Date: January 2008

> CORBA

Common Object Request Broker Architecture (CORBA)
Specification, Version 3.1

Part 1. CORBA Interfaces
OMG Available Specification

OMG Document Number: formal/2008-01-04

Standard document URL: http://www.omg.org/spec/CORBA/3.1/Interfaces/PDF

Associated IDL Files*: http://www.omg.org/spec/CORBA/20030101/
http://www.omg.org/spec/CORBA/20030101/CORBA_Context.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_Current.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_CustomMarshal.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_DomainManager.id|
http://www.omg.org/spec/CORBA/20030101/CORBA_ InterfaceRepository.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_NVList.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_Object.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_ORB.idI
http://www.omg.org/spec/CORBA/20030101/CORBA_Policy.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_Pollable.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_Request.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_ServerRequest.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_StandardExceptions.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_Stream.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_TypeCode.idl
http://www.omg.org/spec/CORBA/20030101/CORBA_Valuebase.idl
http://www.omg.org/spec/CORBA/20030101/BiDirPpolicy.idl
http://www.omg.org/spec/CORBA/20030101/CONV_FRAME.idI
http://www.omg.org/spec/CORBA/20030101/CSl.idI
http://www.omg.org/spec/CORBA/20030101/CSIIOP.idI
http://www.omg.org/spec/CORBA/20030101/Dynamic.idl
http://www.omg.org/spec/CORBA/20030101/DynamicAny.idl



http://www.omg.org/spec/CORBA/20030101/FT.idl
http://www.omg.org/spec/CORBA/20030101/GIOP.idl
http://www.omg.org/spec/CORBA/20030101/GSSUPR.idI
http://www.omg.org/spec/CORBA/20030101/11OP.idI
http://www.omg.org/spec/CORBA/20030101/I0P.idl
http://www.omg.org/spec/CORBA/20030101/I0P_DCE.idI
http://www.omg.org/spec/CORBA/20030101/Messaging.idl
http://www.omg.org/spec/CORBA/20030101/MessageRouting.idl
http://www.omg.org/spec/CORBA/20030101/orb.idl
http://www.omg.org/spec/CORBA/20030101/Portablelnterceptor.idl
http://www.omg.org/spec/CORBA/20030101/PortableServer.idl
http://www.omg.org/spec/CORBA/20030101/pseudo_orb.idl
http://www.omg.org/spec/CORBA/20030101/Sending_Context.idl

* original zip file: ptc/2003-01-10



Notice regarding CORBA, v3.1

You will notice that this version has a different format and organization. Some information that
was included previously in the CORBA specification has not been carried over to this version. If
you are looking for a particular chapter that is not listed in Part 1 or Part 2, please refer back to
CORBA, v3.0.3 ( http://www.omg.org/cgi-bin/doc?formal/04-03-01).

Part 3 is the CORBA Components, v4.0 specification. This document has become part of the
CORBA specification beginning with this release.



OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).



Table of Contents

e (=3 = T PP Xili
Y o 0 T 1
2 Conformance and COMPHANCE ........ouuuiiiiiiiiiii e 1
3 NOrmMative REFEIENCES .....coiiiiii e s 2
4 ACKNOWIEAGEMENTS ..o e e et e e e e e aa e e e e e ernn e e eees 2
5 The ODBJeCt MOAEI ......oee e e 5
TR R @ Y=Y V1 PP 5

5.2 ODbJECE SEMANLICS ....cciiiii it e e s e e e e e e e e e e e e eeeaareaaaaa 5

LI T @ | o= o1 R 6

LA =0 1= £ 6

5.2.3 Object Creation and DESIIUCHION .........uveiiiiieeeiiiiiiiiiiieeee e e e e e e s e s s e e e e e e e e e e e e e s sennenneees 7

Lo R IV 1= L 7

I SR 101 (= = T L PRSP SSP 8

L AV 1[N o 8/ 1= PSR 9

5.2.7 ADSIIACE INTEITACES ..ooiiiiiiii ettt e e s b e e e s bt e e e e s nnnaee s 9

L S @] o T=T - 1o ) o 1SS 9

2 B A L1 1] 010 L= PP PP 11

5.3 Object IMpIementation ..........oooiiiiiiiiiiii e 11

5.3.1 The Execution Model: Performing SEIVICES .........coovvvviiiiiiiiiiiiiiiieii e 11

5.3.2 The ConstruCtion MOTEI ........cooiiiiiiiie e e e 12

6 CORBA OVEIVIEW ....oieiiiii ettt e et e e e e e et e e e e e ee et e e e e e eenans 13
6.1 Structure of an Object Request BroKer ... 13

LT @ o = Tox = To [0 1S A = 0] = 17

B.1.2 ClIBNES ..eeitieiieiiiee e ettt e oottt et e e e e e e e s e bbb e e et e et e e e e e e e e e e na b b e e b e e e e et e e e e e e e abreneeeas 18

oI @ ] o) [=To [ g o] =T 0 T=T o) r= 11 [] 1= 18

LT R @ ] o) [=Tox =T {=T = o =T 18

6.1.5 OMG Interface Definition LAnQUAQgE ...........cccoiiiiiiiiiiiiiiiiiiiiise e e e e e e e e e e e e ee e 19

6.1.6 Mapping of OMG IDL to Programming LANQUAGES ......ceeeeiiiiiieieeeeeeeieceeeeeeeeevevveee s 19

B.1.7 ClENE STUDS ...t e e et e e e e e e e e s s bbb e e e e e e e e e e e e e e nrrneees 19

6.1.8 Dynamic INVOCAtioN INTEITACE ........uiiiiiiii i 19

6.1.9 Implementation SKEIELON ..o e 20

6.1.10 Dynamic SKeleton INTEIfACE ......cccooiiiiiii i 20

L0 I I @ o] 1= o A2 = o) (= = 20

6.1.12 ORB INTEITACE ...ttt e e e e s e et e e e e e e e e aaanbeeeees 20

L0 G B [ 1 (=T = Lot =T =T 0T 1S3 (o Y/ 21

6.1.14 Implementation REPOSIIOIY .......iiiiiiii i e e e e e e e e e e e et e e e e e aeeeee e as 21

6.2 EXAMPIE ORBS ...uiiiiiii i e e e e et a e e e e e e e r e 21

CORBA - Part 1: Interfaces, v3.1 i



6.2.1 Client- and Implementation-resident ORB ... 21

6.2.2 SErVer-Dased ORB ..........uiiiiiiiiiiiie ittt e e e e e e e e e e e e e e 21
6.2.3 SYStEM-DASEA ORB .....cci it e et e e e e e e e e e e e 21
6.2.4 Library-based ORB ... 22

6.3 Structure of @ ClENT ......ccoiiei e e 22
6.4 Structure of an Object Implementation ..................cciiiiiiiiiiiiiee e, 23
6.5 Structure of an ODbJECt AAPLEN .......uiieiieee e 24
6.6 CORBA Required ObjeCt ADAPLEr ......ccooeiiiiiiiiiiiiee e 26
6.6.1 Portable ODJECT AAPLET ......oe ittt e et e e e e e e e e e e e 26

6.7 The Integration of Foreign Object SYStEMS ........covvviiiiiiiiiiieeeeeeeeeen 26
7 OMG IDL Syntax and SEmaNtiCS ........ccovveuiiiiiiiiiiiiiie e e e e e e 29
A8 R O AV =T 11 RS PPSPUPPRR 29
7.2 LeXiCal CONVENLIONS ...uuiiiiiiiiiie e e e et e e e aa s 30
7. 2.0 TOKBNS ettt e oottt ettt e e e e e e o e e a b bbb et e et et e e e e e e e aa e n b bebre e e e e e aeeennae 33
A A 011 11 1= o1 PR PPR 33
AR [0 [T o 11 T=T £ PP TP P PP OPPPPPPPRPTN 33
A (= AT0 o £ PP 35
T.2.5 LITEIAIS ...ttt et e e e oo e e bbbt e e et e e e e e e e e e e bbb eareeeaeaensannnan 36

7.3 PrEPIOCESSING ..iiiiiiiiiittiee ettt e e et e e e e bbbt r e e e e e e e e e e e e e e e e e e e e e nannes 38
7.4 OMG IDL GramMmMaAl .ucceiiniiiiiiieiiiiee ettt e e s e et e e e s s ea s eaaesn st seaaenaes 39
7.5 OMG IDL SPECITICALION ....ceeeeeeiiiiiiiiie et e e e e e e eeeeaeeeanannes 45
7.6 IMPOrt DECIAratioN ......ccooiiiiiieeeiiiiiee e e e e e e e e e e e e e e e eeeeeeenrannnnns 46
7.7 Module DECIaration ...........oooouiiiiiiiiiiie e eee e e e e e e e e e e e e e e a7
7.8 Interface DECIAratioN ..........c.oiiiiiiii i et eeaa e ees 47
R < T R 1) (=T = =T i L= U L= N 47
7.8.2 Interface Inheritance SPeCifiCatiON ...........oovviiiiiiiiiiii e 48
A= TR B ] (== Vot =T = 1T | PR 48
7.8.4 FOrWard DECIATALION ........ueiiiiiiiiieeeiii ittt e e e e e e e e e s e et bbb e eeeeeaeaeaeaaaannns 48
7.8.5 INterface INNEIMTANCE .........uiiiiiiiiee et e e e e e e 49
7.8.6 ADSIIaCt INTEITACE ....coiieeiee ettt e e e e e e e e e e e e e e e e eees 51
7.8.7 LOCAI INTEITACE ....cceeieiieee ettt ettt e e e e e e e e e s bbb e e e e e e aaeeeseannes 52

7.9 Value DEeCIaration .........ccccoeeiiiiiii i 52
7.9.1 REQUIAT VAIUE TYPE ootttk ettt s bt e e e sk e e e e s st e e e e e aabeeeeeeaaes 52
7.9.2 BOXEA VAIUE TYPE oeiiiiiiiiiie ettt ettt et e et e e s et e e e e e bbb e e e e e anbbe e e e e eeeee 54
7.9.3 ADSEIACE VAIUE TYPE ittt ettt e et e e st e e et e e e e e 55
7.9.4 Value Forward DeCIaration ..............oooiiiiiiiiiiiiiiiiiis e e e e e e e e e e e e e e eeaaanes 55
7.9.5 Valuetype INNEILANCE ......ooiiiiiiie e aeees 56
7.10 Constant DeCIaration...............uuuuiiiieiiie e e e e e e e e e e e 57
400 0 Tt 3 Y - R 57
7.00.2 SEMANTICS ..vvveeeiiiiiiieee ittt ettt e e e ettt e e e ettt e e e e st b e e e e e atbb e e e e e abbe e e e e e anbbe e e e s e anbbeeeessnbeeeeeenee 58
7.11 Type DECIAration ........cooiiiiiiiiiiiiiiiie et e e e e e e e e e e e eeaeeerenannas 61
400 T = 7= 1= [ Y/ o = 62
0 A 0o 151 {8 o (= R 5/ 01 P 64
0 G B =T g o] F= L 1Y/ 1= T 68
7.11.4 COMPIEX DECIATALON .. ..iii i e e e e e e e e e e e e e e e e e et s e s e s e e aaeaeaaeaeeenenes 70
40 N V= L1 A< I o= 70
7.11.6 Deprecated ANONYMOUS TYPES ...cccveviiiueiieiiiiiiaieeeeeeeeeaeaeseetereeaesrerarernnrn e aeaaaaaaaeaeeeees 71

CORBA - Part 1: Interfaces, v3.1



7.12 EXCeption DECIAration ...........coooiiiiiiiiiiiiiiiiiii et 73

7.13 Operation DECIaration ............cuuuuiiuuiiiiiiiiee e e e eeeee e s e e e e e e e e e eeereeeennne 73
7.13.1 Operation ALtHDULE .......uueeiiiiieeeie i r e e e e e e s s s e e e e e e e e e s s s st bt errreeeeaeeeeanannnnnes 74
7.13.2 Parameter DECIArationS ..........ooicuuuiiiiiiiiiiiee et e e s e enes 74
7.13.3 RAISES EXPIrESSIONS ..eiiiiiieeieiiiiiitteietteeetteae e et s s s sste e eaeeeeeaeeeessasntaabanerareaaaeeessnsannnnrenneeees 75
7.13.4 CONEXE EXPIrESSIONS ..eiiiiieeieiii ittt e erteae e et s s s sttt eaeeeeeaaeeesasssassst e e erreaaeeeesesannnnsrnnneees 76

7.14 Attribute DeClaration ............ooiiiiiiiiiiiiiiii e 76

7.15 Repository Identity Related Declarations ..............ccccceviiiiiiiiiiiininieeesiiieee 77
7.15.1 Repository Identity DeCIaration ...............ccoiiiiiiiiiiiiiiiie e 77
7.15.2 Repository Identifier Prefix Declaration .............cccuuvieiiiiiiiiiiieee e 78
7.15.3 RepoSitory Id CONFlICE .......ooeiiiiiieee e e 79

7.16 EVENt DECIATALION ...uuvviiiiiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e s s ennnes 79
A G A = To U F= Tl =T o A 5/ o T SR 79
A T Y o 1S3 = Lo A Y=Y o A I3 o L= SR 80
7.16.3 Event Forward DECIAration ...........cceeiiiiiiiiieeiiiiie et e 80
7.16.4 Eventtype INNEIMANCE .......ccoiiiiiieeee et e e e e e s e e e e e e e e e e s e s nnnnenrnees 80

7.17 Component DeCIaration ...........ooouuiiuiiiiiiiiiiiee e 80
0 A R o ¢ 0 o T = o | S PP UPPPPN 80
A N A o 1 ] o To 1= T 0 L A 1= = To 1= R 81
% A T o ] o To ] 1= | A =0T |V 82
7.17.4 Event Sources—publishers and emitters ...........ooovvveiiiiiiiiiiii e 84
T.17.5 BVENE SINKS .ttt e e e e e e e e s e bbb e et e e e e e e e e e e annnrreas 85
7.17.6 Basic and Extended COMPONENLS ........cccoeeeiiiiiiiieieeeeeierers s e e e e e e e e e e e e e e e e ee e s 85

7.18 HOME DECIAratION ....cceiiieieeeiieeeeeeet et e e e e e e e e e e e e e eees 85
0 T R o (o] o [ TP T PP TP 85
A R S I o o] L= o 1T o [ TP PPR P 86
7.18.3 HOME BOAY ....ccoiiiiieitttie ettt ettt e ettt ettt e e e e e e e e e s s bbb b e e e e e e e aaaaeesaasannnnes 87

7.19 CORBA MOAUIE ...ttt e e e e e et e e e e e e st e e e e e eeeees 88

7.20 NaAmMES aNd SCOPING -.oeiiieeeeieeiie ettt e e e et e e e e e e e e aeaaaeeeees 89
A0 T R @ LU= 11T=To I\ = Vg = 89
7.20.2 Scoping Rules and Name ReSOIULION ...........uuvuiiiiiiiiiiie e 90
7.20.3 Special Scoping Rules for TYPe NAMES .......ccovviiiiiiiiiiiiiier e 93

8 ORB INEITACE ...coviiieeiie e 95

8.1 OVEIVIBW ..ttt ettt ettt e e e e e e e e e et e e e ettt et bbb e e e e e e e e e e eeaeeeeeeeennnes 95

8.2 The ORB OPEIALIONS .....eeiiiiiiiiiieieieeie ittt e e e e e e e e e e e e e 95
8.2.1 ORB TUENLILY ettt e s bt e et e e e ettt e e e e b e e e e enaeas 101
8.2.2 Converting Object References to StHNGS ....o.ooiiiiieiiiiiee e 101
8.2.3 Getting Service INFOrMatioN .........ooouiiiiiiiiiii e 101
8.2.4 Creating 8 NEW CONEXE ...oiiieiiiiee ittt et e e s riab e e e e e nens 102
8.2.5 Thread-Related OPEeratioNS ........c.eeiieiiiiiiiee ittt 102

8.3 Object Reference OPErationNsS ...........cccceiieiiiieeeeeiiiiiieeecee e s e e e e e e e eeeeeaaeans 104
8.3.1 Determining the Object INtEIfACE .........uviiiiiiiiiiie e 106
8.3.2 Duplicating and Releasing Copies of Object References ..........cccoovcecvvvveeeviieeee e, 107
8.3.3 Nil ODJECE REEIENCES ..eeiiiiieeei e ettt e e e e s er e e e e e e e e e e e e annnnnes 107
8.3.4 Equivalence Checking OPEration ...........cccceeiiiiiiiiiiiiiieeirieeeeee s e s ssssveereeeerereeeeeeseesnsnnnnnnes 107
8.3.5 Probing for Object NON-EXIStENCE........ciiiiiieei i e e s e e e e e e e s e s e e nnaneenes 108
8.3.6 Object Reference IdeNLItY .........cccccuiiiiiiiriiie e e e e e e s s s er e e e e e e e e e e s e e nnnnnes 108

CORBA - Part 1: Interfaces, v3.1 il



8.3.7 Type Coercion CONSIAEIAtIONS .........ccciviiiiiieiiiiiiiiees e e e e e e e e ee e e e e e s e e e aaaeaeaeees 109

8.3.8 Getting Policy Associated with the ODJECE ..........uiiiiiiii e 109
8.3.9 Overriding Associated Policies on an Object Reference ..........o.ouvvvviiiiiiiiiieeeieeeees 111
8.3.10 Validating CONNECLION .........ccciiiiiiiiieieecrre e e e e e e e e e e e e e e e e e s e s e e e e e aaaeaaaaeeeennes 112
8.3.11 Getting the Domain Managers Associated with the Object.............ccoovviiiiiiiii e, 112
8.3.12 Getting Component Associated with the ObjJect ............cccce i, 113
8.3.13 GettiNG the ORB ....cciiiiiiiiiie ittt ettt e e st e e e e st e e e e snbbe e e e e s ssbbeeeeesnsbaeeeeeans 113
S0 700 I A o Tor= 1 (@] o] [=Tox A @] 1= > V[0 o 1P 113

8.4 ValueBase OPEIatiONS ...........cuuuuuuuuumiiiieeeeeeeeeeeeeeeeeeeeessnrnaseesseeeeeeeeereeeeeeeennes 114
8.5 ORB and OA Initialization and Initial References ...........ccccceeeviiiiieeiiiiiieiiieinnn, 115
8.5.1 ORB INILIALIZALION ....eeieiiiiiiiie ittt et e e e s nbbee e e e e sbbeeeee e e 115
8.5.2 Obtaining Initial ObjeCt REFEIFENCES ......cceeviiiiiiieiii e e e 117
8.5.3 Configuring Initial Service References .........cccooeeevvveeiiiiiiiiieeeeeeeinnns 119
8.6 CONEXE ODJECTE ...ttt a e e e e e e e e e e aeeeeeeeeeee 121
8.6. 1 INTTOTUCTION ...eeiiiiieeee ittt ettt e e e e e e e e s et bbb e e et e e aeeesaeaanbnbesbreeeeaaeeeeaasane 121
8.6.2 Context ObJeCt OPErAtIONS .........ceevviiiiiiiiiiiieisie i e e e e e e e eeeeee e e e e ee e s e e e eaeeaeaaaaeeeereanes 122

A O U1 (=] | S o] [T o SRR 125
8.8 POlICY ODJECE ..ot e e e e 125
8.8.1 Definition of POlICY ODJECE ....vviiiiiee i r e e e e e e e e n s 125
8.8.2 Creation Of POlICY ODJECLS ...ovvviiieeeii it e e e e e e e e e e 127
8.8.3 Usages Of POlICY ODJECLS .....ccceeiiiiiiiiiieeee e e e er e e e e e e e e e e e e nnnes 128
8.8.4 Policy Associated with the Execution ENVIrONMENt ..........ccuvvvviiiiieeeeii i e 129
8.8.5 Specification of New PoliCy ODJECES........cccuuiiiiieiiiiee e e e 129
8.8.6 StaNdArd PONICIES .....c.iuieiiiiiiiiiiie ettt e e e e e e e e e e e e 130

8.9 Management Of POIICIES ..........uuuiiiiiiiiiiiei e 130
8.9.1 Client Side Policy ManagemeNt ............coovviiiiiiiiiiiiiiis e e e ee e aeeaeeas 130
8.9.2 Server Side Policy Management ...........oooviiiiiiiiiiiiiiis e a e 131
8.9.3 Policy Management INtEIfACES .........ooovvviiiiiiiicic e e a e e e e e 132
8.10 Management of POlICY DOMAINS ......ccoiiiiiiiiiiiiiiiieiiiiiiiiseee e e e e e e e e eeeeeeeees 133
8.10.1 BASIC COMNCEPLS .eiiiiiiititiiieieee e e e e e e e ettt ettt e e ae e e e s e sa b bbbt e et e et aaaaaeesa e s nbbnbesneeeeaaaaaesaaaanns 133
8.10.2 Domain Management OPEratiONS ...........ceiiceeeeeiiiiiiiiiiiieeereeeeeeesessassnrrreeeerrereaaeeeeseaannes 136
S0 I I V7T T o Lo [ SPPPPRPN 138
8.11.1 The TYPeCode INtEITACE .....ceceeieiiiicit e e e e e e e e s e e rr e e e e e e e e e s aean 138
8.11.2 TYPECOUE CONSLANTS ...uvvvriiiiieeeeisiiiiiiitieeeee e e e e e e e e s ss s st e e e reeeeeeeesasannntnrrneneeeeeeeeeesannnnes 142
8.11.3 Creating TYPECOUES ....uuveiiiiieeeeeeiii ittt et e e e e e e s e s es e e e e e aeeeeessasnnnsbatnnanreraeaeeeesanan 143
8.12 EXCEPLIONS ..euuuiiiiiie ettt e e ettt ettt e ettt a e e e e e e e e e e eeeeeaarae 147
8.12.1 DefiNItION Of TEIMS ...ttt e et e e e e e e e s e e s bbb e rreeeeeaaeeeseeaanas 147
8.12.2 SYSIEM EXCEPLIONS ...ttt e e e ettt e e e e e e e e e s bbb et e e e e e e e e e e s e nnnbbnbeeeeeeaeaaeeeas 147
8.12.3 Standard System Exception DefinitioNnS ...........oooiiiiiiiiiiiiiie e 149
8.12.4 Standard MiNOr EXCEPION COUES ........eeiiiiiiiiiiiiiiiiiiiiiiieeeee e e e re e e e e e e e e 155

9 Value TYPe SEMANLICS ....ccevviiie e e e e e e e e e e e eaaaas 157
.1 OVEIVIEW ...ttt et e e e e e et e e e e et a e e e e e e ab e e e e e e eaaa e e eeeeeanaans 157
S N (o1 1 (= ox (1 [ (= PSSR 157
S T A Y o 1S = 1ot AV = [T USRS 158
9.2.2 OPEIALIONS ...eeeeeeeiitieie ettt ettt ettt e e e et bt et e e e s bbb et e e e ek bbbt e e e e bbb et e e e e b b et e e e e anbbe e e e e e nabneeeenae 158
9.2.3 Value Type VS. INTEITACES .....oueiiiiieiieee et 159
9.2.4 Parameter PASSING ......cuueeieeiitiiieee ittt e ettt e e ettt e e ettt e e e e et b b e e e e et b e e e s et ba e e e e abbaeeaeeaas 159
9.2.5 SUDSHILULADINILY ISSUBS .. ..eiiiieiiiiiiie et e st e e sb e e e 160

CORBA - Part 1: Interfaces, v3.1



Lo I SR AVA T F=T T g To T4 AN F= T {011/ T Vo [ 161

9.2.7 ValUB BASE TYPE ...eeeeeeiiteiniiiiiii et e s et e e e e e e e e e eeee et e e et aeate et as e e e s eaeaaeaaeaaeeeeesaesesenenrnnnnnnnnnns 161
9.2.8 Life CYCIE ISSUEBS ...evtuieueiiiieii et e e et e e e e ettt e s e e e e e e e e e e e e e e e eeeeeeeaeasaeseanns i aeeeean 161
9.2.9 SeCUrity CONSIAEIALIONS ...uuuuuiiiiieiei e e e e e e e ee et r e s e e e e e e e aeeeaeeeeeaeeseesenrnnnnnnns 162

9.3 Standard Value BoX DefinitioNS .........couiiiiiiiiiiiie e 162
9.4 Language MapPiNgS .....ccceeiiiiiiiiiiiiiiesis e e e e e e e e e e e et e e e et e e e e e e e e e e e aeaaaaan—. 163
9.4.1 General REQUIFEIMENTS .......cceiiiiiiiiiiiiie e et e e e e e e s s s ess et e e e e e aeeeaesssssantantanereeaeeaeeesanannnsnnes 163
9.4.2 Language SpecCific Marshaling .........c..uueuiiiiieioiiiiiiiicieer e r e e e e e e s e e nnanes 163
9.4.3 Language Specific Value Factory REqQUIFEMENTS ........cceeeeeiiiiiiiiiiiiirieeeeee e e e e s e sseennieeeeees 163
9.4.4 Value Method ImpIemeNtation ............ceeiiiieeiiiiiiiiiiieeee e r e e e e e e e e e e e snnnes 163

9.5 CuStom MarshaliNg ........ooooiiiiiii e 164
9.5.1 Implementation of Custom Marshaling ............ouvviiiiiiiiiii e 164
9.5.2 MarshaliNng SIFEAIMS .......uuuuuiiiiiii it s e s e e e e e e e e e e et e e e e eae e arnenrnrnn i as 165

9.6 Access to the Sending Context RUN TIME .........ccccuviiiiiiiiiiiiieieeeeeeeeeee s 170
10 Abstract Interface SEemantiCs ........cccuviiiiiiii i 173
L1O.1 OVEIVIEW ..uniieiiiiie ettt e e e et e e e e e e e e e e e e e et e e e e e ssaaa e e eeeestaaaeeeaeees 173
10.2 Semantics of Abstract INterfaces .........ccccccveeiiiiiiiiiiiiii e, 173
10.3 USAQE GUIAEINES ....ueiiiiiii e 174
O e o o] SRR 174
10.5 Security CONSIAEratioNS .........cccoiiiiiiiiiiiiiiiiiie e e e e e e 175
10.5.1 Passing Values to Trusted DOMAINS .........ccceviiiiiiiiiiiiieieeeee e e e e s ses e e e e e e e e e e s sennneennaees 175

11 Dynamic Invocation INtErfacCe ............oeiiiiiiiiiiii e 177
3 I O 117 V1= USSR 177
11.1.1 CommMON DAta SIIUCIUIES ......ueiiiiiiiiiieieeeeie it e e e e e e e e e e s 177
0 I |V =0 o] V7= T =SS 179
11.1.3 Return Status and EXCEPLIONS ....ceiiviieiiiiiii it e e e e e e s s er e e e e e e e e e s e s e reneeeees 179
11.2 ReQUESE OPEIALIONS ....uuiiiiei ettt e e e e e e e et e e e e e e e eaaeas 179
R A ol (== L =T U= U SUPPPTNN 180
0= Vo o = 1 o PP 182
T1.2.3 INVOKE ..ottt oot e e e e e e e e e e e e e e e e e e e a e as 182
L1.2.4 AeIBLE ottt e e e e e et e et e e e e e e e e e eas 182
L1125 SENA oo r et e e e e e e e e e b a e e e e e e e e e e e e e a e e eas 183
I o o )| (== oo PP 183
R A o = A (=] o0 1< PP RPPPNS 183
- ==Y T | o TS 184
R B o (=T o -1 £ PO PPPPRS 184
0 KO T  [o [ o PP PPPPT PP 184
11.3 ORB OPEIaAtiONS ....coeeiiiiiieieiiiiii ittt e e e e e e e e e e e e e e e 184
11.3.1 send_MUILIPIE_FEOUESES .....oiiiiiiiiiiee ittt e e 184
11.3.2 get_next_response and poll_NeXt_FESPONSE ........coccuveiieriiiiiieeiiiiieee et e e e 185
L11.4 POING oot e e e e e e e e e e e aaaaas 186
11.4.1 Abstract Valuetype Pollable ..........ooooeeoiiiiiii e 187
11.4.2 Abstract Valuetype DIHPOIADIE .........cccooiiiiieeeee e 188
11.4.3 interface POIABIESEL .........oeiiieie e 188
11.5 LiSt OPEIALIONS ....evvvueiuuiiiieee e eee e e e e ee ettt e s e e e e e e e e e e e e eeetebeeb b e e e e e e e eeeaaeas 189
S 0 I o = = (= ] Pt 190

CORBA - Part 1: Interfaces, v3.1 \Y



S = Vo o 11T o o 190

TR B 1T TP TP PP UPPTPUPPPPRRRRTN 190
T T T 4 =T T 190
TR ST o = oo | o | S PSPPSR 191
11.5.6 create_OpPeration_liSt ........uuuuuiiiiiei e —————————— 191

12 Dynamic Skeleton INterface ............oiiiiiiiiiiiiii e 193
D2 R [ 0T LU Tod 1 o] o TR 193
D © 1Y V1= S UPUPRPN 193
12.3 ServerRequestPseudo-ObjJecCt .........ccceoiiiiiiiiiiiiiiiieee e, 194
12.3.1 ExplicitRequest State: ServerRequestPseudo-Object ...........cccccvvvieeeiirieeeee e, 194
12.4 DSI: Language MapPiNg ....ccooeeeeeeeiiiimmaaaaeee e e e e e aeeeeeeeeestsnsa e e e e e eaeaaeaeaeeees 195
12.4.1 ServerRequest’s Handling of Operation Parameters ...........cccccvvvivvvveeviiiiniiiiciiin e 195
12.4.2 Registering Dynamic Implementation ROULINES ..........coovviiiiiiiiiiiniiie e 195

13 Dynamic Management of ANy Values ..........cccooeiiiiiiiiiiiieiieiiee e 197
13,1 OVEIVIEBW .eeetietiitiae e e e e e ettt e s e e e e e e e e e e e e et e e aabab b e s e e e e eaeaaeeeeeeennnnes 197
13.2 DYNANY AP et aaeaaa 198
13.2.1 Creating @ DYNANY ODJECL ..ottt e e e e e e e e e e e e ananeeees 203
13.2.2 The DYNANY INTEITACE ...ocoiiiiieee et e e e e e e e e aearaees 205
13.2.3 The DYNFIXed INtEIfACE .....cooiiiiieieee e e e e e e 209
13.2.4 The DYNENUM INEEITACE .....coiiiiiiiieeiee ettt e e e e e e e e e e e nnnaees 210
13.2.5 The DYNSHIUCE INTEITACE .....cooiieiiiiieeeee et e e e e e e e e e naeaees 210
13.2.6 The DYNUNION INEEIFACE ......coiiiieiiiiiieieeee ettt e e e e e e e e e e e nenees 212
13.2.7 The DYNSeqUENCE INtEITACE ........uuiiiiiiiiiiie it e e e e e 213
13.2.8 The DYNArIray INTEIFACE .....cooiiiieiieee ettt e e e e 215
13.2.9 The DynValueCommon INEITACE ........ooiiiiiiiiiiii e 215
13.2.10 The DynValue INtEIfACE ......cooiiiiiiiieeee et e e e 216
13.2.11 The DynValueBoX INtEITACE ......cuuuiiiiiiiiieiie e 216
13.3 Usage in C++ LanNQUAGgE ........cooevvviiiiiiiiiiiieiee e e e e ee ettt e e e e e e e e e e e aaaeees 217
13.3.1 Dynamic Creation of CORBA:ANY VAIUES ......cooocviiiiiiiieieeeee e ssiineee e r e e e e e e e e s 217
13.3.2 Dynamic Interpretation of CORBA::ANY VAIUES ........uvvviiiiiiiiieeeeei i sciiiiniireereee e e e e e e 218

14 The Interface REPOSITOIY .......ouiiiiiiiiiiii e 221
L. 1 OVEIVIEW .iiiiiiiiititieeee ettt et e e e e e e e e e e e e e s e s s e s s s bbb be ettt e et e e et eeaaeeaaaeaeaaeesssnnnnnnnnes 221
14.2 Scope of an Interface REPOSITONY .......ueiiiieiiiii e 221
14.3 Implementation DEPENTENCIES .........oooiiiiiiiiiii e 223
14.3.1 Managing Interface REPOSILOMES .....coocuviiiiiiiiiiie ettt 223
I o - T o PP PPPPPPPUUPPP 224
14.4.1 Names and [deNLIfIEIS ......ouuiiiiiiiiiiee e 224
14.4.2 Types and TYPECOUES ...cooevieeeiiiiii ittt e e e e e e s e e s e e e e ae e e s e s e s s rnsbr e e nraeeaeaeeesanannns 225
14.4.3 Interface RePOSItOry ODJECES ......uuveiiiiiiiiiiie e es e e e e e s e e s e e e e e e e e e e s s s annnrnnes 225
14.4.4 Structure and Navigation of the Interface RepOSItOrY .........cceevvviiiiiciiiiiieiiieee e 226
14.5 Interface RepoSItory INTErfaCeS ........uuuuiiiiiiiiee e 229
14.5.1 Supporting TYPe DefiNitiONS .......ccooiiiiiii e s 229
L14.5.2 IRODJECE .eeveiintieitee ittt ettt ettt sttt s h bt bt e a bt e s bt e e s b e e sbb et e e sab e e nbeesabe e nbeenes 230
L14.5.3 CONTAINEA ...cooeiiiiiiiiit ettt et e e e e e e e e bbb bttt et e e aeeeeeeaaaannbbabesneeeeeaeeeesaaaane 231
LA.5.4 CONTAINET ..ceiiieiieeiiiet ettt e ettt et e e e e e e e e e e s e ab bbbt ettt e e aeaaeeesaaannbbnbeseeeaeaaaeaesaaaane 233

Vi CORBA - Part 1: Interfaces, v3.1



L4.5.5 IDLTYPE ovoveeeeeeeeeeeeeeeeseeeeeeseeees s eseee s sseeesee et s e s eseeseeeseee e s eeses et ee e eseeeeeeseeeses 238

N L= o0 ] (o] PR 238
L14.5.7 MOUUIEDET ... r e e e e 240
14.5.8 CONSLANTDET ...ooiiiiiiiiiii e e e e 240
14.5.9 TYPeUEIDES ... e e e e e e e e e 241
14.5.10 SHUCIDET ..t e e e s s e e e e e 241
L14.5. 11 UNIONDET ...ttt e s e e s et e e s e e e e enenes 242
14.5.12 ENUMDET ...ttt s e 243
L4.5. 13 AlIBSDET ...ttt 243
14.5.14 PrimitiVEDET .....oeiiiiiiiii ettt 243
N S 1] o | = PP 244
14.5.16 WSHINGDET ...ttt e s e s e e e e e e e e e e e eeeeeeaeeeaeeananne 244
L4.5.17 FIXEUDET ...ttt 244
14.5.18 SEQUENCEDES ...t a e e e et e e e e —————— 245
N e N4 = |V I L PSSt 245
14.5.20 EXCEPLONDET ...t a e e e e e e e e e e 246
14.5.21 ATHDULEDET ... 246
14.5.22 EXTATIDUIEDET .. ..o 247
14.5.23 OPEratioNDES ......cooviiiieieii e a e e et e e —————— 248
14.5.24 INEITACEDET ....oi i 249
14.5.25 EXINEITACEDET .....oeiiiiiiiieiii et 251
14.5.26 ADSIractinterfaCeDel ..........ooiiiiiiiiei e 252
14.5.27 EXtADSIractiNterfaCeDef ........oocvviiiiiic e 253
14.5.28 LOCAIINIEITACEDET ....oiiiiiiiiiie s 254
14.5.29 EXILOCAIINIEITACEDET ......eeiiiiieiie e 255
14.5.30 ValUEMEMDEIDET .....oiiiiiiiieie i 256
14.5.31 VAIUEDET ...ttt 257
14.5.32 EXIVAIUEDET ..ottt 259
14.5.33 VAIUEBOXDET ...ttt 261
14.5.34 NAUVEDET ....oeiiiiiiiiiie e 261
14.6 Component Interface Repository INterfaces ..........cccccvvvvevviiiiiiiiiiiinieeeeeeeenn, 261
14.6.1 CompPOoNENtIR:ICONTAINET ....ccoiiiiiiiiieiee ettt ettt e et e e e e e s et be e e e e e aaaaeeeaaaaannrnees 262
14.6.2 CompONENntIR:IREPOSIONY ....ccoiiiiiiieiiiiiie ettt 263
14.6.3 ComponentiR::ProvIdeSDET ........ooiiiiiiiii e 264
14.6.4 CompPONENntIR:IUSESDET ....ooiiiiiiiiiie e 264
14.6.5 ComponentiR:IEVENIDET ......ooo e 265
14.6.6 ComponentiR:EVENIPOIMDES ........eiiiiii e 265
14.6.7 ComponentiR:EMIISDET .....ooo i 266
14.6.8 ComponentiR::PUDIISNESDES.........cooi e 267
14.6.9 ComponentiR::CONSUMESDET .......oiiiiiiiiii e 267
14.6.10 ComponentlR::CoMPONENIDET .......cuiiiiiiiie e e 267
14.6.11 ComponentlR::FACIONYDET ... 270
14.6.12 ComponentliR:FINAEIDET .....ooiiiiiiiii e 271
14.6.13 ComponentiR::HOMEDET ..o e 271
14.7 REPOSIHOIYIAS ..ooveeieiiiiiiee e e e e e e e e e e e e e e e aaaaeas 273
14.7.1 OMG IDL FOIMEL ....eeiiiieiiiieiiie sttt e e e e e e e e e enenes 274
14.7.2 RMI HAShEd FOMMAL .....cocuviiiiiiieiiiie ettt 274
14.7.3 DCE UUID FOIMAL ....ooiiiiiiiieiiei ittt e e e e e s e 276
T14.7.4 LOCAL FOIMAL ..ottt ettt e s e e e e e e e e e e e 276
14.7.5 Pragma Directives for REPOSIHOIYIA ........ccceiiiiiiiiiiieeec e 276

