TypeDef

ConstantDef ExceptionDefInterfaceDef ModuleDef TypeDef

ConstantDef ExceptionDefOperationDef
(or Attribute)

TypeDef

(c) 2001, Michael Stal,
All Rights Reserved

Implementation
Repository

Logical Name Object Adapter Command Host Additional
Informat.

Bank POA(“MyPOA”) c:/winnt/test/bank.exe lotus.muc.bank.de

Account POA(“XPOA”); d:\account.exe

Port: 1234h SHARED

lotus.muc.bank.de
Port: 1340h

SHARED

ATM POA(“RemB”); main.fra.bank.de
Port: 1340h

SHARED

The Implementation Repoitory used for configuration
information and for dynamic server activation

(c) 2001, Michael Stal,
All Rights Reserved

CORBA IDL
Interfaces are specified in the Interface Definition Language
IDL. IDL is programming-language independent and does
only contain data descriptions.

An IDL-Compiler translates the IDL-specifications into IDL-
stubs (for callers) and IDL-skeletons (for object
implementations) in the appropriate programming
language.

The CORBA Object Model supports multiple Interface
inheritance. Attributes and Methods may not be redefined,
implementation inheritance is not supported !

(c) 2001, Michael Stal,
All Rights Reserved

CORBA IDL (cont‘d)

IDL Compiler

IDL-File

Stub Code Skeleton Code

Helper Classes

(c) 2001, Michael Stal,
All Rights Reserved

How to build and deploy
a CORBA application

1. Specify the server interfaces using CORBA IDL
2. Generate stubs and skeletons using the IDL

compiler.
3. Implement the server classes.
4. Implement the main routine of the server.
5. Compile server and register it with ORB.
6. If different ORB or different language use IDL

compiler.
7. Create client and compile it.
8. Run client.

(c) 2001, Michael Stal,
All Rights Reserved

Example:
A Remote Hashtable

IDL File:
typedef unsigned long Cookie;

interface Iterator {

exception InvalidAccess{};

void reset();

void skip(in unsigned long n);

void next();

any current() raises(InvalidAccess);

boolean end_of();

};

interface HashTable {

exception Unknown { string reason; };

Iterator searchKey(in string key);

void removeKey(in string key) raises(Unknown);

void removeEntry(in string key, in Cookie c) raises(Unknown);

Cookie insertEntry(in string key, in any value);

};

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
Server Header for implementing HashTable:
#include "hashS.h"

#include "helper.h"

class Hash_i : public virtual POA_HashTable {

KeyTable table_;

Cookie c_;

CORBA::ORB_ptr orb_;

public:

Hash_i() : c_(0) {}

void orb(CORBA::ORB_ptr o) { this->orb_ = CORBA::ORB::_duplicate(o); }

virtual void shutdown(CORBA::Environment &) { this->orb_->shutdown(); }

virtual Iterator_ptr searchKey (const char * key);

virtual void removeKey (const char * key);

virtual void removeEntry (const char * key, Cookie c);

virtual Cookie insertEntry (const char * key,const CORBA::Any & value);

};

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
Server C++ file implementing HashTable:
Iterator_ptr Hash_i::searchKey (const char * key) {

KeyTable::iterator iter = table_.find(key);

if (iter == table_.end())

return Iterator::_nil();

Iterator_i *it = new Iterator_i(*((*iter).second));

Iterator_ptr it_ptr = (*it)._this();

return it_ptr;

}

void Hash_i::removeKey (const char * key) {

KeyTable::iterator iter = table_.find(key);

if (iter == table_.end()) {

throw new HashTable::Unknown(CORBA::string_dup("key not
found"));

}

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
Simplified main program of server:
int main(int argc, char **argv) {

MyServer server;

try {

if (server.init("test2", argc, argv) == -1)

return 1;

else

server.run(CORBA::Environment::default_environment());

}

catch (CORBA::SystemException sysex) {

... }

catch (CORBA::UserException) {

... }

return 0;

}

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
Simplified client main:
int main(int argc, char **argv) {

MyClient client;

if (client.init("test2", argc, argv) == -1)

return -1;

cout << "Inserting ... " << endl;

CORBA::Any a;

a <<= "http://www.siemens.com";

Cookie c1 = client->insertEntry("Siemens", a);

a <<= "http://www.siemens.de";

Cookie c2 = client->insertEntry("Siemens", a);

cout << "Iterating ... " << endl;

Iterator_var iter = client->searchKey("Siemens");

print_all("siemens", iter);

(c) 2001, Michael Stal,
All Rights Reserved

Object Reference
Basic Value

Constructed Value

Struct Sequence Union Array

Short Long UShort ULong Float Double (w)Char (w)String Boolean Octal Enum Any

Value
Exceptions

CORBA Types

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Types (cont‘d)

Type

short
long
unsigned short
unsigned long
float
double
char
string
boolean
octet
any

Range

- 215 to 215-1
- 231 to 231-1
0 to 216-1
0 to 232-1
IEEE Single Precision
IEEE Double Precision
ISO Latin 1
ISO Latin 1, w.o. NUL
TRUE, FALSE
0-255
Run-time type

Size

>= 16 bits
>= 32 bits
>= 16 bits
>= 32 bits
>= 32 bits
>= 64 bits
>= 8 bits
Variable-length
Unspecified
>= 8 bits
Variable-length

(c) 2001, Michael Stal,
All Rights Reserved

AnyAnyAnyAny
For implementing generic services we need a generic type.

Example: a generic hash table where all kinds of entries can be stored.

This is where Any is used.

Overuse of Any is considered harmful due to potential efficiency
problems.

DynAny even allows to build generic values on the fly.
CORBA::typeCode

Actual Value

CORBA::Any a;
a <<= (CORBA::UShort) 42;
CORBA::UShort inAny;
a >>= inAny;

(c) 2001, Michael Stal,
All Rights Reserved

Structures and Unions
union Result switch(ROLE) {

case ADMIN: string theInfo;

default: unsigned long theError;

};

union OptionalValue switch(boolean) {

case TRUE: unsigned short theValue;

};

struct Person {

string name;

unsigned long age

};

struct LoveAffair {

Person p1;

Person p2;

};

(c) 2001, Michael Stal,
All Rights Reserved

Arrays and Sequences
typedef string text[20][80];

typedef sequence<Person> Persons;

typedef sequence<Person, 11> SoccerTeam;

struct Tree {

sequence<Tree> children;

};

Use arrays for fixed length structures where the values lifecycle is
coupled with that of the array (Whole-Part relationship).

Use sequences for recursive types, sparse arrays and variable
length structures.

(c) 2001, Michael Stal,
All Rights Reserved

Object by Value
CORBA introduces a new value type which inherits from
CORBA::ValueBase:

value BinaryTree {

long value;

BinaryTree left;

BinaryTree right;

// initializer

init(in long w);

// local operations

};

A value has no IOR and cannot be accessed remotely. However,
value types might also inherit from other CORBA interfaces.

(c) 2001, Michael Stal,
All Rights Reserved

Object by Value (cont‘d)

Value
Object

N

1 2

43

1. marshal
N 1 2 3 4

2. send over wire Receiver

3. create local instance

Value
Factory

4. unmarshal

N

1 2

43

(c) 2001, Michael Stal,
All Rights Reserved

Object by Value (cont‘d)
Values can define any recursive (cyclic) structures that might be
null.

Value types can be single inherited from other value types.

They are local to the receiver and are marshalled when
transmitted across the wire.

Benefits of ObV:
Values allow to exchange complex state.

Consistent semantics across different programming languages.

Natural support for C++ and Java.

Minimal impact on GIOP/IDL.

Enables RMI over IIOP.

(c) 2001, Michael Stal,
All Rights Reserved

CORBA ORB Interfaces
The ORB interface contains functionality that might be required by
clients or servers.

The Dynamic Invocation Interface provides a means for
dynamically invoking CORBA objects that were not known at
design-time.

The Dynamic Skeleton Interface helps to implement generic
CORBA servants.