CORBA - Part 1: Interfaces, v3.1 Vil



14.7.6 FOr MOre INFOrMALION .......iiieiiiiie et e e e e e s e e e e b e e s b e s ebaaeanaaas 281

14.7.7 RepositorylDs for OMG-Specified TYPES ..ccvvvvuuruiiiiiiiiie it 281
14.7.8 Uniqueness Constraints on RePOSItOry IDS .........ovvvvvviiiiiiiiiiiiiiiie e eeee e 281
14.8 OMG IDL for Interface REPOSITONY ........cocoiumiiiiiiiiiiiiieeee e 282
15 The Portable Object Adapter ... 301
L15.1 OVEIVIEW ...ttt e e e ettt e e e e e et e e e e e et it eeeeeesata e e eeeeesraaaaeaeees 301
15.2 Abstract Model DESCHPLION .....cevviviiiiiiii e e e e e e eeaaeens 301
15.2.1 MOAElI COMPONENES ..oviiiiiiieeeeie i ittt e et e e e e e e s ss st r e et e e e e e e s asssssntartneereeeeaeeeeanaannrnnes 302
15.2.2 MOdEl AFCRItECIUIE ....ueiiiiiiiiieiee ettt e e et e e e s abeaeeeesane 303
15.2.3 POA CrEALION ...veiiieiiiiiiie e e iittiee ettt ettt e e e e sttt e e e sttt e e e e sbbe e e e e e anbbeeeeeeanbbeeeeeannees 305
15.2.4 REfEreNCE CrEALION .....eiiiiiiiiiiiie e ittt e ettt ettt e sttt e e s sttt e e e s s be e e e e e snnbeeeeeessnbeeeeeennes 306
15.2.5 Object ACHIVALION STALES ......cooeiicieiiiieiei e e e e e e e s e e e e e e s e e s s r e e e e aeeeeeesennnnnrnnes 307
15.2.6 REQUESE PrOCESSING .rvveeiiiiieeiiiiiiiiiiiitiee e et e e e e e e e ss s st r e e e e e e e e e s sssssssbanannereeaeeeeeesnsannnrnnes 307
T2 A 1 ] o [T AN 1)Y= 4o o P PUEERR 308
15.2.8 MUIIStNIEAAING ..ccciii it e e e e e s e e e e e e e e e e s ae e sann e aeeereeaeeesenannnnne 309
15.2.9 Dynamic SKeleton INtErfACE .......ccc.uvviiiiiiiieie e r e e e e e e e e e e s ennnes 310
15.2.10 LOCAtION TIANSPAIENCY ..eeeeeeeeieeieirtrieeeeeeresaeeessssssssstrsteeeerereeeeesssssaaannsssnreerreeeeeessesannnnes 311
15.3 INEEITACES ..o e e e e aaaan 311
15.3.1 The Servant IDL TYPE .uuuuuuiiiiii i e i ettt s e e e e e e e e e e e e e e e e e e e e e e e e a e e e e eaas 312
15.3.2 POAMANAQE! INTEIACE ....uuiiiii i e e e e e as 313
15.3.3 POAManagerFactory INterface ... 317
15.3.4 AdapterActivator INTEITACE .......cccooiii i e s 318
15.3.5 ServantManager INtEITACE .......ccooiiiii i e 319
15.3.6 ServantACtivator INTEITACE .........cccueiiiiiiiiie et e e e e 320
15.3.7 ServantLocator INtEITACE .........oooiuiiiiiiiii e e e 322
15.3.8 POA POIICY ODJECLS ..uuuuuiiiiiiiii ittt s e e e e e e e e e e e e e e e e e naa e e e e e aeeas 324
15.3.9 POA INEEITACE ...ttt e e e e e e e e s bbb br e e e e e e e e e e e s aananes 328
R T O I O U4 (=T A @ 0T r= 110 337
15.4 IDL for PortableServer MOAUIE ...........oovueiiiiiiieee e 338
15.5 UML Description of PortableServer ..., 344
15.6 USAQE SCENAIIOS ...ccevviiiiiiieeiiiiiii e e e ettt e e e e et e e e e e e e et e e e e e e aa e e e e eesaraeaeaaeees 345
15.6.1 Getting the ROOL POA .....ee it e e e e e e e e e e e e e aeeas 345
N A O =T 11T T = T = 346
15.6.3 Explicit Activation with POA-assigned ObjecCt IdS ...........ceeiiiiiiiiiiieeeeceeeeeen, 346
15.6.4 Explicit Activation with User-assigned Object [dS .......cccceeviiiiiiiiiiiiicceee 347
15.6.5 Creating References before ACtivation ...........coovrvriiiiiiiiiiir e 348
15.6.6 Servant Manager Definition and Creation ................uuiiiiiiiiniiii e 348
15.6.7 Object Activation 0N DEMANd ..........ooevviiiiiiiiiiiie i a e e e e e 350
15.6.8 Persistent Objects with POA-asSIgNed 1aS.........ooovvviiiiiiiiiiiiie e 351
15.6.9 Multiple Object Ids Mapping to a Single Servant ............ccccceeieiiiiieieeeeeee e 351
15.6.10 One Servant for All ODJECTS........ccoviiiiieeeee e e e e 351
15.6.11 Single Servant, Many Objects and Types, UsSing DSI .....ccccoeviiiiniiiiiiiiiieee, 354

16 Portable INErCEPIOIS ..uuuii i 359
G0t R 01 Yo [ Tox 1 o o I PPN 359
G I @ oY= od A = o 359
G A O 11T o RS Y= o EoR =T (U= 360
16.1.3 Server RECEIVES REQUEST .....ccccciiie it e e e e e e e e e as 361

Vil CORBA - Part 1: Interfaces, v3.1



16.1.4 Server SENAS REPIY ..o e e e e e e e e e e e e a e 361

16.1.5 ClieNt RECEIVES REPIY ..ooeveeeiiiiiiiiiiiiis ettt et ettt s s s s e s e e e e e e e aeaaeeaeeeaeeaennnes 362
16.2 General Behavior of Local ODJECTS ..........uuviiiiiiiiiiiiiiiiiiie e 362
16.3 INterceptor INTEIfACE .......coooiiiiiiiii e 362
16.4 ReqUESE INTEICEPLOIS ....ouuiieiieiiiee et e e e e et e e e e eee e e e e eera e e eaeees 363

16.4.1 DeSIgN PriNCIPIES ....coiiiiiieeeeee sttt s e e s e e e e e e e aeaeeeeeeeaeeaeaane 363

16.4.2 General FIOW RUIES ......cooiiiie e e 364

16.4.3 The Flow Stack Visual MOGEL...........uuiiiiiiiiiiaiii e 364

16.4.4 The Request INterceptor POINES .........ciiiiiii i s e e e e e e e e e e e e e e e eeaeeaennnes 365

N O 1 =T g1 ST o (= g (=T (o= o) (o ) P 365

16.4.6 Client-Side INterception POINES .........uuuiiiiiiiiiiiie s e e e e e e e e e eeeeeeanes 365

16.4.7 Client-Side Interception POINt FIOW ........uuuiiiiiiiiiie s e e e e e e eeeeanns 367

RS Y =T oY= S o [T [ (=T o =T o] (o] PSS 370

16.4.9 Server-Side INterception POINS ........ccoooiiiiiiiiie s e e e e e e e e e e e e e e e e e aeaananees 370

16.4.10 Server-Side Interception POINt FIOW ..........coooiiiiiiiiiiiecs e e 372

16.4.11 Request INfOrMALtiON ...........ovuiiiiiiiieis e e s e e e e e e e e e eaeaeeeeeeanes 376

16.4.12 RequeStINfO INTEIACE ......coveeeieiiceie e e e e e e e e e e e e e e eaeaans 376

16.4.13 ClientRequestinfo INtErfaCe ..........coooiiiiiiiii e 380

16.4.14 ServerRequestinfo INtErface ... 383

16.4.15 ForwardReqUESE EXCEPLION .......uuvuiiiiiiiiiiieieie e e e e eeeeeeee et ee et e s e e e e e e e e e aaaaaeeeeeanes 387
16.5 Portable Interceptor CUIMENT .......ccciiiiiiiiiiei e 387

L6.5.1 OVEIVIEW .ttt ettt ettt et a2 a4 4o oo e bbb bt e et et e e e e e e e e s e e aannbbbbeeeeaeeaaaeaesaaannnebeennas 387

16.5.2 Obtaining the Portable Interceptor CUrrent .............coeeiiiiiiiiiiiiiiiieee e 387

16.5.3 Portable Interceptor Current INterface ............eueeiiiiiiiii e 387

16.5.4 Use of Portable INterceptor CUITENT ..........oooiiiiiiiiiiiiei et e e 388
O I (@] 2 [ 0] (=T o] o o] T PPPN 393

L16.6.1 OVEIVIEW ..eeieiiiiiiie ittt ettt ettt e sttt e e s ekttt e e s e bbbt e e e aa s bttt e e e ansbe e e e s ennbbe e e e e ennbbeaeeeanneas 393

16.6.2 An Abstract Model for Object AdApPLErS ........ccccuiiiiiiiiiiee e 393

16.6.3 Object Reference TEMPIALE .......cceiiiiieiii i e e e e eee e 395

16.6.4 IORINtErCePtor INEIFACE ....ccoii it e e e e e e e e e e e e e s s reees 397

16.6.5 IORINTO INEITACE .....evviiieiiiiiie e st e e neaeas 398
16.7 Interceptor PoliCy ODJECES .....ccooiiiiiii e 401

16.7.1 ProcessiNgMOeE POIICY ........uuuuuuuiiiiiiiii ittt e e e e e e e e e e e e e e e e e e eeaeaeanernnnnes 401
16.8 POlCYFACIONY ..eeeeiiiiiiiiiieeeeee ettt e e e e e e 402

16.8.1 POlICYFACIOry INTEITACE ......eeiieiiiiiiie e 402
16.9 Registering INtErCEPLOIS .....ccoii i a e 402

16.9.1 ORBINItIAliZEr INTEITACE .....veiiiiiiiiiiie e 402

16.9.2 ORBINILINTO INtEITACE ....oieeiiiiie i 403

16.9.3 register_orb_initializer OPeration ..........ccccviiiiiiiiiiee e 407

16.9.4 Notes about Registering INterCePLOrs .......ccccciviiiiiiiieeee e e e 409
16.10 Dynamic Initial REErENCES .......ccoviiiiiiiiiiiiiiiee e 410

16.10.1 register_iNitial_refErENCE .........uueiiiiiiiiie i 410
16.11 MOAUIE DYNAMIC ..oeiiiiiiieieiiiiee ittt e e 410

16.11.1 NVList PIDL Represented by ParameterLiSt IDL ........cceeeviiiiiiieiieniiiiicie e 411

16.11.2 ContextList PIDL Represented by ContextLiSt IDL ........ccccveeviiiiieieiniiiieee e 411

16.11.3 ExceptionList PIDL Represented by ExceptionList IDL ..........ccccceeviiiieeeiiniiieee e, 411

16.11.4 Context PIDL Represented by RequestContext IDL ..........ccooiiiiiieeiiiiiiiee e, 411
T 2 @]  E=Y o] [To F= 1 (=T I |5 ] 411

G300 o2 R )V 0 = 0 oS 411

CORBA - Part 1: Interfaces, v3.1 ixX



16.12.2 Portions of IOP Relevant to Portable INterceptor........ccccoevvieiiiieeeeiiieieceeeen 412

G G m o =Y o] (1] (=T o =T o] (o] 412

17 CORBA MESSAQING ..vvvtuuuiiiieeiieeeiieiieiittuniaaaaaaeeaeeeseeesaesssnnaaeaaeaseeeeneesnnnne 419
17.1 Section | - INtrodUCHION ......oooiiiiiiiiiiiiree e e 419
17.2 Messaging Quality Of SEIVICE ........cooiiiiiiiiiii e 419
17.2.1 REDINA SUPPOIT ...ttt e e e e e e e et r e et e e e e e e e e e e s aannes 421
17.2.2 SYNCArONIZAtioN SCOPE .....cooiiiiiiieiee ittt ettt e e e e e e s e ettt e e e e e e e e e e e e s e annnrnees 422
17.2.3 Request and RePlY PrIOILY ..ot e e e e e e e 423
17.2.4 Request and Reply TIMEOUL ..........uiiiiiiiiiiiaiaa ittt e e e e e e e e e e e e 424
L7.2.5 ROULING eeeeeeiiieee ettt ettt ettt et e e e e e e s o s a bbb bt e et e e eeaaeeeeeeaannsbnbbsbeeeaaaaaaaaaesanes 426
17.2.6 QUEUE OFUEIING -.uuetteiiieiiaiaeaea e ettt et et e e e e e e e e s e aaae bbb e et e e eteaaaaesaaaannnbabbeeeeeaaaaaaaeaaaaanranes 427
17.3 Propagation of Messaging QOS ........ccoiiiiiiiieiiiie e 427
L17.3. 0 SEUCTUMES ...ttt e e e e e e e e e e e e e e e e e e e e e e e nnre e e e e e e 428
17.3.2 Messaging QoS Profile COMPONENT ........ueiiiiiieeiiiiciciie e er e e e e e e e snnes 428
17.3.3 Messaging QOS ServiCe CONEXE ..uuuuuiiiiiiieeeiiisiiiitiieiee e e e e e e e e s s s sssenreee e ereeaeeeesesannnnnrnne 428
17.4 Section Il - INtrodUCTION ....ooiiiiiiiiiiieee e e eeeeeeees 428
17.5 RUNNING EXGMPIE ...ouiiiiiiiiiiiieeeeee ettt 430
17.6 Async Operation MapPiNg .......coueeruuuruiiiiiieieeeeee e e e e e eeeeeetran e e e e e eaaaeeeeeeens 430
17.6.1 Callback Model Signatures (SENUC) ......vevieieeeeiiiiiiiiiiee e e e e s e e e e e e e e e e e ennnes 431
17.6.2 Polling Model Signatures (SENAP) ...vverieeeeiiiiiiiiciieiier e e e e e e e e e s s s ssereee e e e e e ae e e e s e s snnnnnrnnes 433
17.7 Exception Delivery in the Callback Model ...............uiiiiiiiii i, 434
17.7.1 Messaging::ExceptionHolder ValUELYPE ...........uvuimiiiiiiiiiiiiie e 434
17.8 Type-Specific ReplyHandler Mapping ........cccccuviimiiiiiiiiiieeeeeeeeeee e 435
17.8.1 ReplyHandler Operations for NO_EXCEPTION ReplieS .......ccoooiiiiiiiiiiiiiiiiieiiaeeees 436
17.8.2 ReplyHandler Operations for Exceptional REPIIES ..........cueiiiiiiiiiiiiiiiiiiiiiiieeeee e 436
L17.8.3 EXAMPIE oottt ettt e e e e e et e et e e e e e e e e e e e e bbb rbeereaaaaaaaaaaaae 437
17.9 GeneriC POIEr VAIUE .......ooooiiiiiiii ittt 438
A IR o] o= = U1 T T = L o 1= S PUSEEER 438
A 2o o =T = U1 T T = 2 = PSSR 438
17.9.3 @sSoCiated_NANAIET ........ceiiieiiee i e e e s e e e e e e e e e e e anane 438
A B T o ' T o o 11 PSSR 439
17.10 Type-Specific Poller MapPINg ........cooiiooieeieeeieeeeeiieeiiee e eeeeeeeeeees 439
17.10.1 Basic TYpPe-SPECIfIC POIIEE ....ccco oo 439
17.10.2 Persistent Type-SPecCifiCc POIIET ..........cooiiiii e 441
A 0 TR e T g o] = 441
17.11 Example Programmer USAQE .........ooooiiiiiiiiiiiiiiiiiiieeeeee e e e e e e e e e e e s 442
17.11.1 Example Programmer Usage (Examples Mapped to C++) ....occcveveiiriiiineeiniiieeee e 442
17.11.2 Client-Side C++ Example for the Asynchronous Method Signatures ............ccccceeeeneee. 442
17.11.3 Client-Side C++ Example of the Callback Model ............ccccoeiiiiiiiiiiiiii e 444
17.11.4 Client-Side C++ Example of the Polling Model .........ccccooiiiiiiiiiiee 450
L17.00.5 SEIVEE SIUE .oiiiiiiieeeee ettt e e e e e e e s e sttt e e et eeaeeesessaannsbeareeeeaaeeeeseeaaannne 455
17.12 Section Hl - INtrodUCHION .....cooeiieiiiiiiic e 455
17.13 Routing ODbjeCt REfEIENCES .......ovvuiiiiiiiiiiieee e 456
17.14 MeSSage ROULING ...ccceeiiiiiiiiiieiiiies s s e e e e et e s e e s e e e e e e e e e eeeeeneennens 457
0 T Y ([ (| (= PSR 459
A B 141 =] = Lo = S ESRURRT 460
17.14.3 ROULING PIOtOCOI ... ..veiiiiiiiiiiiie ettt ettt e e e e b e e e e e 462

X CORBA - Part 1: Interfaces, v3.1



17.15 RoOUtEr AdMINISIIATION . ..onieeeeee e e e e e anaaens 467

17.15.0 CONSTANES ...iiiiiiiiiiiiiiittet et e e e e e e e e e e te ettt eeeeeeebebab e bae e e s e e e e e e e e eaaaaaeeeeeeeeeesnnnnnnnnnnnan 470

T (ot =T o] 1o o < T PR UUPTRTT TSP 471

L17.15.3 VAIUBLYPES ...ttt e e ettt e e e oo e bbbttt ettt e e e e e e e e e s bbb b e be e e e e aaeaaasee e e nnnbeneees 471

R A 4] (= 1 = (o =L PP UUPTUTT PP 472

17.16 CORBA MeSSaging IDL ......cccoiiiiiiiiccie e 472

17.16.1 MesSaging MOUUIE ......ccooiiiiiiee e e e e e e e e e e e e e e e e e e e e s e e nnnnranaeeees 472

17.16.2 MessageRoUtINg MOAUIE ........uiiiiiiiieeee e r e e e e e e e s ee e 475

17.17 QO0S ADbstract MOdel DESIGN ....ccoveiiiiiiiiiiiiiiiiee et 480

17.18 Model COMPONENTS ....coiiiiieieeeeeeeeeeeeetter e e e e e e e e e e et e e e e e e e aeeaeas 480

17.18.1 Component RelatiONSNIPS ......uuiiiiiiiiaieiaii et 481

17.18.2 COMPONENT DESIGN .cieeiiiiiieitie ettt ettt et et e e e e e e e e s e e b bbe e e e e eaaaeaaaesaaannneereees 481

17.19 AMI/TII Abstract Model DESIN ..........vuuuiiiiiiiiieeeee e 482

17.19.1 Asynchronous Method Invocation COMPONENLS ......cvveveeeeieiiiiiiiiiiieere e e e e e e e ees s 482

17.19.2 Time-Independent Invocation COMPONENES .......uvveiiereeeriiiiiiiieeieeereeee e e e e e seesreneeeeeees 483

17.19.3 Component RelAtiONSNIPS .....uvviiiiiiiieieeeiie e e e e e e e e s e e eeeees 483

17.19.4 Callback Model Detailed DESIGN ........cocccuiviiiiiiiiiiee e s et r e e e e e e s e s eee e e 486

17.19.5 Poller/PersistentRequest Detailed DESIGN ........uuvviiiiiiieeeiiiiiicieee e 487

17.20 Message Routing Abstract Model Design ..o 488

A O It Y o o =T I @0 .4 0 Yo 1= | £ P: 489

17.20.2 Component RelAtiONSNIPS .......uuuuuiiiiiiieiiie e e e e e e e e e e e e e e eeeeaeeaennnes 489

17.20.3 Router AdmINIStration DESIGN ....ccocieie i e e e e e e e e e e e e e e aaaananne 489

17.21 CoNfOrMANCE ISSUES ....coiieeiiiiiiieeeeeetter e e e et e e e e e e e e aaeaes 491

17.22 Compatibility ISSUES ....ccccoieeiieeeieeeeeeee e 491

17.22.1 TranSACLON SEIVICE ...coiuuiiiiiiiiiieiiee ittt e e sttt e e e sttt e s s aab e e e e s bt et e e s e abbe e e e s snnbeeeesennees 491

17.22.2 Changes to Current OTS BEhAVIOr ........ooooiiiiiiiiieeecee e 492

e TS T= o U ) S 1= /[ - S 493

Annex A - IDL Tags and EXCEPLIONS ......ccovveiiiiiieeieiiiie e e e e eeeaanns 495
Annex B - Legal INformation ...............oiiiiiiiiiiii e 509
T = 513

CORBA - Part 1: Interfaces, v3.1 Xi



Xii

CORBA - Part 1: Interfaces, v3.1



Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
e Specialized CORBA specifications
e CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

CORBA - Part 1: Interfaces, v3.1 Xiil



. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso.0rg

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.

Xiv CORBA - Part 1: Interfaces, v3.1



1

Scope

This document specifies the CORBA Object Model and uses concepts from that model to define the operation of the
Object Request Broker (ORB). The ORB is the basic mechanism by which objects transparently make requests to - and
receive responses from - each other on the same machine or across a network. A client need not be aware of the
mechanisms used to communicate with or activate an object, how the object is implemented, or where the object is

located.

CORBA, v3.1 provides specifications of:

1.

10.
11.

2

the syntax and semantics of the interface definition language (IDL), which is used to describe the interfaces that client
objects call and object implementations provide;

the interface to the ORB functions that do not depend on object adapters: these operations are the same for all ORBs
and object implementations;

the semantics of passing an object by value;

an IDL abstract interface, which provides the capability to defer the determination of whether an object is passed by
reference or by value until runtime;

the Dynamic Invocation Interface (DII), the client's side of the interface that allows dynamic creation and invocation
of request to objects;

the Dynamic Skeleton Interface (DSI), the server's-side interface that can deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it is implementing;

the interface for the Dynamic Any type which allows statically-typed programming languages such as C and Java to
create or receive values of type Any without compile-time knowledge that the typer contained in the Any;

the Interface Repository that manages and provides access to a collection of object definitions;

the Portable Object Adapter which defines a group of IDL interfaces that an implementation uses to access ORB
functions;

ORB operations that allow services such as security to be inserted in the invocation path.

Messaging which covers: Quality of Service, Asynchronous Method Invocations (to include Time-Independent or
“Persistent” Requests), and the specification of interoperable Routing interfaces to support the transport of requests
asynchronously from the handling of their replies.

Conformance and Compliance

The minimum required for a CORBA-compliant system is adherence to the specifications in this standard and one
mapping. Each additional language mapping is a separate, optional compliance point. Optional means users aren't
required to implement these points if they are unnecessary at their site, but if implemented, they must adhere to the
CORBA specifications to be called CORBA-compliant. For instance, if a vendor supports C++, their ORB must comply
with the OMG IDL to C++ binding specified in the C++ Language Mapping Specification.

CORBA - Part 1: Interfaces, v3.1



The CORBA Language Mappings have been separated from this standard and each language mapping is its own separate
OMG specification.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.

« ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1995, Information Technology - Open Distributed Process-
ing - Reference Model: Foundations

« ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1995, Information Technology - Open Distributed Process-
ing - Reference Model: Architecture

« ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open Distributed Processing
- Interface Definition Language

4  Acknowledgements

The following companies submitted and/or supported parts of the specifications that were approved by the Object
Management Group to become CORBA:

* Adiron, LLC

* Alcatel

* BEA Systems, Inc.

* BNR Europe Ltd.

« Borland International, Inc.

» Compag Computer Corporation

« Concept Five Technologies

« Cooperative Research Centre for Distributed Systems Technology (DSTC)
« Defense Information Systems Agency
* Digital Equipment Corporation

* Ericsson

« Eternal Systems, Inc.

« Expersoft Corporation

* France Telecom

* FUJITSU LIMITED

* Genesis Development Corporation

» Gensym Corporation
 Hewlett-Packard Company

2 CORBA - Part 1: Interfaces, v3.1



¢ HighComm

« Highlander Communications, L.C.

* Humboldt-University

* HyperDesk Corporation

*ICL, Plc.

* Inprise Corporation

« International Business Machines Corporation
« International Computers, Inc.

* IONA Technologies, Plc.

 Lockheed Martin Federal Systems, Inc.

« Lucent Technologies, Inc.

 Micro Focus Limited

* MITRE Corporation

* Motorola, Inc.

* NCR Corporation

* NEC Corporation

« Netscape Communications Corporation

* Nortel Networks

* Northern Telecom Corporation

* Novell, Inc.

* Object Design, Inc.

« Objective Interface Systems, Inc.

« Object-Oriented Concepts, Inc.

* OC Systems, Inc.

» Open Group - Open Software Foundation
« Oracle Corporation

« PeerLogic, Inc.

* Persistence Software, Inc.

* Promia, Inc.

« Siemens Nixdorf Informationssysteme AG
* SPAWAR Systems Center

« Sun Microsystems, Inc.

* SunSoft, Inc.

« Sybase, Inc.

« Telefonica Investigacion y Desarrollo S.A. Unipersonal
* TIBCO, Inc.

« Tivoli Systems, Inc.

* Tri-Pacific Software, Inc.

CORBA - Part 1: Interfaces, v3.1



« University of California, Santa Barbara
« University of Rhode Island

« Visual Edge Software, Ltd.

« Washington University

In addition to the preceding contributors, the OMG would like to acknowledge Mark Linton at Silicon Graphics and Doug
Lea at the State University of New York at Oswego for their work on the C++ mapping.

4 CORBA - Part 1: Interfaces, v3.1



5 The Object Model

This clause describes the concrete object model that underlies the CORBA architecture. The model is derived from the
abstract Core Object Model defined by the Object Management Group in the Object Management Architecture Guide.

51 Overview

The object model provides an organized presentation of object concepts and terminology. It defines a partial model for
computation that embodies the key characteristics of objects as realized by the submitted technologies. The OMG object
model is abstract in that it is not directly realized by any particular technology. The model described here is a concrete
object model. A concrete object model may differ from the abstract object model in several ways:

- It may elaborate the abstract object model by making it more specific, for example, by defining the form of request
parameters or the language used to specify types.

« It may populate the model by introducing specific instances of entities defined by the model, for example, specific
objects, specific operations, or specific types.

« It may restrict the model by eliminating entities or placing additional restrictions on their use.

An object system is a collection of objects that isolates the requestors of services (clients) from the providers of services
by a well-defined encapsulating interface. In particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such concepts as object creation and
identity, requests and operations, types and signatures. It then describes concepts related to object implementations,
including such concepts as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to clients. The discussion of object
implementation is more suggestive, with the intent of allowing maximal freedom for different object technologies to
provide different ways of implementing objects.

There are some other characteristics of object systems that are outside the scope of the object model. Some of these
concepts are aspects of application architecture, some are associated with specific domains to which object technology is
applied. Such concepts are more properly dealt with in an architectural reference model. Examples of excluded concepts
are compound objects, links, copying of objects, change management, and transactions. Also outside the scope of the
object model are the details of control structure: the object model does not say whether clients and/or servers are single-
threaded or multi-threaded, and does not specify how event loops are programmed nor how threads are created, destroyed,
or synchronized.

This object model is an example of a classical object model, where a client sends a message to an object. Conceptually,

the object interprets the message to decide what service to perform. In the classical model, a message identifies an object
and zero or more actual parameters. As in most classical object models, a distinguished first parameter is required, which
identifies the operation to be performed; the interpretation of the message by the object involves selecting a method based
on the specified operation. Operationally, of course, method selection could be performed either by the object or the ORB.

5.2 Object Semantics

An object system provides services to clients. A client of a service is any entity capable of requesting the service. This
sub clause defines the concepts associated with object semantics, that is, the concepts relevant to clients.

CORBA - Part 1: Interfaces, v3.1 5



5.2.1 Objects

An object system includes entities known as objects. An object is an identifiable, encapsulated entity that provides one or
more services that can be requested by a client.

5.2.2 Requests

Clients request services by issuing requests.

The term request is broadly used to refer to the entire sequence of causally related events that transpires between a client
initiating it and the last event causally associated with that initiation. For example:

« the client receives the final response associated with that request from the server,
- the server carries out the associated operation in case of a oneway request, or

« the sequence of events associated with the request terminates in a failure of some sort. The initiation of a Request is an
event.

The information associated with a request consists of an operation, a target object, zero or more (actual) parameters, and
an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple times to cause the issuing of
requests. As described in the OMG IDL Syntax and Semantics clause, request forms are defined by particular language
bindings. An alternative request form consists of calls to the dynamic invocation interface to create an invocation
structure, add arguments to the invocation structure, and to issue the invocation (refer to the Dynamic Invocation Interface
clause for descriptions of these request forms).

A value is anything that may be a legitimate (actual) parameter in a request. More particularly, a value is an instance of
an OMG IDL data type. There are non-object values, as well as values that reference objects.

An object reference is a value that reliably denotes a particular object. Specifically, an object reference will identify the
same object each time the reference is used in a request (subject to certain pragmatic limits of space and time). An object
may be denoted by multiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may also have a request context that
provides additional information about the request. A request context is a mapping from strings to strings.

A request causes a service to be performed on behalf of the client. One possible outcome of performing a service is
returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of a request, an exception is returned. The exception may carry
additional return parameters particular to that exception.

The request parameters are identified by position. A parameter may be an input parameter, an output parameter, or an
input-output parameter. A request may also return a single return result value, as well as the results stored into the output
and input-output parameters.

The following semantics hold for all requests:
- Any aliasing of parameter values is neither guaranteed removed nor guaranteed to be preserved.

« The order in which aliased output parameters are written is not guaranteed.

6 CORBA - Part 1: Interfaces, v3.1



« The return result and the values stored into the output and input-output parameters are undefined if an exception is
returned.

For descriptions of the values and exceptions that are permitted, see “Types” on page 7 and “Exceptions” on page 10.
5.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client’s point of view, there is no special mechanism for creating or
destroying an object. Objects are created and destroyed as an outcome of issuing requests. The outcome of object creation
is revealed to the client in the form of an object reference that denotes the new object.

5.24 Types

A type is an identifiable entity with an associated predicate (a single-argument mathematical function with a boolean
result) defined over entities. An entity satisfies a type if the predicate is true for that entity. An entity that satisfies a type
is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible result.
The extension of a type is the set of entities that satisfy the type at any particular time.

An object type is a type whose members are object references. In other words, an object type is satisfied only by object
references.

Constraints on the data types in this model are shown in this sub clause.
5.2.4.1 Basic types

» 16-hit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

« Single-precision (32-bit), double-precision (64-bit), and double-extended (a mantissa of at least 64 bits, a sign bit and
an exponent of at least 15 bits) IEEE floating point numbers.

» Fixed-point decimal numbers of up to 31 significant digits.

» Characters, as defined in 1ISO Latin-1 (8859.1) and other single- or multi-byte character sets.

« A boolean type taking the values TRUE and FALSE.

» An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems.
« Enumerated types consisting of ordered sequences of identifiers.

« Asstring type, which consists of a variable-length array of characters; the length of the string is a non-negative integer,
and is available at run-time. The length may have a maximum bound defined.

» A wide character string type, which consists of a variable-length array of (fixed width) wide characters; the length of
the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.

» A container type “any,” which can represent any possible basic or constructed type.
« Wide characters that may represent characters from any wide character set.

» Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width)
wide characters.

CORBA - Part 1: Interfaces, v3.1 7



5.2.4.2 Constructed types

« Arrecord type (called struct), which consists of an ordered set of (name,value) pairs.

« Adiscriminated union type, which consists of a discriminator (whose exact value is always available) followed by an
instance of a type appropriate to the discriminator value.

« A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at
run-time.

« An array type, which consists of a fixed-shape multidimensional array of a single type.
« An interface type, which specifies the set of operations that an instance of that type must support.
« A value type, which specifies state as well as a set of operations that an instance of that type must support.

Entities in a request are restricted to values that satisfy these type constraints. The legal entities are shown in Figure 5.1.
No particular representation for entities is defined.

Short
Object Reference Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wchar
String
Wstring
Boolean
Octet
Enum

Any

— Value Type

—— Abstract Interface

Entity Basic Value

Struct
Sequence
Union
Array

Constructed Value

Figure 5.1 - Legal Values
5.1.5 Interfaces

An interface is a description of a set of possible operations that a client may request of an object, through that interface.
It provides a syntactic description of how a service provided by an object supporting this interface, is accessed via this set
of operations. An object satisfies an interface if it provides its service through the operations of the interface according to
the specification of the operations (see “Operations” on page 9).

The interface type for a given interface is an object type, such that an object reference will satisfy the type, if and only if
the referent object also satisfies the interface.

8 CORBA - Part 1: Interfaces, v3.1



Interfaces are specified in OMG IDL. Interface inheritance provides the composition mechanism for permitting an object
to support multiple interfaces. The principal interface is simply the most-specific interface that the object supports, and
consists of all operations in the transitive closure of the interface inheritance graph.

Interfaces satisfy the Liskov substitution principle. If interface A is derived from interface B, then a reference to an object
that supports interface A can be used where the formal type of a parameter is declared to be B.

5.1.6 Value Types

A value type is an entity, which shares many of the characteristics of interfaces and structs. It is a description of both a set
of operations that a client may request and of state that is accessible to a client. Instances of a value type are always local
concrete implementations in some programming language.

A value type, in addition to the operations and state defined for itself, may also inherit from other value types, and
through multiple inheritance support other interfaces.

Value types are specified in OMG IDL.

An abstract value type describes a value type that is a “pure” bundle of operations with no state.
5.1.7 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular interface (see “Interfaces” on page 8)
or a value type (see “Value Types” on page 9). Like an abstract value type, it is a pure bundle of operations with no state.
Unlike an abstract value type, it does not imply pass-by-value semantics, and unlike a regular interface type, it does not
imply pass-by-reference semantics. Instead, the entity’s runtime type determines which of these semantics are used.

5.1.8 Operations

An operation is an identifiable entity that denotes the indivisible primitive of service provision that can be requested. The
act of requesting an operation is referred to as invoking the operation. An operation is identified by an operation
identifier.

An operation has a signature that describes the legitimate values of request parameters and returned results. In particular,
a signature consists of:

» A specification of the parameters required in requests for that operation.

« A specification of the result of the operation.

« An identification of the user exceptions that may be raised by an invocation of the operation.

- A specification of additional contextual information that may affect the invocation.

« Anindication of the execution semantics the client should expect from an invocation of the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly invoked on objects with different
implementations, possibly resulting in observably different behavior. Genericity is achieved in this model via interface
inheritance in IDL and the total decoupling of implementation from interface specification.

The general form for an operation signature is:

CORBA - Part 1: Interfaces, v3.1 9



[oneway] <op_type_spec> <identifier> (paraml, ..., paramL)
[raises(exceptl,...,exceptN)] [context(namel, ..., nameM)]

where:

« The optional oneway keyword indicates that best-effort semantics are expected of requests for this operation; the
default semantics are exactly-once if the operation successfully returns results or at-most-once if an exception is
returned.

« The <op_type_spec> is the type of the return result.
« The <identifier> provides a name for the operation in the interface.

« The operation parameters needed for the operation; they are flagged with the modifiers in, out, or inout to indicate
the direction in which the information flows (with respect to the object performing the request).

» The optional raises expression indicates which user-defined exceptions can be signaled to terminate an invocation of
this operation; if such an expression is not provided, no user-defined exceptions will be signaled.

« The optional context expression indicates which request context information will be available to the object imple-
mentation; no other contextual information is required to be transported with the request.

5.1.8.1 Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the value should be passed from client
to server (in), from server to client (out), or both (inout). The parameter’s type constrains the possible value, which may
be passed in the directions dictated by the mode.

5.1.8.2 Return Result

The return result is a distinguished out parameter.

5.1.8.3 Exceptions

An exception is an indication that an operation request was not performed successfully. An exception may be
accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a record, it may consist of any of the
types described in “Types” on page 7.

All signatures implicitly include the system exceptions; the standard system exceptions are described in “System
Exceptions” on page 147.

5.1.8.4 Contexts
A request context provides additional, operation-specific information that may affect the performance of a request.
5.1.8.,5 Execution Semantics

Two styles of execution semantics are defined by the object model:

« At-most-once: if an operation request returns successfully, it was performed exactly once; if it returns an exception
indication, it was performed at-most-once.

10 CORBA - Part 1: Interfaces, v3.1



« Best-effort: a best-effort operation is a request-only operation (i.e., it cannot return any results and the requester never
synchronizes with the completion, if any, of the request).

The execution semantics to be expected is associated with an operation. This prevents a client and object implementation
from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or deferred-synchronous manner.
5.1.9 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor functions: one to
retrieve the value of the attribute and one to set the value of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.

5.2  Object Implementation

This sub clause defines the concepts associated with object implementation (i.e., the concepts relevant to realizing the
behavior of objects in a computational system).

The implementation of an object system carries out the computational activities needed to effect the behavior of requested
services. These activities may include computing the results of the request and updating the system state. In the process,
additional requests may be issued.

The implementation model consists of two parts: the execution model and the construction model. The execution model
describes how services are performed. The construction model describes how services are defined.

5.2.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that operates upon some data. The data
represents a component of the state of the computational system. The code performs the requested service, which may
change the state of the system.

Code that is executed to perform a service is called a method. A method is an immutable description of a computation that
can be interpreted by an execution engine. A method has an immutable attribute called a method format that defines the
set of execution engines that can interpret the method. An execution engine is an abstract machine (not a program) that
can interpret methods of certain formats, causing the described computations to be performed. An execution engine
defines a dynamic context for the execution of a method. The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters passed by the requestor are
passed to the method and the output and input-output parameters and return result value (or exception and its parameters)
are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an object’s persistent state. If the
persistent form of the method or state is not accessible to the execution engine, it may be necessary to first copy the
method or state into an execution context. This process is called activation; the reverse process is called deactivation.

CORBA - Part 1: Interfaces, v3.1 11



5.2.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of requests. These mechanisms include
definitions of object state, definitions of methods, and definitions of how the object infrastructure is to select the methods
to execute and to select the relevant portions of object state to be made accessible to the methods. Mechanisms must also
be provided to describe the concrete actions associated with object creation, such as association of the new object with
appropriate methods.

An object implementation—or implementation, for short—is a definition that provides the information needed to create an
object and to allow the object to participate in providing an appropriate set of services. An implementation typically
includes, among other things, definitions of the methods that operate upon the state of an object. It also typically includes
information about the intended types of the object.

12 CORBA - Part 1: Interfaces, v3.1



6 CORBA Overview

The Common Object Request Broker Architecture (CORBA) is structured to allow integration of a wide variety of object
systems. The motivation for some of the features may not be apparent at first, but as we discuss the range of
implementations, policies, optimizations, and usages we expect to encompass, the value of the flexibility becomes clearer.

6.1  Structure of an Object Request Broker

Figure 6.1 shows a request being sent by a client to an object implementation. The Client is the entity that wishes to
perform an operation on the object and the Object Implementation is the code and data that actually implements the
object.

Client ) (Object Implementation

equest

ORB

Figure 6.1- A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object implementation for the request, to prepare
the object implementation to receive the request, and to communicate the data making up the request. The interface the

client sees is completely independent of where the object is located, what programming language it is implemented in, or
any other aspect that is not reflected in the object’s interface.

Figure 6.2 shows the structure of an individual Object Request Broker (ORB). The interfaces to the ORB are shown by
striped boxes, and the arrows indicate whether the ORB is called or performs an up-call across the interface.

CORBA - Part 1: Interfaces, v3.1 13



Client Object Implementation

- - S -

' ORB Static IDL| |D _ i
ORB Core

[ 1 Interface identical for all ORB implementations
There may be multiple object adapters
I There are stubs and a skeleton for each object type * Normal call interface
[ ] ORB-dependent interface

f Up-call interface

Figure 6.2- The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same interface independent of the target
object’s interface) or an OMG IDL stub (the specific stub depending on the interface of the target object). The Client can
also directly interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OMG IDL generated skeleton or through a
dynamic skeleton. The Object Implementation may call the Object Adapter and the ORB while processing a request or at
other times.

Definitions of the interfaces to objects can be defined in two ways. 1) Interfaces can be defined statically in an interface
definition language, called the OMG Interface Definition Language (OMG IDL). This language defines the types of
objects according to the operations that may be performed on them and the parameters to those operations. 2)
Alternatively, or in addition, interfaces can be added to an Interface Repository service. This service represents the
components of an interface as objects, permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this document) and the Interface
Repository have equivalent expressive power.

14 CORBA - Part 1: Interfaces, v3.1



The client performs a request by having access to an Object Reference for an object and knowing the type of the object
and the desired operation to be performed. The client initiates the request by calling stub routines that are specific to the
object or by constructing the request dynamically (see Figure 6.3).

Client

Dynamit
Invocatio

[ T Interface identical for all ORB implementations

I There are stubs and a skeleton for each object type
[ ] ORB-dependent interface

Figure 6.3- A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request semantics, and the receiver of the message
cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and transfers control to the Object
Implementation through an IDL skeleton or a dynamic skeleton (see Figure 6.4). Skeletons are specific to the interface
and the object adapter. In performing the request, the object implementation may obtain some services from the ORB
through the Object Adapter. When the request is complete, control and output values are returned to the client.

CORBA - Part 1: Interfaces, v3.1 15



Object Implementation

Object
Adapter

ORB Static IDL| | Dynamic
Interface Skeleton Skeleto

ORB Core

[ 1 Interface identical for all ORB implementations
There may be multiple object adapters
I There are stubs and a skeleton for each object type ‘ Normal call interface
[ ] ORB-dependent interface

f Up-call interface

Figure 6.4- An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decision is based on what kind of services the
Object Implementation requires.

Figure 6.5 shows how interface and implementation information is made available to clients and object implementations.
The interface is defined in OMG IDL and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

16 CORBA - Part 1: Interfaces, v3.1



IDL. Implementation
Definitions Installation

Implementation
Interface Stubs Skeletons RGDOSIFOFY
Repository — -
Client Object Implementation

Figure 6.5- Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored in the Implementation Repository for
use during request delivery.

6.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component, but rather it is defined by its
interfaces. Any ORB implementation that provides the appropriate interface is acceptable. The interface is organized into
three categories:

1. Operations that are the same for all ORB implementations.
2. Operations that are specific to particular types of objects.
3. Operations that are specific to particular styles of object implementations.

Different ORBs may make quite different implementation choices, and, together with the IDL compilers, repositories, and
various Object Adapters, provide a set of services to clients and implementations of objects that have different properties
and qualities.

There may be multiple ORB implementations (also described as multiple ORBSs), which have different representations for
object references and different means of performing invocations. It may be possible for a client to simultaneously have
access to two object references managed by different ORB implementations. When two ORBs are intended to work
together, those ORBs must be able to distinguish their object references. It is not the responsibility of the client to do so.

CORBA - Part 1: Interfaces, v3.1 17



The ORB Core is that part of the ORB that provides the basic representation of objects and communication of requests.
CORBA is designed to support different object mechanisms, and it does so by structuring the ORB with components
above the ORB Core, which provide interfaces that can mask the differences between ORB Cores.

6.1.2 Clients

A client of an object has access to an object reference for the object, and invokes operations on the object. A client knows
only the logical structure of the object according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or process initiating requests on an object, it is
important to recognize that something is a client relative to a particular object. For example, the implementation of one
object may be a client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a language mapping, bringing the ORB right
up to the programmer’s level. Clients are maximally portable and should be able to work without source changes on any
ORB that supports the desired language mapping with any object instance that implements the desired interface. Clients
have no knowledge of the implementation of the object, which object adapter is used by the implementation, or which
ORB is used to access it.

6.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining data for the object instance and code
for the object’s methods. Often the implementation will use other objects or additional software to implement the
behavior of the object. In some cases, the primary function of the object is to have side-effects on other things that are not
objects.

A variety of object implementations can be supported, including separate servers, libraries, a program per method, an
encapsulated application, an object-oriented database, etc. Through the use of additional object adapters, it is possible to
support virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invokes the object. Object
implementations may select interfaces to ORB-dependent services by the choice of Object Adapter.

6.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB. Both clients and object
implementations have an opaque notion of object references according to the language mapping, and thus are insulated
from the actual representation of them. Two ORB implementations may differ in their choice of Object Reference
representations.

The representation of an object reference handed to a client is only valid for the lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually referred to as an Object) for a
particular programming language. This permits a program written in a particular language to access object references
independent of the particular ORB. The language mapping may also provide additional ways to access object references
in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object references, that denotes no object.

18 CORBA - Part 1: Interfaces, v3.1



6.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by specifying their interfaces. An
interface consists of a set of named operations and the parameters to those operations. Note that although IDL provides
the conceptual framework for describing the objects manipulated by the ORB, it is not necessary for there to be IDL
source code available for the ORB to work. As long as the equivalent information is available in the form of stub routines
or a run-time interface repository, a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients what operations are available and
how they should be invoked. From the IDL definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

6.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to access CORBA objects in different
ways. For object-oriented languages, it may be desirable to see CORBA objects as programming language objects. Even
for non-object-oriented languages, it is a good idea to hide the exact ORB representation of the object reference, method
names, etc. A particular mapping of OMG IDL to a programming language should be the same for all ORB
implementations. Language mapping includes definition of the language-specific data types and procedure interfaces to
access objects through the ORB. It includes the structure of the client stub interface (not required for object-oriented
languages), the dynamic invocation interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

A language mapping also defines the interaction between object invocations and the threads of control in the client or
implementation. The most common mappings provide synchronous calls, in that the routine returns when the object
operation completes. Additional mappings may be provided to allow a call to be initiated and control returned to the
program. In such cases, additional language-specific routines must be provided to synchronize the program’s threads of
control with the object invocation.

6.1.7 Client Stubs

Generally, the client stubs will present access to the OMG IDL-defined operations on an object in a way that is easy for
programmers to predict once they are familiar with OMG IDL and the language mapping for the particular programming
language. The stubs make calls on the rest of the ORB using interfaces that are private to, and presumably optimized for,
the particular ORB Core. If more than one ORB is available, there may be different stubs corresponding to the different
ORBs. In this case, it is necessary for the ORB and language mapping to cooperate to associate the correct stubs with the
particular object reference.

6.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object invocations, that is, rather than calling a stub
routine that is specific to a particular operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a call or sequence of calls. The client code
must supply information about the operation to be performed and the types of the parameters being passed (perhaps
obtaining it from an Interface Repository or other run-time source). The nature of the dynamic invocation interface may
vary substantially from one programming language mapping to another.

CORBA - Part 1: Interfaces, v3.1 19



6.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there will be an interface to the methods
that implement each type of object. The interface will generally be an up-call interface, in that the object implementation
writes routines that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub (clients can also make requests via
the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke implementation methods. For example, it
may be possible to create implementations dynamically for languages such as Smalltalk.

6.1.10 Dynamic Skeleton Interface

An interface is available, which allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may also be used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to the ORB, and the ORB provides the
values of any input parameters for use in performing the operation. The implementation code provides the values of any
output parameters, or an exception, to the ORB after performing the operation. The nature of the dynamic skeleton
interface may vary substantially from one programming language mapping or object adapter to another, but will typically
be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic invocation interface; either style of
client request construction interface provides identical results.

6.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses services provided by the ORB. There are
expected to be a few object adapters that will be widely available, with interfaces that are appropriate for specific kinds
of objects. Services provided by the ORB through an Object Adapter often include: generation and interpretation of object
references, method invocation, security of interactions, object and implementation activation and deactivation, mapping
object references to implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and other properties make it difficult for
the ORB Core to provide a single interface that is convenient and efficient for all objects. Thus, through Object Adapters,
it is possible for the ORB to target particular groups of object implementations that have similar requirements with
interfaces tailored to them.

6.1.12 ORB Interface
The ORB Interface is the interface that goes directly to the ORB, which is the same for all ORBs and does not depend on
the object’s interface or object adapter. Because most of the functionality of the ORB is provided through the object

adapter, stubs, skeleton, or dynamic invocation, there are only a few operations that are common across all objects. These
operations are useful to both clients and implementations of objects.

20 CORBA - Part 1: Interfaces, v3.1



6.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent the IDL information in a form
available at run-time. The Interface Repository information may be used by the ORB to perform requests. Moreover,
using the information in the Interface Repository, it is possible for a program to encounter an object whose interface was
not known when the program was compiled, yet, be able to determine what operations are valid on the object and make
an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a common place to store additional
information associated with interfaces to ORB objects. For example, debugging information, libraries of stubs or
skeletons, routines that can format or browse particular kinds of objects might be associated with the Interface Repository.

6.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate and activate implementations of
objects. Although most of the information in the Implementation Repository is specific to an ORB or operating
environment, the Implementation Repository is the conventional place for recording such information. Ordinarily,
installation of implementations and control of policies related to the activation and execution of object implementations is
done through operations on the Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is a common place to store additional
information associated with implementations of ORB objects. For example, debugging information, administrative
control, resource allocation, security, etc., might be associated with the Implementation Repository.

6.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common ORB Architecture. This sub clause will
illustrate some of the different options. Note that a particular ORB might support multiple options and protocols for
communication.

6.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented in routines resident in the clients
and implementations. The stubs in the client either use a location-transparent IPC mechanism or directly access a location
service to establish communication with the implementations. Code linked with the implementation is responsible for
setting up appropriate databases for use by clients.

6.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can communicate with one or more servers
whose job it is to route requests from clients to implementations. The ORB could be a normal program as far as the
underlying operating system is concerned, and normal IPC could be used to communicate with the ORB.

6.2.3 System-based ORB
To enhance security, robustness, and performance, the ORB could be provided as a basic service of the underlying
operating system. Object references could be made unforgeable, reducing the expense of authentication on each request.

Because the operating system could know the location and structure of clients and implementations, it would be possible
for a variety of optimizations to be implemented, for example, avoiding marshalling when both are on the same machine.

CORBA - Part 1: Interfaces, v3.1 21



6.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the implementation might actually be in a
library. In this case, the stubs could be the actual methods. This assumes that it is possible for a client program to get
access to the data for the objects and that the implementation trusts the client not to damage the data.

6.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object reference is a token that may be invoked
or passed as a parameter to an invocation on a different object. Invocation of an object involves specifying the object to
be invoked, the operation to be performed, and parameters to be given to the operation or returned from it.

The ORB manages the control transfer and data transfer to the object implementation and back to the client. In the event
that the ORB cannot complete the invocation, an exception response is provided. Ordinarily, a client calls a routine in its
program that performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see Figure 6.6). The client program thus sees
routines callable in the normal way in its programming language. All implementations will provide a language-specific
data type to use to refer to objects, often an opaque pointer. The client then passes that object reference to the stub
routines to initiate an invocation. The stubs have access to the object reference representation and interact with the ORB
to perform the invocation. (See the C Language Mapping specification for additional, general information on language

mapping of object references.)

Client Program

Language-dependent object references

pea——

ORB object references

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B

4

Figure 6.6- The Structure of a Typical Client

22

CORBA - Part 1: Interfaces, v3.1



An alternative set of library code is available to perform invocations on objects, for example when the object was not
defined at compile time. In that case, the client program provides additional information to name the type of the object
and the method being invoked, and performs a sequence of calls to specify the parameters and initiate the invocation.

Clients most commonly obtain object references by receiving them as output parameters from invocations on other
objects for which they have references. When a client is also an implementation, it receives object references as input
parameters on invocations to objects it implements. An object reference can also be converted to a string that can be
stored in files or preserved or communicated by different means and subsequently turned back into an object reference by
the ORB that produced the string.

6.4  Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The object implementation can be
structured in a variety of ways. Besides defining the methods for the operations themselves, an implementation will
usually define procedures for activating and deactivating objects and will use other objects or non-object facilities to
make the object state persistent, to control access to the object, as well as to implement the methods.

The object implementation (see Figure 6.7) interacts with the ORB in a variety of ways to establish its identity, to create
new objects, and to obtain ORB-dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object implementation.

Object Implementation

O Object data

Methods for
Interface A

ORB object references

ary Routines

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

. J

Figure 6.7- The Structure of a Typical Object Implementation

CORBA - Part 1: Interfaces, v3.1 23



Because of the range of possible object implementations, it is difficult to be definitive about how an object
implementation is structured. See the clauses on the Portable Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a call is made to the appropriate
method of the implementation. A parameter to that method specifies the object being invoked, which the method can use
to locate the data for the object. Additional parameters are supplied according to the skeleton definition. When the method
is complete, it returns, causing output parameters or exception results to be transmitted back to the client.

When a new object is created, the ORB may be notified so that it knows where to find the implementation for that object.
Usually, the implementation also registers itself as implementing objects of a particular interface, and specifies how to
start up the implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the ORB and object adapter. For
example, although the Portable Object Adapter provides some persistent data associated with an object (its OID or Object
ID), that relatively small amount of data is typically used as an identifier for the actual object data stored in a storage
service of the object implementation’s choosing. With this structure, it is not only possible for different object
implementations to use the same storage service, it is also possible for objects to choose the service that is most
appropriate for them.

6.5  Structure of an Object Adapter

An object adapter (see Figure 6.8) is the primary means for an object implementation to access ORB services such as
object reference generation. An object adapter exports a public interface to the object implementation, and a private
interface to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:
« Generation and interpretation of object references
« Method invocation
« Security of interactions
« Object and implementation activation and deactivation
» Mapping object references to the corresponding object implementations
» Registration of implementations

These functions are performed using the ORB Core and any additional components necessary. Often, an object adapter
will maintain its own state to accomplish its tasks. It may be possible for a particular object adapter to delegate one or
more of its responsibilities to the Core upon which it is constructed.

24 CORBA - Part 1: Interfaces, v3.1



Object Implementation

Interface B
Methods

Interface A
Methods

Dynamic Interface A Interface B Obiect
Skeleton Skeleton Jec
Skeleton Adapter
Interface
ORB Core

Figure 6.8- The Structure of a Typical Object Adapter

As shown in Figure 6.8, the Object Adapter is implicitly involved in invocation of the methods, although the direct
interface is through the skeletons. For example, the Object Adapter may be involved in activating the implementation or
authenticating the request.

The Object Adapter defines most of the services from the ORB that the Object Implementation can depend on. Different
ORBs will provide different levels of service and different operating environments may provide some properties
implicitly and require others to be added by the Object Adapter. For example, it is common for Object Implementations
to want to store certain values in the object reference for easy identification of the object on an invocation. If the Object
Adapter allows the implementation to specify such values when a new object is created, it may be able to store them in
the object reference for those ORBs that permit it. If the ORB Core does not provide this feature, the Object Adapter
would record the value in its own storage and provide it to the implementation on an invocation. With Object Adapters, it
is possible for an Object Implementation to have access to a service whether or not it is implemented in the ORB Core —
if the ORB Core provides it, the adapter simply provides an interface to it; if not, the adapter must implement it on top of
the ORB Core. Every instance of a particular adapter must provide the same interface and service for all the ORBs it is
implemented on.

It is also not necessary for all Object Adapters to provide the same interface or functionality. Some Object
Implementations have special requirements. For example, an object-oriented database system may wish to implicitly
register its many thousands of objects without doing individual calls to the Object Adapter. In such a case, it would be
impractical and unnecessary for the object adapter to maintain any per-object state. By using an object adapter interface
that is tuned towards such object implementations, it is possible to take advantage of particular ORB Core details to
provide the most effective access to the ORB.

CORBA - Part 1: Interfaces, v3.1 25



6.6 CORBA Required Object Adapter

There are a variety of possible object adapters; however, since the object adapter interface is something that object

implementations depend on, it is desirable that there be as few as practical. Most object adapters are designed to cover a
range of object implementations, so only when an implementation requires radically different services or interfaces should
a new object adapter be considered. In this sub clause, we briefly describe the object adapter defined in this specification.

6.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB objects with conventional
implementations. (See the Portable Object Adapter clause for more information.) The intent of the POA, as its name
suggests, is to provide an Object Adapter that can be used with multiple ORBs with a minimum of rewriting needed to
deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the administrative issues of starting server
programs. Once started, however, there can be a servant started and ended for a single method call, a separate servant for
each object, or a shared servant for all instances of the object type. It allows for groups of objects to be associated by means
of being registered with different instances of the POA object and allows implementations to specify their own activation
techniques. If the implementation is not active when an invocation is performed, the POA will start one. The POA is
specified in IDL, so its mapping to languages is largely automatic, following the language mapping rules. (The primary
task left for a language mapping is the definition of the Servant type.)

6.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide range of object systems (see Figure 6.9).
Because there are many existing object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may be connected to other ORBs
through the mechanisms described throughout this manual.

Object system as Object system as
~aPOA object an implementation
implementation  |lwith a special-purpose

object adapter

Portable Object Special-purpose

Adapter Adapter
Object system as
ORB Core another ORB
interoperating via a
gateway

Gateway

Figure 6.9- Different Ways to Integrate Foreign Object Systems

26 CORBA - Part 1: Interfaces, v3.1



For object systems that simply want to map their objects into ORB objects and receive invocations through the ORB, one
approach is to have those object systems appear to be implementations of the corresponding ORB objects. The object
system would register its objects with the ORB and handle incoming requests, and could act like a client and perform
outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object implementation. An object adapter
could be designed for objects that are created in conjunction with the ORB and that are primarily invoked through the
ORB. Another object system may wish to create objects without consulting the ORB, and might expect most invocations
to occur within itself rather than through the ORB. In such a case, a more appropriate object adapter might allow objects
to be implicitly registered when they are passed through the ORB.

CORBA - Part 1: Interfaces, v3.1 27



28

CORBA - Part 1: Interfaces, v3.1



7  OMG IDL Syntax and Semantics

This clause describes OMG Interface Definition Language (IDL) semantics and gives the syntax for OMG IDL
grammatical constructs.

7.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe the interfaces that client objects call and
object implementations provide. An interface definition written in OMG IDL completely defines the interface and fully
specifies each operation’s parameters. An OMG IDL interface provides the information needed to develop clients that use
the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in languages for which mappings from
OMG IDL concepts have been defined. The mapping of an OMG IDL concept to a client language construct will depend
on the facilities available in the client language. For example, an OMG IDL exception might be mapped to a structure in
a language that has no notion of exception, or to an exception in a language that does. The binding of OMG IDL concepts
to several programming languages is described in this manual.

The description of OMG IDL’s lexical conventions is presented in 7.2, ’Lexical Conventions.” A description of OMG IDL
preprocessing is presented in 7.3, "Preprocessing.” The scope rules for identifiers in an OMG IDL specification are
described in 7.20, "Names and Scoping.’

OMG IDL is a declarative language. The grammar is presented in “OMG IDL Grammar” on page 39 and associated
semantics is described in the rest of this clause either in place or through references to other sub clauses of this standard.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a specification; the textual location of
these pragmas may be semantically constrained by a particular implementation.

A source file containing interface specifications written in OMG IDL must have a “.idl” extension.

The description of OMG IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF).
Table 7.1 lists the symbols used in this format and their meaning.

Table 7.1 - IDL EBNF

Symbol Meaning

= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{4 The enclosed syntactic units are grouped as a single syntactic unit

1} The enclosed syntactic unit is optional—may occur zero or one time

CORBA - Part 1: Interfaces, v3.1 29



7.2 Lexical Conventions

This sub clause! presents the lexical conventions of OMG IDL. It defines tokens in an OMG IDL specification and
describes comments, identifiers, keywords, and literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by
directives introduced by lines having # as the first character other than white space. The result of preprocessing is a
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

OMG IDL uses the ASCII character set, except for string literals and character literals, which use the ISO Latin-1
(8859.1) character set. The ISO Latin-1 character set is divided into alphabetic characters (letters) digits, graphic
characters, the space (blank) character, and formatting characters. Table 7.2 shows the ISO Latin-1 alphabetic characters;
upper and lower case equivalences are paired. The ASCII alphabetic characters are shown in the left-hand column of
Table 7.2.

Table 7.2 - The 114 Alphabetic Characters (Letters)

Char. | Description Char. | Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D Aa Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Aa Upper/Lower-case A with ring above

Gg Upper/Lower-case G [ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Cec Upper/Lower-case C with cedilla

li Upper/Lower-case | Ee Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Ee Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Eé Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M I Upper/Lower-case | with grave accent

Nn Upper/Lower-case N I Upper/Lower-case | with acute accent

Oo Upper/Lower-case O 0 Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P i Upper/Lower-case | with diaeresis

1. This sub clause is an adaptation of The Annotated C++ Reference Manual, Clause 2; it differs in the list of legal keywords and
punctuation.

30 CORBA - Part 1: Interfaces, v3.1



Table 7.2 - The 114 Alphabetic Characters (Letters)

Char. | Description Char. | Description
Qq Upper/Lower-case Q N Upper/Lower-case N with tilde
Rr Upper/Lower-case R 00 Upper/Lower-case O with grave accent
Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent
Tt Upper/Lower-case T (ol Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U 06 Upper/Lower-case O with tilde
W Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W Do Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X uo Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Ui Upper/Lower-case U with diaeresis
R Lower-case German sharp S
y Lower-case Y with diaeresis

Table 7.3 lists the decimal digit characters.

Table 7.3 - Decimal Digits

0123456789

Table 7.4 shows the graphic characters.

Table 7.4 - The 65 Graphic Characters

Character | Description Character | Description

! exclamation point i inverted exclamation mark
double quote ¢ cent sign

# number sign £ pound sign

$ dollar sign o currency sign

% percent sign ¥ yen sign

& ampersand broken bar

' apostrophe 8§ section/paragraph sign

( left parenthesis diaeresis

CORBA - Part 1: Interfaces, v3.1

31



Table 7.4 - The 65 Graphic Characters (Continued)

Character | Description Character | Description
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen

period, full stop ® registered trade mark sign
/ solidus B macron

colon ° ring above, degree sign
; semicolon + plus-minus sign
< less-than sign 2 superscript two
= equals sign 3 superscript three
> greater-than sign acute
? question mark m micro
@ commercial at 1 pilcrow
[ left square bracket . middle dot
\ reverse solidus cedilla
] right square bracket ! superscript one
n circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket é inverted question mark
~ tilde ¥ multiplication sign

3 division sign

32

CORBA - Part 1: Interfaces, v3.1



The formatting characters are shown in Table 7.5.

Table 7.5 - The Formatting Characters

Description | Abbreviation | 1SO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015
7.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collective, “white space”) as described below are ignored except as
they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of
characters that could possibly constitute a token.

7.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The characters /
/ start a comment, which terminates at the end of the line on which they occur. The comment characters //, /*, and */ have
no special meaning within a // comment and are treated just like other characters. Similarly, the comment characters // and
/* have no special meaning within a /* comment. Comments may contain alphabetic, digit, graphic, space, horizontal tab,
vertical tab, form feed, and newline characters.

7.2.3 ldentifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore (“_") characters. The first
character must be an ASCII alphabetic character. All characters are significant.

When comparing two identifiers to see if they collide:

« Upper- and lower-case letters are treated as the same letter. Table 7.2 defines the equivalence mapping of upper- and
lower-case letters.

« All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under certain circumstances. An identifier for
a given definition must be spelled identically (e.g., with respect to case) throughout a specification.

CORBA - Part 1: Interfaces, v3.1 33



There is only one namespace for OMG IDL identifiers in each scope. Using the same identifier for a constant and an
interface, for example, produces a compilation error.

For example:

module M {
typedef long Foo;
const long thing = 1;

interface thing { /I error: reuse of identifier
void doit (
in Foo foo /l error: Foo and foo collide and refer to different things
)i

readonly attribute long Attribute; // error: Attribute collides with keyword attribute
I3

|3

7.2.3.1 Escaped ldentifiers

As IDL evolves, new keywords that are added to the IDL language may inadvertently collide with identifiers used in
existing IDL and programs that use that IDL. Fixing these collisions will require not only the IDL to be modified, but
programming language code that depends upon that IDL will have to change as well. The language mapping rules for the
renamed IDL identifiers will cause the mapped identifier names (e.g., method names) to be changed.

To minimize the amount of work, users may lexically “escape” identifiers by prepending an underscore (_) to an
identifier. This is a purely lexical convention that ONLY turns off keyword checking. The resulting identifier follows all
the other rules for identifier processing. For example, the identifier _Anidentifier is treated as if it were Anldentifier.

The following is a non-exclusive list of implications of these rules:
« The underscore does not appear in the Interface Repository.
« The underscore is not used in the DIl and DSI.
« The underscore is not transmitted over “the wire.”

» Case sensitivity rules are applied to the identifier after stripping off the leading underscore.

For example:
module M {
interface thing {
attribute boolean abstract; /I error: abstract collides with
/I keyword abstract
attribute boolean _abstract; /I ok: abstract is an identifier
b
b

To avoid unnecessary confusion for readers of IDL, it is recommended that interfaces only use the escaped form of
identifiers when the unescaped form clashes with a newly introduced IDL keyword. It is also recommended that interface
designers avoid defining new identifiers that are known to require escaping. Escaped literals are only recommended for
IDL that expresses legacy interface, or for IDL that is mechanically generated.

34 CORBA - Part 1: Interfaces, v3.1



7.2.4 Keywords

The identifiers listed in Table 7.6 are reserved for use as keywords and may not be used otherwise, unless escaped with a

leading underscore.

Table 7.6 - Keywords

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses

const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void
custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

Keywords must be written exactly as shown in the above list. Identifiers that collide with keywords (see 7.2.3,

“Identifiers’) are illegal. For example, “boolean” is a valid keyword; “Boolean” and “BOOLEAN” are illegal identifiers.

For example:
module M {
typedef Long Foo; /I Error: keyword is long not Long
typedef boolean BOOLEAN,; /I Error: BOOLEAN collides with
/l the keyword boolean;
k

OMG IDL specifications use the characters shown in Table 7.7 as punctuation.

Table 7.7 - Punctuation Characters

S O 6 S e AU R N AR I G I R I S A e
S e R AT I I S IV A I

In addition, the tokens listed in Table 7.8 are used by the preprocessor.

Table 7.8 - Preprocessor Tokens

# | # | I &&

CORBA - Part 1: Interfaces, v3.1

35



7.25 Literals

This sub clause describes the following literals:
« Integer
- Character
« Floating-point
 String

» Fixed-point
7.2.5.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with 0 (digit zero).
A sequence of digits starting with O is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits. A
sequence of digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a or A through f or F with decimal values ten through fifteen, respectively. For example, the number twelve can
be written 12, 014, or 0XC.

7.2.5.2 Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x.” Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal). The value of a space, alphabetic,
digit, or graphic character literal is the numerical value of the character as defined in the 1ISO Latin-1 (8859.1) character
set standard (See Table 7.2 on page 30, Table 7.3 on page 31, and Table 7.4 on page 31). The value of a null is 0. The
value of a formatting character literal is the numerical value of the character as defined in the 1SO 646 standard (see
Table 7.5 on page 33). The meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below in Table 7.9. Note that escape
sequences must be used to represent single quote and backslash characters in character literals.

Table 7.9 - Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \
guestion mark \?

36 CORBA - Part 1: Interfaces, v3.1



Table 7.9 - Escape Sequences (Continued)

Description Escape Sequence
single quote \

double quote \"

octal number \ooo
hexadecimal number \xhh
unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is undefined. An escape sequence
specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the value of
the desired character. The escape \xhh consists of the backslash followed by x followed by one or two hexadecimal digits
that are taken to specify the value of the desired character.

The escape \uhhhh consists of a backslash followed by the character ‘u,” followed by one, two, three, or four hexadecimal
digits. This represents a unicode character literal. Thus the literal “\u002E” represents the unicode period *.” character and
the literal “\u3BC” represents the unicode greek small letter “‘mu.” The \u escape is valid only with wchar and wstring
types. Because a wide string literal is defined as a sequence of wide character literals a sequence of \u literals can be used
to define a wide string literal. Attempts to set a char type to a \u defined literal or a string type to a sequence of \u literals
result in an error.

A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit or a hexadecimal
digit, respectively. The value of a character constant is implementation dependent if it exceeds that of the largest char.

Wide character literals have an L prefix, for example:

const wchar C1 =L'X";

Attempts to assign a wide character literal to a non-wide character constant or to assign a non-wide character literal to a
wide character constant result in a compile-time diagnostic.

Both wide and non-wide character literals must be specified using characters from the 1SO 8859-1 character set.
7.2.5.3 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e or E, and an optionally signed
integer exponent. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer
part or the fraction part (but not both) may be missing; either the decimal point or the letter e (or E) and the exponent (but
not both) may be missing.

7.2.5.4 String Literals

A string literal is a sequence of characters (as defined in 7.2.5.2, *Character Literals’), with the exception of the character

7

with numeric value 0, surrounded by double quotes, as in “...”.

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

CORBA - Part 1: Interfaces, v3.1 37



"\xA" "B"
contains the two characters '\xA' and 'B' after concatenation (and not the single hexadecimal character "\xAB").

The size of a string literal is the number of character literals enclosed by the quotes, after concatenation. Within a string,
the double quote character " must be preceded by a \.

A string literal may not contain the character ‘\0’.

Wide string literals have an L prefix, for example:

const wstring S1 = L"Hello";

Attempts to assign a wide string literal to a non-wide string constant or to assign a non-wide string literal to a wide string
constant result in a compile-time diagnostic.

Both wide and non-wide string literals must be specified using characters from the 1ISO 8859-1 character set.

A wide string literal shall not contain the wide character with value zero.
7.2.5.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part and a d or D. The integer and
fraction parts both consist of a sequence of decimal (base 10) digits. Either the integer part or the fraction part (but not
both) may be missing; the decimal point (but not the letter d (or D)) may be missing.

7.3  Preprocessing

OMG IDL is preprocessed according to the specification of the preprocessor in “International Organization for
Standardization. 1998. ISO/IEC 14882 Standard for the C++ Programming Language. Geneva: International Organization
for Standardization.” The preprocessor may be implemented as a separate process or built into the IDL compiler.

Lines beginning with # (also called “directives”) communicate with this preprocessor. White space may appear before the
#. These lines have syntax independent of the rest of OMG IDL,; they may appear anywhere and have effects that last
(independent of the OMG IDL scoping rules) until the end of the translation unit. The textual location of OMG IDL-
specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file by placing a backslash character
(“\"), immediately before the newline at the end of the line to be continued. The preprocessor effects the continuation by
deleting the backslash and the newline before the input sequence is divided into tokens. A backslash character may not be
the last character in a source file.

A preprocessing token is an OMG IDL token (see 7.2.1, "Tokens’), a file name as in a #include directive, or any single
character other than white space that does not match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other OMG IDL specifications. Text in files
included with a #include directive is treated as if it appeared in the including file, except that Repositoryld related
pragmas are handled in a special way. The special handling of these pragmas is described in 14.7, Repositorylds.’

Note that whether a particular IDL compiler generates code for included files is an implementation-specific issue. To
support separate compilation, IDL compilers may not generate code for included files, or do so only if explicitly
instructed.