The Basic Object Adapter is the API used by the servers to
register their object implementations. In addition, it is the
immediate layer between the ORB Core and the IDL skeleton.

(c) 2001, Michael Stal,
All Rights Reserved

ORB Interface

The ORB interface mainly provides helper functions to clients and servers.

interface ORB {

string object_to_string(in Object obj);

Object string_to_object(in string str);

…

}

(c) 2001, Michael Stal,
All Rights Reserved

Dynamic Invocation
Dynamic Invocation allows to invoke servers without linking stub
code.

Each CORBA interface is derived from the interface Object and
therefore needs to implement the method:

ORBStatus create_request(

in Context ctx, // context object

in Identifier operation, // operation

in NVList arg_list, // arguments

inout NamedValue result, // result

out Request request, // new request

in Flags req_flags // flags

)

(c) 2001, Michael Stal,
All Rights Reserved

Dynamic Invocation
(cont‘d)

Example:
CORBA::Float f;

CORBA::Object_ptr obj = ...

CORBA::Request_ptr req = obj->_request(“method”);

req << CORBA::outMode << f;

req->send_deferred();

// some time later:

req->get_response();

CORBA::Float res;

req >> res;

(c) 2001, Michael Stal,
All Rights Reserved

Dynamic Skeleton
Interface

The DSI corresponds to the Dynamic Invocation Interface. Used
when a server wants to dispatch requests itself: CORBA
Bridges, Debuggers, Interpreter Environments.

For this purpose, a generic interface is available: Dynamic
Invocation Routine:

module CORBA {

interface ServerRequest {

Identifier op_name(); // operation name

OperationDef op_def(); // operation definition

Context ctx();

void params(inout NVList params);

NamedValue result;

};

…

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Messaging
CORBA Messaging extends CORBA with asynchronous method
invocations:

Asynchronous Method Invocation (AMI) allows to decouple client
from server operation (non-blocking communication). There are
two models: Polling model, Callback Model.

“Store and forward” semantics supported by TII (Time-
Independent Invocations). Invocations might outlive client
process. For this purpose, IRP (Interoperable Routing Protocol)
based upon GIOP is introduced. Integration into existing MOM
products possible.

Quality of Service on thread, object reference or ORB level. For
instance, timeouts, priority and ordering, rebinding, “store-and-
forward”, ...

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Messaging
(cont‘d)

Callback Model Sample:
exception IDoNotLikeToSpeak;

interface Talk {

string talk(in string msg) raises(IDoNotLikeToSpeak);

};

// the IDL compiler will implicitely treat this as:

value AMI_TalkExceptionHolder : Messaging::ExceptionHolder {

void raise_talk() raises (IDoNotLikeToSpeak);

};

interface AMI_TalkHandler : Messaging::ReplyHandler {

void talk(in string ami_return_val);

void talk_excep(in AMI_TalkExceptionHolder eh);

};

exception IDoNotLikeToSpeak;

interface Talk {

string talk(in string msg) raises(IDoNotLikeToSpeak);

void sendc_talk(in AMI_TalkHandler h, in string msg);

};

(c) 2001, Michael Stal,
All Rights Reserved

Initialization
Question: How do I connect to my CORBA system?

The following steps are necessary:

� CORBA::ORB_ptr orb = ORB_init(..., ORBID) will return
a pseudo object for accessing the broker.

� orb->resolve_initial_references(params) will return
fundamental objects such as the COSS Naming Service
depending on the parameter passed.

(c) 2001, Michael Stal,
All Rights Reserved

ORB Interoperability
If two ORBs cooperate, they need a common language.

Data format Message format

General Inter-ORB Protocol (GIOP)

TCP/IP

Internet
Inter-ORB
Protocol
(IIOP)

(c) 2001, Michael Stal,
All Rights Reserved

GIOP-Protocol
GIOP (General Inter-ORB Protocol) implementations consist of:

The Common Data Representation: transfer syntax from IDL to
low-level representation (byte ordering, aligned primitive types,
mapping for IDL types).

GIOP Message Formats: Format of messages exchanged between
ORBs such as Request, Reply, Fragment, CancelRequest,
LocateRequest, LocateReply, CloseConnection, MessageError,
LocationForward.

GIOP Message Transport: Designed to work on various transport
protocols that are connection-oriented, reliable, can be considered as
byte stream, notify about disorderly connection lost, model for initiating
connections can be mapped on the TCP/IP model.

(c) 2001, Michael Stal,
All Rights Reserved

IIOP
The Internet IOP Message Transport describes how agents open TCP/ IP
connections and use them to transfer GIOP messages.

IIOP is not a separate specification but a specialization and mapping of the
GIOP for TCP/IP.

module IIOP { // Definition of IOR

struct Version { char major; char minor; };

struct ProfileBody {

Version iiop_version;

string host; unsigned short port;

sequence<octet> object_key;

};

(c) 2001, Michael Stal,
All Rights Reserved

IOR
Bridges need information on object references: Is it null? What
type is it? What protocols are supported? What ORB Services are
available?

IORs (Interoperable Object References) are introduced to integrate
this information. They are not visible to programmers.

IORs contain a type id and a tagged profile per protocol supported
(needed by the protocol to identify an object).

IORs are created from object references before the request
crosses a domain boundary.

IORs can be stringified / destringified.

(c) 2001, Michael Stal,
All Rights Reserved

Portable Object Adapter
The Portable Object Adapter overcomes the limitations of the BOA.

A POA instance is the place where CORBA objects and servants
live.

Servants are running implementations of “virtual“ CORBA objects.

Policies specify how servants map to object references.

POAs are the places where CORBA objects live. All CORBA objects
within a POA share the same policies. POAs may be nested in a tree
structure.

Object IDs identify servants within their POA.

POAs manage, activate and deactivate servants.

(c) 2001, Michael Stal,
All Rights Reserved

POA Hierarchy

Root POA

MySubPOA Servant

POA
Manager

Policies

Active Object Map

SERVER

(c) 2001, Michael Stal,
All Rights Reserved

Servants and Objects
CORBA objects are implemented by servants.

Transient CORBA objects do not survive their creator process.

Persistent CORBA object persist across multiple processes.

CORBA
Object

Life span

Servant1 Servant2 Servant3

Servant is incarnated Servant is etherealized

Object is created Object is destroyed

(c) 2001, Michael Stal,
All Rights Reserved

POA Responsibilities
POAs are responsible for ...

� creating object references.

� uniquely identifying objects by Object IDs where either the
POA or the implementation can supply the Object IDs.

� managing the servants which are registered by an
application. It stores all servants in an Active Object Map.
All requests where no servant exists, can be routed to a
user-defined default servant or to a user-defined servant-
manager.

When a request arrives the target ORB dispatches it to the
POA hosting the target object.

(c) 2001, Michael Stal,
All Rights Reserved

POA Policies
Each POA defines its own set of policies- Root POA has standard
set.

POAs are derived from existing POAs, but do not inherit any
policies.

� Thread (ORB_CTRL_MODEL, SINGLE_THREAD_MODEL)

� Lifespan (TRANSIENT, PERSISTENT)

� Object ID Uniqueness (UNIQUE_ID, MULTIPLE_ID)

� ID Assignment (USER_ID, SYSTEM_ID)

� Servant Retention (RETAIN, NON_RETAIN)

� Requests (USE_ACTIVE_OBJECT_MAP_ONLY, USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER)

� Implicit Activation (IMPLICIT_ACTIVATION, NO_IMPLICIT_ACTIVATION)

(c) 2001, Michael Stal,
All Rights Reserved

Servant Managers
The user-supplied Servant Manager is invoked by the POA
if the POA cannot find a servant implementing a requested
object.

This happens, for instance, if the server process wants to
create references at start-up, but incarnate servants only on
demand.

Two types of Servant Managers:

� Servant Activator is used when RETAIN policy is used. Servant
is inserted in Active Object Map.

� Servant Locator is used when NON_RETAIN is used instead.
Servant is used for invocation only and is not retained.

(c) 2001, Michael Stal,
All Rights Reserved

Default servants
Default servants are used to incarnate objects when
USE_DEFAULT_SERVANT policy or NON_RETAIN policy
are applied.