38 CORBA - Part 1: Interfaces, v3.1



7.4 OMG IDL Grammar

<import>* <definition>"
<type dcl>";"
<const_dcl>
<except_ dcl>
<interface>"“;"
<module>"“;"
<value>"*“;”
<type_id dcl>“'"
<type_prefix_dcl>
<event>"“;”
<component>
<home_dcl>*“;"

3 <module> ::= “module” <identifier>"“{* <definition>**“}"
(4) <interface> ::= <interface dcl>

| <forward_dcl>
5) <interface_dcl> ::= <interface_header>“{" <interface_body>"“}"
(6) <forward_dcl> ::= [ “abstract” | “local” ] “interface” <identifier>

@) <interface_header> ::= [“abstract” | “local” ] “interface” <identifier>
[ <interface_inheritance_spec>]
(8) <interface_body> ::= <export>"
9) <export> ::= <type dcl>";"
| <const_dcl>*“;”
| <except_dcl>*;”
| <attr_dcl>*;"
| <op_dcl>*;”
I
I

(1) <specification>
(2) <definition>

“an

<type_id_dcl>*";"
<type_prefix_dcl>"*“;"

(10)<interface_inheritance_spec>::=":" <interface_name>
{“,” <interface_name> }*

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>
|  “:u" <identifier>
| <scoped_name> “::” <identifier>
(13) <value> ::= (<value_dcl>| <value_abs_dcl>| <value_box_dcl>|
<value_forward_dcl>)
(14) <value_forward_dcl> ::= [ “abstract” ] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>

[ <value_inheritance_spec>]
u{u <exp0rt>* u}n

a7 <value_dcl> ::= <value_header>“{" <value_element>**“}"
(18) <value_header> ::= [“custom” ] “valuetype” <identifier>

[ <value_inheritance_spec>]
(19)<value_inheritance_spec> ::= [“:" [ “truncatable” ] <value_name>

{",” <value_name>}*]

CORBA - Part 1: Interfaces, v3.1

39



40

(20)
(21)
(22)
(23)
(24)
(25)

(26)
(27)

(28)

(29)
(30)

(31)
(32)

(33)

(34)

(35)

(36)

(37)

(38)

[ “supports” <interface_name>
{",” <interface_name> }* ]

<value_name> := <scoped_name>
<value_element> ::= <export>| < state_member> | <init_dcl>
<state_member> ::= (“public” | “private” )
<type_spec> <declarators>“;"
<init_dcl> ::= “factory” <identifier>

“(* [ <init_param_decls>] “)”
[ <raises_expr>1"*;"

<init_param_decls> ::= <init_param_decl>{“,” <init_param_decl> }*
<init_param_decl> ::= <init_param_attribute> <param_type_spec>
<simple_declarator>
<init_param_attribute> ::= “in”
<const_dcl> ::= “const” <const_type>
<identifier>“=" <const_exp>
<const_type> ::= <integer_type>

<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>

<const_exp> ::= <or_expr>
<or_expr> = <xor_expr>
| <or_expr>"“|" <xor_expr>
<Xor_expr> .= <and_expr>
| <xor_expr>“"" <and_expr>
<and_expr> ::= <shift_expr>
| <and_expr>*“&” <shift_expr>
<shift_expr> ::= <add_expr>

|  <shift_expr>*“>>" <add_expr>

| <shift_expr>*“<<" <add_expr>
<add_expr> ::= <mult_expr>

| <add_expr>*“+" <mult_expr>

| <add_expr>*“-" <mult_expr>
<mult_expr> ::= <unary_expr>

| <mult_expr>“*" <unary_expr>

|  <mult_expr>“/" <unary_expr>

|  <mult_expr>“%" <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>
<unary_operator> = *“-"
|
|-

<primary_expr> := <scoped_name>

CORBA - Part 1: Interfaces, v3.1



(39) <literal>
(40) <boolean_literal>
41 <positive_int_const>
(42) <type_dcl>
(43) <type_declarator>
(44) <type_spec>

(45) <simple_type_spec>

(46) <base_type _spec>

(47) <template_type_spec>

(48) <constr_type_spec>
(49) <declarators>
(50) <declarator>
(51) <simple_declarator>
(52) <complex_declarator>
(53) <floating_pt_type>

CORBA - Part 1: Interfaces, v3.1

<literal>

“(” <const_exp>")"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>
“TRUE"

“FALSE”

= <const_exp>
= “typedef” <type_declarator>

<struct_type>

<union_type>

<enum_type>

“native” <simple_declarator>
<constr_forward_decl>

= <type_spec> <declarators>
= <simple_type_spec>

<constr_type_spec>
<base_type_spec>
<template_type_spec>
<scoped_name>
<floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<value_base_type>
<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>
<struct_type>
<union_type>
<enum_type>

= <declarator> { “,” <declarator> }"
= <simple_declarator>

<complex_declarator>

= <identifier>
= <array_declarator>
= “float”

“double”

41



42

(54)

(55)

(56)
(57)
(58)
(59)

(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)

(73)

(74)
(75)
(76)

(77)
(78)

(79)
(80)
(81)

(82)

<integer_type>

<signed_int>

<signed_short_int>
<signed_long_int>

<signed_longlong_int>

<unsigned_int>

<unsigned_short_int>
<unsigned_long_int>

<unsigned_longlong_int>

<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>
<struct_type>
<member_list>
<member>
<union_type>

| “long” “double”

::= <signed_int>

| <unsigned_int>

;= <signed_short_int>

| <signed_long_int>

| <signed_longlong int>
= “short”

1= "long”

= “long” “long”

::= <unsigned_short_int>

| <unsigned_long_int>

| <unsigned_longlong_int>
::= “unsigned” “short”

= “unsigned” “long”

;= “unsigned” “long” “long”
::= “char”

= “wchar”

::= “boolean”

= “octet”

= “any
= “Object”

;1= “struct” <identifier>“{" <member_list>"“}"
;= <member>"*

;:= <type_spec> <declarators>"“;"

;= “union” <identifier> “switch”

“(" <switch_type spec>")"
“{" <switch_body>"}"

<switch_type spec>

<switch_body>
<case>
<case_label>

<element_spec>
<enum_type>

“{” <enume

<enumerator>
<sequence_type>

;= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

| <scoped_name>

= <case>"

= <case_label>" <element_spec> “;”
;= “case” <const_exp>“:”

| “default” “:”

;= <type_spec> <declarator>
;= “enum” <identifier>

rator>{“,” <enumerator>}*“}"
1= <identifier>
1= “sequence” “<” <simple_type_spec>""

<positive_int_const> “>"

<string_type>

<wide_string_type>

| “sequence” "<” <simple_type_spec>"“>"

;1= “string” “<” <positive_int_const>“>"
|  “string”
;:= “wstring” “<” <positive_int_const>“>"

CORBA - Part 1: Interfaces, v3.1



(83)
(84)

(86)
(87)

(88)
(89)
(90)
(91)
(92)
(93)
(94)

(95)

(96)

(97)
(98)
(99)

(100)
(101)
(102)
(103)
(104)

<array_declarator>
<fixed_array_size>
(85)

<except_dcl>
<op_dcl>
<op_attribute>
<op_type_spec>
<parameter_dcls>
<param_dcl>

<param_attribute>

<raises_expr>

{",” <scoped_|

<context_expr>

<param_type_spec>

<fixed_pt_type>

s
<fixed_pt_const_type>
<value_base_type>
<constr_forward_decl>

<import>
<imported_scope>
<type_id_dcl>
<type_prefix_dcl>
<readonly_attr_spec>

“wstring”
<identifier> <fixed_array_size>"
“I" <positive_int_const>“]"

<attr_dcl> ::=

| <attr_spec>

<readonly_attr_spec>

“exception” <identifier>“{* <member>**“}"
[ <op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>

[ <raises_expr>][ <context_expr>]
“oneway”

<param_

nvoidn

“(" <param_dcl>{",

“¢ ey

type_spec>

<param_dcl> }**)”

<param_attribute> <param_type_spec> <simple_declarator>

in
out”
“inout”

“raises

“

(" <scoped_name>

name> }* u)n

;.= “context” “(” <string_literal>
{*, <string_literal>}"*)"
<base_type_spec>
<string_type>
<wide_string_type>
<scoped_name>

(105)<readonly_attr_declarator >::

(106)

(107)

<attr_spec>

<attr_declarator>

CORBA - Part 1: Interfaces, v3.1

“fixed” “<" <positive_int_const>
“fixed”
“ValueBase”

“struct” <identifier>
“union” <identifier>

“import”

<imported_scope>"*“;”

<scoped_name> | <string_literal>
“typeid” <scoped_name> <string_literal>
“typeprefix” <scoped_name> <string_literal>

::= “readonly

<readonly_attr_declarator>

<simple_declarator>

(e

<simple_declarator> }*
;:= “attribute” <param_type_spec>

<attr_declarator>

<simple_declarator> <attr_raises_expr>
<simple_declarator>

[

<simple_declarator> }*

<positive_int_const>

attribute” <param_type_spec>

<simple_declarator> <raises_expr>

43



(108) <attr_raises_expr> ::= <get_excep_expr>[ <set_excep_expr>]
| <set_excep_expr>

(109) <get_excep_expr> := “getraises” <exception_list>
(110) <set_excep_expr> ::= “setraises” <exception_list>
(112) <exception_list> ::= “(" <scoped_name>

{",” <scoped_name>}=+")"

Note — Grammar rules 1 through 111 with the exception of the last three lines of rule 2 constitutes the portion of IDL that
is not related to components.

(112) <component> ::= <component_dcl>
| <component_forward_dcl>
(113)<component_forward_dcl>::= “component” <identifier>
(114) <component_dcl> ::= <component_header>
“{" <component_body>“}"
(115) <component_header> ::=“component” <identifier>

[ <component_inheritance_spec>]

[ <supported_interface_spec> ]
(116)<supported_interface_spec>::= “supports” <scoped_name>

{",” <scoped_name> }*

(117)<component_inheritance_spec>::=":" <scoped_name>

(118) <component_body> ::= <component_export>*

(119) <component_export> ::= <provides_dcl>";"
<uses_dcl>";"
<emits_dcl>*“;”

I
I
| <publishes_dcl>*“;”
| <consumes_dcl>*;”
I

<attr_dcl>"“;”
(120) <provides_dcl> ::="“provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>

| “Object”

(122) <uses_dcl> ::= “uses” [ “multiple” ]

<interface_type> <identifier>
(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>
(124) <publishes_dcl> ::= “publishes” <scoped_name> <identifier>
(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>
(126) <home_dcl> ::= <home_header><home_body>
(127) <home_header> ::= “home” <identifier>

[ <home_inheritance_spec> ]

[ <supported_interface_spec>]
“manages” <scoped_name>
[ <primary_key_spec>]

(128)<home_inheritance_spec>::= “.” <scoped_name>
(129) <primary_key_spec> := “primarykey” <scoped_name>
(130) <home_body> ::= “{" <home_export>**“}"

44 CORBA - Part 1: Interfaces, v3.1



(131)

(132)

(133)

(134)

(135)

(136)

(137)
(138)

<home_export

<factory_dcl>

<finder_dcl>

<event>
<event_forward_dcl>

<event_abs_dcl>

<event_dcl>
<event_header>

7.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant definitions, exception definitions, or

module definitions. The syntax is:

)
@)

See “Import Declaration” on page 46, for the specification of <import>.

<specification>
<definition>

;= <export>

| <factory_dcl>"*;”

| <finder_dcl>*“;”

“factory” <identifier>

“(* [ <init_param_decls>1")"
[ <raises_expr>]

“finder” <identifier>

“(* [ <init_param_decls>]1")"

[ <raises_expr>]

(<event_dcl> | <event_abs_dcl> |
<event_forward_dcl>)

[ “abstract” ] “eventtype” <identifier>
eventtype” <identifie

[ <value_inheritance_spec>]

“{" <export>**“}"

<event_header> “{" <value_element>**“}"
[ “custom” ] “eventtype”

<identifier> [ <value_inheritance_spec> ]

“abstract

<import>* <definition>"

<type_dcl>";"
<const_dcl>"*;"

<except_dcl>"“;”

<interface>*“;"
<module>*“;"
<value>*“;”

<type_id_dcl>*“;"
<type_prefix_dcl>

<event>*“;”

<component> “;"

<home_dcl>*“;"

See “Module Declaration” on page 47, for the specification of <module>.

See “Interface Declaration” on page 47, for the specification of <interface>.

See “Value Declaration” on page 52, for the specification of <value>.

See “Constant Declaration” on page 57, “Type Declaration” on page 61, and “Exception Declaration” on page 73
respectively for specifications of <const_dcl>, <type_dcl>, and <except_dcl>.

See “Repository Identity Related Declarations” on page 77, for specification of Repository ldentity declarations which

include <type_id_dcl> and <type_prefix_dcl>.

CORBA - Part 1: Interfaces, v3.1

45



See “Event Declaration” on page 79, for specification of <event>.
See “Component Declaration” on page 80, for specification of <component>.

See Section 7.18, “Home Declaration,” on page 85, for specification of <home_dcl>.

7.6 Import Declaration

The grammar for the import statement is described by the following Backus Naur Form (BNF):

(100) <import> “import” <imported_scope>*“;”
(101) <imported_scope> ::= <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a fully-qualified scoped name denoting an IDL name scope, or a
string containing the interface repository ID of an IDL name scope, i.e., a definition object in the repository whose
interface derives from CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constructs in terms of “file scopes.” This
specification defines the concepts of a specification as a unit of IDL expression. In the abstract, a specification consists of
a finite sequence of ISO Latin-1 characters that form a legal IDL sentence. The physical representation of the
specification is of no consequence to the definition of IDL, though it is generally associated with a file in practice.

Any scoped name that begins with the scope token ( “::” ) is resolved relative to the global scope of the specification in
which it is defined. In isolation, the scope token represents the scope of the specification in which it occurs.

A specification that imports hame scopes must be interpreted in the context of a well-defined set of IDL specifications
whose union constitutes the space from within which name scopes are imported. By “a well-defined set of IDL
specifications,” we mean any identifiable representation of IDL specifications, such as an interface repository. The
specific representation from which name scopes are imported is not specified, nor is the means by which importing is
implemented, nor is the means by which a particular set of IDL specifications (such as an interface repository) is
associated with the context in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

« The contents of the specified name scope are visible in the context of the importing specification. Names that occur in
IDL declarations within the importing specification may be resolved to definitions in imported scopes.

« Imported IDL name scopes exist in the same space as names defined in subsequent declarations in the importing
specification.

 IDL module definitions may re-open modules defined in imported name scopes.

« Importing an inner name scope (i.e., a name scope nested within one or more enclosing name scopes) does not
implicitly import the contents of any of the enclosing name scopes.

« When a name scope is imported, the names of the enclosing scopes in the fully-qualified pathname of the enclosing
scope are exposed within the context of the importing specification, but their contents are not imported. An importing
specification may not redefine or reopen a name scope that has been exposed (but not imported) by an import
statement.

- Importing a name scope recursively imports all name scopes nested within it.

» For the purposes of this specification, name scopes that can be imported (i.e., specified in an import statement) include
the following: modules, interfaces, valuetypes, and eventtypes.

46 CORBA - Part 1: Interfaces, v3.1



« Redundant imports (e.g., importing an inner scope and one of its enclosing scopes in the same specification) are
disregarded. The union of all imported scopes is visible to the importing program.

 This specification does not define a particular form for generated stubs and skeletons in any given programming
language. In particular, it does not imply any normative relationship between units specification and units of
generation and/or compilation for any language mapping.

7.7  Module Declaration
A module definition satisfies the following syntax:
3) <module> ::= “module” <identifier>“{"* <definition>**“}"

The module construct is used to scope OMG IDL identifiers; see “CORBA Module” on page 88 for details.

7.8 Interface Declaration
An interface definition satisfies the following syntax:

(4) <interface> ::= <interface dcl>
| <forward_dcl>

<type_id_decl>";"
<type_prefix_decl>";"

(5) <interface_dcl> ::= <interface_header> “{" <interface_body>“}"
(6) <forward_dcl> ::= [ “abstract” | “local” ] “interface” <identifier>
@) <interface_header> ::= [“abstract” | “local” ] “interface” <identifier>
[ <interface_inheritance_spec>]

(8) <interface_body> ::= <export>"
9) <export> ::= <type dcl>";"

| <const_dcl>*“;”

| <except_dcl>*;”

| <attr_dcl>*";"

| <op_dcl>*;"

I

I

7.8.1 Interface Header

The interface header consists of three elements:

1. An optional modifier specifying if the interface is an abstract interface.

2. The interface name. The name must be preceded by the keyword interface, and consists of an identifier that names

the interface.
3. An optional inheritance specification. The inheritance specification is described in the next sub clause.

The <identifier> that names an interface defines a legal type name. Such a type name may be used anywhere an

<identifier> is legal in the grammar, subject to semantic constraints as described in the following sub clauses. Since one
can only hold references to an object, the meaning of a parameter or structure member, which is an interface type is as a
reference to an object supporting that interface. Each language binding describes how the programmer must represent

such interface references.

CORBA - Part 1: Interfaces, v3.1



Abstract interfaces have slightly different rules and semantics from “regular” interfaces, as described in “Abstract
Interface” on page 51. They also follow different language mapping rules.

Local interfaces have slightly different rules and semantics from “regular” interfaces, as described in “Local Interface” on
page 52. They also follow different language mapping rules.

7.8.2 Interface Inheritance Specification

The syntax for inheritance is as follows:

(10)<interface_inheritance_spec>::=":" <interface_name>
{“,” <interface_name> }*
(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>
| “:” <identifier>
| <scoped name> “::" <identifier>

Each <scoped_name> in an <interface_inheritance_spec> must be the name of a previously defined interface or an alias
to a previously defined interface. See “Interface Inheritance” on page 49 for the description of inheritance.

7.8.3 Interface Body

The interface body contains the following kinds of declarations:

« Constant declarations, which specify the constants that the interface exports. Constant declaration syntax is described
in “Constant Declaration” on page 57.

« Type declarations, which specify the type definitions that the interface exports. Type declaration syntax is described in
“Type Declaration” on page 61.

» Exception declarations, which specify the exception structures that the interface exports. Exception declaration syntax
is described in “Exception Declaration” on page 73.

 Attribute declarations, which specify the associated attributes exported by the interface. Attribute declaration syntax is
described in “Attribute Declaration” on page 76.

« Operation declarations, which specify the operations that the interface exports and the format of each, including
operation name, the type of data returned, the types of all parameters of an operation, legal exceptions that may be
returned as a result of an invocation, and contextual information that may affect method dispatch. Operation
declaration syntax is described in “Operation Declaration” on page 73.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface body.

7.8.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This permits the definition of interfaces that

refer to each other. The syntax is: optionally either the keyword abstract or the keyword local, followed by the keyword
interface, followed by an <identifier> that names the interface.

Multiple forward declarations of the same interface name are legal.

48 CORBA - Part 1: Interfaces, v3.1



It is illegal to inherit from a forward-declared interface whose definition has not yet been seen:

module Example {

interface base; /l Forward declaration
...

interface derived : base {}; /[ Error

interface base {}; /I Define base
interface derived : base {}; Il OK

h
7.8.5 Interface Inheritance

An interface can be derived from another interface, which is then called a base interface of the derived interface. A
derived interface, like all interfaces, may declare new elements (constants, types, attributes, exceptions, and operations).
In addition, unless redefined in the derived interface, the elements of a base interface can be referred to as if they were
elements of the derived interface. The name resolution operator (“::”) may be used to refer to a base element explicitly;
this permits reference to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names that have been inherited; the scope rules
for such names are described in “Names and Scoping” on page 89.

An interface is called a direct base if it is mentioned in the <interface_inheritance_spec> and an indirect base if it is not
a direct base but is a base interface of one of the interfaces mentioned in the <interface_inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more than one direct base interface is often
called multiple inheritance. The order of derivation is not significant.

An abstract interface may only inherit from other abstract interfaces.

An interface may not be specified as a direct base interface of a derived interface more than once; it may be an indirect
base interface more than once. Consider the following example:

interface A { ...}

interface B: A{ ...}

interface C: A{ ... }

interface D: B,C{ ... }

interface E: A,B{ ... }; /I OK

CORBA - Part 1: Interfaces, v3.1 49



The relationships between these interfaces is shown in Figure 7.1. This “diamond” shape is legal, as is the definition of E

on the right.
A /’\
B\/C O -
D

N

References to base interface elements must be unambiguous. A Reference to a base interface element is ambiguous if the
name is declared as a constant, type, or exception in more than one base interface. Ambiguities can be resolved by
qualifying a name with its interface name (that is, using a <scoped_name>). It is illegal to inherit from two interfaces
with the same operation or attribute name, or to redefine an operation or attribute name in the derived interface.

Figure 7.1- Legal Multiple Inheritance Example

So for example in:

interface A {
typedef long L1;
short opA(in L11_1);
I3

interface B {
typedef short L1;
L1 opB(in long I);

h
interface C: B, A {
typedef L1 L2; /I Error: L1 ambiguous
typedef A::L1L3; /I A::L1is OK
B::L1 opC(in L3 1_3); /l all OK no ambiguities
h

References to constants, types, and exceptions are bound to an interface when it is defined (i.e., replaced with the
equivalent global <scoped_name>s). This guarantees that the syntax and semantics of an interface are not changed when
the interface is a base interface for a derived interface. Consider the following example:

constlong L =3;
interface A {

typedef float coord[L]:
void f (in coord s); Il s has three floats

h

50 CORBA - Part 1: Interfaces, v3.1



interface B {
constlong L =4;

h
interface C: B, A{}; /I what is C::f()'s signature?

The early binding of constants, types, and exceptions at interface definition guarantees that the signature of operation f in
interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a constant, type, or exception in the derived
interface from affecting the operations and attributes inherited from a base interface.

Interface inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in the current
naming scope. A type name, constant name, enumeration value name, or exception name from an enclosing scope can be
redefined in the current scope. An attempt to use an ambiguous name without qualification produces a compilation error.
Thus in:

interface A {
typedef string<128> string_t;

b

interface B {
typedef string<256> string_t;

3

interface C: A, B {
attribute string_t Title; /l Error: string_t ambiguous
attribute A::string_t Name; Il OK
attribute B::string_t City; /l OK

3

operation and attribute names are used at run-time by both the stub and dynamic interfaces. As a result, all operations and
attributes that might apply to a particular object must have unique names. This requirement prohibits redefining an
operation or attribute name in a derived interface, as well as inheriting two operations or attributes with the same name.

interface A {
void make_it_so();

b

interface B: A {
short make_it_so(in long times); /I Error: redefinition of make_it_so

b

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see
Table 7.10 on page 57.

7.8.6 Abstract Interface

An interface declaration containing the keyword abstract in its header, declares an abstract interface. The following
special rules apply to abstract interfaces:

CORBA - Part 1: Interfaces, v3.1 51



« Abstract interfaces may only inherit from other abstract interfaces.
« Value types may support any number of abstract interfaces.

See “Semantics of Abstract Interfaces” on page 173 for CORBA implementation semantics associated with abstract
interfaces.

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see
Table 7.10 on page 57.

7.8.7 Local Interface

An interface declaration containing the keyword local in its header declares a local interface. An interface declaration not
containing the keyword local is referred to as an unconstrained interface. An object implementing a local interface is
referred to as a local object. The following special rules apply to local interfaces:

» Alocal interface may inherit from other local or unconstrained interfaces.

« Anunconstrained interface may not inherit from a local interface. An interface derived from a local interface must be
explicitly declared local.

A valuetype may support a local interface.

« Any IDL type, including an unconstrained interface, may appear as a parameter, attribute, return type, or exception
declaration of a local interface.

« Alocal interface is a local type, as is any non-interface type declaration constructed using a local interface or other
local type. For example, a struct, union, or exception with a member that is a local interface is also itself a local type.

« Alocal type may be used as a parameter, attribute, return type, or exception declaration of a local interface or of a
valuetype.

- Alocal type may not appear as a parameter, attribute, return type, or exception declaration of an unconstrained
interface.

For a complete summary of allowable inheritance and supporting relationships among interfaces and valuetypes see
Table 7.10 on page 57.

See “LocalObject Operations” on page 113 for CORBA implementation semantics associated with local objects.

7.9 Value Declaration

There are several kinds of value type declarations: “regular” value types, boxed value types, abstract value types, and
forward declarations.

A value declaration satisfies the following syntax:

(13) <value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> |
<value_forward_dcl>)

7.9.1 Regular Value Type

A regular value type satisfies the following syntax:

52 CORBA - Part 1: Interfaces, v3.1



an <value_dcl> ::= <value_header>"“{" <value_element>**“}"

(18) <value_header> ::= [“custom” ] “valuetype” <identifier>
[ <value_inheritance_spec>]
(22) <value_element> ::= <export>
| < state_member> |
| <init_dcl>

7.9.1.1 Value Header

The value header consists of two elements:
1. The value type’s name and optional modifier specifying whether the value type uses custom marshaling.

2. Anoptional value inheritance specification. The value inheritance specification is described below.
7.9.1.2 Value Element

A value can contain all the elements that an interface can as well as the definition of state members, and initializers for
that state.

7.9.1.3 Value Inheritance Specification

(19)<value_inheritance_spec> ::= [“:" [ “truncatable” ] <value_name>
{“,” <value_name>}*]
[ “supports” <interface_name>
{“,” <interface_name> }* ]

(20) <value_name> ::= <scoped_name>

Each <value_name> in a <value_inheritance_spec> must be the name of a previously defined value type or an alias to
a previously defined value type. Each <interface_name> in a <value_inheritance_spec> must be the name of a
previously defined interface or an alias to a previously defined interface. See “Valuetype Inheritance” on page 56 for the
description of value type inheritance.

The truncatable modifier may not be used if the value type being defined is a custom value.

A valuetype that supports a local interface does not itself become local (i.e., unmarshalable) as a result of that support.
7.9.1.4 State Members

(22) <state_member> = (“public’ | “private” )
<type_5pec> <declarators> “ ;u

Each <state_member> defines an element of the state, which is marshaled and sent to the receiver when the value type is
passed as a parameter. A state member is either public or private. The annotation directs the language mapping to hide or
expose the different parts of the state to the clients of the value type. The private part of the state is only accessible to the
implementation code and the marshaling routines.

A valuetype that has a state member that is local (i.e., non-marshalable like a local interface), is itself rendered local. That
is, such valuetypes behave similar to local interfaces when an attempt is made to marshal them.

Note that certain programming languages may not have the built in facilities needed to distinguish between the public and
private members. In these cases, the language mapping specifies the rules that programmers are responsible for following.

CORBA - Part 1: Interfaces, v3.1 53



7.9.1.5 Initializers

(23) <init_dcl> ::= “factory” <identifier>
“(“ [ <init_param_decls>] “)”
[ <raises_expr>]1"“;"

(24) <init_param_decls> ::= <init_param_decl>{"“,” <init_param_decl> }*

(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>
<simple_declarator>

(26)  <init_param_attribute> ::= “in”

In order to ensure portability of value implementations, designers may also define the signatures of initializers (or
constructors) for non-abstract value types. Syntactically these look like local operation signatures except that they are
prefixed with the keyword factory, have no return type, and must use only in parameters. There may be any number of
factory declarations. The names of the initializers are part of the name scope of the value type. Initializers defined in a
valuetype are not inherited by derived valuetypes, and hence the names of the initializers are free to be reused in a derived
valuetype.

If no initializers are specified in IDL, the value type does not provide a portable way of creating a runtime instance of its
type. There is no default initializer. This allows the definition of IDL value types, which are not intended to be directly
instantiated by client code.

7.9.1.6 Value Type Example

interface Tree {
void print()
5

valuetype WeightedBinaryTree {
/I state definition
private unsigned long weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
Il'initializer
factory init(in unsigned long w);
/l'local operations
WeightSeq pre_order();
WeightSeq post_order();
b
valuetype WTree: WeightedBinaryTree supports Tree {};

7.9.2 Boxed Value Type

(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>

It is often convenient to define a value type with no inheritance or operations and with a single state member. A shorthand
IDL notation is used to simplify the use of value types for this kind of simple containment, referred to as a “value box.”

Since a value box of a valuetype adds no additional properties to a valuetype, it is an error to box valuetypes.

Value box is particularly useful for strings and sequences. Basically one does not have to create what is in effect an
additional namespace that will contain only one name.

An example is the following IDL:

54 CORBA - Part 1: Interfaces, v3.1



module Example {
interface Foo {
... I*anything */
h
valuetype FooSeq sequence<Foo>;
interface Bar {
void dolt (in FooSeq seql);
k
k

The above IDL provides similar functionality to writing the following IDL. However the type identities (repository 1Ds)
would be different.

module Example {
interface Foo {
... I*anything */
h
valuetype FooSeq {
public sequence<Foo> data;
h
interface Bar {
void dolt (in FooSeq seq);

h
h
The former is easier to manipulate after it is mapped to a concrete programming language.
Any IDL type may be used to declare a value box except for a valuetype.

The declaration of a boxed value type does not open a new scope. Thus a construction such as

valuetype FooSeq sequence <FooSeq>;

is not legal IDL. The identifier being declared as a boxed value type cannot be used subsequent to its initial use and prior
to the completion of the boxed value declaration.

7.9.3 Abstract Value Type

(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>
[ <value_inheritance_spec>]
13 {l( <exp0rt>* 13 }11

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. No
<state_member> or <initializers> may be specified. However, local operations may be specified. Essentially they are a
bundle of operation signatures with a purely local implementation.

Note that a concrete value type with an empty state is not an abstract value type.
7.9.4 Value Forward Declaration

(14) <value_forward_dcl> ::= [ “abstract” ] “valuetype” <identifier>

CORBA - Part 1: Interfaces, v3.1 55



A forward declaration declares the name of a value type without defining it. This permits the definition of value types that
refer to each other. The syntax consists simply of the keyword valuetype followed by an <identifier> that names the value

type.

Multiple forward declarations of the same value type name are legal.

Boxed value types cannot be forward declared; such a forward declaration would refer to a normal value type.
It is illegal to inherit from a forward-declared value type whose definition has not yet been seen.

It is illegal for a value type to support a forward-declared interface whose definition has not yet been seen.
7.9.5 Valuetype Inheritance

The terminology that is used to describe value type inheritance is directly analogous to that used to describe interface
inheritance (see “Interface Inheritance” on page 49).

The name scoping and name collision rules for valuetypes are identical to those for interfaces. In addition, no valuetype
may be specified as a direct abstract base of a derived valuetype more than once; it may be an indirect abstract base more
than once. See “Interface Inheritance” on page 49 for a detailed description of the analogous properties for interfaces.

Values may be derived from other values and can support an interface and any number of abstract interfaces.

Once implementation (state) is specified at a particular point in the inheritance hierarchy, all derived value types (which
must of course implement the state) may only derive from a single (concrete) value type. They can however derive from
other additional abstract values and support an additional interface.

The single immediate base concrete value type, if present, must be the first element specified in the inheritance list of the
value declaration’s IDL. It may be followed by other abstract values from which it inherits. The interface and abstract
interfaces that it supports are listed following the supports keyword.

While a valuetype may only directly support one interface, it is possible for the valuetype to support other interfaces as
well through inheritance. In this case, the supported interface must be derived, directly or indirectly, from each interface
that the valuetype supports through inheritance. This rule does not apply to abstract interfaces that the valuetype supports.
For example:

interface 11 { };
interface 12 { };
interface 13: 11, 12 { };

abstract valuetype V1 supports 11 { };
abstract valuetype V2 supports 12 { };
valuetype V3: V1, V2 supports 13 { }; // legal
valuetype V4: V1 supports 12 { }; // illegal

A stateful value that derives from another stateful value may specify that it is truncatable. This means that it is to
“truncate” (see “Value instance -> Value type” on page 160) an instance to be an instance of any of its truncatable parent
(stateful) value types under certain conditions. Note that all the intervening types in the inheritance hierarchy must be
truncatable in order for truncation to a particular type to be allowed.

Because custom values require an exact type match between the sending and receiving context, truncatable may not be
specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types.

56 CORBA - Part 1: Interfaces, v3.1



Boxed value types may not be derived from, nor may they derive from, anything else.

These rules are summarized in the following table.

Table 7.10- Allowable Inheritance Relationships

May inherit Interface Abstract Abstract Stateful Value Boxed

from: Interface Value value

Interface multiple multiple no no no

Abstract no multiple no no no

Interface

Abstract Value supports single supports multiple multiple no no
supports single supports multiple multiple single (may be no

Stateful Value truncatable)

Boxed Value no no no no no

7.10 Constant Declaration

This sub clause describes the syntax for constant declarations.

7.10.1 Syntax

The syntax for a constant declaration is:

27) <const_dcl>

;= “const” <const_type>

<identifier> “=" <const_exp>
(28) <const_type> ::= <integer_type>

(29)
(30)

(31
(32)

(33)

<const_exp>
<or_expr>

<xor_expr>
<and_expr>

<shift_expr>

CORBA - Part 1: Interfaces, v3.1

<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_name>
<octet_type>

= <or_expr>
= <xor_expr>

<or_expr>"“|" <xor_expr>
<and_expr>

<xor_expr>"“"" <and_expr>
<shift_expr>

<and_expr>“&” <shift_expr>
<add_expr>
<shift_expr>“>>" <add_expr>
<shift_expr>“<<” <add_expr>

57




(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal>

<positive_int_const>

7.10.2 Semantics

<mult_expr>

<add_expr>"“+" <mult_expr>
<add_expr>"“-" <mult_expr>
<unary_expr>
<mult_expr>“*" <unary_expr>
<mult_expr>"“/" <unary_expr>
<mult_expr>"“%" <unary_expr>
<unary_operator> <primary_expr>
<primary_expr>

“

<scoped_name>

<literal>

“(" <const_exp>")"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

“TRUE"

“FALSE”

<const_exp>

Note — Issue 1139 accounts for all changes in sub clause 7.10.2.

The <scoped_name> in the <const_type> production must be a previously defined name of an <integer_type>,
<char_type>, <wide_char_type>, <boolean_type>, <floating_pt_type>, <string_type>, <wide_string_type>,

<octet_type>, or <enum_type> constant.

Octet literals have integer value in the range 0..255. If the right hand side of an octet constant declaration is outside this
range it shall be flagged as a compile time error.

Integer literals have positive integer values. Constant integer literals are considered unsigned long unless the value is too
large, then they are considered unsigned long long. Unary minus is considered an operator, not a part of an integer
literal. Only integer values can be assigned to integer type (short, long, long long) constants, and octet constants. Only
positive integer values can be assigned to unsigned integer type constants. If the value of the right hand side of an integer
constant declaration is too large to fit in the actual type of the constant on the left hand side, for example

const short s = 655592;

or is inappropriate for the actual type of the left hand side, for example

58

CORBA - Part 1: Interfaces, v3.1



const octet o = -54;
it shall be flagged as a compile time error.

Floating point literals have floating point values. Only floating point values can be assigned to floating point type (float,
double, long double) constants. Constant floating point literals are considered double unless the value is too large, then
they are considered long double. If the value of the right hand side is too large to fit in the actual type of the constant to
which it is being assigned, it shall be flagged as a compile time error. Truncation on the right for floating point types is
OK.

Fixed point literals have fixed point values. Only fixed point values can be assigned to fixed point type constants. If the
fixed point value in the expression on the right hand side is too large to fit in the actual fixed point type of the constant
on the left hand side, then it shall be flagged as a compile time error. Truncation on the right for fixed point types is OK.

If the type of an integer constant is long or unsigned long, then each subexpression of the associated constant expression
is treated as an unsigned long by default, or a signed long for negated literals or negative integer constants. It is an error
if any subexpression values exceed the precision of the assigned type (long or unsigned long), or if a final expression
value (of type unsigned long) exceeds the precision of the target type (long).

If the type of an integer constant is long long or unsigned long long, then each subexpression of the associated constant
expression is treated as an unsigned long long by default, or a signed long long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the assigned type (long long or unsigned long
long), or if a final expression value (of type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant is double, then each subexpression of the associated constant expression is treated
as a double. It is an error if any subexpression value exceeds the precision of double.

If the type of a floating-point constant is long double, then each subexpression of the associated constant expression is
treated as a long double. It is an error if any subexpression value exceeds the precision of long double.

An infix operator can combine two integer types, floating point types or fixed point types, but not mixtures of these. Infix
operators are applicable only to integer, floating point, and fixed point types.

Integer expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either argument
is unsigned long long, use unsigned long long. If either argument is long long, use long long. If either argument is
unsigned long., use unsigned long. Otherwise use long. The final result of an integer arithmetic expression must fit in
the range of the declared type of the constant, otherwise an error shall be flagged by the compiler. In addition to the
integer types, the final result of an integer arithmetic expression can be assigned to an octet constant, subject to it fitting
in the range for octet type.

Floating point expressions are evaluated using the imputed type of each argument of a binary operator in turn. If either
argument is long double, use long double. Otherwise use double. The final result of a floating point arithmetic
expression must fit in the range of the declared type of the constant, otherwise an error shall be flagged by the compiler.

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal has the apparent number of total
and fractional digits. For example, 0123.450d is considered to be fixed<7,3> and 3000.00d is fixed<6,2>. Prefix operators
do not affect the precision; a prefix + is optional, and does not change the result. The upper bounds on the number of
digits and scale of the result of an infix expression, fixed<d1,s1> op fixed<d2,s2>, are shown in the following table.

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

CORBA - Part 1: Interfaces, v3.1 59



Op Result:  fixed<d,s>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf, sinf>

A quotient may have an arbitrary number of decimal places, denoted by a scale of sj,;. The computation proceeds
pairwise, with the usual rules for left-to-right association, operator precedence, and parentheses. All intermediate
computations shall be performed using double precision (i.e., 62 digit) arithmetic. If an individual computation between a
pair of fixed-point literals actually generates more than 31 significant digits, then a 31-digit result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are discarded; rounding is not performed. The
result of the individual computation then proceeds as one literal operand of the next pair of fixed-point literals to be
computed.

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-point expressions. Unary (+ - ~) and
binary (*/ % + - << >> & | ») operators are applicable in integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to which it is applied should be generated. For
the purposes of such expressions, the values are 2’s complement numbers. As such, the complement can be generated as
follows:

Integer Constant Expression Type Generated 2’s Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

The “%” binary operator yields the remainder from the division of the first expression by the second. If the second
operand of “%” is 0, the result is undefined; otherwise

(alb)*b + a%b

is equal to a. If both operands are non-negative, then the remainder is non-negative; if not, the sign of the remainder is
implementation dependent.

The “<<” binary operator indicates that the value of the left operand should be shifted left the number of bits specified by
the right operand, with 0 fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “>>" binary operator indicates that the value of the left operand should be shifted right the number of bits specified
by the right operand, with O fill for the vacated bits. The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right operands should be generated.

60 CORBA - Part 1: Interfaces, v3.1



The “~” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left and right operands should be
generated.

<positive_int_const> must evaluate to a positive integer constant.
An octet constant can be defined using an integer literal or an integer constant expression, for example:
Values for an octet constant outside the range 0 - 255 shall cause a compile-time error.

An enum constant can only be defined using a scoped name for the enumerator. The scoped name is resolved using the
normal scope resolution rules 7.20, ’Names and Scoping. For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR =red,;

module M {
enum Size { small, medium, large };

h
const M::Size MYSIZE = M::medium;

The constant name for the RHS of an enumerated constant definition must denote one of the enumerators defined for the
enumerated type of the constant. For example:

const Color col =red; //is OK but
const Color another = M::medium; // is an error

7.11 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-like declarations that associate an
identifier with a type. OMG IDL uses the typedef keyword to associate a name with a data type. A name is also
associated with a data type via the struct, union, enum, and native declarations. The syntax is:

(42) <type_dcl> ::= “typedef’ <type_declarator>
|  <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed values. The syntax is as follows:

(44) <type_spec> := <simple_type_spec>
| <constr_type_spec>
(45) <simple_type_spec> := <base_type_spec>

| <template_type_spec>

| <scoped_name>
(46) <base_type_spec> ::= <floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>

CORBA - Part 1: Interfaces, v3.1 61



(47) <template _type_spec>

(48) <constr_type_spec>
(49) <declarators>
(50) <declarator>
(51) <simple_declarator>

(52) <complex_declarator>

<any_type>
<object_type>
<value_base_type>
<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>
<struct_type>
<union_type>
<enum_type>

= <declarator>{“,” <declarator>}*

<simple_declarator>
<complex_declarator>

<identifier>

= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type introduced by an interface declaration
(<interface_dcl> - see 7.8, ’Interface Declaration’), a value declaration (<value_dcl>, <value_box_dcl> or

<abstract_value_dcl> - see 7.9, "Value Declaration’) or a type declaration (<type_dcl> - see 7.11, "Type Declaration’).
Note that exceptions are not considered types in this context.

As seen above, OMG IDL type specifiers consist of scalar data types and type constructors. OMG IDL type specifiers can
be used in operation declarations to assign data types to operation parameters. The next sub clauses describe basic and
constructed type specifiers.

7.11.1 Basic Types

The syntax for the supported basic types is as follows:

62

(53) <floating_pt_type>
(54) <integer_type>
(55) <signed_int>
(56) <sighed_short_int>
(57) <signed_long_int>
(58) <signed_longlong_int>
(59) <unsigned_int>

(60) <unsignhed_short_int>

(61) <unsigned_long_int>
(62) <unsigned_longlong_int>
(63) <char_type>
(64) <wide_char_type>

“float”

“double”

“long” “double”
<signed_int>
<unsigned_int>
<signed_short_int>
<signed_long_int>
<signed_longlong_int>

= “short”
= “long”
— “Iong” Hlongﬂ

<unsigned_short_int>
<unsigned_long_int>
<unsigned_longlong_int>

“unsigned” “short”

= “unsigned” “long”

“unsigned” “long” “long”
“char”

= “wchar”

CORBA

- Part 1: Interfaces, v3.1



(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language mapping. Conversion errors
between OMG IDL data types and the native types to which they are mapped can occur during the performance of an
operation invocation. The invocation mechanism (client stub, dynamic invocation engine, and skeletons) may signal an
exception condition to the client if an attempt is made to convert an illegal value. The standard system exceptions that are
to be raised in such situations are defined in 8.12, "Exceptions.’

7.11.1.1 Integer Types

OMG IDL integer types are short, unsigned short, long, unsigned long, long long, and unsigned long long
representing integer values in the range indicated below in Table 7.11.

Table 7.11- Range of integer types

short 215 2151
long 281 281
long long 268 . 283_1
unsigned short 0.2%%.1
unsigned long 0.2%-1
unsigned long long 0.204.1

7.11.1.2 Floating-Point Types

OMG IDL floating-point types are float, double, and long double. The float type represents IEEE single-precision
floating point numbers; the double type represents IEEE double-precision floating point numbers. The long double data
type represents an IEEE double-extended floating-point number, which has an exponent of at least 15 bits in length and a
signed fraction of at least 64 bits. See IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985, for a detailed specification.

7.11.1.3 Char Type

OMG IDL defines a char data type that is an 8-bit quantity that (1) encodes a single-byte character from any byte-
oriented code set, or (2) when used in an array, encodes a multi-byte character from a multi-byte code set. In other words,
an implementation is free to use any code set internally for encoding character data, though conversion to another form
may be required for transmission.

The ISO 8859-1 (Latinl) character set standard defines the meaning and representation of all possible graphic characters
used in OMG IDL (i.e., the space, alphabetic, digit, and graphic characters defined in Table 7.2 on page 30, Table 7.3 on
page 31, and Table 7.4 on page 31). The meaning and representation of the null and formatting characters (see Table 7.5
on page 33) is the numerical value of the character as defined in the ASCII (1SO 646) standard. The meaning of all other
characters is implementation-dependent.

During transmission, characters may be converted to other appropriate forms as required by a particular language binding.
Such conversions may change the representation of a character but maintain the character’s meaning. For example, a
character may be converted to and from the appropriate representation in international character sets.

CORBA - Part 1: Interfaces, v3.1 63



7.11.1.4 Wide Char Type

OMG IDL defines a wchar data type that encodes wide characters from any character set. As with character data, an
implementation is free to use any code set internally for encoding wide characters, though, again, conversion to another
form may be required for transmission. The size of wchar is implementation-dependent.

7.11.1.5 Boolean Type
The boolean data type is used to denote a data item that can only take one of the values TRUE and FALSE.
7.11.1.6 Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion when transmitted by the
communication system.

7.11.1.7 Any Type

The any type permits the specification of values that can express any OMG IDL type.

An any logically contains a TypeCode (see 8.11, *TypeCodes’) and a value that is described by the TypeCode. Each IDL
language mapping provides operations that allow programers to insert and access the TypeCode and value contained in an
any.

7.11.2 Constructed Types

Structs, unions, and enums are the constructed types. Their syntax is presented below:

(42) <type_dcl> ::= “typedef” <type_declarator>
<struct_type>
<union_type>
<enum_type>
“native” <simple_declarator>
<constr_forward_decl>
(48) <constr_type_spec> ::= <struct_type>

| <union_type>

| <enum_type>
(99) <constr_forward_decl> ::= “struct” <identifier>

| “union” <identifier>

7.11.2.1 Structures

The syntax for struct type is:

(69) <struct_type> ::= “struct” <identifier>*{” <member_list>“}"
(70) <member_list> ::= <member>"
(71) <member> ::= <type_spec> <declarators>";"

The <identifier> in <struct_type> defines a new legal type. Structure types may also be named using a typedef
declaration.

64 CORBA - Part 1: Interfaces, v3.1



Name scoping rules require that the member declarators in a particular structure be unique. The value of a struct is the
value of all of its members.

7.11.2.2 Discriminated Unions

The discriminated union syntax is:

(72) <union_type> ::= “union” <identifier>“switch”
“(" <switch_type_spec>")"
“{" <switch_body>*“}"

(73) <switch_type_spec> ::= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

| <scoped_name>

(74) <switch_body> ::= <case>"
(75) <case> := <case_label>" <element_spec>*;”
(76) <case_label> ::= “case” <const_exp>"“."
| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL unions must be discriminated; that is,
the union header must specify a typed tag field that determines which union member to use for the current instance of a
call. The <identifier> following the union keyword defines a new legal type. Union types may also be named using a
typedef declaration. The <const_exp> in a <case_label> must be consistent with the <switch_type_spec>. A default
case can appear at most once. The <scoped_name> in the <switch_type_spec> production must be a previously defined
integer, char, boolean, or enum type.

Case labels must match or be automatically castable to the defined type of the discriminator. Name scoping rules require
that the element declarators in a particular union be unique. If the <switch_type_spec> is an <enum_type>, the identifier
for the enumeration is in the scope of the union; as a result, it must be distinct from the element declarators.

It is not required that all possible values of the union discriminator be listed in the <switch_body>. The value of a union
is the value of the discriminator together with one of the following:

« If the discriminator value was explicitly listed in a case statement, the value of the element associated with that case
statement;

» Ifadefault case label was specified, the value of the element associated with the default case label;
» No additional value.

The values of the constant expressions for the case labels of a single union definition must be distinct. A union type can
contain a default label only where the values given in the non-default labels do not cover the entire range of the union's
discriminant type.

Access to the discriminator and the related element is language-mapping dependent.
Note — While any ISO Latin-1 (8859.1) IDL character literal may be used in a <case_label> in a union definition whose
discriminator type is char, not all of these characters are present in all transmission code sets that may be negotiated by

GIOP or in all native code sets that may be used by implementation language compilers and runtimes. When an attempt
is made to marshal to CDR a union whose discriminator value of char type is not available in the negotiated transmission

CORBA - Part 1: Interfaces, v3.1 65



code set, or to demarshal from CDR a union whose discriminator value of char type is not available in the native code
set, a DATA_CONVERSION system exception is raised. Therefore, to ensure portability and interoperability, care must be
exercised when assigning the <case_label> for a union member whose discriminator type is char. Due to these issues,
use of char types as the discriminator type for unions is not recommended.

7.11.2.3 Constructed Recursive Types and IForward Declarations

The IDL syntax allows the generation of recursive structures and unions via members that have a sequence type. The
element type of a recursive sequence struct or union member must identify a struct, union, or valuetype. (A valuetype is
allowed to have a member of its own type either directly or indirectly through a member of a constructed type—see
7.9.1.6, "Value Type Example.’) For example, the following is legal:

struct Foo {
long value;
sequence<Foo> chain; /| Deprecated (see Section 7.11.6)

}

See “Sequences” on page 68 for details of the sequence template type.

IDL supports recursive types via a forward declaration for structures and unions (as well as for valuetypes—see 7.9.1.6,
"Value Type Example). Because anonymous types are deprecated (see “Deprecated Anonymous Types” on page 71), the
previous example is better written as:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;

FooSeq chain;

h

The forward declaration for the structure enables the definition of the sequence type FooSeq, which is used as the type of
the recursive member.

Forward declarations are legal for structures and unions. A structure or union type is termed incomplete until its full
definition is provided; that is, until the scope of the structure or union definition is closed by a terminating “}.” For
example:

struct Foo; /I Introduces Foo type name,
/l Foo is incomplete now
...
struct Foo {
...
h /l Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must follow the forward declaration in
the same source file. Compilers shall issue a diagnostic if this rule is violated. Multiple forward declarations of the same
structure or union are legal.

If a sequence member of a structure or union refers to an incomplete type, the structure or union itself remains incomplete
until the member’s definition is completed. For example:

struct Foo;
typedef sequence<Foo> FooSeq;

66 CORBA - Part 1: Interfaces, v3.1



struct Bar {

long value;

FooSeq chain; //Use of incomplete type
b //Bar itself remains incomplete
struct Foo {

...

™ /[Foo and Bar are complete

Compilers shall issue a diagnostic if this rule is violated.

Recursive definitions can span multiple levels. For example:

union Bar; /I Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch(long) { /l Define incomplete union
case O:
long I_mem;
case 1:

struct Foo {
double d_mem;

BarSeq nested; /I OK, recurse on enclosing

/l incomplete type
} s_mem;

b

An incomplete type can only appear as the element type of a sequence definition. A sequence with incomplete element

type is termed an incomplete sequence type. For example:

struct Foo; /l Forward declaration

typedef sequence<Foo> FooSeq; /l incomplete

An incomplete sequence type can appear only as the element type of another sequence, or as the member type of a

structure or union definition. For example:

struct Foo; /l Forward declaration
typedef sequence<Foo> FooSeq; Il OK
typedef sequence<FooSeq> FooTree; I OK
interface I {
FooSeq opl(); /l lllegal, FooSeq is incomplete
void op2( /I lllegal, FooTree is incomplete
in FooTreet
)i
3
struct Foo { /I Provide definition of Foo
long I_mem;
FooSeq chain; Il OK
FooTree tree; /I OK
h
interface J {
FooSeq opl(); Il OK, FooSeq is complete
void op2(
in FooTree t /I OK, FooTree is complete
)i

CORBA - Part 1: Interfaces, v3.1

67



h

Compilers shall issue a diagnostic if this rule is violated.
7.11.2.4 Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:

(78) <enum_type> ::= “enum” <identifier>
“{" <enumerator> { “,” <enumerator>}* “}"
(79) <enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the enumerated names must be mapped to a
native data type capable of representing a maximally-sized enumeration. The order in which the identifiers are named in
the specification of an enumeration defines the relative order of the identifiers. Any language mapping that permits two
enumerators to be compared or defines successor/predecessor functions on enumerators must conform to this ordering
relation. The <identifier> following the enum keyword defines a new legal type. Enumerated types may also be named
using a typedef declaration.

7.11.3 Template Types

The template types are:
(47) <template_type_spec> := <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

7.11.3.1 Sequences

OMG IDL defines the sequence type sequence. A sequence is a one-dimensional array with two characteristics: a
maximum size (which is fixed at compile time) and a length (which is determined at run time).

The syntax is:

(80) <sequence_type> ::= “sequence” “<" <simple_type_spec>"“,
<positive_int_const>"“>"
| “sequence” “<” <simple_type_spec>*“>"

The second parameter in a sequence declaration indicates the maximum size of the sequence. If a positive integer constant
is specified for the maximum size, the sequence is termed a bounded sequence. If no maximum size is specified, size of
the sequence is unspecified (unbounded).

Prior to passing a bounded or unbounded sequence as a function argument (or as a field in a structure or union), the length
of the sequence must be set in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For example, the following:

68 CORBA - Part 1: Interfaces, v3.1



typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long.” Note that for nested sequence
declarations, white space must be used to separate the two “>" tokens ending the declaration so they are not parsed as a
single “>>" token.

7.11.3.2 Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities except null. A string is similar to a
sequence of char. As with sequences of any type, prior to passing a string as a function argument (or as a field in a
structure or union), the length of the string must be set in a language-mapping dependent manner. The syntax is:

(81) <string_type> ::= “string
|  “string”

<" <positive_int_const>"“>"

The argument to the string declaration is the maximum size of the string. If a positive integer maximum size is specified,
the string is termed a bounded string. If no maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special built-in functions or standard library
functions for string manipulation. A separate string type may permit substantial optimization in the handling of strings
compared to what can be done with sequences of general types.

7.11.3.3 Wstrings

The wstring data type represents a sequence of wchar, except the wide character null. The type wstring is similar to that
of type string, except that its element type is wchar instead of char. The actual length of a wstring is set at run-time and,
if the bounded form is used, must be less than or equal to the bound.

The syntax for defining a wstring is:

(82) <wide_string_type> ::= “wstring
|  “wstring”

<" <positive_int_const> “>"

7.11.3.4 Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant digits. The scale factor is a non-
negative integer less than or equal to the total number of digits (note that constants with effectively negative scale, such
as 10000, are always permitted).

The fixed data type will be mapped to the native fixed point capability of a programming language, if available. If there
is not a native fixed point type, then the IDL mapping for that language will provide a fixed point data type. Applications
that use the IDL fixed point type across multiple programming languages must take into account differences between the
languages in handling rounding, overflow, and arithmetic precision.

The syntax of fixed type is:

w N

“fixed” “<" <positive_int_const>"“," <positive_int_const>

(96) <fixed_pt_type>
“ >”

(97) <fixed_pt_const_type>

“fixed”

CORBA - Part 1: Interfaces, v3.1 69



7.11.4 Complex Declarator
7.11.4.1 Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for each dimension.

The syntax for arrays is:

(83) <array_declarator> <identifier> <fixed_array_size>*
(84) <fixed_array_size> ::= “[” <positive_int_const>"“]"

The array size (in each dimension) is fixed at compile time. When an array is passed as a parameter in an operation
invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array index as a parameter may yield
incorrect results.

7.11.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque type whose representation is specified by
the language mapping for that object adapter.

The syntax is:

(42) <type_dcl> ::= “native” <simple_declarator>
(52) <simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is similar to an IDL basic type. The possible
values of a native type are language-mapping dependent, as are the means for constructing them and manipulating them.
Any interface that defines a native type requires each language mapping to define how the native type is mapped into that
programming language.

A native type may be used only to define operation parameters, results, and exceptions. If a native type is used for an
exception, it must be mapped to a type in a programming language that can be used as an exception. Native type
parameters are permitted only in operations of local interfaces or valuetypes. Any attempt to transmit a value of a native
type in a remote invocation may raise the MARSHAL standard system exception.

It is recommended that native types be mapped to equivalent type names in each programming language, subject to the
normal mapping rules for type names in that language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant
interface HOA {
Object activate_object(in Servant x);

h
h

The IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++ and the activate_object operation
would map to the following C++ member function signature:

CORBA::0Object ptr activate object(
HypotheticalObjectAdapter: :Servant Xx);

70 CORBA - Part 1: Interfaces, v3.1



The definition of the C++ type HypotheticalObjectAdapter: : Servant would be provided as part of the C++
mapping for the HypotheticalObjectAdapter module.

Note — The native type declaration is provided specifically for use in object adapter interfaces, which require parameters
whose values are concrete representations of object implementation instances. It is strongly recommended that it not be
used in service or application interfaces. The native type declaration allows object adapters to define new primitive types
without requiring changes to the OMG IDL language or to the OMG IDL compiler.

7.11.6 Deprecated Anonymous Types

IDL currently permits the use of anonymous types in a number of places. For example:

struct Foo {
long value;
sequence<Foo> chain; /I Legal (but deprecated)

}

Anonymous types cause a number of problems for language mappings and are therefore deprecated by this specification.
Anonymous types will be removed in a future version, so new IDL should avoid use of anonymous types and use a
typedef to name such types instead. Compilers need not issue a warning if a deprecated construct is encountered.

The following (non-exhaustive) examples illustrate deprecated uses of anonymous types.

Anonymous bounded string and bounded wide string types are deprecated. This rule affects constant definitions, attribute
declarations, return value and parameter type declarations, sequence and array element declarations, and structure, union,
exception, and valuetype member declarations. For example:

const string<5> GREETING = “Hello”"; /I Deprecated
interface Foo {

readonly attribute wstring<5> name; /l Deprecated

wstring<5> op(in wstring<5> param); /I Deprecated
I3
typedef sequence<wstring<5> > WS5Seq; /l Deprecated
typedef wstring<5> NameVector [10]; /I Deprecated
struct A {

wstring<5> mem; /I Deprecated
k

/I Anonymous member type in unions, exceptions,
/I and valuetypes are deprecated as well.

This is better written as:

typedef string<5> GreetingType;
const GreetingType GREETING = “Hello”;

typedef wstring<5> ShortWName;
interface Foo {
readonly attribute ShortWName name;
ShortWName op(in ShortWName param);
h
typedef sequence<ShortWName> NameSeq;
typedef ShortWName NameVector[10];

CORBA - Part 1: Interfaces, v3.1 71



struct A {
GreetingType mem;

h

Anonymous fixed-point types are deprecated. This rule affects attribute declarations, return value and parameter type
declarations, sequence and array element declarations, and structure, union, exception, and valuetype member

declarations.

struct Foo {
fixed<10,5> member; // Deprecated

h
This is better written as:
typedef fixed<10,5> MyType;

struct Foo {
MyType member;

Anonymous member types in structures, unions, exceptions, and valuetypes are deprecated:

union U switch(long) {

case 1:

long array_mem[10]; // Deprecated
case 2:

sequence<long> seq_mem; I/l Deprecated
case 3:

string<5> bstring_mem;

h

This is better written as:

typedef long LongArray[10];
typedef sequence<long> LongSeq;
typedef string<5> ShortName;
union U switch (long) {
case 1:
LongArray array_mem,
case 2:
LongSeq seq_mem,;
case 3:
ShortName bstring_mem;

h

Anonymous array and sequence elements are deprecated:

typedef sequence<sequence<long> > NumberTree; /I Deprecated
typedef fixed<10,2> FixedArray[10];

This is better written as:

typedef sequence<long> ListOfNumbers;
typedef sequence<ListOfNumbers> NumberTree;
typedef fixed<10,2> Fixed_10_2;

typedef Fixed_10_2 FixedArray[10];

72

CORBA - Part 1: Interfaces, v3.1



The preceding examples are not exhaustive. They simply illustrate the rule that, for a type to be used in the definition of
another type, constant, attribute, return value, parameter, or member, that type must have a name. Note that the following
example is not deprecated (even though stylistically poor):

struct Foo {
struct Bar {

long |_mem;
double d_mem;
} bar_mem_1; /I OK, not anonymous
Bar bar_mem_2; /I OK, not anonymous
h
typedef sequence<Foo::Bar> FooBarSeq; /I Scoped names are OK

7.12 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may be returned to indicate that an
exceptional condition has occurred during the performance of a request. The syntax is as follows:

(86) <except_dcl> ::= “exception” <identifier> “{* <member>*“}"

Each exception is characterized by its OMG IDL identifier, an exception type identifier, and the type of the associated
return value (as specified by the <member> in its declaration). If an exception is returned as the outcome to a request,
then the value of the exception identifier is accessible to the programmer for determining which particular exception was
raised.

If an exception is declared with members, a programmer will be able to access the values of those members when an
exception is raised. If no members are specified, no additional information is accessible when an exception is raised.

An identifier declared to be an exception identifier may thereafter appear only in a raises clause of an operation
declaration, and nowhere else.

A set of standard system exceptions is defined corresponding to standard run-time errors, which may occur during the
execution of a request. These standard system exceptions are documented in 8.12, *Exceptions.’
7.13 Operation Declaration
Operation declarations in OMG IDL are similar to C function declarations. The syntax is:
(87) <op_dcl> ::= [ <op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[ <raises_expr>][ <context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>
| 13 VOIdH

An operation declaration consists of:

« An optional operation attribute that specifies which invocation semantics the communication system should provide
when the operation is invoked. Operation attributes are described in 7.13.1, *Operation Attribute.’

» The type of the operation’s return result; the type may be any type that can be defined in OMG IDL. Operations that do
not return a result must specify the void type.

CORBA - Part 1: Interfaces, v3.1 73



« An identifier that names the operation in the scope of the interface in which it is defined.

« A parameter list that specifies zero or more parameter declarations for the operation. Parameter declaration is
described in 7.13.2, *Parameter Declarations.’

« An optional raises expression that indicates which exceptions may be raised as a result of an invocation of this
operation. Raises expressions are described in 7.13.3, "Raises Expressions.’

« An optional context expression that indicates which elements of the request context may be consulted by the method
that implements the operation. Context expressions are described in 7.13.4, ’Context Expressions.’

Some implementations and/or language mappings may require operation-specific pragmas to immediately precede the
affected operation declaration.

7.13.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication service must provide for invocations of
a particular operation. An operation attribute is optional. The syntax for its specification is as follows:

(88) <op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation semantics are best-effort, which does not
guarantee delivery of the call; best-effort implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify a void return type. An operation defined with
the oneway attribute may not include a raises expression; invocation of such an operation, however, may raise a standard
system exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an exception is raised; the semantics are
exactly-once if the operation invocation returns successfully.

7.13.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

(90) <parameter_dcls> ::= *(" <param_dcl>{*,” <param_dcl>}* ")’
[ o)
(92) <param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>
(92) <param_attribute> ::= “in”
| “out”
| “inout”
(95) <param_type_spec> := <base_type_spec>

| <string_type>
| <wide_string_type>
| <scoped _name>

A parameter declaration must have a directional attribute that informs the communication service in both the client and
the server of the direction in which the parameter is to be passed. The directional attributes are:

« in - the parameter is passed from client to server.
« out - the parameter is passed from server to client.

« inout - the parameter is passed in both directions.

74 CORBA - Part 1: Interfaces, v3.1



It is expected that an implementation will not attempt to modify an in parameter. The ability to even attempt to do so is
language-mapping specific; the effect of such an action is undefined.

If an exception is raised as a result of an invocation, the values of the return result and any out and inout parameters are
undefined.

7.13.3 Raises Expressions
There are two kinds of raises expressions as described in this sub clause.

7.13.3.1 Raises Expression

A raises expression specifies which exceptions may be raised as a result of an invocation of the operation or accessing
(invoking the _get operation of) a readonly attribute. The syntax for its specification is as follows:

" ou

(93) <raises_expr> ::= “raises” “(" <scoped_name>
{ “ ’n <SCOped_name> }* i )u

The <scoped_name>s in the raises expression must be previously defined exceptions or native types. If a native type is
used as an exception for an operation, the operation must appear in either a local interface or a valuetype.

In addition to any operation-specific exceptions specified in the raises expression, there are a standard set of system
exceptions that may be signalled by the ORB. These standard system exceptions are described in 8.12.3, *Standard
System Exception Definitions. However, standard system exceptions may not be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no operation-specific exceptions. Invocations of
such an operation are still liable to receive one of the standard system exceptions.

7.13.3.2 getraises and setraises Expressions

getraises and setraises expressions specify which exceptions may be raised as a result of an invocation of the accessor
(_get) and a mutator (_set) functions of an attribute. The syntax for its specification is as follows:

(108) <attr_raises_expr> ::= <get_excep_expr>[ <set_excep_expr>]
| <set_excep_expr>

(109) <get_excep_expr> ::= “getraises” <exception_list>

(110) <set_excep_expr> ::= “setraises” <exception_list>

(111) <exception_list ::= “(” <scoped_name>

{",” <scoped_name>}+")"
The <scoped_name>s in the getraises and setraises expressions must be previously defined exceptions.

In addition to any attribute-specific exceptions specified in the getraises and setraises expressions, there are a standard
set of exceptions that may be signalled by the ORB. These standard exceptions are described in 8.12.3, *Standard System
Exception Definitions. However, standard exceptions may not be listed in a getraises or setraises expression.

The absence of a getraises or setraises expression on an attribute implies that there are no accessor-specific or
mutator-exceptions respectively. Invocations of such an accessor or mutator are still liable to receive one of the standard
exceptions.

CORBA - Part 1: Interfaces, v3.1 75



Note — The exceptions associated with the accessor operation corresponding to a readonly attribute is specified using a
simple raises expression as specified in 7.13.3.1, ’Raises Expression.” The getraises and setraises expressions are
used only in attributes that are not readonly.

7.13.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the performance of a request by the
object. The syntax for its specification is as follows:

(94) <context_expr> ::= “context” “(” <string_literal>
{*, <string_literal>}**)”

The run-time system guarantees to make the value (if any) associated with each <string_literal> in the client’s context
available to the object implementation when the request is delivered. The ORB and/or object is free to use information in
this request context during request resolution and performance.

The absence of a context expression indicates that there is no request context associated with requests for this operation.

Each string_literal is a non-empty string. If the character *' appears in string_literal, it must appear only once, as the
last character of string_literal, and must be preceded by one or more characters other than *'.

The mechanism by which a client associates values with the context identifiers is described in 8.6, ’Context Object.’

7.14 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as part of an interface. An attribute
definition is logically equivalent to declaring a pair of accessor functions; one to retrieve the value of the attribute and one
to set the value of the attribute.

The syntax for attribute declaration is:

(85) <attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>
(104) <readonly_attr_spec> ::= “readonly” “attribute” <param_type_spec>

<readonly_attr_declarator>
(105)<readonly_attr_declarator >::= <simple_declarator> <raises_expr>
| <simple_declarator>
{",” <simple_declarator> }*
(106) <attr_spec> ::="attribute” <param_type_ spec> <attr_declarator>
(207) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator>
{“,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor function—the retrieve value function.
Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;

76 CORBA - Part 1: Interfaces, v3.1



b

attribute float radius;
attribute material_t material;
readonly attribute position_t position;

b

The attribute declarations are equivalent to the following pseudo-specification fragment, assuming that one of the leading
‘ ’s'is removed by application of the Escaped Identifier rule described in “Escaped Identifiers” on page 34:

float __get_radius ();

void __set_radius (in float r);
material_t _ get_material ();

void __set_material (in material_t m);
position_t __ get_position ();

The actual accessor function names are language-mapping specific. The attribute name is subject to OMG IDL’s name
scoping rules; the accessor function names are guaranteed not to collide with any legal operation names specifiable in
OMG IDL.

Attributes are inherited. An attribute name cannot be redefined to be a different type. See 7.19, "TCORBA Module’ for
more information on redefinition constraints and the handling of ambiguity.

7.15 Repository ldentity Related Declarations

Two constructs that are provided for specifying information related to Repository Id are described in this sub clause.
7.15.1 Repository ldentity Declaration

The syntax of a repository identity declaration is as follows:
(202) <type_id_dcl> ::= “typeid” <scoped_name> <string_literal>
A repository identifier declaration includes the following elements:
» the keyword typeid.
« a<scoped_name> that denotes the named IDL construct to which the repository identifier is assigned.
- astring literal that must contain a valid repository identifier value.

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

e module

« interface

e component
* home

« facet

CORBA - Part 1: Interfaces, v3.1 77



* receptacle

* event sink

* event source
« finder

« factory

* event type

« value type

« value type member
* value box

* constant

* typedef

* exception

« attribute

* operation

e enum

* |ocal

The value of the string literal is assigned as the repository identity of the specified type definition. This value will be
returned as the Repositoryld by the interface repository definition object corresponding to the specified type definition.
Language mappings constructs, such as Java helper classes, that return repository identifiers shall return the values
declared for their corresponding definitions.

At most one repository identity declaration may occur for any named type definition. An attempt to redefine the
repository identity for a type definition is illegal, regardless of the value of the redefinition.

If no explicit repository identity declaration exists for a type definition, the repository identifier for the type definition
shall be an IDL format repository identifier, as defined in 14.7.1, ’'OMG IDL Format.’

7.15.2 Repository Identifier Prefix Declaration

The syntax of a repository identifier prefix declaration is as follows:
(103) <type_prefix_dcl> ::= “typeprefix” <scoped_name> <string_literal>
A repository identifier declaration includes the following elements:
« The keyword typeprefix.
» A <scoped_name> that denotes an IDL name scope to which the prefix applies.
« Astring literal that must contain the string to be prefixed to repository identifiers in the specified name scope.

The <scoped_name> is resolved according to normal IDL name resolution rules, based on the scope in which the
declaration occurs. It must denote a previously-declared name of one of the following IDL constructs:

* module

« interface (including abstract or local interface)

78 CORBA - Part 1: Interfaces, v3.1



« value type (including abstract, custom, and box value types)
« event type (including abstract and custom value types)
« specification scope (::)

The specified string is prefixed to the body of all repository identifiers in the specified name scope, whose values are

assigned by default. The specified string shall be a list of one or more identifiers, separated by the “/” characters. These
identifiers are arbitrarily long sequences of alphabetic, digit, underscore (“_"), hyphen (“-”), and period (“.”) characters.
The string shall not contain a trailing slash ("/*"), and it shall not begin with the characters underscore ("_"), hyphen ("-")

or period ("."). To elaborate:

By “prefixed to the body of a repository identifier,” we mean that the specified string is inserted into the default IDL
format repository identifier immediately after the format name and colon ( “IDL:” ) at the beginning of the identifier. A
forward slash ( “/* ) character is inserted between the end of the specified string and the remaining body of the repository
identifier.

The prefix is only applied to repository identifiers whose values are not explicitly assigned by a typeid declaration. The
prefix is applied to all such repository identifiers in the specified name scope, including the identifier of the construct that
constitutes the name scope.

7.15.3 Repository Id Conflict

In IDL that contains both pragma prefix/ID declarations (as defined in “Pragma Directives for Repositoryld” on page 276)
and typeprefix/typeid declarations (as defined in “Repository Identity Declaration” on page 77 and “Repository ldentifier
Prefix Declaration” on page 78), if the repository id for an IDL element computed by using pragmas and typeid/typeprefix
are not identical it is an error. Note that this rule applies only when the repository id value computation uses explicitly
declared values from declarations of both kinds. If the repository id computed using explicitly declared values of one kind
conflicts with 9ne computed with implicit values of the other kind, the repository id based on explicitly declared values
shall prevail.

7.16 Event Declaration

Event type is a specialization of value type dedicated to asynchronous component communication. There are several kinds
of event type declarations: “regular” event types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

(134) <event>

(<event_dcl> | <event_abs_dcl> | <event_forward_dcl>)
7.16.1 Regular Event Type

A regular event type satisfies the following syntax:

(137) <event_dcl> <event_header> “{" <value_element>**“}"
(138) <event_header> ::= [“custom” ] “eventtype”

<identifier> [ <value_inheritance_spec> ]

7.16.1.1 Event Header

The event header consists of two elements:

CORBA - Part 1: Interfaces, v3.1 79



« The event type’s name and optional modifier specifying whether the event type uses custom marshaling.

« An optional value inheritance specification described in 7.9.1.3, "Value Inheritance Specification.’
7.16.1.2 Event Element

An event can contain all the elements that a value can as described in 7.9.1.2, "Value Element’ (i.e., attributes, operations,
initializers, state members).

7.16.2 Abstract Event Type

(136) <event_abs_dcl> ::= "abstract” “eventtype” <identifier>
[ <value_inheritance_spec>]
“{” <eXp0rt>* " }”

Event types may also be abstract. They are called abstract because an abstract event type may not be instantiated. No
<state_member> or <initializers> may be specified. However, local operations may be specified. Essentially they are a
bundle of operation signatures with a purely local implementation.

Note that a concrete event type with an empty state is not an abstract event type.
7.16.3 Event Forward Declaration

(135) <event_forward_dcl> ::= [“abstract” ] “eventtype” <identifier>

A forward declaration declares the name of an event type without defining it. This permits the definition of event types
that refer to each other. The syntax consists simply of the keyword eventtype followed by an <identifier> that names
the event type.

Multiple forward declarations of the same event type name are legal.

It is illegal to inherit from a forward-declared event type whose definition has not yet been seen.
7.16.4 Eventtype Inheritance

As event type is a specialization of value type then event type inheritance is directly analogous to value inheritance (see
7.9.1.3, "Value Inheritance Specification’ for a detailed description of the analogous properties for valuetypes). In
addition, an event type could inherit from a single immediate base concrete event type, which must be the first element
specified in the inheritance list of the event declaration’s IDL. It may be followed by other abstract values or events from
which it inherits.

7.17 Component Declaration

7.17.1 Component

A component declaration describes an interface for a component. The salient characteristics of a component declaration
are as follows:

« A component declaration specifies the name of the component.

« A component declaration may specify a list of interfaces that the component supports.

80 CORBA - Part 1: Interfaces, v3.1



« Component declarations support single inheritance from other component definitions.

« Component declarations may include in its body any attribute declarations that are legal in normal interface
declarations, together with declarations of facets and receptacles of the component, and the event sources and sinks
that the component defines.

7.17.1.1 Syntax

The syntax for declaring a component is as follows:

(112) <component> ::= <component_dcl>

| <component_forward_dcl>
(113)<component_forward_dcl>::= “component” <identifier>
(114) <component_dcl> ::= <component_header>

“{” <component_body>"“}"
<component_forward_dcl> is described in 7.17.1.2, Forward Declaration.’
<component_header> is described in 7.17.2, ’Component Header.’

<component_body> is described in 7.17.3, ’"Component Body.’
7.17.1.2 Forward Declaration

A forward declaration declares the name of a component without defining it. This permits the definition of components
that refer to each other. The syntax consists simply of the keyword component followed by an <identifier> that names
the component. The actual definition must follow later in the specification.

Multiple forward declarations of the same component name are legal.

It is illegal to inherit from a forward-declared component whose definition has not yet been seen.
7.17.2 Component Header
A <component_header> declares the primary characteristics of a component interface.

7.17.2.1 Syntax

The syntax for declaring a component header is as follows:

(115) <component_header> ::=“component” <identifier>
[ <component_inheritance_spec>]

[ <supported_interface_spec> ]
(116)<supported_interface_spec>::=“supports” <scoped_name>
{",” <scoped_name> }*

(117)<component_inheritance_spec>::=“:" <scoped_name>

A component header comprises the following elements:
» The keyword component.
« An <identifier> that names the component type.

« An optional <inheritance_spec>, consisting of a colon and a single <scoped_name> that must denote a previously-

CORBA - Part 1: Interfaces, v3.1 81



defined component type.