They are used to incarnate multiple objects with the same
interface, e.g., objects providing the Dynamic Skeleton
Interface.

They must not hold any object-specific state.

(c) 2001, Michael Stal,
All Rights Reserved

POA Manager
With each POA a POA Manager is associated.

The POA Manager allows to:

� activate a POA (start its work)

� deactivate a POA (stop its work)

� hold requests (incoming requests are queued but not
executed)

� discard requests (incoming and queued requests are
discarded)

(c) 2001, Michael Stal,
All Rights Reserved

POA Sample Code
CORBA::ORB_var orb = CORBA_ORB_init(argc, argv, “myORB”);

CORBA::Object_var rootPoaObj = orb->resolve_initial_references(“RootPOA”);

PortableServer::POA_var poa = PortableServer::POA::_narrow(rootPoaObj);

PortableServer::POAManager_var mgr = poa->the_POAManager();

CORBA::PolicyList polList;

polList.length(1);

polList[0]

= poa->create_request_processing_policy(PortableServer::USE_SERVANT_MANAGER);

PortableServer::POA_var myPoa = poa->create_POA(“MyPoa”, mgr, polList);

MyObjectManager myObjectMgr;

PortableServer::ServantManager_var mySerMgr = myObjectMgr._this();

myPoa->set_servant_manager(mySerMgr)

MyObject_impl * servant = new MyObject_impl(myPoa);

PortableServer::ObjectId_var oid = myPoa->activate_object(servant);

mgr->activate();

(c) 2001, Michael Stal,
All Rights Reserved

Is that all we need?
So far we have introduced a messenger component called the
Broker that locates servers and feeds them with client requests.

Real-world applications need more than just a Remote Method
Invocation paradigm.

We need to use advanced services such as Events, Naming,
Database Access, Transaction Processing, Lifecycle Support, ...

Fortunately, the OMG already has standardized a rich set of
additional services with even more to come.

CORBAservices are fundamental services provided by IDL
interfaces and CORBA objects. These services aim at the physical
modeling and storing of objects.

(c) 2001, Michael Stal,
All Rights Reserved

Naming Service
Question: Where do you get object references?
Answer: Use the Naming Service
The Naming Service is similar to a file system directory:

Root

Accounting

Department 1

Account 1234Account 5678

Department 2

Object Name:
Root/Accounting/Department 2/Account_1234

(c) 2001, Michael Stal,
All Rights Reserved

Naming Service (cont‘d)
Fundamental concepts:

A name binding (name, object) associates a name with an object.

A naming context denotes a set of name bindings with each name being
unique. Name contexts themselves are CORBA objects. Hence, they can
also be bound to a name.

Name bindings are always relative to a naming context.

A name is a sequence of name components each of them consisting of an
identifier and a kind: Root/Accounting/Department 2/Account_1234

(c) 2001, Michael Stal,
All Rights Reserved

Naming Service (cont‘d)
Some methods from the CosNaming module:

module CosNaming { // ...

interface NamingContext {

void bind(in Name n, in Object obj) raises ...;

void rebind(in Name n, in Object obj) raises ...;

void bind_context(in Name n, in NamingContext nc) raises ...;

void rebind_context(in Name n, in NamingContext nc) raises ...;

Object resolve(in Name n) raises ...;

void unbind(in Name n) raises ...;

NamingContext new_context();

NamingContext bind_new_context(in Name n) raises ...;

void destroy() raises ...;

};

};

(c) 2001, Michael Stal,
All Rights Reserved

Naming Service (cont‘d)
Example Code:

// Initialize the ORB pseudo object:

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// get initial reference to the name service

CORBA::Object_var obj = orb->resolve_initial_references(“NameService”);

// use initial context:

CosNaming::NamingContext_var root = CosNaming::NamingContext::_narrow(obj);

CosNaming::Name n;

n.length(1);

n[0].id = CORBA::string_dup(“MyObject1”);

// and try to resolve name

CORBA::Object_var objInDir = root->resolve(n);

// narrow to object type

MyType_var myObj = MyType::_narrow(objInDir);

(c) 2001, Michael Stal,
All Rights Reserved

Event Service
Usually, a specific client calls a specific
remote server and blocks until the result
returns.
Sometimes, this strategy is not sufficient.

Consider a server that reports share values.
� A polling strategy leads to performance bottlenecks.
� The share values could be spread across different

servers.
� More than one client may be interested in the

information.

How can we decouple clients and servers?

(c) 2001, Michael Stal,
All Rights Reserved

Event Service (cont‘d)
Decouple suppliers (publishers) and
consumers (subscribers) of events:

An Event Queue is storing events.

Publishers create events and store them in
an event queue with which they have
previously registered.

Consumers register with event queues
from which they retrieve events.

Events are objects used to transmit state
change information from publishers to
consumers.

For event transmission push-models and
pull-models are possible.

Filters could be used to filter events on
behalf of subscribers.

Event Queue

attachPublisher
detachPublisher
attachSubscriber
detachSubscriber

Event
*

Publisher

produce

Subscriber

consume

creates receives

Filter

filter

(c) 2001, Michael Stal,
All Rights Reserved

Event Service (cont‘d)

Dynamics (simplified)

SubscriberEvent QueuePublisher

pushEvent
event

Event

attachSubscriber

produce

event
pushEvent

consume

detachSubscriber

(c) 2001, Michael Stal,
All Rights Reserved

Event Service (cont‘d)
Some characteristics:

Event consumers and event suppliers are decoupled from
each other.

A many-to-many relationship between consumers and
suppliers is supported.

Push-style as well as Pull-style communication is available.

Typed and untyped events are possible.

The Notification Service extends the Event Service. It
enables developers to add filters to event channels.

(c) 2001, Michael Stal,
All Rights Reserved

CORBA 3

In the year 2000 the OMG has
published CORBA 3 which offers
solutions in 3 areas:
� Internet
� Quality of Service
� Components

(c) 2001, Michael Stal,
All Rights Reserved

Internet
The Interoperable Name Service (INS) specifies
URL-based naming schemes such as
� iioploc://1.1@mymachine.siemens.de:9999/bin/tradingservice

� iiopname://mymachine.siemens.de/root/accounting/departmentA/a1

Java Reverse Mapping allows to omit usage of
CORBA IDL. Developers just follow the RMI
conventions.
Bidirectional GIOP allows clients and servers to
share the same connection in contrast to traditional
GIOP.
CORBA Firewall introduces GIOP Proxies.

(c) 2001, Michael Stal,
All Rights Reserved

Quality of Service
CORBA Messaging defines asynchrnous calls (AMI)
as well as time-independent calls (TII)
Minimum CORBA is CORBA without all dynamic
features such as
� DII
� DSI
� DynAny
� Interface Repository
� Some of the POA policies and options

(c) 2001, Michael Stal,
All Rights Reserved

Quality of Service
(cont‘d)

Some facts about Realtime CORBA:
� Threads are dispatched by a special dispatcher that supports

static scheduling.
� Configuration is done using RT_CORBA::RTORB.
� Thread Pools can be created and thread priorities changed.
� RT CORBA supports a specific priority scheme that is mapped

to the native scheme.
� Priority inversions are prevented by different strategies such as

sending priorities using IIOP, synchronizing resource access by
mutexes.

� Clients can initiiate different connections to servers such as
channels with different priorities, dedicated connections, and
specify time-outs for invocations.

(c) 2001, Michael Stal,
All Rights Reserved

Quality of Service
(cont‘d)

Fault toleranct CORBA:

An Object Group represents a group of
objects that all provide the same
service.

Object provides a specific service to
clients.

The coordinator is selected by the Object
Group to dispatch requests.

Workers receive requests from their
coordinator and return results.

Each member of the object group
maintains its own state.