« An optional <supported_interface_spec> that must denote one or more previously-defined IDL interfaces.
7.17.2.2 Supported interfaces

A component may optionally support one or more interfaces. When a component definition header includes a supports
clause as follows:

component <component_name> supports <interface_name>{ ... };

For further details see the CORBA Components specification, Clause 1, Supported Interfaces.
7.17.2.3 Component Inheritance

A component may optionally inherit from a component that supports one or more interfaces. This is specified by using the
inheritance construct that looks like:

component <component_name> : <component_name>{ ... };
The following rules apply to component inheritance:
« A derived component type may not directly support an interface.
« The interface for a derived component type is derived from the interface of its base component type.
+ A component type may have at most one base component type.

« The features of a component that are inherited by the derived component are:
* the provides statements
« the uses statements
« the emits statements
« the publishes statements
« the consumes statements
* attributes

See 7.17.2.3, ’Component Inheritance’ for details of component inheritance.
7.17.3 Component Body

(118) <component_body> ::= <component_export>*
(119)  <component_export> <provides_dcl>“;”
<uses_dcl>";"
<emits_dcl>*“;"

I
I
| <publishes_dcl>*“;”
I
I

<consumes_dcl>"“;
<attr_dcl>*“;”

A component forms a naming scope, nested within the scope in which the component is declared. A component body can
contain the following kinds of declarations:

82 CORBA - Part 1: Interfaces, v3.1



« Facet declarations (provides)

» Receptacle declarations (uses)

» Event source declarations (emits or publishes)

« Event sink declarations (consumes)

 Attribute declarations (attribute and readonly attribute)

These declarations and their meanings are described in detail in the CORBA Components specification, Component Model
clause, “Facets and Navigation” through “Events” sub clauses.

7.17.3.1 Facets and Navigation

A component type may provide several independent interfaces to its clients in the form of facets. Facets are intended to
be the primary vehicle through which a component exposes its functional application behavior to clients during normal
execution. A component may exhibit zero or more facets.

7.17.3.1.1 Syntax

A facet is declared with the following syntax:

(120) <provides_dcl> ::="“provides” <interface_type> <identifier>
(121) <interface_type> ::= <scoped_name>
| “Object”

The interface type shall be either the keyword Object, or a scoped name that denotes a previously-declared interface type
that is not a component interface (i.e., is not the interface corresponding to a component definition). The identifier names
the facet within the scope of the component, allowing multiple facets of the same type to be provided by the component.

See the CORBA Components specification, Component Model clause, “Facets and Navigation” for further details.
7.17.3.2 Receptacles

A component definition can describe the ability to accept object references upon which the component may invoke
operations. When a component accepts an object reference in this manner, the relationship between the component and
the referent object is called a connection; they are said to be connected. The conceptual point of connection is called a
receptacle. A receptacle is an abstraction that is concretely manifested on a component as a set of operations for
establishing and managing connections. A component may exhibit zero or more receptacles.

7.17.3.2.1 Syntax
The syntax for describing a receptacle is as follows:

(122) <uses_dcl> ::= “uses” [ “multiple” ]
<interface_type> <identifier>

A receptacle declaration comprises the following elements:
« The keyword uses.

» The optional keyword multiple. The presence of this keyword indicates that the receptacle may accept multiple
connections simultaneously, and results in different operations on the component’s associated interface.

CORBA - Part 1: Interfaces, v3.1 83



« An <interface_type>, which must be either the keyword Object or a scoped name that denotes the interface type that
the receptacle will accept. The scoped name must denote a previously-defined non-component interface type.

« An <identifier> that names the receptacle in the scope of the component.

See the CORBA Components specification (Part 3), Component Model clause, “Receptacles” sub clause for further
details.

7.17.4 Event Sources—publishers and emitters

An event source embodies the potential for the component to generate events of a specified type, and provides
mechanisms for associating consumers with sources.

There are two categories of event sources, publishers and emitters. Both are implemented using event channels supplied
by the container. An emitter can be connected to at most one consumer. A publisher can be connected through the channel
to an arbitrary number of consumers, who are said to subscribe to the publisher event source. A component may exhibit
zero or more emitters and publishers.

7.17.4.1 Publishers
7.17.4.1.1 Syntax
The syntax for an event publisher is as follows:
(124) <publishes_dcl> ::= “publishes” <scoped_name> <identifier>
A publisher declaration consists of the following elements:
» The keyword publishes.
» A <scoped_name> that denotes a previously-defined event type.

« An <identifier> that names the publisher event source in the scope of the component.

See the CORBA Components specification, Component Model clause, “Publisher” sub clause for further details.
7.17.4.2 Emitters

7.17.4.2.1 Syntax

The syntax for an emitter declaration is as follows:
(123) <emits_dcl> ::= “emits” <scoped_name> <identifier>

An emitter declaration consists of the following elements:
« The keyword emits.
» A <scoped_name> that denotes a previously-defined event type.
« An <identifier> that names the event source in the scope of the component.

See the CORBA Components specification, Component Model clause, “Emitters” sub clause for further details.

84 CORBA - Part 1: Interfaces, v3.1



7.17.5 Event Sinks

An event sink embodies the potential for the component to receive events of a specified type. An event sink is, in essence,
a special-purpose facet whose type is an event consumer. External entities, such as clients or configuration services, can
obtain the reference for the consumer interface associated with the sink.

A component may exhibit zero or more consumers.

See the CORBA Components specification, Component Model clause, “Event Sinks” sub clause for further details.
7.17.5.1 Syntax

The syntax for an event sink declaration is as follows:
(125) <consumes_dcl> ::= “consumes” <scoped_name> <identifier>
An event sink declaration contains the following elements:
« The keyword consumes.
» A <scoped_name> that denotes a previously-defined event type.
» An <identifier> that names the event sink in the component’s scope.

See the CORBA Components specification, Component Model clause, “Event Sinks” sub clause for further details.
7.17.6 Basic and Extended Components

A component that satisfies the following properties is known as a Basic Component:
« It does not inherit from another component.
« Its declaration does not contain any provides statements.
« Its declaration does not contain any uses statements.
« Its declaration does not contain any publishes, emits, or consumes statements.

In effect a declaration of a Basic Component fits the pattern:

“component” <identifier> [<supported_interface_spec>]
“{* {<attr_dcl>*;"}* “}"

A component that is not a Basic Component is referred to as an Extended Component.

7.18 Home Declaration

A home declaration describes an interface for managing instances of a specified component type.
7.18.1 Home

The salient characteristics of a home declaration are as follows:

» A home declaration must specify exactly one component type that it manages. Multiple homes may manage the same

CORBA - Part 1: Interfaces, v3.1 85



component type.

A home declaration may specify a primary key type. Primary keys are values assigned by the application environment
that uniquely identify component instances managed by a particular home. Primary key types must be value types
derived from Components::PrimaryKeyBase. There are more specific constraints placed on primary key types,
which are specified in the CORBA Components specification, Component Model clause, “Primary key type
constraints” sub clause.

Home declarations may include any declarations that are legal in normal interface declarations.

Home declarations support single inheritance from other home definitions, subject to a number of constraints that are
described in the CORBA Components specification, Component Model clause, “Home inheritance” sub clause.

Home declarations may specify a list of interfaces that the home supports.

7.18.1.1 Syntax

The syntax for a home definition is as follows:

(126) <home_dcl> ::= <home_header><home_body>

<home_header> is described in “Home Header.”

<home_body> is described in “Home Body.”

7.18.2 Home Header

A <home_header> describes fundamental characteristics of a home interface.

7.18.2.1 Syntax

The syntax for a home header declaration is as follows:

(227) <home_header> ::= “home” <identifier>

[ <home_inheritance_spec> ]

[ <supported_interface_spec> ]

“manages” <scoped_name>

[ <primary_key spec>]
(128)<home_inheritance_spec>::= “:” <scoped_name>
(129) <primary_key_spec> ::= “primarykey” <scoped_name>

A <home_header> consists of the following elements:

86

The keyword home.
An <identifier> that names the home in the enclosing name scope.

An optional <home_inheritance_spec>, consisting of a colon *“:” and a single <scoped_name> that denotes a
previously defined home type.

An optional <supported_interface_spec> that must denote one or more previously defined IDL interfaces.
The keyword manages.

A <scoped_name> that denotes a previously defined component type.

CORBA - Part 1: Interfaces, v3.1



« An optional primary key definition, consisting of the keyword primarykey followed by a <scoped_name> that
denotes a previously defined value type that is derived from the abstract value type
Components::PrimaryKeyBase. Additional constraints on primary keys are described in the CORBA Components
specification, Component Model clause, “Primary key type constraints” sub clause.

Details of semantics can be found in the CORBA Components specification, Component Model clause, “Homes” sub
clause.

7.18.3 Home Body

(130) <h0me_b0dy> = “{” <home_exp0rt>* u}u
(131) <home_export ::=<export>

| <factory_dcl>*“;”

| <finder_dcl>*;"

7.18.3.1 Operation Declarations

A home body may include zero or more operation declarations, where the operation may be a factory operation, a finder
operation, or a normal operation or attribute.

7.18.3.1.1 Factory operations
The syntax of a factory operation is as follows:

(132) <factory_dcl> ::= “factory” <identifier>
“(* [ <init_param_decls>]")"
[ <raises_expr>]

A factor operation declaration consists of the following elements:
« The keyword factory.
« An <identifier> that names the operation in the scope of the home declaration.
« An optional list of initialization parameters (<init_param_decls>) enclosed in parentheses.
« An optional <raises_expr> declaring exceptions that may be raised by the operation.
A factory declaration has an implicit return value of type reference to component.

See the CORBA Components specification, Component Model clause, “Factory operations” sub clause for further details.
7.18.3.1.2 Finder operations
The syntax of a finder operation is as follows:
(133) <finder_dcl> ::= “finder” <identifier>
“(“ [ <init_param_decls>]")"
[ <raises_expr>]
A finder operation declaration consists of the following elements:

» The keyword finder.

CORBA - Part 1: Interfaces, v3.1 87



« An identifier that names the operation in the scope of the storage home declaration.
« An optional list of initialization parameters (<init_param_decls>) enclosed in parentheses.
« An optional <raises_expr> declaring exceptions that may be raised by the operation.

A finder declaration has an implicit return value of type reference to component.

See the CORBA Components specification, Component Model clause, “Finder operations” sub clause for further details.

7.19 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an OMG IDL specification, however,
OMG IDL keywords such as Object must not be preceded by a “CORBA::” prefix. Other interface names such as
TypeCode are not OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.

For example in:

#include <orb.idI>

module M {
typedef CORBA::Object myObjRef; /I Error: keyword Object scoped
typedef TypeCode myTypeCode; /I Error: TypeCode undefined

typedef CORBA::TypeCode TypeCode; // OK
|3

The file orb.idl contains the IDL definitions for the CORBA module. Except for CORBA::TypeCode, the file orb.idl must
be included in IDL files that use names defined in the CORBA module. IDL files that use CORBA::TypeCode may obtain
its definition by including either the file orb.idl or the file TypeCode.idl.

The exact contents of TypeCode.idl are implementation dependent. One possible implementation of TypeCode.idl may
be:

/l PIDL

#ifndef _TYPECODE_IDL_

#define _TYPECODE_IDL_

#pragma prefix "omg.org"

module CORBA {
interface TypeCode;

h
#endif // _TYPECODE_IDL_

For IDL compilers that implicitly define CORBA::TypeCode, TypeCode.idl could consist entirely of a comment as shown
below:

/I PIDL
/I CORBA::TypeCode implicitly built into the IDL compiler
/l Hence there are no declarations in this file

Because the compiler implicitly contains the required declaration, this file meets the requirement for compliance.

The version of CORBA specified in this release of the specification is version <x.y>, and this is reflected in the IDL for
the CORBA module by including the following pragma version (see 14.7.5.3, The Version Pragma’):

88 CORBA - Part 1: Interfaces, v3.1



#pragma version CORBA <x.y>

as the first line immediately following the very first CORBA module introduction line, which in effect associates that
version number with the CORBA entry in the IR. The version number in that version pragma line must be changed
whenever any changes are made to any remotely accessible parts of the CORBA module in an officially released OMG
standard.

7.20 Names and Scoping

OMG IDL identifiers are case insensitive; that is, two identifiers that differ only in the case of their characters are
considered redefinitions of one another. However, all references to a definition must use the same case as the defining
occurrence. This allows natural mappings to case-sensitive languages. For example:

module M {
typedef long Long; /I Error: Long clashes with keyword long
typedef long TheThing;
interface I {
typedef long MyLong;
myLong op1( /I Error: inconsistent capitalization
in TheThing thething; /I Error: TheThing clashes with thething

7.20.1 Qualified Names

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first resolving the qualifier <scoped-
name> to a scope S, and then locating the definition of <identifier> within S. The identifier must be directly defined in S
or (if S is an interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file scope and locates subsequent identifiers
in the qualified name by the rule described in the previous paragraph.

Every OMG IDL definition in a file has a global name within that file. The global name for a definition is constructed as
follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the current root is initially empty (“”)
and the name of the current scope is initially empty (“”). Whenever a module keyword is encountered, the string “::” and
the associated identifier are appended to the name of the current root; upon detection of the termination of the module,
the trailing “::” and identifier are deleted from the name of the current root. Whenever an interface, struct, union, or
exception keyword is encountered, the string “::” and the associated identifier are appended to the name of the current
scope; upon detection of the termination of the interface, struct, union, or exception, the trailing “::” and identifier are
deleted from the name of the current scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows the parameter names to duplicate other identifiers; when parameter
processing has completed, the unnamed scope is exited.

The global name of an OMG IDL definition is the concatenation of the current root, the current scope, a “::”, and the
<identifier>, which is the local name for that definition.

Note that the global name in an OMG IDL files correspond to an absolute ScopedName in the Interface Repository. (See
14.5.1, *Supporting Type Definitions’).

CORBA - Part 1: Interfaces, v3.1 89



Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in derived interfaces.
Such identifiers are considered to be semantically the same as the original definition. Multiple paths to the same original
identifier (as results from the diamond shape in Figure 7.1 on page 50) do not conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers. Consider the following example:

interface A {
exception E {
long L;
5
void f() raises(E);
h

interface B: A {
void g() raises(E);
b

In this example, the exception is known by the global names ::A::E and ::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;

h

interface B {
typedef string<256> string_t;

3

interface C: A, B {
attribute string_t Title; /l Error: Ambiguous
attribute A::string_t Name; /I OK
attribute B::string_t City; /I OK

3

The declaration of attribute Title in interface C is ambiguous, since the compiler does not know which string_t is desired.
Ambiguous declarations yield compilation errors.

7.20.2 Scoping Rules and Name Resolution

Contents of an entire OMG IDL file, together with the contents of any files referenced by #include statements, forms a
naming scope. Definitions that do not appear inside a scope are part of the global scope. There is only a single global
scope, irrespective of the number of source files that form a specification.

The following kinds of definitions form scopes:

« module
 interface
 valuetype
 struct

e union

« operation

90 CORBA - Part 1: Interfaces, v3.1



« exception

« eventtype

« component
» home

The scope for module, interface, valuetype, struct, exception, eventtype, component, and home begins immediately
following its opening ‘{* and ends immediately preceding its closing ‘}’. The scope of an operation begins immediately
following its “(* and ends immediately preceding its closing *)’. The scope of a union begins immediately following the
‘(* following the keyword switch, and ends immediately preceding its closing ‘}’. The appearance of the declaration of
any of these kinds in any scope, subject to semantic validity of such declaration, opens a nested scope associated with that
declaration.

An identifier can only be defined once in a scope. However, identifiers can be redefined in nested scopes. An identifier
declaring a module is considered to be defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration with the same identifier within the same scope reopens the module and hence its scope, allowing additional
definitions to be added to it.

The name of an interface, value type, struct, union, exception, or a module may not be redefined within the immediate
scope of the interface, value type, struct, union, exception, or the module. For example:

module M {
typedef short M; /[ Error: M is the name of the module
I in the scope of which the typedef is.
interface | {

void i (in short j); Il Error: i clashes with the interface name |
h
k
An identifier from a surrounding scope is introduced into a scope if it is used in that scope. An identifier is not introduced

into a scope by merely being visible in that scope. The use of a scoped name introduces the identifier of the outermost
scope of the scoped name. For example in:

module M {
module Innerl {
typedef string S1;

h

module Inner2 {
typedef string innerl; Il OK

b
}

The declaration of Inner2::innerl is OK because the identifier Inner1, while visible in module Inner2, has not been
introduced into module Inner2 by actual use of it. On the other hand, if module Inner2 were:

module Inner2{

typedef Innerl::S1 S2; /I Innerlintroduced
typedef string innerl; I/l Error
typedef string S1; Il OK

h

CORBA - Part 1: Interfaces, v3.1 91



The definition of innerl is now an error because the identifier Inner1 referring to the module Inner1 has been introduced
in the scope of module Inner2 in the first line of the module declaration. Also, the declaration of S1 in the last line is OK
since the identifier S1 was not introduced into the scope by the use of Inner1::S1 in the first line.

Only the first identifier in a qualified name is introduced into the current scope. This is illustrated by Inner1::S1 in the
example above, which introduces “Inner1” into the scope of “Inner2” but does not introduce “S1.” A qualified name of
the form “::X::Y::Z” does not cause “X” to be introduced, but a qualified name of the form “X::Y::Z” does.

Enumeration value names are introduced into the enclosing scope and then are treated like any other declaration in that
scope. For example:

interface A {
enum E { E1, E2, E3 }; /l'line 1

enum BadE { E3, E4,E5 }; /I Error: E3 is already introduced
// into the A scopein line 1 above

h

interface C {
enum AnotherE { E1, E2, E3 };

h

interface D : C, A {
union U switch (E) {
case A::E1 : boolean b; // OK.
case E2:long |; /I Error: E2 is ambiguous (notwithstanding
Il the switch type specification!!)
3
3

Type names defined in a scope are available for immediate use within that scope. In particular, see 7.11.2, *Constructed
Types on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be resolved by successively searching farther
out in enclosing scopes, while taking into consideration inheritance relationships among interfaces. For example:

module M {
typedef long ArgType;
typedef ArgType AType; /l'line 11
interface B {
typedef string ArgType; /l'line 13
ArgType opb(in AType i); /l'line 12
h
I
module N {
typedef char ArgType; /l'line 14
interface Y : M::B {
void opy(in ArgType i); //'line 15
h
I3

The following scopes are searched for the declaration of ArgType used on line I5:

1. Scope of N::Y before the use of ArgType.

92 CORBA - Part 1: Interfaces, v3.1



2. Scope of N::Y’s base interface M::B. (inherited scope).
3. Scope of module N before the definition of N::Y.
4. Global scope before the definition of N.

M::B::ArgType is found in step 2 in line I3, and that is the definition that is used in line 15, hence ArgType in line I5 is
string. It should be noted that ArgType is not char in line I5. Now if line I3 were removed from the definition of interface
M::B, then ArgType on line 15 would be char from line 14, which is found in step 3.

Following analogous search steps for the types used in the operation M::B::opb on line 12, the type of AType used on line
12 is long from the typedef in line 11 and the return type ArgType is string from line I3.

7.20.3 Special Scoping Rules for Type Names
Once a type has been defined anywhere within the scope of a module, interface or valuetype, it may not be redefined

except within the scope of a nested module, interface or valuetype, or within the scope of a derived interface or valuetype.
For example:

typedef short TempType; /l Scope of TempType begins here
module M {
typedef string ArgType; Il Scope of ArgType begins here
struct S {
::M::ArgType al; /I Nothing introduced here
M::ArgType az; /I M introduced here
::TempType temp; /l Nothing introduced here
4 /l Scope of (introduced) M ends here
...
4 /I Scope of ArgType ends here

/l Scope of global TempType ends here (at end of file)
The scope of an introduced type name is from the point of introduction to the end of its enclosing scope.

However, if a type name is introduced into a scope that is nested in a non-module scope definition, its potential scope
extends over all its enclosing scopes out to the enclosing non-module scope. (For types that are defined outside an inon-
module scope, the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long | = 10;
typedef short ;

interface A {

struct S {
struct T {
ArgType x[I]; /[l ArgType and | introduced
longy; /l anewy is defined, the existing Y
/l'is not used
}m;
h
typedef string ArgType; /I Error: ArgType redefined
enum | {11,12}; /l Error: | redefined
typedef short Y; Il OK

CORBA - Part 1: Interfaces, v3.1 93



}; I/ Potential scope of ArgType and | ends here

interface B : A {
typedef long ArgType  // OK, redefined in derived interface

struct S { /I OK, redefined in derived interface
ArgType x; /I xis along
A::ArgTypey; /l'y is a string

I

h
h

A type may not be redefined within its scope or potential scope, as shown in the preceding example. This rule prevents
type names from changing their meaning throughout a non-module scope definition, and ensures that reordering of
definitions in the presence of introduced types does not affect the semantics of a specification.

Note that, in the following, the definition of M::A::U::1 is legal because it is outside the potential scope of the I introduced
in the definition of M::A::S::T::ArgType. However, the definition of M::A::1 is still illegal because it is within the potential
scope of the I introduced in the definition of M::A::S::T::ArgType.

module M {
typedef long ArgType;
const long | = 10;

interface A {

struct S {
struct T {
ArgType x[I]; /I ArgType and | introduced
rm;
|3
struct U {
long | Il OK, I'is not a type name
I3

enum | {11,12}; /I Error: | redefined
}; Il Potential scope of ArgType and | ends here
|3

Note that redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;

module M {
struct S {
ArgType X; /l xis along
|3
typedef string ArgType; /I OK!
struct T {
ArgTypeyy; /' Ugly but OK, y is a string
|3
|3

94 CORBA - Part 1: Interfaces, v3.1



8 ORB Interface

8.1 Overview

This clause introduces the operations that are implemented by the ORB core, and describes some basic ones, while
providing reference to the description of the remaining operations that are described elsewhere. The ORB interface is the
interface to those ORB functions that do not depend on which object adapter is used. These operations are the same for
all ORBs and all object implementations, and can be performed either by clients of the objects or implementations. The
Object interface contains operations that are implemented by the ORB, and are accessed as implicit operations of the
Object Reference. The ValueBase interface contains operations that are implemented by the ORB, and are accessed as
implicit operations of the ValueBase Reference.

Because the operations in this sub clause are implemented by the ORB itself, they are not in fact operations on objects,
although they are described that way for the Object or ValueBase interface operations and the language binding will, for
consistency, make them appear that way.

8.2 The ORB Operations

The ORB interface contains the operations that are available to both clients and servers. These operations do not depend
on any specific object adapter or any specific object reference.

module CORBA {

interface NVList; /l forward declaration
interface OperationDef; /I forward declaration
interface TypeCode; /l forward declaration

typedef short PolicyErrorCode;
I/l for the definition of consts see “PolicyErrorCode” on page 127
typedef unsigned long PolicyType;

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;
exception PolicyError {PolicyErrorCode reason;};

typedef string Repositoryld;
typedef string Identifier;

/I StructMemberSeq defined in Chapter 10
/I UnionMemberSeq defined in Chapter 10
/I EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;

typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetail Type;

CORBA - Part 1: Interfaces, v3.1 95



96

typedef CORBA::OctetSeq ServiceDetailData;
typedef sequence<ServiceOption> ServiceOptionSeq;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetail Type service_detail_type;
ServiceDetailData service_detail;

I3
typedef sequence<ServiceDetail> ServiceDetailSeq;
struct Servicelnformation {

ServiceOptionSeq service_options;

ServiceDetailSeq service_details;

b

native ValueFactory;
typedef string ORBId;
interface ORB {

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;

exception InvalidName {};
ORBiId id();
string object_to_string (

in Object obj
)i
Object string_to_object (

in string str
)i

/l Dynamic Invocation related operations

void create_list (

in long count,
out NVList new_list
)i
void create_operation_list (
in OperationDef oper,
out NVList new_list

);

void get_default_context (
out Context ctx

);

CORBA - Part 1: Interfaces, v3.1



void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req
)i

boolean poll_next_response();

void get_next_response(
out Request req
) raises (WrongTransaction);

/I Service information operations

boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);
ObjectldList list_initial_services ();
/I Initial reference operation

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

/l Type code creation operations

TypeCode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeCode create_alias_tc (
in Repositoryld id,
in Identifier name,
in TypeCode original_type

CORBA - Part 1: Interfaces, v3.1

97



98

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

):

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc (// deprecated

in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);
TypeCode create_value_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members
)i
TypeCode create_value_box_tc (
in Repositoryld id,
in ldentifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in Repositoryld id,

CORBA - Part 1: Interfaces, v3.1



in Identifier name

)

TypeCode create_recursive_tc(

in Repositoryld id
)i
TypeCode create_abstract_interface_tc(
in Repositoryld id,
in Identifier name
)i
TypeCode create_local_interface_tc(
in Repositoryld id,
in ldentifier name
)i
TypeCode create_component_tc (
in Repositoryld id,
in ldentifier name

)

TypeCode create_home_tc (
in Repositoryld id,
in Identifier name

);

TypeCode create_event_tc (

in Repositoryld id,

in Identifier name,

in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

)i

/l Thread related operations
boolean work_pending();
void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

)i
void destroy();
/l Policy related operations
Policy create_policy(
in PolicyType type,

in any val
) raises (PolicyError);

CORBA - Part 1: Interfaces, v3.1

99



/l Dynamic Any related operations deprecated and removed
/I from primary list of ORB operations

/I Value factory operations

ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory_factory

)i
void unregister_value_factory(in Repositoryld id);
ValueFactory lookup_value_factory(in Repositoryld id);

void register_initial_reference(
in Objectld id,
in Object obj
) raises (InvalidName);
|3
I3

All types defined in this clause are part of the CORBA module. When referenced in OMG IDL, the type names must be
prefixed by “CORBA::".

The operations object_to_string and string_to_object are described in “Converting Object References to Strings” on
page 101.

For a description of the create_list and create_operation_list operations, see “Polling” on page 186. The
get_default_context operation is described in “get_default_context” on page 102. The send_multiple_requests_oneway
and send_multiple_requests_deferred operations are described in “send_multiple_requests” on page 184. The
poll_next_response and get_next_response operations are described in “get_next_response and poll_next_response” on
page 185.

The list_intial_services and resolve_initial_references operations are described in “Obtaining Initial Object References”
on page 117.

The Type code creation operations with names of the form create_<type>_tc are described in “Creating TypeCodes” on
page 143.

The work_pending, perform_work, shutdown, destroy and run operations are described in “Thread-Related Operations”
on page 102.

The create_policy operations is described in “Create_policy” on page 128.

The register_value_factory, unregister_value_factory and lookup_value_factory operations are described in “Language
Specific Value Factory Requirements” on page 163.

The register_initial_reference operation is described in “register_initial_reference” on page 410.

100 CORBA - Part 1: Interfaces, v3.1



8.2.1 ORB Identity

8.2.11 id

ORBid id();

The id operation returns the identity of the ORB. The returned ORBId is the string that was passed to ORB_init (see
“ORB Initialization” on page 115) as the orb_identifier parameter when the ORB was created. If that was the empty
string, the returned string is the value associated with the -ORBid tag in the arg_list parameter. Calling id on the default
ORB returns the empty string.

8.2.2 Converting Object References to Strings

8.2.2.1 object_to_string

string object_to_string (
in Object obj
)i

8.2.2.2 string_to_object

Object string_to_object (
in string str

)

Because an object reference is opaque and may differ from ORB to ORB, the object reference itself is not a convenient
value for storing references to objects in persistent storage or communicating references by means other than invocation.
Two problems must be solved: allowing an object reference to be turned into a value that a client can store in some other
medium, and ensuring that the value can subsequently be turned into the appropriate object reference.

An object reference may be translated into a string by the operation object_to_string. The value may be stored or
communicated in whatever ways strings may be manipulated. Subsequently, the string_to_object operation will accept a
string produced by object_to_string and return the corresponding object reference.

To guarantee that an ORB will understand the string form of an object reference, that ORB’s object_to_string operation
must be used to produce the string. For all conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same object, if the two operations are
performed on the same ORB. For all conforming ORB’s supporting IOP, this remains true even if the two operations are
performed on different ORBs.

8.2.3 Getting Service Information

8.2.3.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out Servicelnformation service_information;

CORBA - Part 1: Interfaces, v3.1 101



The get_service_information operation is used to obtain information about CORBA facilities and services that are
supported by this ORB. The service type for which information is being requested is passed in as the in parameter
service_type, the values defined by constants in the CORBA module. If service information is available for that type, that
is returned in the out parameter service_information, and the operation returns the value TRUE. If no information for the
requested services type is available, the operation returns FALSE (i.e., the service is not supported by this ORB).

8.2.4 Creating a New Context

8.2.4.1 get_default_context

void get_default_context( // PIDL
out Context ctx /I context object

);

This operation creates a new empty Context object every time it is called. The operation is defined in the ORB interface.
8.2.5 Thread-Related Operations

To support single-threaded ORBSs, as well as multi-threaded ORBs that run multi-thread-unaware code, several operations
are included in the ORB interface. These operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the ORB::run and ORB::shutdown are
useful in fully multi-threaded programs.

These operations are defined on the ORB rather than on an object adapter to allow the main thread to be used for all kinds
of asynchronous processing by the ORB. Defining these operations on the ORB also allows the ORB to support multiple
object adapters, without requiring the application main to know about all the object adapters. The interface between the
ORB and an object adapter is not standardized.

8.2.5.1 work_pending

boolean work_pending();
This operation returns an indication of whether the ORB needs the main thread to perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work and a result of FALSE indicates that
the ORB does not need the main thread.

8.2.5.2 perform_work

void perform_work();
If called by the main thread, this operation performs an implementation-defined unit of work; otherwise, it does nothing.
It is platform-specific how the application and ORB arrange to use compatible threading primitives.

The work_pending() and perform_work() operations can be used to write a simple polling loop that multiplexes the main
thread among the ORB and other activities. Such a loop would most likely be needed in a single-threaded server. A multi-
threaded server would need a polling loop only if there were both ORB and other code that required use of the main
thread.

Here is an example of such a polling loop:

102 CORBA - Part 1: Interfaces, v3.1



// C++
for (;;) {
if (orb->work pending()) {
orb->perform work() ;
}i

// do other things
// sleep?

}i

Once the ORB has shutdown, work_pending and perform_work will raise the BAD_INV_ORDER exception with minor
code 4. An application can detect this exception to determine when to terminate a polling loop.

8.2.5.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its internal functions. Single threaded ORB
implementations, and some multi-threaded ORB implementations, need the use of the main thread in order to function
properly. For maximum portability, an application should call either run or perform_work on its main thread. run may be
called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated when some thread calls shutdown.
8.2.5.4 shutdown

void shutdown(
in boolean wait_for_completion

)i
This operation instructs the ORB to shut down, that is, to stop processing in preparation for destruction.
Shutting down the ORB causes all object adapters to be destroyed, since they cannot exist in the absence of an ORB.

In the case of the POA, all POAManagers are deactivated prior to destruction of all POAs. The deactivation that the ORB
performs should be the equivalent of calling deactivate with the value TRUE for etherealize_objects and with the
wait_for_completion parameter same as what shutdown was called with.

Shut down is complete when all ORB processing (including request processing and object deactivation or other operations
associated with object adapters) has completed and the object adapters have been destroyed. In the case of the POA, this
means that all object etherealizations have finished and root POA has been destroyed (implying that all descendent POASs
have also been destroyed).

Shut down is complete when all ORB processing has completed and the object adapters have been destroyed. ORB
processing is defined as including request processing and object deactivation or other operations associated with object
adapters, and the forwarding of the responses from deferred synchronous invocations to their associated reply handlers. In
the case of the POA, this means that all object etherealizations have finished and root POA has been destroyed (implying
that all descendent POAs have also been destroyed)

If the wait_for_completion parameter is TRUE, this operation blocks until the shut down is complete. If an application
does this in a thread that is currently servicing an invocation, the ORB will not shutdown, and the BAD_INV_ORDER
system exception will be raised with the OMG minor code 3, and completion status COMPLETED_NO, since blocking
would result in a deadlock.

CORBA - Part 1: Interfaces, v3.1 103



If the wait_for_completion parameter is FALSE, then shutdown may not have completed upon return. An ORB
implementation may require the application to call (or have a pending call to) run or perform_work after shutdown has
been called with its parameter set to FALSE, in order to complete the shutdown process.

Additionally in systems that have Portable Object Adapters (see Clause 14) shutdown behaves as if POA::destroy is
called on the Root POA with its first parameter set to TRUE and the second parameter set to the value of the
wait_for_completion parameter that shutdown is invoked with.

While the ORB is in the process of shutting down, the ORB operates as normal, servicing incoming and outgoing requests
until all requests have been completed. An implementation may impose a time limit for requests to complete while a
shutdown is pending.

Once an ORB has shutdown, only object reference management operations(duplicate, release and is_nil) may be invoked
on the ORB or any object reference obtained from it. An application may also invoke the destroy operation on the ORB
itself. Invoking any other operation will raise the BAD_INV_ORDER system exception with the OMG minor code 4.

8.2.5.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the application. Any operation invoked on a
destroyed ORB reference will raise the OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call
to ORB_init with the same ORBid will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down process and block until the ORB
has shut down before it destroys the ORB. The behavior is similar to that achieved by calling shutdown with the
wait_for_completion parameter set to TRUE. If an application calls destroy in a thread that is currently servicing an
invocation, the BAD_INV_ORDER system exception will be raised with the OMG minor code 3, since blocking would
result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always call shutdown and destroy on all
ORB instances before exiting.

8.3  Object Reference Operations

There are some operations that can be done on any object. These are not operations in the normal sense, in that they are
implemented directly by the ORB, not passed on to the object implementation. We will describe these as being operations
on the object reference, although the interfaces actually depend on the language binding. As above, where we used
interface Object to represent the object reference, we define an interface for Object:

module CORBA {

interface DomainManager; Il forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; /l forward declaration
typedef sequence <Policy> PolicyList;

typedef sequence<PolicyType> PolicyTypeSeq;

exception InvalidPolicies { sequence <unsigned short> indices; };

104 CORBA - Part 1: Interfaces, v3.1



interface Context; /l forward declaration

typedef string Identifier;

interface Request; /l forward declaration
interface NVList; // forward declaration
struct NamedValue{}; /l an implicitly well known type

typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};
interface ORB; /I PIDL forward declaration
interface Object { /l PIDL
InterfaceDef get_interface ();
boolean is_nil();
Object duplicate ();
void release ();
boolean is_a (
in Repositoryld logical_type_id
);
boolean non_existent();
boolean is_equivalent (
in Object other_object
);

unsigned long hash(

in unsigned long maximum
)i
void create_request (
in Context ctx
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request req,
in Flags req_flag

);
Policy get_policy (

in PolicyType policy_type
)i

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

CORBA - Part 1: Interfaces, v3.1

105



) raises (InvalidPolicies);

Policy get_client_policy(
in PolicyType type
)i

PolicyList get_policy_overrides(
in PolicyTypeSeq types
)i

boolean validate_connection(
out PolicyList inconsistent_policies

)i
Object get_component ();
string respository_id();
ORB get_orb();
I
I

The create_request operation is part of the Object interface because it creates a pseudo-object (a Request) for an object.
It is described with the other Request operations in “Request Operations” on page 179.

Unless otherwise stated below, the operations in the IDL above do not require access to remote information.
8.3.1 Determining the Object Interface

8.3.1.1 get_interface

InterfaceDef get_interface();

get_interface, returns an object in the Interface Repository that describes the most derived type of the object addressed by
the reference. See the Interface Repository clause for a definition of operations on the Interface Repository. The
implementation of this operation may involve contacting the ORB that implements the target object.

If the interface repository is not available, get_interface raises INTF_REPOS with standard minor code 1. If the
interface repository does not contain an entry for the object's (most derived) interface, get_interface raises
INTF_REPOS with standard minor code 2.

8.3.1.2 repository_id

repository_id returns the repository ID of an object (see “Component Interface Repository Interfaces” on page 261 for
details of repository IDs). The implementation of this operation must contact the ORB that implements the target object.

106 CORBA - Part 1: Interfaces, v3.1



8.3.2 Duplicating and Releasing Copies of Object References

8.3.2.1 duplicate
Object duplicate();
8.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients or implementations to allocate
storage for them. Therefore, there are operations defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a duplicate. Note that the object
implementation is not involved in creating the duplicate, and that the implementation cannot distinguish whether the
original or a duplicate was used in a particular request.

When an object reference is no longer needed by a program, its storage may be reclaimed by use of the release operation.
Note that the object implementation is not involved, and that neither the object itself nor any other references to it are
affected by the release operation.

8.3.3 Nil Object References

8.3.3.1 is_nil

boolean is_nil();
An object reference whose value is OBJECT_NIL denotes no object. An object reference can be tested for this value by
the is_nil operation. The object implementation is not involved in the nil test.

8.3.4 Equivalence Checking Operation

8.34.1 is_a

boolean is_a(
in Repositoryld logical_type_id
)i

An operation is defined to facilitate maintaining type-safety for object references over the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (Repositoryld). The operation returns true if the object is
really an instance of that type, including if that type is an ancestor of the “most derived” type of that object.

Determining whether an object’s type is compatible with the logical_type_id may require contacting a remote ORB or
interface repository. Such an attempt may fail at either the local or the remote end. If is_a cannot make a reliable
determination of type compatibility due to failure, it raises an exception in the calling application code. This enables the
application to distinguish among the TRUE, FALSE, and indeterminate cases.

This operation exposes to application programmers functionality that must already exist in ORBs that support “type safe
narrow” and allows programmers working in environments that do not have compile time type checking to explicitly
maintain type safety.

This operation always returns TRUE for the logical_type_id IDL:omg.org/CORBA/Object:1.0

CORBA - Part 1: Interfaces, v3.1 107



8.3.5 Probing for Object Non-Existence

8.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy object) has been destroyed. It does this
without invoking any application level operation on the object, and so will never affect the object itself. It returns true
(rather than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that the object does not exist;
otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event channels, and base relationship
services, might use this operation in their “idle time” to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection. In the case of proxies, this kind of activity can cascade, such that
cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the target object. Such an attempt may
fail at either the local or the remote end. If non-existent cannot make a reliable determination of object existence due to
failure, it raises an exception in the calling application code. This enables the application to distinguish among the true,
false, and indeterminate cases.

8.3.6 Object Reference Identity

In order to efficiently manage state that include large numbers of object references, services need to support a notion of
object reference identity. Such services include not just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint groups of potentially equivalent
references, and the other supports more expensive pairwise equivalence testing. Together, these operations support
efficient maintenance and search of tables keyed by object references.

8.3.6.1 Hashing Object Identifiers

8.3.6.1.1 hash

unsigned long hash(
in unsigned long maximum

):

Object references are associated with ORB-internal identifiers that may indirectly be accessed by applications using the
hash operation. The value of this identifier does not change during the lifetime of the object reference, and so neither will
any hash function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object reference may return the same hash
value. However, if two object references hash differently, applications can determine that the two object references are not
identical.

The maximum parameter to the hash operation specifies an upper bound on the hash value returned by the ORB. The
lower bound of that value is zero. Since a typical use of this feature is to construct and access a collision chained hash
table of object references, the more randomly distributed the values are within that range, and the cheaper those values are
to compute, the better.

108 CORBA - Part 1: Interfaces, v3.1



For bridge construction, note that proxy objects are themselves objects, so there could be many proxy objects representing
a given “real” object. Those proxies would not necessarily hash to the same value.

8.3.6.2 Equivalence Testing

8.3.6.2.1 is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are equivalent, so far as the ORB can easily
determine. It returns TRUE if the target object reference is known to be equivalent to the other object reference passed as
its parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object references that in fact refer to the same
object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct object references refer to the same
object. In general, the existence of reference translation and encapsulation, in the absence of an omniscient topology
service, can make such determination impractically expensive. This means that a FALSE return from is_equivalent
should be viewed as only indicating that the object references are distinct, and not necessarily an indication that the
references indicate distinct objects. Setting of local policies on the object reference is not taken into consideration for the
purposes of determining object reference equivalence.

A typical application use of this operation is to match object references in a hash table. Bridges could use it to shorten the
lengths of chains of proxy object references. Externalization services could use it to “flatten” graphs that represent
cyclical relationships between objects. Some might do this as they construct the table, others during idle time.

8.3.7 Type Coercion Considerations

Many programming languages map Object to programming constructs that support inheritance. Mappings to languages
(such as C++ and Java) typically provide a mechanism for narrowing (down-casting) an object reference from a base
interface to a more derived interface. To do such down-casting in a type safe way, knowledge of the full inheritance
hierarchy of the target interface may be required. The implementation of down-cast must either contact an interface
repository or the target itself, to determine whether or not it is safe to down-cast the client’s object reference. This
requirement is not acceptable when a client is expecting only asynchronous communication with the target. Therefore, for
the appropriate languages an unchecked down-cast operation (also referred to as unchecked narrow operation) shall be
provided in the mapping of Object. This unchecked narrow always returns a stub of the requested type without checking
that the target really implements that interface.

8.3.8 Getting Policy Associated with the Object
8.3.8.1 get_policy
The get_policy operation returns the policy object of the specified type (see “Policy Object” on page 125), which

applies to this object. It returns the effective Policy for the object reference. The effective Policy is the one that would be
used if a request were made.

CORBA - Part 1: Interfaces, v3.1 109



This Policy is determined first by obtaining the effective override for the PolicyType as returned by get_client_policy.
The effective override is then compared with the Policy as specified in the IOR. The effective Policy is determined by
reconciling the effective override and the IOR-specified Policy (see “Server Side Policy Management” on page 131). If
the two policies cannot be reconciled, the standard system exception INV_POLICY is raised with standard minor code 1.
The absence of a Policy value in the IOR implies that any legal value may be used.

Invoking non_existent on an object reference prior to get_policy ensures the accuracy of the returned effective Policy. If
get_policy is invoked prior to the object reference being bound, a compliant implementation shall attempt a binding and
then return the effective Policy. If the binding attempt fails it shall pass through the system exception returned from the

binding attempt. Note that if the effective Policy may change from invocation to invocation due to transparent rebinding.

Policy get_policy (

in PolicyType policy_type
)i
Parameter(s)
e policy_type

The type of policy to be obtained.

Return Value

A Policy object of the type specified by the policy_type parameter.

Exception(s)
+ CORBA:INV_POLICY

Raised when the value of policy type is not valid either because the specified type is not supported by this ORB
or because a policy object of that type is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation (e.g.,
DomainManager::get_domain_policy for some security policies) for some policy types.

8.3.8.2 get_client_policy

Policy get_client_policy(
in PolicyType type
)i

Returns the effective overriding Policy for the object reference. The effective override is obtained by first checking for
an override of the given PolicyType at the Object scope, then at the Current scope, and finally at the ORB scope. If
no override is present for the requested PolicyType, a system-dependent default value for that Policy Type may be
returned. A nil Policy reference may also be returned to indicate that there is no default for the policy. Portable
applications are expected to set the desired “defaults” at the ORB scope since default Policy values are not specified.

8.3.8.3 get_policy_overrides
PolicyList get_policy_overrides(

in PolicyTypeSeq types
)i

110 CORBA - Part 1: Interfaces, v3.1



Returns the list of Policy overrides (of the specified policy types) set at the Object scope. If the specified sequence is
empty, all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the
Object scope, an empty sequence is returned.

8.3.9 Overriding Associated Policies on an Object Reference

8.3.9.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new policies associated with it. It takes two
input parameters. The first parameter policies is a sequence of references to Policy objects. The second parameter
set_add of type SetOverrideType indicates whether these policies should be added onto any other overrides that already
exist (ADD_OVERRIDE) in the object reference, or they should be added to a clean override free object reference
(SET_OVERRIDE). This operation associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an operation at the client end can be
overridden using this operation. Attempts to override any other policy will result in the raising of the
CORBA::NO_PERMISSION exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

Parameter(s)

* policies
A sequence of Policy objects that are to be associated with the new copy of the object reference returned by this
operation. If the sequence contains two or more Policy objects with the same Policy Type value, the operation raises
the standard system exception BAD_PARAM with minor code 30.

e set_add
Whether the association is in addition to (ADD_OVERRIDE) or as a replacement of (SET_OVERRIDE) any existing
overrides already associated with the object reference. If the value of this parameter is SET_OVERRIDE, the supplied
policies completely replace all existing overrides associated with the object reference. If the value of this parameter
is ADD_OVERRIDE, the supplied policies are added to the existing overrides associated with the object reference,
except that if a supplied Policy object has the same PolicyType value as an existing override, the supplied Policy
object replaces the existing override.

Return Value

A copy of the object reference with the overrides from policies associated with it in accordance with the value of
set_add.

Exception(s)

* InvalidPolicies
Raised when an attempt is made to override any policy that cannot be overridden.

CORBA - Part 1: Interfaces, v3.1 111



8.3.10 Validating Connection

8.3.10.1 validate_connection

boolean validate_connection(
out PolicyList inconsistent_policies

);

Returns the value TRUE if the current effective policies for the Object will allow an invocation to be made. If the object
reference is not yet bound, a binding will occur as part of this operation. If the object reference is already bound, but
current policy overrides have changed or for any other reason the binding is no longer valid, a rebind will be attempted
regardless of the setting of any RebindPolicy override. The validate_connection operation is the only way to force
such a rebind when implicit rebinds are disallowed by the current effective RebindPolicy. The attempt to bind or rebind
may involve processing GIOP LocateRequests by the ORB.

If the RoutingPolicy ROUTE_FORWARD or ROUTE_STORE_AND_FORWARD are in effect when validate_connection is
invoked then the client ORB shall attempt to open a connection for the first hop to the first target Router (applies to both
Router and PersistentRequestRouter) as if it were the target Object and return success or failure based on success or
failure to establish this connection.

Returns the value FALSE if the current effective policies would cause an invocation to raise the standard system
exception INV_POLICY. If the current effective policies are incompatible, the out parameter inconsistent_policies
contains those policies causing the incompatibility. This returned list of policies is not guaranteed to be exhaustive. If the
binding fails due to some reason unrelated to policy overrides, the appropriate standard system exception is raised.

8.3.11 Getting the Domain Managers Associated with the Object

8.3.11.1 get_domain_managers

The get_domain_managers operation allows administration services (and applications) to retrieve the domain managers
(see “Management of Policies” on page 130), and hence the security and other policies applicable to individual objects
that are members of the domain.

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value

The list of immediately enclosing domain managers of this object. At least one domain manager is always returned in the
list since by default each object is associated with at least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements the target object.

112 CORBA - Part 1: Interfaces, v3.1



8.3.12 Getting Component Associated with the Object

8.3.12.1 get_component

Object get_component ();

If the target object reference is itself a component reference (i.e., it denotes the component itself), the get_component
operation returns the same reference (or another equivalent reference). If the target object reference is a facet reference
the get_component operation returns an object reference for the component. If the target reference is neither a
component reference nor a provided reference, get_component returns a nil reference.

8.3.13 Getting the ORB

8.3.13.1 get_orb

ORB get_orb();

This operation returns the local ORB that is handling this particular Object Reference.

8.3.14 LocalObject Operations

Local interfaces are implemented by using CORBA::LocalObject, which derives from CORBA::Object and provides
implementations of Object pseudo operations and any other ORB specific support mechanisms that are appropriate for
such objects. Object implementation techniques are inherently language mapping specific. Therefore, the LocalObject
type is not defined in IDL, but is specified by each language mapping.

« The LocalObject type provides implementations of the following Object pseudo-operations that raise the
NO_IMPLEMENT system exception with standard minor code 8:
e get_interface
e get_domain_managers
e get_policy
e get_client_policy
* set_policy_overrides
e get_policy_overrides
e validate_connection
e get_component
e respository_id
» The LocalObject type provides implementations of the following pseudo-operations:
* non_existent - always returns false.
* hash - returns a hash value that is consistent for the lifetime of the object.
«is_equivalent - returns true if the references refer to the same LocalObject implementation.

«is_a-returns TRUE if the LocalObject derives from or is itself the type specified by the logical _type_id
argument.

e get_orb - The default behavior of this operation when invoked on a reference to a local object is to return the
system exception NO_IMPLEMENT with standard minor code 8. Certain local objects that have close association
with an ORB, like POAs, Current objects and certain portable interceptors related local objects override the default

CORBA - Part 1: Interfaces, v3.1 113



behavior and return a reference to the ORB that they are associated with. These are documented in the sub clauses
where these local objects are specified

- Attempting to use a LocalObject to create a DIl request shall result in a NO_IMPLEMENT system exception with
standard minor code 4. Attempting to marshal or stringify a LocalObject shall result in a MARSHAL system exception
with standard minor code 4. Narrowing and widening of references to LocalObjects must work as for regular object
references.

» Local types cannot be marshaled and references to local objects cannot be converted to strings. Any attempt to marshal
a local object, such as via an unconstrained base interface, as an Object, or as the contents of an any, or to pass a local
object to ORB::0object_to_string, shall result in a MARSHAL system exception with OMG minor code 4.

« The DIl is not supported on local objects, nor are asynchronous invocation interfaces.

- Language mappings shall specify server side mechanisms, including base classes and/or skeletons if necessary, for
implementing local objects, so that invocation overhead is minimized.

« The usage of client side language mappings for local types shall be identical to those of equivalent unconstrained
types.

« Invocations on local objects are not ORB mediated. Specifically, parameter copy semantics are not honored,
interceptors are not invoked, and the execution context of a local object does not have ORB service Current object
contexts that are distinct from those of the caller. Implementations of local interfaces are responsible for providing the
parameter copy semantics expected by clients.

 Local objects have no inherent identities beyond their implementations’ identities as programming objects. The
lifecycle of the implementation is the same as the lifecycle of the reference.

« Instances of local objects defined as part of OMG specifications to be supplied by ORB products or object service
products shall be exposed through the ORB::resolve_initial_references operation or through some other local
object obtained from resolve_initial_references.

8.4 ValueBase Operations

ValueBase serves a similar role for value types that Object serves for interfaces. Its mapping is language-specific and
must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value types. Any operations that are
required to be supported for all values are conceptually defined on ValueBase, although in reality their actual mapping
depends upon the specifics of any particular language mapping.

Analogous to the definition of the Object interface for implicit operations of object references, the implicit operations of
ValueBase are defined on a pseudo-valuetype as follows:

module CORBA {
valuetype ValueBase{ PIDL
ValueDef get_value_def();

h
h

The get_value_def() operation returns a description of the value’s definition as described in the interface repository
(“ValueDef” on page 257).

114 CORBA - Part 1: Interfaces, v3.1



8.5 ORB and OA Initialization and Initial References

Before an application can enter the CORBA environment, it must first:
« Be initialized into the ORB and possibly the object adapter (POA) environments.

» Get references to ORB pseudo-object (for use in future ORB operations) and perhaps other objects (including the root
POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the appropriate object references:

» Operations providing access to the ORB. These operations reside in the CORBA module, but not in the ORB interface
and are described in “ORB Initialization” on page 115.

« Operations providing access to Object Adapters, Interface Repository, Naming Service, and other Object Services.
These operations reside in the ORB interface and are described in “Obtaining Initial Object References” on page 117.

8.5.1 ORB Initialization

When an application requires a CORBA environment it needs a mechanism to get the ORB pseudo-object reference and
possibly an OA object reference (such as the root POA). This serves two purposes. First, it initializes an application into
the ORB and OA environments. Second, it returns the ORB pseudo-object reference and the OA object reference to the
application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before OA: an application cannot call
OA initialization routines until ORB initialization routines have been called for the given ORB. The operation to initialize
an application in the ORB and get its pseudo-object reference is not performed on an object. This is because applications
do not initially have an object on which to invoke operations. The ORB initialization operation is an application’s
bootstrap call into the CORBA world. The ORB_init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is complete, its pseudo reference is
returned and can be used to obtain other references for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init operation. The parameters to the call
comprise an identifier for the ORB for which the pseudo-object reference is required, and an arg_list, which is used to
allow environment-specific data to be passed into the call. PIDL for the ORB initialization is as follows:

/I PIDL
module CORBA {

typedef sequence <string> arg_list;

ORB ORB_init (inout arg_list argv, in ORBIid orb_identifier);
h

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid strings other than the empty string are
allocated by ORB administrators and are not managed by the OMG. ORB administration is the responsibility of each ORB
supplier. ORB suppliers may optionally delegate this responsibility. ORBid strings other than the empty string are
intended to be used to uniquely identify each ORB used within the same address space in a multi-ORB application. These
special ORBid strings are specific to each ORB implementation and the ORB administrator is responsible for ensuring
that the names are unambiguous.

If an empty ORBId string is passed to ORB_init, then the arg_list arguments shall be examined to determine if they
indicate an ORB reference that should be returned. This is achieved by searching the arg_list parameters for one preceded
by “-ORBid” for example, “-ORBid example_orb” (the white space after the “-ORBid” tag is ignored) or “-

CORBA - Part 1: Interfaces, v3.1 115



ORBidMyFavoriteORB” (with no white space following the “-ORBid” tag). Alternatively, two sequential parameters with
the first being the string “-ORBid” indicates that the second is to be treated as an ORBid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the default ORB for the environment will be
returned.

Other parameters of significance to the ORB can also be identified in arg_list, for example, “Hostname,”
“SpawnedServer,” and so forth. To allow for other parameters to be specified without causing applications to be re-
written, it is necessary to specify the parameter format that ORB parameters may take. In general, parameters shall be
formatted as either one single arg_list parameter:

—ORB-<suffix><optional white space> <value>

or as two sequential arg_list parameters:
-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBid string is passed to ORB _init, the arg_list arguments are examined
to determine if any ORB parameters are given. If a non-empty ORBid string is passed to ORB_init, all ORBid parameters
in the arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of significance during the ORB
initialization process.

Before ORB _init returns, it will remove from the arg_list parameter all strings that match the -ORB<suffix> pattern
described above and that are recognized by that ORB implementation, along with any associated sequential parameter
strings. If any strings in arg_list that match this pattern are not recognized by the ORB implementation, ORB_init will
raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same ORB reference when the same
ORBid string is passed, either explicitly as an argument to ORB_init or through the arg_list. All other -ORB<suffix>
parameters in the arg_list may be considered on subsequent calls to ORB_init.

Note — Whenever an ORB _init argument of the form -ORBxxx is specified, it is understood that the argument may be
represented in different ways in different languages. For example, in Java -ORBxxx is equivalent to a property named
org.omg.CORBA.ORBXxxX.

8.5.1.1 Server ID

A Server ID must uniquely identify a server to an IMR. This specification only requires unique identification using a
string of some kind. We do not intend to make more specific requirements for the structure of a server ID.

The server ID may be specified by an ORB_init argument of the form

-ORBServerld

The value assigned to this property is a string. All templates created in this ORB will return this server ID in the
server_id attribute.

It is required that all ORBs in the same server share the same server ID. Specific environments may choose to implement
-ORBServerld in ways that automatically enforce this requirement.

116 CORBA - Part 1: Interfaces, v3.1



For example, the org.omg.CORBA.Serverld system property may be set to the server ID in Java when a Java server is
activated. This system property is then picked up as part of the ORB_init call for every ORB created in the server.

8.5.1.2 Server Endpoint

The server endpoint information is passed into ORB_init by an argument of the form

-ORBListenEndpoints <endpoints>

The format of the <endpoints> argument is proprietary. All that is required by this specification is that each time
ORB _init is called with the same value for this argument, the resulting ORB will listen for requests on the same set of
endpoints, so that persistent object references for the ORB will continue to function correctly.

8.5.1.3 Starting Servers with No Proprietary Server Activation Support

Any server started with the flag:

-ORBNoProprietaryActivation

shall avoid the use of any proprietary activation framework.
8.5.2 Obtaining Initial Object References

Applications require a portable means by which to obtain their initial object references. References are required for the
root POA, POA Current, Interface Repository and various Object Services instances. (The POA is described in the
Portable Object Adapter clause; the Interface Repository is described in the Interface Repository clause; Object Services
are described in the individual service specifications.) The functionality required by the application is similar to that
provided by the Naming Service. However, the OMG does not want to mandate that the Naming Service be made
available to all applications in order that they may be portably initialized. Consequently, the operations shown in this sub
clause provide a simplified, local version of the Naming Service that applications can use to obtain a small, defined set of
object references that are essential to its operation. Because only a small well-defined set of objects are expected with this
mechanism, the naming context can be flattened to be a single-level name space. This simplification results in only two
operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are provided in the ORB pseudo-object
interface, providing facilities to list and resolve initial object references.
list_initial_services

typedef string Objectld;
typedef sequence <Objectld> ObjectldList;
ObjectldList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in Objectld identifier
) raises (InvalidName);

CORBA - Part 1: Interfaces, v3.1 117



The resolve_initial_references operation is an operation on the ORB rather than the Naming Service’s NamingContext.
The interface differs from the Naming Service’s resolve in that Objectld (a string) replaces the more complex Naming
Service construct (a sequence of structures containing string pairs for the components of the name). This simplification
reduces the name space to one context.

Objectlds are strings that identify the object whose reference is required. To maintain the simplicity of the interface for
obtaining initial references, only a limited set of objects are expected to have their references found via this route. Unlike
the ORB identifiers, the Objectld hame space requires careful management. To achieve this, the OMG may, in the future,

define which services are required by applications through this interface and specify names for those services.

resolve_initial_references never returns a nil reference. Instead, the non-availability of a particular reference is
indicated by throwing an InvalidName exception (even if a nil reference is explicitly configured for an Objectld).

Currently, reserved Objectlds are RootPOA, POACurrent, InterfaceRepository, NameService, TradingService,
SecurityCurrent, TransactionCurrent, DynAnyFactory, ORBPolicyManager, PolicyCurrent, NotificationService,
TypedNotificationService, CodecFactory, PICurrent, ComponentHomeFinder and PSS.

Table 8.1 - Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference
RootPOA PortableServer::POA “POA Interface” on page 328.
POACurrent PortableServer::Current “POA Interface” on page 328.

InterfaceRepository

CORBA::Repository
CORBA::ComponentIR::Repository

“Repository” on page 238 and
“ComponentIR::Repository” on
page 263.

NameService

CosNaming::
NamingContext

Naming Service specification (formal/
00-06-19), the CosNaming Module sub
clause.

TradingService

CosTrading::Lookup

Trading Object Service specification
(formal/00-06-27), the Functional
Interfaces sub clause.

SecurityCurrent

SecurityLevell::Current or
SecurityLevel2::Current

Security Service specification (formal/
00-06-25), the Security Operations on
Current sub clause.

TransactionCurrent

CosTransaction::Current

Transaction Service specification
(formal/00-06-28), the Transaction
Service Interfaces sub clause.

DynAnyFactory

DynamicAny::
DynAnyFactory

“Creating a DynAny Object” on
page 203.

ORBPolicyManager

CORBA::PolicyManager

“Policy Management Interfaces” on
page 132.

PolicyCurrent

CORBA::PolicyCurrent

“Policy Management Interfaces” on
page 132.

NotificationService

CosNotifyChannelAdmin::
EventChannelFactory

Notification Service specification
(formal/00-06-20)

TypedNotificationService

CosTypedNotifyChannelAdmin:: Typed
EventChannelFactory

Notification Service specification
(formal/00-06-20)

118

CORBA - Part 1: Interfaces, v3.1




Table 8.1 - Objectlds for resolve_initial_references

Objectld Type of Object Reference Reference

CodecFactory IOP::CodecFactory See CORBA, Part 2: ORB
Interoperability Architecture clause.

PICurrent Portablelnterceptors::Current “Portable Interceptor Current Interface”
on page 387.

ComponentHomeFinder Components::HomeFinder Components specification (formal/02-
06-65).

PSS CosPersistentState::ConnectorRegistry Persistent State specification (formal/
02-09-06).

To allow an application to determine which objects have references available via the initial references mechanism, the
list_initial_services operation (also a call on the ORB) is provided. It returns an ObjectldList, which is a sequence of
Objectlds. Objectlds are typed as strings. Each object, which may need to be made available at initialization time, is

allocated a string value to represent it.

In addition to defining the id, the type of object being returned must be defined; that is, “InterfaceRepository” returns an
object of type Repository, or ComponentIR::Repository, which is derived from Repository, depending on whether the
ORB supports components or not, and “NameService” returns a CosNaming::NamingContext object.

The application is responsible for narrowing the object reference returned from resolve_initial_references to the type that
was requested in the Objectld. For example, for InterfaceRepository the object returned would be narrowed to
Repository type or ComponentIR::Repository type, depending on whether the ORB supports components.

Specifications for Object Services (see individual service specifications) state whether it is expected that a service’s initial
reference be made available via the resolve_initial_references operation or not; that is, whether the service is necessary
or desirable for bootstrap purposes.

8.5.3 Configuring Initial Service References

8.5.3.1 ORB-specific Configuration

It is required that an ORB can be administratively configured to return an arbitrary object reference from
CORBA::ORB::resolve_initial_references for non-locality-constrained objects.

In addition to this required implementation-specific configuration, two CORBA::ORB_init arguments are provided to
override the ORB initial reference configuration.

8.5.3.2 ORBInitRef

The ORB initial reference argument, -ORBInitRef, allows specification of an arbitrary object reference for an initial
service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:

CORBA - Part 1: Interfaces, v3.1 119




-ORBInitRef NameService=IOR:00230021AB...
-ORBInitRef NotificationService=corbaloc::5550bjs.com/NotificationService

-ORBInitRef TradingService=corbaname::5550bjs.com#Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the CORBA specification, such as NameService.
This mechanism allows an ORB to be configured with new initial service Object I1Ds that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by CORBA::ORB::string_to_object (Part 2 - Clause 7, “ORB
Interoperability Architecture” - 7.6.1, “Object URLS”), with the exception of the corbaloc URL scheme with the rir
protocol (i.e., corbaloc:rir...). If a URL is syntactically malformed or can be determined to be invalid in an
implementation defined manner, ORB_init raises a BAD_PARAM exception.

8.5.3.3 ORBDefaultlnitRef

The ORB default initial reference argument, -ORBDefaultInitRef, assists in resolution of initial references not explicitly
specified with -ORBInitRef. -ORBDefaultInitRef requires a URL that, after appending a slash ‘/* character and a
stringified object key, forms a new URL to identify an initial object reference. For example:

-ORBDefaultInitRef corbaloc::5550bjs.com

A call to resolve_initial_references (see the “NotificationService”) with this argument results in a new URL:
corbaloc::5550bjs.com/NotificationService

That URL is passed to CORBA::ORB::string_to_object to obtain the initial reference for the service.

Another example is:

-ORBDefaultlnitRef \
corbaname::555ResolveRefs.com,:555Backup.com#Prod/Local

After calling resolve_initial_references(“NameService”), one of the corbaname URLS

corbaname::555ResolveRefs.com#Prod/Local/NameService

or

corbaname::555Backup41l.com#Prod/Local/NameService

is used to obtain an object reference from string_to_object. (In this example, Prod/Local/NameService represents a
stringified CosNaming::Name).

See CORBA, Part 2 - ORB Interoperability Architecture for details of the corbaloc and corbaname URL schemes. The
-ORBDefaultInitRef argument naturally extends to URL schemes that may be defined in the future, provided the final part
of the URL is an object key.

8.5.3.4 Configuration Effect on resolve_initial_references
8.5.3.4.1 Default Resolution Order

The default order for processing a call to CORBA::ORB::resolve_initial_references for a given <ObjectID> is:

120 CORBA - Part 1: Interfaces, v3.1



1. Resolve with register_initial_reference entry if possible.
Resolve with -ORBInitRef for this <ObjectID> if possible

Resolve with pre-configured ORB settings if possible.

> won

Resolve with an -ORBDefaultInitRef entry if possible.
8.5.3.4.2 ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all services and use of -ORBDefaultInitRef
may have unintended resolution side effects. For example, an ORB may use a proprietary service, such as
ImplementationRepository, for internal purposes and may want to prevent a client from unknowingly diverting the
ORB’s reference to an implementation repository from another vendor. To prevent this, an ORB is allowed to ignore the
-ORBDefaultinitRef argument for any or all <ObjectID>s for those services that are not OMG-specified services with a
well-known service name as accepted by resolve_initial_references. An ORB can only ignore the -ORBDefaultInitRef
argument but must always honor the -ORBInitRef argument.

8.5.3.5 Configuration Effect on list_initial_services

The <ObjectID>s of all -ORBInitRef arguments to ORB_init appear in the list of tokens returned by list_initial_services
as well as all ORB-configured <ObjectID>s. Any other tokens that may appear are implementation-dependent.

The list of <ObjectID>s returned by list_initial_services can be a subset of the <ObjectID>s recognized as valid by
resolve_initial_references.

8.6  Context Object

8.6.1 Introduction

A context object contains a list of properties, each consisting of a name and a string value associated with that name. By
convention, context properties represent information about the client, environment, or circumstances of a request that are
passed as a single parameter representing that collection of information.

Context properties represent a portion of a client's or application’s environment that is meant to be propagated to (and
made available to) a server’s environment (for example, a window identifier, or user preference information). Once an
operation has been invoked in the server, the operation implementation may query its context object for these properties.

An operation definition may contain a context clause that specifies the context properties that may be of interest to a
particular operation. These context properties (if present for the actual call) are propagated to the server. A client-side
ORB may choose to pass more properties than are specified by an operation's context clause. An example of an operation
with a context clause is

interface Example {
void op() context("USER", "X*");

b

This context clause specifies that the “USER” property is to be made available to the server, as well as all properties with
names beginning with “X.” Note that there is no obligation on the client to actually pass values for these properties at run
time; if the client omits one or more properties, the call proceeds normally and the operation implementation simply will
not be able to retrieve the corresponding property values.

CORBA - Part 1: Interfaces, v3.1 121



Property names are non-empty strings that cannot contain the character “*’ - there are no other syntactic restrictions on
property names. Property names that differ only in case are distinct names, so the following is a legal context clause that
transmits two distinct properties:

interface Example2 {
void op() context("FOO", "foo");

Context property values are strings. An empty string is a legal property value.

Property values are modified and accessed via the Context interface. A Context object represents a collection of
property values. Context objects may be connected into hierarchies; properties defined in child Context objects lower in
the hierarchy override properties in parent Context objects higher in the hierarchy.

8.6.2 Context Object Operations

Properties are represented as named value lists.

module CORBA {

interface Context { /I PIDL
void set_one_value(
in Identifier prop_name, /I property name to set
in string value /I property value to set
)i
void set_values(
in NVList values /l property values to set
)i
void get_values(
in Identifier start_scope, // search scope
in Flags op_flags, /l operation flags
in Identifie prop_name, /I name of property(s) to retrieve
out NVList values /I requested property(s)
)i
void delete_values(
in Identifie prop_name /l name of property(s) to delete
)i
void create_child(
in Identifier ctx_name, /l name of context object
out Context child_ctx /l newly created context object
)i
void delete(
in Flags del_flags Il flags controlling deletion
)i
|3

|3
8.6.2.1 set _one_value
void set_one_value(

in Identifier prop_name, I/l property name to set
in string value /I property value to set

122 CORBA - Part 1: Interfaces, v3.1



This operation sets a single context object property. If prop_name is the empty string or contains the character ‘*,” the
operation raises BAD_PARAM with minor code 35.

8.6.2.2 set values

void set_values(
in NVLis values /I property values to set

);

This operation sets one or more property values in its context object. If a property name appears more than once in the
NVList, the value with higher index (later in the list) overwrites the value with lower index.

The flags field of each passed NVList element must be zero. A non-zero flag in any of the NVList elements raises
INV_FLAGS.

The property name of each NVList element must be a non-empty string not containing the character ‘*’ - otherwise the
operation raises BAD_PARAM with minor code 35.

The value of each property of the passed NVList must be a (possibly empty) unbounded string. Property values other than
unbounded strings raise BAD_TYPECODE with minor code 3.

8.6.2.3 get_values

void get_values(

in Identifie start_scope, I/l search scope

in Flags op_flags, /l operation flags

in ldentifier prop_name, /I name of property(s) to retrieve
out NVList values /I requested property(s)

);

This operation returns an NVList with those properties that match the prop_name parameter. Legal values for
prop_name are:

« A non-empty string that does not contain the character “*.’
In this case, the values parameter returns the property with the name specified by prop_name.
« A sstring beginning with one or more characters other than “*,” followed by a single “** at the end, such as “XYZ*.”

In this case, the values parameter contains the properties that have names beginning with “XYZ” (such as
“XYZABC” or “XYZ").

If prop_name is the empty string, the string “*,” contains more than one “*’ character, or contains a ‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36.

The start_scope parameter controls the context object level at which to initiate the search for the specified properties
as follows:

« The start_scope parameter specifies the name of the context object in which the search for properties is to start.

« If the context object on which get_values is invoked has a name equal to start_scope, that context object becomes
the starting context object for the search.

« If start_scope is “” the context object on which get_values is invoked becomes the starting context object for the
search.

CORBA - Part 1: Interfaces, v3.1 123



« If the context object on which get_values is invoked does not have a name equal to start_scope (and
start_scope is not “”), the parent context object is retrieved and its name compared to start_scope; this
process repeats until either a starting context object whose name equals start_scope is found, or the search
terminates because it runs out of parent objects.

The name of the root context object created by get_default_context is “RootContext.”

If no starting context object can be found, the operation raises BAD_CONTEXT with minor code 1.

« Once a starting context object is found, get_values searches for properties in the matching context object.

« If op_flags is CORBA::CTX_RESTRICT_SCOPE, get_values searches only the starting context object for
properties that match prop_name. (The value of CTX_RESTRICT_SCOPE is 15.)

- If op_flags is zero, get_values searches the starting context and its parent contexts for properties that match
prop_name. The property values that are returned are taken from the first context object in which they are found, so
properties in child contexts override the values of properties in parent contexts.

In either case, if no property matches prop_name, the operation raises BAD_CONTEXT with minor code 2.

8.6.2.4 delete_values

void delete_values(
in ldentifie prop_name /I name of property(s) to delete

):

This operation deletes the properties that match prop_name. prop_name may have a trailing “*’ character, in which
case all properties whose name matches the specified prefix are deleted.

If prop_name is the empty string, the string "*", contains more than one ‘*’ character, or contains a ‘*’ anywhere but at
the end of the string, the operation raises BAD_PARAM with minor code 36. The operation only affects the context
object on which it is invoked (that is, parent contexts are never affected by delete_values).

If no property name matches prop_name, the operation raises BAD_CONTEXT with minor code 2.
8.6.2.5 create_child

void create_child(
in Identifier ctx_name, /l name of context object
out Context child_ctx /l newly created context object

);

This operation creates an empty child context object. The child context has the name ctx_name. ctx_name may not be
the empty string or “RootContext;” otherwise, the operation raises BAD_PARAM with minor code 37. Calling
create_child more than once with the same name on the same parent context is legal and results in the creation of a
new, empty child context for each call.

8.6.2.6 delete

void delete(
in Flags del_flags Il flags controlling deletion

);

This operation deletes the context object on which it is invoked:

124 CORBA - Part 1: Interfaces, v3.1



- If del_flags is zero, the context object is deleted only if it has no child contexts; otherwise, if del_flags is zero and
the context object has child contexts, the operation raises BAD_PARAM with minor code 38.

- Ifdel_flags is CORBA::CTX_DELETE_DESCENDANTS, the context object on which delete is invoked is destroyed,
together with (recursively) its child contexts. The value of CTX_DELETE_DESCENDANTS is 1.

If del_flags has a value other than zero or CTX_DELETE_DESCENDANTS, the operation raises INV_FLAGS.

8.7  Current Object

ORB and CORBA services may wish to provide access to information (context) associated with the thread of execution
in which they are running. This information is accessed in a structured manner using interfaces derived from the Current
interface defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the CORBA module's Current. Users
of the service can obtain an instance of the appropriate Current interface by invoking ORB::resolve_initial_references.
For example the Security service obtains the Current relevant to it by invoking.

ORB::resolve_initial_references(“ SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may choose to do so.

module CORBA {
I/l interface for the Current object
local interface Current {

h
h
Operations on interfaces derived from Current access state associated with the thread in which they are invoked, not state
associated with the thread from which the Current was obtained. This prevents one thread from manipulating another
thread’s state, and avoids the need to obtain and narrow a new Current in each method’s thread context.

Current objects must not be exported to other processes, or externalized with ORB::object_to_string. If any attempt is
made to do so, the offending operation will raise a MARSHAL system exception. Currents are per-process singleton
objects, so no destroy operation is needed.

8.8  Policy Object

8.8.1 Definition of Policy Object

An ORB or CORBA service may choose to allow access to certain choices that affect its operation. This information is
accessed in a structured manner using interfaces derived from the Policy interface defined in the CORBA module. A
CORBA service does not have to use this method of accessing operating options, but may choose to do so. The Security
Service in particular uses this technique for associating Security Policy with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

/I Basic IDL definition

interface Policy {
readonly attribute PolicyType policy_type;
Policy copy();

CORBA - Part 1: Interfaces, v3.1 125



void destroy();
I3

typedef sequence <Policy> PolicyList;
typedef sequence <PolicyType> PolicyTypeSeq;
3

PolicyType defines the type of Policy object. In general the constant values that are allocated are defined in conjunction
with the definition of the corresponding Policy object. The values of PolicyTypes for policies that are standardized by
OMG are allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType values identified by a 20 bit
Vendor PolicyType Valueset ID (VPVID) for their own use.