Object Group

*

Worker

Object

Coordinator

serviceservice

serviceservice serviceservice

State

dispatchRequest
enterGroup
leaveGroup
selectCoordinator

1

(c) 2001, Michael Stal,
All Rights Reserved

Quality of Service
(cont‘d)

CoordinatorObject GroupNew Worker

synchronizeState
event

enterGroup

freezeState

Worker

newWorker
Object N

request

dispatchRequest

service

service

returnResult
result

(c) 2001, Michael Stal,
All Rights Reserved

Quality of Service
(cont‘d)

Some facts about Fault-tolerant CORBA:
� FT CORBA supports reliability by replication.
� Replicated objects are part of an object group which behaves to

the clients as if it were a single object. Thus, client is oblivious
to FT mechanisms.

� Object groups are created by replication managers. There can
be more than one replication manager per host.

� Local and global agents are responsible for detecting error
conditions.

� Errors are reported to the reoplication manager using the fault
notifier.

(c) 2001, Michael Stal,
All Rights Reserved

Quality of Service
(cont‘d)

More facts about Fault-tolerant CORBA:
� There are two options for handling error conditions:

� In active configurations all members of an object group
receive all requests in the same order using a reliable
multicast protocol. If only one object succeeds, a result can
be returned to the client.

� In passive configurations a primary object handles the
request. If the primary object fails, the system uses a
backup object instead. The state synchronization is
committed either:

� after each request (warm passive replication) or
� using a recovery file (cold passive replication).

� All activities are logged by the system.

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Components

(c) 2001, Michael Stal,
All Rights Reserved

What you will learn in this part:
� Overview of CORBA Components

What you will not learn:
� How to design and implement CORBA

components
� Concrete Language Mappings

Note: CORBA Components Spec. is
currently under construction!

(c) 2001, Michael Stal,
All Rights Reserved

Motivation

Why Components?

(c) 2001, Michael Stal,
All Rights Reserved

Component Software
Multi-tier architectures lead to separation of
concerns (presentation, application, data).
But presentation / application tiers are complex.
Thus, an additional separation of these tiers is
necessary!

DBMS
Name: Miller
Password: ??????

Siemens Info System
File Edit View Help

Presentation Layer Business Objects Database Layer

(c) 2001, Michael Stal,
All Rights Reserved

Flavors of Components
Presentation tier
components:
� they typically represent

sophisticated GUI
elements.

� they share the same
address space with their
clients.

� their clients are
containers that provide
all the resources.

� they send events to their
containers.

Middle tier
components:
� they typically provide

server-side functionality.
� they run in their own

address space.
� they are integrated into a

container that hides all
system details.

(c) 2001, Michael Stal,
All Rights Reserved

Application Servers

Server
Component

Transaction
Security
Resources
...

Server
Component

Application
Server

Transaction
Security
Resources
...

...

Declarative
Programming

Client Client

Imperative
Programming

An application server can be
- a Web Server,
- a Database Server
- a CORBA Server
- a TP-Monitor
…

(c) 2001, Michael Stal,
All Rights Reserved

CORBA based
Application

Server

CCMClient

Application Server

CORBA
Container

CCM

Meta Data
Transaction
Security
Resources
...

Transaction

Security
State
Management

Activation/
Deactivation

C
om

m
un

ic
at

io
n

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Components –
EJB made Ubiquitious

(c) 2001, Michael Stal,
All Rights Reserved

// Get home finder:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(„ComponentHomeFinder“);

// „cast“ it to correct type:

ComponentHomeFinder hf = ComponentHomeFinderHelper.narrow(objref);

// find home using type:

org.omg.CORBA.Object of = hf.find_home_by_type(BankHomeHelper.id());

// „cast“ it to correct type:

BankHome bh = BankHomeHelper.narrow(of);

// create instance and narrow it:

org.omg.Components.ComponentBase bankInstance = bh.create();

Bank myBank = BankHelper.narrow(bankInstance);

// invoke operations:

long how_much_money = myBank.amount();

Client Usage Example

(c) 2001, Michael Stal,
All Rights Reserved

Equivalent IDL

All component definitions are specified
using Component IDL.
Client mappings are described using
equivalent IDL.
Thus, all features can be described with
CORBA 2.3 compliant IDL grammar.

(c) 2001, Michael Stal,
All Rights Reserved

Equivalent IDL (cont‘d)

For example,
component MyComp { ... };

is equivalent to
interface MyComp

: Components::ComponentBase { ... };

BTW, this is the distinguished interface of the CORBA
component!

(c) 2001, Michael Stal,
All Rights Reserved

Supported Interfaces

Similar to Java, a component (interface)
may support other interfaces:
interface WhoAmI {

String getName();
};

component UnixUser supports WhoAmI {
}

(c) 2001, Michael Stal,
All Rights Reserved

Inheritance

Components may singly inherit from
other components:
component BaseComponent supports A {

// implement A methods
// implement further methods

};

component DerivedComponent : BaseComponent supports B {
// implement BaseComponent methods incl. A methods
// implement B methods
// implement further methods

};

(c) 2001, Michael Stal,
All Rights Reserved

Ports

Components specify interfaces (ports)
to interact with their environment:
� Facets are provided interfaces for clients
� Receptacles denote connection points
� Event Sources
� Event Sinks
� Attributes for configuration purposes

(c) 2001, Michael Stal,
All Rights Reserved

facetsfacets

component reference supportscomponent reference supports
component’s component’s equivalentequivalent interfaceinterface

attributesattributes

receptaclesreceptacles

event sourceevent source

event sinkevent sink

Ports (cont‘d)

(c) 2001, Michael Stal,
All Rights Reserved

Facets

Each component has a single
distinguished equivalent interface.
It may additionally provide multiple
object references (facets).
Equivalent Interface used by clients for
navigation and connection.

(c) 2001, Michael Stal,
All Rights Reserved

Facets (cont‘d)

Component

Facet
Implementations

Equivalent interface

Facet
References

(c) 2001, Michael Stal,
All Rights Reserved

Facets (cont‘d)

Facet implementations encapsulated by
components; opaque to clients.
Clients navigate from facet to equivalent
interface (get_component()) and ...
obtain facets from equivalent interface
(provide... methods).

(c) 2001, Michael Stal,
All Rights Reserved

Facets (cont‘d)

Component IDL:
interface Invoice { ... };
interface Customer { ... };

component ShoppingTour {

provides Invoice the_invoice;
provides Customer the_customer;

};

Equivalent IDL:
interface Invoice { ... };
interface Customer { ... };

interface ShoppingTour :
Components::ComponentBase {
Invoice provide_ the_invoice();
Customer provide_the_customer();

};

(c) 2001, Michael Stal,
All Rights Reserved

Receptacles

Receptacles denote component‘s ability
to use other object (references).
When component accepts object
reference, this is called a connection.
Typically, connections are set during
assembly.

(c) 2001, Michael Stal,
All Rights Reserved

Receptacles (cont‘d)

Component IDL:
interface Printer { ... };

component ShoppingTour {

uses Printer the_printer;
};

Keyword „multiple“ to allow multiple
interfaces of the same type

Equivalent IDL:
interface Printer { ... };

interface ShoppingTour :
Components::ComponentBase {
void
connect_the_printer(in Printer co);

Printer
disconnect_the_printer();

Printer
get_connection_the_printer();

};

(c) 2001, Michael Stal,
All Rights Reserved

Events
Components can send and receive event
notifications.
An emitter sends events to exactly one
subscriber. A publisher is not restricted to one
subscriber.
CORBA Push Model used; value types are
sent as an any.
Container responsible for QoS and channel
management.

(c) 2001, Michael Stal,
All Rights Reserved

Publisher/Subscriber
Pattern

SubscriberEvent QueuePublisher

pushEvent
event

Event

attachSubscriber

produce

event
pushEvent

consume

detachSubscriber

(c) 2001, Michael Stal,
All Rights Reserved

Publishers and Emitters

Publisher
� pushes events to multiple consumers vin event

channel.
� Subscribers delegated to event channel.
� Component is only source.

Emitter
� can be connected to at most one subscriber
� direct registration with event source
� direct push to subscriber

(c) 2001, Michael Stal,
All Rights Reserved

Publisher Example

Component IDL:
valuetype Limit :

Components::EventBase
{ ... };

component ShoppingTour {
publishes
Limit lim;

};

Equivalent IDL:
valuetype Limit:

Components::EventBase { ... };
module ShoppingTourEventConsumers {

interface LimitConsumer :
ComponentsEventConsumerBase {
void push(in Limit evt);

};
};
interface ShoppingTour :

Components::ComponentBase {
Components::Cookie

subscribe_lim (in
ShoppingTourEventConsumers::LimitConsumer

c);
ShoppingTourEventConsumers::LimitConsumer

unsubscribe_lim (in Components::Cookie ck);
};

(c) 2001, Michael Stal,
All Rights Reserved

Emitter Example

Component IDL:
valuetype SingleOffer :

Components::EventBase
{ ... };

component ShoppingTour {
emits
SingleOffer prd;

};

Equivalent IDL:
valuetype SingleOffer : Components::EventBase { ... };
module ShoppingTourEventConsumers {

interface SingleOfferConsumer :
ComponentsEventConsumerBase {
void push(in SingleOffer evt);

};
};
interface ShoppingTour :

Components::ComponentBase {
void connect_prd (in

ShoppingTourEventConsumers::
SingleOfferConsumer c);

ShoppingTourEventConsumers::
SingleOfferConsumer

disconnect_prd ();
};

(c) 2001, Michael Stal,
All Rights Reserved

Subscribers

A subscriber can be connected to any
number of event sources.
Externally established connections.

(c) 2001, Michael Stal,
All Rights Reserved

Subscriber Example

Component IDL:
valuetype SingleOffer :

Components::EventBase
{ ... };

component Customer {
consumer
SingleOffer prd;

};

Equivalent IDL:
valuetype SingleOffer : Components::EventBase { ... };
module CustomerEventConsumers {

interface SingleOfferConsumer :
ComponentsEventConsumerBase {
void push(in SingleOffer evt);

};
};
interface Customer :

Components::ComponentBase {

CustomerEventConsumers::
SingleOfferConsumer

get_consumer_prd ();
};

(c) 2001, Michael Stal,
All Rights Reserved

Attributes

Used primarily for configuration
purposes:
� Customization of components
� Support by visual tools
� Homes can apply collections of settings to

all components.

(c) 2001, Michael Stal,
All Rights Reserved

Component Identity

Components identified by component
reference.
Operations to check whether two
references belong to same component.
„Sameness“ is up to implementor.
Components may be associated with
primary keys.

(c) 2001, Michael Stal,
All Rights Reserved

Component Homes

Component home meta-type.
Component home responsible for
managing instances of one type.
Operations to manage component life-
cycles, and (optionally) primary keys.
Homes and Components are defined in
isolation.

(c) 2001, Michael Stal,
All Rights Reserved

Home Example

Component IDL:
home ShoppingTourHome

manages ShoppingTour
{

// explicit operations
};

Equivalent IDL:
interface ShoppingTourHomeImplicit {

ShoppingTour create();
};
interface ShoppingTourHomeExplicit: {

// explicit operations
};
interface ShoppingTourHome :

ShoppingTourHomeImplicit,
ShoppingTourHomeExplicit,
HomeBase // Life-Cycle Operations

{
...

};

(c) 2001, Michael Stal,
All Rights Reserved

Primary Keys

A home can provide a primary key to
uniquely identify components:

� Used to find/remove components
� assigned on creation, or through database
� valuetype derived from
Components::PrimaryKeyBase

� Primary key usually not part of component
� Different homes may use different primary keys for

same component type

(c) 2001, Michael Stal,
All Rights Reserved

Primary Key Example

Component IDL:
valuetype Key :
Components::PrimaryKeyBase {

public long value;
};

home ShoppingTourHome
manages ShoppingTour
primaryKey Key

{
// explicit operations

};

Equivalent IDL:
interface ShoppingTourHomeImplicit {

ShoppingTour create(in Key k);
ShoppingTour find_by_primary_key(in Key k);
void remove(in Key k);
Key get_primary_key(in ShoppingTour st);

};
interface ShoppingTourHomeExplicit {

// explicit operations
};
interface ShoppingTourHome :

ShoppingTourHomeImplicit,
ShoppingTourHomeExplicit,
ComponentHome // Life-Cycle Operations

{
...

};

(c) 2001, Michael Stal,
All Rights Reserved

Home Finders

But how does a client find a home?
� Homes register with home finders.
� Clients use home finders to obtain homes.
� Home finder might select one of several homes

using client request and configuration data.
� Home finder itself is obtained using
ORB::resolve_initial_references

(c) 2001, Michael Stal,
All Rights Reserved

Containers are a developers‘s best friend

Container

Client

Component

Transactions Security Persistence

CORBA ORB

Operating System

Containers shield clients and
components from the details
of the underlying ORB,
services, network + operating
system specifics.

POA

XML ConfigurationHome

(c) 2001, Michael Stal,
All Rights Reserved

Container Programming
Model

Container is a runtime environment for a
CORBA component implementation.
Environment may be a deployment
platform (app server) or IDE.
� IDE: Highly customizable, no concurrent

users
� App. Server: Many concurrent users, but

not highly customizable.

(c) 2001, Michael Stal,
All Rights Reserved

Overall Architecture

CORBA
Component

Client

ORB

Transactions Security Persistence Events

Home

Internal Container

Callbacks

POA

External

(c) 2001, Michael Stal,
All Rights Reserved

Elements

External Types
Container Type
Container Implementation Type
Component Category

(c) 2001, Michael Stal,
All Rights Reserved

External Types

Contract between component and client
Home interfaces to obtain interface
references and application interfaces
Two design patterns supported:
� Home with primary key: finder + factory
� Home without primary key: factory

~ analogous to EJBHome, EJBObject

(c) 2001, Michael Stal,
All Rights Reserved

Container Type

API framework between component and
container:
� Transient container type defines transient

object references for components.
� Persistent container type defines persistent

object references for components.

(c) 2001, Michael Stal,
All Rights Reserved

Container
Implementation Type

Interaction patterns between container,
POA, and CORBA services:
� stateless: transient object references; one

POA servant for multiple components.
� conversational: transient object references;

one POA servant per component.
� durable: persistent object references; one

POA servant per component.

(c) 2001, Michael Stal,
All Rights Reserved

Component Categories

Valid combinations:

EntityEntityYespersistentdurable

-ProcessNopersistentdurable

SessionSessionNotransientconversational

-ServiceNotransientstateless

EJB TypeComponent
Categories

Primary KeyContainer
Type

Container
Implementation
Type

(c) 2001, Michael Stal,
All Rights Reserved

Server Programming
Environment

(c) 2001, Michael Stal,
All Rights Reserved

Threading

CORBA Components support two
threading models:
� Serialize: container prevents multiple

threads from entering the component
simultaneously.

� Multithread: Component is thread-safe.
EJB supports only serialize.

(c) 2001, Michael Stal,
All Rights Reserved

Servant Lifetime
Management

Servants are programming objects used to execute
method requests.
Memory for servants should be managed efficiently.
Server programmer has different design choices:
� Selection of container type.
� Selection of container implementation type.
� Selection of servant lifetime policy.
� Implementation of callback interfaces associated

with choices.

(c) 2001, Michael Stal,
All Rights Reserved

Servant Lifetime
4 different policies available:
� Method: component activated by container on

every request and then passivated.
� Transaction: activation on first request within

transaction; passivation on transaction completion.
� Component: activation on first request; passivation

when component asks to.
� Container: activation on first request; passivation

when container decides to passivate.

(c) 2001, Michael Stal,
All Rights Reserved

Container Types and
Servant Lifetime

Possible variations:

method, transaction,
component, container

persistentdurable

method, transaction,
component, container

transientconversational

methodtransientstateless

Valid Servant
Lifetime Policies

Container TypeContainer
Implementation
Type

(c) 2001, Michael Stal,
All Rights Reserved

Transactions

Transaction policies:

ExceptionT1

--NEVER

T1T1

Exception-MANDATORY

T2T1

T2-REQUIRES_NEW

T1T1

--SUPPORTS

T1T1

T2-REQUIRED

-T1

--NOT_SUPPORTED

Component TransactionClient TransactionTransaction Attribute

(c) 2001, Michael Stal,
All Rights Reserved

Security

Security is consistently applied to all
component categories.
Container extracts policy from
deployment descriptor.
It checks active credentials and adjusts
them to accomodate requested policy.
Policy remains unchanged until change
request.

(c) 2001, Michael Stal,
All Rights Reserved

Events
CORBA Components use subset of notification
service.
Event data structure mapped to an any.
Events are passed as valuetypes.
Push model used.
Events may have transactional behavior depending
on container implementation type and deployment
descriptor.
Channel management by container.
Possible policies normal, default, transaction

(c) 2001, Michael Stal,
All Rights Reserved

Persistence
A persistent container type supports use of
persistence mechanism:
� Container-managed persistence: component developer

defines state. Container saves and stores state
automatically.

� Component-managed persistence: component in charge of
saveing and storing state.

� It is possible to use the PSS or a user-defined service.

(c) 2001, Michael Stal,
All Rights Reserved

Operation Invocation

Components provide (multiple) supported
and provided interfaces.
Operations may raise exceptions.
User exceptions are forwarded to clients
directly and do not affect transactions.
Other exceptions intercepted by container
and lead to rollback (exception).

(c) 2001, Michael Stal,
All Rights Reserved

Interfaces between
components and containers

There are two kinds of interfaces:
� Internal interfaces are provided by the

container and called by the component.
� Callback interfaces are provided by the

component and called by the container.

(c) 2001, Michael Stal,
All Rights Reserved

Interfaces for all
Container Types

ComponentContext is an external interface to
access runtime services:
exception IllegalState {};

local ComponentContext {

// get reference used to invoke component:

CORBA::Object get_reference() raises (IllegalState);

HOMEBase get_home(); // get reference to home

Transaction get_transaction(); // get a Transaction interface

HomeRegistration get_home_registration(); // get reference to HR

Security get_security(); // get Security interface

Events get_events(); // get Events interface

};

(c) 2001, Michael Stal,
All Rights Reserved

Internal Interfaces

Home: find/locate components
BaseOrigin interface: used by
component to request passivation:
exception PolicyMismatch {};

local BaseOrigin {

void req_passivate() raises (PolicyMismatch);

};

(c) 2001, Michael Stal,
All Rights Reserved

Transaction Interface:
exception NoTransaction {}; exception InvalidCookie {};

enum Status {ACTIVE, MARKED_ROLLBACK, PREPARED, COMMITTED, ROLLED_BACK,
NO_TRANSACTION, PREPARING, COMMITTING, ROLLING_BACK};

local Transaction {

void begin();

void commit() raises(NoTransaction);

void rollback() raises(NoTransaction);

void set_rollback_only() raises(NoTransaction);

boolean get_rollback_only() raises(NoTransaction);

LocalCookie suspend() raises(NoTransaction);

void resume(in LocalCookie cookie) raises(InvalidCookie);

Status get_status();

void set_timeout(in long to);

};

Internal Interfaces (cont‘d)

(c) 2001, Michael Stal,
All Rights Reserved

HomeRegistration Interface: internal
interface used by component to register
its home so it can be located.
Security Interface:
typedef SecurityLevel2::Credentials Principal;

local Security {

Principal get_caller_identity();

boolean is_caller_in_role(in Principal role);

};

Internal Interfaces (cont‘d)

(c) 2001, Michael Stal,
All Rights Reserved

Internal Interfaces (cont‘d)

Events interface: external interface to
support emitting and publishing events.
Components must implement a callback
interface derived from:
local EnterpriseComponent {

};

(c) 2001, Michael Stal,
All Rights Reserved

Client Programming
Model

(c) 2001, Michael Stal,
All Rights Reserved

Client/Component
Interaction

The client interacts through two forms of
external interfaces:
� One or more application interfaces
� Home interface

The home supports two patterns:
� If primaryKey is defined: factories and

finders
� If primaryKey is not defined: factories

(c) 2001, Michael Stal,
All Rights Reserved

Component-aware
clients

Clients that know that they deal with components are
component-aware.
They know how to use all of the interfaces and the
home interface.
They locate these interfaces using
Components::HomeFinder or the naming service.
The starting point is
resolve_initial_references().

Use „ComponentHomeFinder“ to locate home finder.

(c) 2001, Michael Stal,
All Rights Reserved

Same example again
// Get home finder:

org.omg.CORBA.Object objref =
orb.resolve_initial_references(„ComponentHomeFinder“);

// „cast“ it to correct type:

ComponentHomeFinder hf = ComponentHomeFinderHelper.narrow(objref);

// find home using type:

org.omg.CORBA.Object of = hf.find_home_by_type(BankHomeHelper.id());

// „cast“ it to correct type:

BankHome bh = BankHomeHelper.narrow(of);

// create instance and narrow it:

org.omg.Components.ComponentBase bankInstance = bh.create();

Bank myBank = BankHelper.narrow(bankInstance);

// invoke operations:

CORBA::ULong how_much_money = myBank.amount();

(c) 2001, Michael Stal,
All Rights Reserved

Component-unaware
clients

Clients that do not know they deal with a component.
These clients only see one interface, namely the
supported interface of a component.
They obtain initial references to the home by using
the name service or trader service.
After creation of the component, they use its standard
interface.

(c) 2001, Michael Stal,
All Rights Reserved

Persistence Concepts

The CIF defines:
� A storage type is an abstract state of an executor,

managed by the component or the framework.
� Storage objects are instances of storage types.

They are managed by a object store and created
through a storage home.

� An incarnation is a programming interface that
manifests a storage object in an execution
context. It hides all the system details.

(c) 2001, Michael Stal,
All Rights Reserved

Persistence Concepts
(cont‘d)

� A storage home defines an interface to manage a
specified storage type, find incarnations, create
storage objects and destroy instances.

� Persistent stores are the primary point of contact
between the application and the storage
mechanisms. They maintain the state of storage
objects, and the ACID attributes. They also
provide storage homes.

� Persistent Ids (PIDs) are values that uniquely
identify storage objects within a persistent store.

� Primary keys can be optionally defined in storage
homes.

(c) 2001, Michael Stal,
All Rights Reserved

Example

storage Account {

long account_number;

long amount;

};

storage Customer {

string owner;

Account account;

};

... IS MAPPED TO Java:

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
interface AccountAbstractState {

long account_number();

void account_number(long val);

long amount();

void amount(long val);

}

interface Account extends AccountAbstractState,
IncarnationBase {}

interface CustomerAbstractState {

string owner();

void owner(owner val);

Account account();

void account(Account val);

}

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
Customer customer = CustomerHome.create();

// account member in customer implicitely

// created.

customer.account().account_number(1234);

customer.account().amount(0);

customer.owner(„Michael Stal“);

(c) 2001, Michael Stal,
All Rights Reserved

Composition

The composition denotes the collection
of all necessary artifacts of an
implementation:

� Home / home executor
� Component / component executor
� Abstract storage home
� storage

(c) 2001, Michael Stal,
All Rights Reserved

Simple Composition

Component Home Home Executor

Component Executorimplements

implements

manages manages

composition entity MyComponent {

home executor MyHomeExecutorName

implements MyHome

manages MyComponentExecutor

}

IDL CIDL

(c) 2001, Michael Stal,
All Rights Reserved

Packaging and
Deployment

Corba
Component
Package

(c) 2001, Michael Stal,
All Rights Reserved

Packaging
A CORBA Component Package represents one or
more implementations of an abstract component.
It may be installed or grouped together with other
components to form an assembly.
A package consists of a descriptor and a set of files.
All files of a package are either part of an archive file
or stored separately.
In the last case the descriptor points to the file
locations.
Descriptors are XML documents.

(c) 2001, Michael Stal,
All Rights Reserved

EJB Mapping Issues

(c) 2001, Michael Stal,
All Rights Reserved

CCM and EJB
CORBA Components strives for compatibility
with Enterprise JavaBeans:
� (1) CORBA Components can be used by Java

clients; EJBs can be used by CORBA Clients.
� (2) CORBA Component containers can support

EJBs.
� (3) CORBA components written in Java that follow

the EJB patterns are deployable in EJB
containers:

� Either the component is an EJB; or
� The component has two different faces: that of an EJB

and that of a CORBA component.

(c) 2001, Michael Stal,
All Rights Reserved

Portable Interceptor
Framework

Interceptors are used to add out-of-the-band
functionality during ORB processing.
Previously, this functionality could either not
be integrated into existing ORBs or only in a
product specific way.
Portable Interceptors solve this problem.

(c) 2001, Michael Stal,
All Rights Reserved

Example: Client-Side
Interceptor

Let us consider an example. A client
sends a request to a server:

Client Servant

send_request
send_poll

receive_request_service_context

receive_request

send_reply

send_exception
send_other

receive_reply

receive_exception

send_other

Client-side interception points Server-side interception points

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
For a specific kind of ORB processing (e.g., client
requests) points in the event flow (interception points)
are identified where an interceptor should be able to
intercept.
An interceptor is registered with the ORB. For each
interception point a separate method is available in
the interceptor interface.
Interception points might be interrelated by the
control flow. There might be starting points,
intermediate points, ending points.

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
In a client request there are different interception
points:
� send_request: interceptor might query information on

request, raise a system exception.
� send_poll: TII polling request. May raise system exception.
� receive_exception: query exception before exception is

raised to client. May raise a system exception or a
ForwardRequest exception.

� receive_other: allows to query information when request is
something other than normal reply or exception. For
example a request colld result in a retry. May raise system
exception.

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)
module PortableInterceptor {

local interface Interceptor {

readonly attribute string name;

}

}

local interface ClientRequestInterceptor : Interceptor {

void send_request(in ClientRequestInfo ri) raises
(ForwardRequest);

void send_poll(in ClientRequestInfo ri); // TII

void receive_reply(in ClientRequestInfo ri);

void receive_exception(in ClientRequestInfo ri) raises
(ForwardRequest);

void receive_other(in ClientRequestInfo ri) raises
(ForwardRequest);

};

(c) 2001, Michael Stal,
All Rights Reserved

Example (cont‘d)

More than one interceptor can be
registered with an ORB for the same
event.
Interceptors are logically put on a virtual
stack one after another and then one of
the starting points gets called.
An ending point is only called for all
interceptors pushed on the virtual stack.

(c) 2001, Michael Stal,
All Rights Reserved

Registration of
Interceptors

Example:
public class LoggingService implements ORBInitializer {

// pre_init is called during ORB initialization.

void pre_init(ORBInitInfo info) {

Interceptor interceptor = new LoggingInterceptor;

info.add_client_request_interceptor(interceptor);

}

// all initial references are available

void post_init(ORBInitInfo info) {

// ...

}

}

Java: set initializer class with –D option at program start

(c) 2001, Michael Stal,
All Rights Reserved

Summary

Famous last words

CORBA
Components
Once upon a time an

organization

called OMG

decided to develop a

new technology. Their

goal was to defeat a

dangerous dragon

that used to

(c) 2001, Michael Stal,
All Rights Reserved

Summary

CORBA Components is an easy-to-use,
powerful technology for building platform-
independent middle-tier components.
Enterprise JavaBeans and CORBA
Components are two sides of the same coin.
With CORBA 3, the OMG offers a full range of
enterprise technologies.
What we need now are products, products, ...

(c) 2001, Michael Stal,
All Rights Reserved

Thanks a lot for attending
this talk!!

(c) 2001, Michael Stal,
All Rights Reserved

Any Questions ?

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Book
References

Henning, Vinoski: Advanced CORBA Programming with C++,
Addison Wesley, 1999. (The „bible“ for CORBA programmers).
Puder, Römer: Middleware für verteilte Systeme, dpunkt, 2000.
Ruh, Herron, Klinker: IIOP Complete, Wiley, 1999.
Pritchard: COM and CORBA Side by Side: Architectures,
Strategies, and Implementations, 1999, Addison-Wesley.
Siegel (ed.): CORBA 3 Fundamentals and Programming, 2nd
Edition, 2000, Wiley.

(c) 2001, Michael Stal,
All Rights Reserved

Patterns References
Buschmann, Meunier, Rohnert, Sommerlad, Stal: Pattern-
Oriented Software Architecture - A System of Patterns, Wiley,
1996.
Schmidt, Stal, Rohnert, Buschmann: Pattern-Oriented Software
Architecture Vol. 2 – Patterns for Concurrent and Networked
Objects, Wiley, 2000.
Gamma, Helm, Johnson, Vlissides: Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

(c) 2001, Michael Stal,
All Rights Reserved

Internet References
OMG http://www.omg.org

BEA: http://www.beasys.comh

IBM: http://www-4.ibm.com/software/ad/cb/

Inprise/Borland: http://www.borland.com

IONA: http://www.iona.com

Bean Homepage: http://java.sun.com/products/ejb

The ACE ORB http://www.cs.wustl.edu/~schmidt

(c) 2001, Michael Stal,
All Rights Reserved

Additional Bonus
Material

(c) 2001, Michael Stal,
All Rights Reserved

Standardized CORBA
Services

Naming: creation of name spaces and translation of names to object
references.

Lifecycle: creation, modification, copying, movement and removal of
objects.

Events: asynchronous messaging.

Persistence: persistent store and retrieval of objects.

Concurrency: parallel access to objects by standard mechanism like
locks and semaphores.

Externalization: export of objects to system external files.

Relationship: object relations (f.i. 1:n, n:m).

Transaction: transaction oriented access with 2 level commit.

(c) 2001, Michael Stal,
All Rights Reserved

Standardized CORBA
Services (cont‘d)

Licensing: framework for specification and management of license
servers.

Query: predicate based and declarative operations on collections of
objects.

Time: synchronization of clocks in distributed environments.

Security: authorizing and supervising at object level.

Properties: typed and attributed values, statically or dynamically
attached to an object.

Trading: Clients can ask for services and specify properties. They do
not care about servers.

Collections: Collections a la CORBA.

(c) 2001, Michael Stal,
All Rights Reserved

Event Service Example
Supplier:
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

CORBA::Object_var obj = orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var inc;

inc = CosNaming::NamingContext::_narrow(obj);

assert(!CORBA::is_nil(inc.in()));

CosNaming::Name ec_name;

ec_name.length(1);

ec_name[0].id = CORBA::string_dup("CosEventService");

obj = inc->resolve(ec_name);

if (CORBA::is_nil(obj.in())) {

cerr << "Could not find Event Service" << endl;

return 1;

}

CosEventChannelAdmin::EventChannel_var echoEC =

CosEventChannelAdmin::EventChannel::_narrow(obj);

if (CORBA::is_nil(echoEC.in())) {

cerr << "Invalid reference for event channel" << endl;

return 1;

} // .. to be continued

(c) 2001, Michael Stal,
All Rights Reserved

Event Service Example
(cont‘d)

Sample supplier (continued):
// continued ...

CosEventChannelAdmin::SupplierAdmin_var supplierAdmin =

echoEC->for_suppliers();

CosEventChannelAdmin::ProxyPushConsumer_var consumer =

supplierAdmin->obtain_push_consumer();

consumer->connect_push_supplier(CosEventComm::PushSupplier::_nil());

// Now, we can fire an event:

CORBA::Any event;

event <<= CORBA::string_dup("insertEntry");

consumer->push(event);

(c) 2001, Michael Stal,
All Rights Reserved

Event Service Example
(cont‘d)

Sample consumer (consumer declaration):

#include <orbsvcs/CosEventCommS.h>

class HashConsumer_i : public virtual POA_CosEventComm::PushConsumer

{

public:

HashConsumer_i(CORBA::ORB_ptr orb);

virtual void push(const CORBA::Any & data,

CORBA::Environment &ACE_TRY_ENV = CORBA::default_environment());

virtual void disconnect_push_consumer(

CORBA::Environment &ACE_TRY_ENV = CORBA::default_environment());

private:

CORBA::ORB_var orb_;

};

(c) 2001, Michael Stal,
All Rights Reserved

Event Service Example
(cont‘d)

Sample consumer (consumer definition):
#include "hashconsumer_i.h"

#include <iostream.h>

HashConsumer_i::HashConsumer_i(CORBA::ORB_ptr orb) : orb_(CORBA::ORB::_duplicate(orb)){}

void HashConsumer_i::push(const CORBA::Any &data, CORBA::Environment &ACE_TRY_ENV) {

char *eventString;

if (data >>= eventString) {

cout << "Got event : " << eventString << endl;

}

}

void HashConsumer_i::disconnect_push_consumer(CORBA::Environment &ACE_TRY_ENV) {

CORBA::Object_var obj = orb_->resolve_initial_references("POACurrent");

PortableServer::Current_var current = PortableServer::Current::_narrow(obj);

PortableServer::POA_var poa = current->get_POA();

PortableServer::ObjectId_var objectId = current->get_object_id();

poa->deactivate_object(objectId);

}

(c) 2001, Michael Stal,
All Rights Reserved

Event Service Example
(cont‘d)

Sample consumer (main):

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

CORBA::Object_var obj = orb->resolve_initial_references("NameService");
CosNaming::NamingContext_var inc;
inc = CosNaming::NamingContext::_narrow(obj);
assert(!CORBA::is_nil(inc.in()));
CosNaming::Name ec_name; ec_name.length(1);
ec_name[0].id = CORBA::string_dup("CosEventService");
obj = inc->resolve(ec_name);
if (CORBA::is_nil(obj.in())) {

cerr << "Could not find Event Service" << endl;
return 1;

}
CosEventChannelAdmin::EventChannel_var echoEC = CosEventChannelAdmin::EventChannel::_narrow(obj.in());
if (CORBA::is_nil(echoEC.in())) {

return 1;
} / / continued

(c) 2001, Michael Stal,
All Rights Reserved

Event Service Example
(cont‘d)

Sample Consumer (main cont‘d)
HashConsumer_i servant(orb.in());

obj = orb->resolve_initial_references("RootPOA");

PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

CosEventComm::PushConsumer_var consumer = servant._this();

CosEventChannelAdmin::ConsumerAdmin_var consumerAdmin = echoEC->for_consumers();

CosEventChannelAdmin::ProxyPushSupplier_var supplier =

consumerAdmin->obtain_push_supplier();

supplier->connect_push_consumer(consumer.in());

PortableServer::POAManager_var mgr = poa->the_POAManager();

mgr->activate();

orb->run();

(c) 2001, Michael Stal,
All Rights Reserved

Lifecycle Service
Sometimes, multiple copies of a CORBA type are necessary
with clients capable of controlling lifecycle and location.

The Lifecycle Service is more a guideline than an
implementation.

A Lifecycle object can be moved, removed, or copied.

For each Lifecycle type a factory is provided that creates
instances of the type.

Factory finders denote the location where factories and
their objects live.

(c) 2001, Michael Stal,
All Rights Reserved

Lifecycle Service
(cont‘d)

CORBA class that supports LifeCycle objects must derive from:
interface LifeCycleObject {

LifeCycleObject copy(in FactoryFinder there, in Criteria the_criteria)

raises(NoFactory, NotCopyable, InvalidCriteria, CannotMeetCriteria);

void move(in FactoryFinder there, in Criteria the_criteria)

raises(NoFactory, NotMovable, InvalidCriteria, CannotMeetCriteria);

void remove() raises(NotRemovable);

};

Factories themselves are diverse. Nonetheless, a generic factory
interface is provided by the specification. Factory Finders locate
factories:
interface FactoryFinder {

Factories find_factories(in Key factory_key) raises (NoFactory);

};

(c) 2001, Michael Stal,
All Rights Reserved

CORBA Time Service
The CORBA Time Service helps to synchronize time in a
distributed environment.

Time based on UTC (Universal Time Coordinated) which specifies
the units of 1/10 msecs elapsed since Oct. 15, 1582 (Gregorian
Calendar).

UTO (Universal Time Object) specifies a relative or absolute time
and an inaccuracy value.

TIO (Time Interval Objects) specifies time intervals.

The TimerEventService allows to create TimerEventHandlers.

A TimerEventHandler triggers time events using the Push-Style
Event Service.

(c) 2001, Michael Stal,
All Rights Reserved

Transaction Service
A transaction-based paradigm for

distributed objects:

A Client is responsible for defining
transaction boundaries as well as for
starting and stopping transaction.

Coordinators coordinate the cooperation
of distributed objects within a
transaction.

A Resource changes its internal state
during a transaction. It registers with
the coordinator.

A Transactional Object participates in a
transaction but its state remains
unaffected by the transaction.

A Transaction Proxy allows clients and
objects to retrieve information and
control transactions.

Coordinator

prepare
commit
rollback
register

Client

initiateTX
controlTX

Resource
Transactional

Object

service

Resource

prepare
commit
rollback
service

Transactional
Object

service

callcall

registerregister

Transaction Proxy

commit
rollback
begin
getCoordinator
getTXInfo

(c) 2001, Michael Stal,
All Rights Reserved

Transaction Service
(cont‘d)

Account 2Account 1 CurrentClient Coordinator

withdrawMoney

begin

get_control

depositMoney
get_control

register

register

account1

account2

commit
commit

prepare

prepare

commit

commit

(c) 2001, Michael Stal,
All Rights Reserved

Transaction Service
(cont‘d)

The OTS reveals the following features:
� OTS transactions can be combined with X/OPEN DTP

procedural transactions.

� One ORB can support multiple transaction services.
Transactions might span multiple ORBs.

� To use transactions in your server objects, just inherit
them from the abstract OTS interface.

� Support for flat transactions mandatory, nested
transactions are optional.

(c) 2001, Michael Stal,
All Rights Reserved

Memory Management
Note that CORBA is location transparent. Thus, memory is
allocated as if everything were local. This is trivial in Java
because Java uses Garbage Collection, but more complex
in C++:

in parameters: caller allocates and deallocates memory. If you
are assigning the value of an in parameter to a local variable of
a callee, you must duplicate the value:
MyInterface::_duplicate(inarg).

out parameters: callee allocates memory, caller deallocates
memory.

inout parameters: caller allocates memory, callee deallocates
and reallocates memory, caller deallocates reallocated memory.

(c) 2001, Michael Stal,
All Rights Reserved

Memory Management
(cont‘d)

Since string allocation and deallocation is machine-
dependent use methods such as CORBA::string_dup(),
...

In C++ array types can not be passed by value. Thus the
definition: typedef T Tarr[7] becomes: typedef T
Tarr[7] and typedef T* Tarr_slice. in-parameters
and return values are then passed as Tarr_slice.

For releasing references use CORBA::release().

For not simple types T the C++ mapping generates T_ptr
and T_var types. T_var as a smart pointer class
automatically deallocates memory when necessary. There
is also a String_var type.

(c) 2001, Michael Stal,
All Rights Reserved

Memory Management
(cont‘d)

There is one problem left. What about out-parameters.
Consider, for instance, f(out string x). If you call this
function two times and pass a char *, or a String_var the
called should overwrite x in the first scenario but properly
deallocate and reallocate x in the second scenario.

For this purpose, CORBA introduces _out types. Example:
String_out. This type automatically detects the type of the in-
parameter and behaves properly in both cases.

(c) 2001, Michael Stal,
All Rights Reserved

Memory Management
(cont‘d)

In Java simple types such as long are always passed by value,
complex types are passed by reference.

What if you want to use a long-out or an object reference as an
out-parameter? For this purpose, Java-IDL generates Holder-
classes.

Thus, inout/out-parameters are passed as Holder classes:
interface T { ... };

// Among other things the compiler generates:

public class THolder {

private T value_;

public void set_value(T val) { value_ = val; }

public T get_value() { return value_; }

}