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order 20 bits, and the vendor assigned
policy value in the low order 12 bits. The VPVIDs 0 through \xf are reserved for OMG. All values for the standard
PolicyTypes are allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for experimental use and
OMGVMCID (8.12.3, "Standard System Exception Definitions’) is reserved for OMG use. These will not be allocated to
anybody. Vendors can request allocation of VPVID by sending mail to tag-request@omg.org.

When a VMCID (“Exceptions” on page 147) is allocated to a vendor automatically the same value of VPVID is reserved for
the vendor and vice versa. So once a vendor gets either a VMCID or a VPVID registered they can use that value for both
their minor codes and their policy types.
8.8.1.1 Copy

Policy copy();

Return Value

This operation copies the policy object. The copy does not retain any relationships that the policy had with any domain,
or object.

8.8.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to determine whether it can be
destroyed.

Exception(s)
¢ CORBA::NO_PERMISSION
Raised when the policy object determines that it cannot be destroyed.

8.8.1.3 Policy_type

readonly attribute policy_type

Return Value

This readonly attribute returns the constant value of type PolicyType that corresponds to the type of the Policy object.

126 CORBA - Part 1: Interfaces, v3.1



8.8.2 Creation of Policy Objects

A generic ORB operation for creating new instances of Policy objects is provided as described in this sub clause.
module CORBA {

typedef short PolicyErrorCode;

const PolicyErrorCode BAD_POLICY =0;

const PolicyErrorCode UNSUPPORTED_POLICY =1;

const PolicyErrorCode BAD_POLICY_TYPE = 2;

const PolicyErrorCode BAD_POLICY_VALUE = 3;

const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

k
h
8.8.2.1 PolicyErrorCode

A request to create a Policy may be invalid for the following reasons:
« BAD_POLICY - the requested Policy is not understood by the ORB.

« UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the ORB, but is not currently
supported.

« BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid for that PolicyType.

» BAD_POLICY_VALUE - The value requested for the Policy is of a valid type but is not within the valid range for that
type.

+ UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of a valid type and within the valid
range for that type, but this valid value is not currently supported.

8.8.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to the ORB::create_policy operation.
Possible reasons are described above.

CORBA - Part 1: Interfaces, v3.1 127



8.8.2.3 Create_policy

The ORB operation create_policy can be invoked to create new instances of policy objects of a specific type with
specified initial state. If create_policy fails to instantiate a new Policy object due to its inability to interpret the requested
type and content of the policy, it raises the PolicyError exception with the appropriate reason as described in
“PolicyErrorCode” on page 127.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameters
e type
The PolicyType of the policy object to be created.

 val
The value that will be used to set the initial state of the Policy object that is created.

Return Value

Reference to a newly created Policy object of type specified by the type parameter and initialized to a state specified by the
val parameter.

Exception

e PolicyError
Raised when the requested policy is not supported or a requested initial state for the policy is not support.

When new policy types are added to CORBA or CORBA Services specification, it is expected that the IDL type and the
valid values that can be passed to create_policy also be specified.

8.8.3 Usages of Policy Objects

Policy Objects are used in general to encapsulate information about a specific policy, with an interface derived from the
policy interface. The type of the Policy object determines how the policy information contained within it is used. Usually
a Policy object is associated with another object to associate the contained policy with that object.

Objects with which policy objects are typically associated are Domain Managers, POA, the execution environment, both
the process/capsule/ORB instance and thread of execution (Current object) and object references. Only certain types of
policy object can be meaningfully associated with each of these types of objects.

These relationships are documented in sub clauses that pertain to these individual objects and their usages in various core
facilities and object services. The use of Policy Objects with the POA are discussed in the Portable Object Adapter
clause. The use of Policy objects in the context of the Security services, involving their association with Domain
Managers as well as with the Execution Environment are discussed in the Security Service specification.

In the following sub clause the association of Policy objects with the Execution Environment is discussed. In
“Management of Policies” on page 130 the use of Policy objects in association with Domain Managers is discussed.

128 CORBA - Part 1: Interfaces, v3.1



8.8.4 Policy Associated with the Execution Environment

Certain policies that pertain to services like security (e.g., QOP, Mechanism, invocation credentials, etc.) are associated
by default with the process/capsule(RM-ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable whenever an invocation of an operation is
attempted by any code executing in the said capsule. The Security service provides operations for modulating these
policies on a per-execution thread basis using operations in the Current interface. Certain of these policies (e.g.,
invocation credentials, gop, mechanism, etc.) which pertain to the invocation of an operation through a specific object
reference can be further modulated at the client end, using the set_policy_overrides operation of the Object reference.
For a description of this operation see “Overriding Associated Policies on an Object Reference” on page 111. It associates
a specified set of policies with a newly created object reference that it returns.

The association of these overridden policies with the object reference is a purely local phenomenon. These associations
are never passed on in any IOR or any other marshaled form of the object reference. the associations last until the object
reference in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates of this new object reference apply
to all invocations that are done through these object references. The overridden policies apply even when the default
policy associated with Current is changed. It is always possible that the effective policy on an object reference at any
given time will fail to be successfully applied, in which case the invocation attempt using that object reference will fail
and return a CORBA::NO_PERMISSION exception. Only certain policies that pertain to the invocation of an operation
at the client end can be overridden using this operation. These are listed in the Security specification. Attempts to override
any other policy will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through a specific object reference using a
specific thread of execution is determined first by determining if that policy type has been overridden in that object
reference. if so then the overridden policy is used. if not then if the policy has been set in the thread of execution then that
policy is used. If not, then the policy associated with the capsule is used. For policies that matter, the ORB ensures that
there is a default policy object of each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not available to use with an operation
invocation.

8.8.5 Specification of New Policy Objects

When new PolicyTypes are added to CORBA specifications, the following details must be defined. It must be clearly
stated which particular uses of a new policy are legal and which are not:

« Specify the assigned CORBA::PolicyType and the policy’s interface definition.

 Ifthe Policy can be created through CORBA::ORB::create_policy, specify the allowable values for the any argument
‘val' and how they correspond to the initial state/behavior of that Policy (such as initial values of attributes). For
example, if a Policy has multiple attributes and operations, it is most likely that create_policy will receive some
complex data for the implementation to initialize the state of the specific policy:

/DL

struct MyPolicyRange {
long low;
long high;

h

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

CORBA - Part 1: Interfaces, v3.1 129



8.8.6

readonly attribute long low;
readonly attribute long high;

If this sample MyPolicy can be constructed via create_policy, the specification of MyPolicy will have a
statement such as: “When instances of MyPolicy are created, a value of type MyPolicyRange is passed
to CORBA::ORB::create_policy and the resulting MyPolicy’s attribute ‘low’ has the same value as the
MyPolicyRange member ‘low’ and attribute ‘high’ has the same value as the MyPolicyRange member
‘high.’

If the Policy can be passed as an argument to POA::create_POA, specify the effects of the new policy on that POA.
Specifically define incompatibilities (or inter-dependencies) with other POA policies, effects on the behavior of
invocations on objects activated with the POA, and whether or not presence of the POA policy implies some IOR
profile/component contents for object references created with that POA. If the POA policy implies some addition/
modification to the object reference, it is marked as “client-exposed” and the exact details are specified including
which profiles are affected and how the effects are represented.

If the component that is used to carry this information can be set within a client to tune the client’s behavior, specify
the policy’s effects on the client specifically with respect to (a) establishment of connections and reconnections for an
object reference; (b) effects on marshaling of requests; (c) effects on insertion of service contexts into requests; (d)
effects upon receipt of service contexts in replies. In addition, incompatibilities (or inter-dependencies) with other
client-side policies are stated. For policies that cause service contexts to be added to requests, the exact details of this
addition are given.

If the Policy can be used with POA creation to tune IOR contents and can also be specified (overridden) in the client,
specify how to reconcile the policy’s presence from both the client and server. It is strongly recommended to avoid this
case! As an exercise in completeness, most POA policies can probably be extended to have some meaning in the client
and vice versa, but this does not help make usable systems, it just makes them more complicated without adding really
useful features. There are very few cases where a policy is really appropriate to specify in both places, and for these
policies the interaction between the two must be described.

Pure client-side policies are assumed to be immutable. This allows efficient processing by the runtime that can avoid
re-evaluating the policy upon every invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be clearly stated what happens if hon-
readonly attributes are set or operations are invoked that have side-effects.

For certain policy types, override operations may be disallowed. If this is the case, the policy specification must clearly
state what happens if such overrides are attempted.

Standard Policies

Note — See Annex A for a list of the standard policy types that are defined by various parts of CORBA and
CORBAservices in this version of CORBA.

8.9

8.9.1

Management of Policies

Client Side Policy Management

Client-side Policy management is performed through operations accessible in the following contexts:

130

CORBA - Part 1: Interfaces, v3.1



« ORB-Ilevel Policies - A locality-constrained PolicyManager is accessible through the ORB interface. This
PolicyManager has operations through which a set of Policies can be applied and the current overriding Policy
settings can be obtained. Policies applied at the ORB level override any system defaults. The ORB’s PolicyManager
is obtained through an invocation of ORB::resolve_initial_references, specifying an identifier of
“ORBPolicyManager.”

« Thread-level Policies - A standard PolicyCurrent is defined with operations for the querying and applying of quality
of service values specific to a thread. Policies applied at the thread level override any system defaults or values set at
the ORB level. The locality-constrained PolicyCurrent is obtained through an invocation of
ORB::resolve_initial_references, specifying an identifier of “PolicyCurrent.” When accessed from a newly
spawned thread, the PolicyCurrent initially has no overridden policies. The PolicyCurrent also has no overridden
values when a POA with ThreadPolicy of ORB_CONTROL_MODEL dispatches an invocation to a servant. Each
time an invocation is dispatched through a SINGLE_THREAD_MODEL POA, the thread-level overrides are reset to
have no overridden values.

» Obiject-level Policies - Operations are defined on the base Object interface through which a set of Policies can be
applied. Policies applied at the Object level override any system defaults or values set at the ORB or Thread levels. In
addition, accessors are defined for querying the current overriding Policies set at the Object level, and for obtaining the
current effective client-side Policy of a given PolicyType. The effective client-side Policy is the value of a
PolicyType that would be in effect if a request were made. This is determined by checking for overrides at the Object
level, then at the Thread level, and finally at the ORB level. If no overriding policies are set at any level, the system-
dependent default value is returned. Portable applications are expected to override the ORB-level policies since default
values are not specified in most cases.

8.9.2 Server Side Policy Management

Server-side Policy management is handled by associating Policy objects with a POA. Since all policy objects are derived
from interface Policy, those that are applicable to server-side behavior can be passed as arguments to
POA::create_POA. Any such Policies that affect the behavior of requests (and therefore must be accessible to the ORB
at the client side) are exported within the Object references that the POA creates. It is clearly noted in a POA Policy
definition when that Policy is of interest to the Client. For those policies that can be exported within an Object reference,
the absence of a value for that policy type implies that the target supports any legal value of that PolicyType.

Most Policies are appropriate only for management at either the Server or Client, but not both. For those Policies that can
be established at the time of Object reference creation (through POA Policies) and overridden by the client (through
overrides set at the ORB, thread, or Object reference scopes), reconciliation is done on a per-Policy basis. Such Policies
are clearly noted in their definitions and describe the mechanism of reconciliation between the Policies that are set by the
POA and overridden in the client. Furthermore, obtaining the effective Policy of some PolicyTypes requires evaluating
the effective Policy of other types of Policies. Such hierarchical Policy definitions are also noted clearly when used.

At the Thread and ORB scopes, the common operations for querying the current set of policies and for overriding these
settings are encapsulated in the PolicyManager interface.

CORBA - Part 1: Interfaces, v3.1 131



8.9.3 Policy Management Interfaces

module CORBA {
local interface PolicyManager {
PolicyList get_policy_overrides(in PolicyTypeSeq ts);

void set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add
) raises (InvalidPolicies);

h

local interface PolicyCurrent : PolicyManager, Current {
b
h

8.9.3.1 interface PolicyManager

The PolicyManager operations are used for setting and accessing Policy overrides at a particular scope. For example,
an instance of the PolicyCurrent is used for specifying Policy overrides that apply to invocations from that thread
(unless they are overridden at the Object scope as described in “Client Side Policy Management” on page 130).

8.9.3.1.1 get_policy_overrides

PolicyList get_policy_overrides(in PolicyTypeSeq ts);

Parameter

ts
A sequence of overridden policy types identifying the policies that are to be retrieved.

Return Value

Reference to a newly created Policy object of type specified by the type parameter and initialized to a state specified by the
val parameter.

» policy list
The list of overridden policies of the types specified by ts.

Exception
None

Returns a PolicyList containing the overridden Polices for the requested PolicyTypes. If the specified sequence is empty,
all Policy overrides at this scope will be returned. If none of the requested PolicyTypes are overridden at the target
PolicyManager, an empty sequence is returned. This accessor returns only those Policy overrides that have been set at
the specific scope corresponding to the target PolicyManager (no evaluation is done with respect to overrides at other
scopes).

8.9.3.1.2 set_policy_overrides

void set_policy_overrides(
in PolicyList policies,

132 CORBA - Part 1: Interfaces, v3.1



in SetOverrideType set_add
) raises (InvalidPolicies);

Parameters

e policies
A sequence of Policy objects that are to be associated with the PolicyManager object. If the sequence contains two
or more Policy objects with the same PolicyType value, the operation raises the standard system exception
BAD_PARAM with standard minor code 30.

e set_add
Whether the association is in addition to (ADD_OVERRIDE) or as a replacement of (SET_OVERRIDE) any existing
overrides already associated with the PolicyManager object. If the value of this parameter is SET_OVERRIDE, the
supplied policies completely replace all existing overrides associated with the PolicyManager object. If the value of
this parameter is ADD_OVERRIDE, the supplied policies are added to the existing overrides associated with the
PolicyManager object, except that if a supplied Policy object has the same PolicyType value as an existing override,
the supplied Policy object replaces the existing override.

Return Value
None

Exception

* InvalidPolicies
A list of indices identifying the position in the input policies list that are occupied by invalid policies.

Modifies the current set of overrides with the requested list of Policy overrides. The first parameter policies is a sequence
of references to Policy objects. The second parameter set_add of type SetOverrideType indicates whether these policies
should be added onto any other overrides that already exist (ADD_OVERRIDE) in the PolicyManager, or they should be
added to a clean PolicyManager free of any other overrides (SET_OVERRIDE). Invoking set_policy_overrides with an
empty sequence of policies and a mode of SET_OVERRIDE removes all overrides from a PolicyManager. Only certain
policies that pertain to the invocation of an operation at the client end can be overridden using this operation. Attempts to
override any other policy will result in the raising of the CORBA::NO_PERMISSION exception. If the request would
put the set of overriding policies for the target PolicyManager in an inconsistent state, no policies are changed or added,
and the exception

8.9.3.2 interface PolicyCurrent

This specific PolicyManager provides access to policies overridden at the Thread scope. A reference to a thread’s
PolicyCurrent is obtained through an invocation of CORBA::ORB::resolve_initial_references.

8.10 Management of Policy Domains

8.10.1 Basic Concepts
This sub clause describes how policies, such as security policies, are associated with objects that are managed by an ORB.

The interfaces and operations that facilitate this aspect of management is described in this sub clause together with the
sub clause describing Policy objects.

CORBA - Part 1: Interfaces, v3.1 133



8.10.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that domain apply. These objects are the domain
members. The policies represent the rules and criteria that constrain activities of the objects which belong to the domain.
On object reference creation, the ORB implicitly associates the object reference with one or more policy domains. Policy
domains provide leverage for dealing with the problem of scale in policy management by allowing application of policy
at a domain granularity rather than at an individual object instance granularity.

8.10.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain manager, which has associated with
it the policy objects for that domain. The domain manager also records the membership of the domain and provides the
means to add and remove members. The domain manager is itself a member of a domain, possibly the domain it manages.

8.10.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a policy object is associated with the
domain by associating the policy object with the domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each. There is at most one policy of each
type associated with a policy domain. The policy objects are thus shared between objects in the domain, rather than being
associated with individual objects. Consequently, if an object needs to have an individual policy, then it must be a
singleton member of a domain.

8.10.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating object references with policy domains,
implicitly associates the domain policies with the object associated with the object reference. Care should be taken by the
application that is creating object references using POA operations to ensure that object references to the same object are
not created by the server of that object with different domain associations. Henceforth whenever the concept of “object
membership” is used, it actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that case the object is governed by all
policies of its enclosing domains. The reference model allows an object to be a member of multiple domains, which may
overlap for the same type of policy (for example, be subject to overlapping access policies). This would require conflicts
among policies defined by the multiple overlapping domains to be resolved. The specification does not include explicit
support for such overlapping domains and, therefore, the use of policy composition rules required to resolve conflicts at
policy enforcement time.

Policy domain managers and policy objects have two types of interfaces:

« The operational interfaces used when enforcing the policies. These are the interfaces used by the ORB during an object
invocation. Some policy objects may also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and then uses the policy object returned
to enforce the policy. The caller finding a policy and then enforcing it does not see the domain manager objects and the
domain structure.

« The administrative interfaces used to set policies (e.g., specifying which events to audit or who can access objects of a
specified type in this domain). The administrator sees and navigates the domain structure, so he is aware of the scope
of what he is administering.

134 CORBA - Part 1: Interfaces, v3.1



Note — This specification does not include any explicit interfaces for managing the policy domains themselves: creating
and deleting them; moving objects between them; changing the domain structure and adding, changing, and removing
policies applied to the domains.

8.10.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object reference (and hence the object that it is
associated with) with the following elements forming its environment:

« One or more Policy Domains, defining all the policies to which the object associated with the object reference is
subject.

- The Technology Domains, characterizing the particular variants of mechanisms (including security) available in the
ORB.

The ORB will establish these associations when one of the object reference creation operations of the POA is called.
Some or all of these associations may subsequently be explicitly referenced and modified by administrative or application
activity, which might be specifically security-related but could also occur as a side-effect of some other activity, such as
moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated with a new domain. Within a given
domain a construction policy can be associated with a specific object type thus causing a new domain; that is, a domain
manager object to be created whenever an object reference of that type is created and the newly created object reference
associated with the new domain manager. This construction policy is enforced at the same time as the domain
membership; that is, by the POA when it creates an object reference.

8.10.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the object proceeds as follows. The
application (which may be a generic factory) calls one of the object reference creation operations of the POA to create the
new object reference. The ORB obtains the construction policy associated with the creating object, or the default domain
absent a creating object.

By default, the new object reference that is created is made a member of the domain to which the parent belongs. Non-
object applications on the client side are associated with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls whether, in addition to creating the
specified new object reference, a new domain manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter set to TRUE to indicate to the ORB that
new object references of the specified type are to be associated their own separate domains. Once such a construction
policy is set, it can be reversed by invoking make_domain_manager again with the constr_policy parameter set to
FALSE.

When creating an object reference of the type specified in the make_domain_manager call with constr_policy set to
TRUE, the ORB must also create a new domain for the newly created object reference. If a new domain is needed, the
ORB creates both the requested object reference and a domain manager object. A reference to this domain manager can
be found by calling get_domain_managers on the newly created object reference.

While the management interface to the construction policy object is standardized, the interface from the ORB to the
policy object is assumed to be a private one, which may be optimized for different implementations.

CORBA - Part 1: Interfaces, v3.1 135



If a new domain is created, the policies initially applicable to it are the policies of the enclosing domain. The ORB will
always arrange to provide a default enclosing domain with default ORB policies associated with it, in those cases where
there would be no such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains to which this object belongs, using
the domain management interfaces, which will be defined in the future.

Since the ORB has control only over domain associations with object references, it is the responsibility of the creator of
new object to ensure that the object references that are created to the new object are associated meaningfully with
domains.

8.10.2 Domain Management Operations

This sub clause defines the interfaces and operations needed to find domain managers and find the policies associated
with these. However, it does not include operations to manage domain membership, structure of domains, or to manage
which policies are associated with domains.

This sub clause also includes the interface to the construction policy object, as that is relevant to domains. The basic
definitions of the interfaces and operations related to these are part of the CORBA module, since other definitions in the
CORBA module depend on these.

module CORBA {
interface DomainManager {
Policy get_domain_policy (
in PolicyType policy_type
)i
3

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(
in CORBA::InterfaceDef object_type,
in boolean constr_policy

h

typedef sequence <DomainManager> DomainManagersList;

|3
8.10.2.1 Domain Manager

The domain manager provides mechanisms for:
» Establishing and navigating relationships to superior and subordinate domains.
« Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for example, it must be possible to add new
policies to a domain with a pre-existing membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces for adding new policies to domains
or for changing domain memberships have not currently been standardized.

136 CORBA - Part 1: Interfaces, v3.1



All domain managers provide the get_domain_policy operation. By virtue of being an object, the Domain Managers also
have the get_policy and get_domain_managers operations, which is available on all objects (see “Getting Policy
Associated with the Object” on page 109 and “Getting the Domain Managers Associated with the Object” on page 112).

8.10.2.1.1 CORBA::DomainManager::get_domain_policy
This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

)i
Parameters
e policy_type

The type of policy for objects in the domain which the application wants to administer. For security, the possible
policy types are described in the Security Service specification, Security Policies Introduction sub clause.

Return Value

A reference to the policy object for the specified type of policy in this domain.

Exception

« CORBA:INV_POLICY
Raised when the value of policy type is not valid either because the specified type is not supported by this
ORB or because a policy object of that type is not associated with this Object.

8.10.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a particular object reference are created,
they should be automatically assigned membership in a newly created domain at creation time.

8.10.2.2.1 CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect in the domain with which this
ConstructionPolicy object is associated. Construction Policy can either be set so that when an object reference of the type
specified by the input parameter is created, a new domain manager will be created and the newly created object reference
will respond to get_domain_managers by returning a reference to this domain manager. Alternatively the policy can be
set to associate the newly created object reference with the domain associated with the creator. This policy is implemented
by the ORB during execution of any one of the object reference creation operations of the POA, and results in the
construction of the application-specified object reference and a Domain Manager object if so dictated by the policy in
effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)

e object_type
The type of the object references for which Domain Managers will be created. If this is nil, the policy applies to
all object references in the domain.

CORBA - Part 1: Interfaces, v3.1 137



e constr_policy
If TRUE the construction policy is set to create a new domain manager associated with the newly created object
reference of this type in this domain. If FALSE construction policy is set to associate the newly created object
references with the domain of the creator or a default domain as described above.

8.11 TypeCodes

TypeCodes are values that represent invocation argument types and attribute types. They can be obtained from the
Interface Repository or from IDL compilers.

TypeCodes have a number of uses. They are used in the dynamic invocation interface to indicate the types of the actual
arguments. They are used by an Interface Repository to represent the type specifications that are part of many OMG IDL
declarations. Finally, they are crucial to the semantics of the any type.

Abstractly, TypeCodes consist of a “kind” field, and a set of parameters appropriate for that kind. For example, the
TypeCode describing OMG IDL type long has kind tk_long and no parameters. The TypeCode describing OMG IDL
type sequence<boolean,10> has kind tk_sequence and two parameters: 10 and boolean.

8.11.1 The TypeCode Interface

The PIDL interface for TypeCodes is as follows:

module CORBA {
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface
tk_component, tk_home,
tk_event

h

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM =1,
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode {
exception Bounds {};
exception BadKind {};

I/ for all TypeCode kinds
boolean equal (in TypeCode tc);

138 CORBA - Part 1: Interfaces, v3.1



boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind ();

Il for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/Il tk_value, tk_value_box, tk_native, tk_abstract_interface
/l tk_local_interface, tk_except

/l tk_component, tk_home and tk_event

Repositoryld id () raises (BadKind);

I/ for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,

/Il tk_value, tk_value_box, tk_native, tk_abstract_interface
/l tk_local_interface, tk_except

/l tk_component, tk_home and tk_event

Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, tk_value,

/l tk_except and tk_event

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index)
raises(BadKind, Bounds);

I for tk_struct, tk_union, tk_value,

I/l tk_except and tk_event

TypeCode member_type (in unsigned long index)
raises (BadKind, Bounds);

/I for tk_union

any member_label (in unsigned long index)
raises(BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

Il for tk_string, tk_wstring, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

/l for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

Il for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

/[ for tk_value and tk_event
Visibility member_visibility(in unsigned long index)
raises(BadKind, Bounds);
ValueModifier type_madifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);
h
k

With the above operations, any TypeCode can be decomposed into its constituent parts. The BadKind exception is raised
if an operation is not appropriate for the TypeCode kind it invoked.

CORBA - Part 1: Interfaces, v3.1 139



The equal operation can be invoked on any TypeCode. The equal operation returns TRUE if and only if for the target
TypeCode and the TypeCode passed through the parameter tc, the set of legal operations is the same and invoking any
operation from that set on the two TypeCodes return identical results.

The equivalent operation is used by the ORB when determining type equivalence for values stored in an IDL any.
TypeCodes are considered equivalent based on the following semantics:

« If the result of the kind operation on either TypeCode is tk_alias, recursively replace the TypeCode with the result of
calling content_type, until the kind is no longer tk_alias.

- If results of the kind operation on each typecode differ, equivalent returns false.

 Iftheid operation is valid for the TypeCode kind, equivalent returns TRUE if the results of id for both TypeCodes are
non-empty strings and both strings are equal. If both ids are non-empty but are not equal, then equivalent returns
FALSE. If either or both id is an empty string, or the TypeCode kind does not support the id operation, equivalent will
perform a structural comparison of the TypeCodes by comparing the results of the other TypeCode operations in the
following bullet items (ignoring aliases as described in the first bullet.). The structural comparison only calls
operations that are valid for the given TypeCode kind. If any of these operations do not return equal results, then
equivalent returns FALSE. If all comparisons are equal, equivalent returns true.

« The results of the name and member_name operations are ignored and not compared.
« The results of the member_count, default_index, length, digits, scale, and type_modifier operations are compared.

« The results of the member_label operation for each member index of a union TypeCode are compared for equality.
Note that this means that unions whose members are not defined in the same order are not considered structurally
equivalent.

« The results of the discriminator_type, member_type, and concrete_base_type operation and for each member
index, and the result of the content_type operation are compared by recursively calling equivalent.

« The results of the member_visibility operation are compared for each member index.

Applications that need to distinguish between a type and different aliases of that type can supplement equivalent by
directly invoking the id operation and comparing the results.

The get_compact_typecode operation strips out all optional name and member name fields, but it leaves all alias
typecodes intact.

The kind operation can be invoked on any TypeCode. Its result determines what other operations can be invoked on the
TypeCode.

The id operation can be invoked on object reference, valuetype, boxed valuetype, abstract interface, local interface,
native, structure, union, enumeration, alias, exception, component, home, and event TypeCodes. It returns the
Repositoryld globally identifying the type. Object reference, valuetype, boxed valuetype, native, exception, component,
home, and event TypeCodes always have a Repositoryld. Structure, union, enumeration, and alias TypeCodes obtained
from the Interface Repository or the ORB::create_operation_list operation also always have a Repositoryld. Otherwise,
the id operation can return an empty string.

When the id operation is invoked on an object reference TypeCode that contains a base Object, the returned value is
IDL:omg.org/CORBA/Object:1.0.

When it is invoked on a valuetype TypeCode that contains a ValueBase, the returned value is IDL:omg.org/CORBA/
ValueBase:1.0.

140 CORBA - Part 1: Interfaces, v3.1



When it is invoked on a component TypeCode that contains a Components::CCMODbject, the returned value is
IDL:omg.org/Components/CCMObiject:1.0.

When it is invoked on a home TypeCode that contains a Components::CCMHome, the returned value is
IDL:omg.org/Components/CCMHome:1.0.

When it is invoked on an eventtype TypeCode that contains a Components::EventBase, the returned value is
IDL:omg.org/Components/EventBase:1.0.

The name operation can also be invoked on object reference, structure, union, enumeration, alias, abstract interface, local
interface, value type, boxed valuetype, native, and exception TypeCodes. It returns the simple name identifying the type
within its enclosing scope. Since names are local to a Repository, the name returned from a TypeCode may not match the
name of the type in any particular Repository, and may even be an empty string.

The order in which members are presented in the interface repository is the same as the order in which they appeared in
the IDL specification, and this ordering determines the index value for each member. The first member has index value 0.
For example for a structure definition:

struct example {
short memberl;
short member2;
long member3;

h

In this example member1 has index = 0, member2 has index = 1, and member3 has index = 2. The value of
member_count in this case is 3.

The member_count and member_name operations can be invoked on structure, union, non-boxed valuetype, non-boxed
eventtype, exception, and enumeration TypeCodes. Member_count returns the number of members constituting the type.
Member_name returns the simple name of the member identified by index. Since names are local to a Repository, the
name returned from a TypeCode may not match the name of the member in any particular Repository, and may even be
an empty string.

The member_type operation can be invoked on structure, non-boxed valuetype, non-boxed eventtype, exception and
union TypeCodes. It returns the TypeCode describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can only be invoked on union TypeCodes.
Member_label returns the label of the union member identified by index. For the default member, the label is the zero
octet. The discriminator_type operation returns the type of all non-default member labels. The default_index operation
returns the index of the default member, or -1 if there is no default member.

The member_visibility operation can only be invoked on non-boxed valuetype and non-boxed eventtype, TypeCodes. It
returns the Visibility of the valuetype/eventtype member identified by index.

The member_name, member_type, member_label and member_visibility operations raise Bounds if the index
parameter is greater than or equal to the number of members constituting the type.

The content_type operation can be invoked on sequence, array, boxed valuetype and alias TypeCodes. For sequences and
arrays, it returns the element type. For aliases, it returns the original type. For boxed valuetype, it returns the boxed type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-dimensional arrays are represented by
nesting TypeCodes, one per dimension. The outermost tk_array Typecode describes the leftmost array index of the array
as defined in IDL. Its content_type describes the next index. The innermost nested tk_array TypeCode describes the
rightmost index and the array element type.

CORBA - Part 1: Interfaces, v3.1 141



The type_modifier and concrete_base_type operations can be invoked on non-boxed valuetype and non-boxed
eventtypeTypeCodes. The type_modifier operation returns the ValueModifier that applies to the valuetype/eventtype
represented by the target TypeCode. If the valuetype/eventtype represented by the target TypeCode has a concrete base
valuetype/eventtype, the concrete_base_type operation returns a TypeCode for the concrete base, otherwise it returns a
nil TypeCode reference.

The length operation can be invoked on string, wide string, sequence, and array TypeCodes. For strings and sequences, it
returns the bound, with zero indicating an unbounded string or sequence. For arrays, it returns the number of elements in
the array. For wide strings, it returns the bound, or zero for unbounded wide strings.

8.11.2 TypeCode Constants

For IDL type declarations, the IDL compiler produces (if asked) a declaration of a TypeCode constant. See the language
mapping rules for more information about the names of the generated TypeCode constants. TypeCode constants include
tk_alias definitions wherever an IDL typedef is referenced. These constants can be used with the dynamic invocation
interface and other routines that require TypeCodes.

The predefined TypeCode constants, named according to the C language mapping, are:

TC_null

TC void

TC_short

TC_long

TC_longlong

TC_ushort

TC_ulong

TC _ulonglong

TC_float

TC_double

TC_longdouble

TC_boolean

TC_char

TC_wchar

TC_octet

TC_any

TC_TypeCode

TC_Object = tk_objref {Object}
TC_string= tk_string {0} // unbounded
TC_wstring = tk_wstring{0}/// unbounded
TC_ValueBase = tk_value {ValueBase}
TC_Component = tk_component {CCMObject}
TC_Home = tk_home {CCMHome}
TC_EventBase = tk_event {EventBase}

For the TC_Object TypeCode constant, calling id returns “IDL:omg.org/CORBA/Object:1.0” and calling name returns
“Object.”

For the TC_ValueBase TypeCode constant, calling id returns “IDL:omg.org/CORBA/ValueBase:1.0,” calling name
returns “ValueBase,” calling member_count returns 0, calling type_modifier returns CORBA::VM_NONE, and calling
concrete_base_type returns a nil TypeCode.

142 CORBA - Part 1: Interfaces, v3.1



For the TC_Component TypeCode constant, calling id returns “IDL:omg.org/Components/CCMObject:1.0” and calling
name returns “CCMObject.”

For the TC_Home TypeCode constant, calling id returns “IDL:omg.org/Components/CCMHome:1.0” and calling name
returns “CCMHome.”

For the TC_EventBase TypeCode constant, calling id returns “IDL:omg.org/Components/EventBase:1.0,” calling name
returns “EventBase,” calling member_count returns 0, calling type_modifier returns CORBA::VM_NONE, and calling
concrete_base_type returns a nil TypeCode.

8.11.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in terms of object references, and the
TypeCodes describing them are generated automatically.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed outside of any Interface
Repository. This can be done using operations on the ORB pseudo-object.

module CORBA {
interface ORB {
/l other operations ...

TypeCode create_struct_tc (

in Repositoryld id;

in ldentifier name,

in StructMemberSeq members
)i
TypeCode create_union_tc (

in Repositoryld id,

in ldentifier name,

in TypeCode discriminator_type,

in UnionMemberSeq members
)i
TypeCode create_enum_tc (

in Repositoryld id,

in Identifier name,

in EnumMemberSeq members
)i
TypeCode create_alias_tc (

in Repositoryld id,

in Identifier name,

in TypeCode original_type
)i
TypeCode create_exception_tc (

in Repositoryld id,

in Identifier name,

in StructMemberSeq members

CORBA - Part 1: Interfaces, v3.1 143



144

TypeCode create_interface_tc (

in Repositoryld id,
in Identifier name
)i
TypeCode create_string_tc (
in unsigned long bound
);
TypeCode create_wstring_tc (
in unsigned long bound
)i
TypeCode create_fixed_tc (
in unsigned short digits,
in unsigned short scale
)i
TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element_type
)i
TypeCode create_recursive_sequence_tc (// deprecated
in unsigned long bound,
in unsigned long offset
)i
TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type
)i
TypeCode create_value_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members
)i
TypeCode create_value_box_tc (
in Repositoryld id,
in ldentifier name,
in TypeCode boxed_type
)i
TypeCode create_native_tc (
in Repositoryld id,
in Identifier name

):

TypeCode create_recursive_tc(
in Repositoryld id
)i

CORBA - Part 1: Interfaces, v3.1



TypeCode create_abstract_interface_tc(

in Repositoryld id,
in Identifier name
);
TypeCode create_local_interface_tc(
in Repositoryld id,
in ldentifier name
);
TypeCode create_component_tc (
in Repositoryld id,
in Identifier name
);
TypeCode create_home_tc (
in Repositoryld id,
in Identifier name
)i
TypeCode create_event_tc (
in Repositoryld id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

h

Most of these operations are similar to corresponding IR operations for creating type definitions. TypeCodes are used
here instead of IDLType object references to refer to other types. In the StructMember, UnionMember, and ValueMember
structures, only the type is used, and the type_def should be set to nil.

Typecode creation operations that take name as an argument shall check that the name is a valid IDL name or is an empty
string. If not, they shall raise the BAD_PARAM exception with standard minor code 15. Operations that take a
Repositoryld argument shall check that the argument passed in is a string of the form <format>:<string> and if not, then
raise a BAD_PARAM exception with standard minor code 16. Operations that take content or member types as
arguments shall check that they are legitimate (i.e., that they don’t have kinds tk_null, tk_void, or tk_exception). If not,
they shall raise the BAD_TYPECODE exception with standard minor code 2. Operations that take members shall check
that the member names are valid IDL names and that they are unique within the member list, and if the name is found to
be incorrect, they shall raise a BAD_PARAM with standard minor code 17.

The create_union_tc operation shall check that there are no duplicate label values. It shall also check that each label
TypeCode compares equivalent to the discriminator TypeCode. If a duplicate label is found, raise BAD_PARAM with
standard minor code 18. If the TypeCode of a label is not equivalent to the TypeCode of the discriminator (other than the
octet TypeCode to indicate the default label), the operation shall raise BAD_PARAM with standard minor code 19. The
create_union_tc operation shall also check that the supplied discriminator type is legitimate, and if the check fails, raise
BAD_PARAM with standard minor code 20.

CORBA - Part 1: Interfaces, v3.1 145



Note — The create_recursive_sequence_tc operation is deprecated. No new code should make use of this operation. Its
functionality is subsumed by the new operation create_recursive_tc. The create_recursive_sequence_tc operation will
be removed from a future revision of the standard.

The create_recursive_sequence_tc operation is used to create TypeCodes describing recursive sequences that are
members of structs or unions. The result of this operation should be used as the typecode in the StructMemberSeq or
UnionMemberSeq arguments of the create_struct_tc or create_union_tc operations. The offset parameter specifies
which enclosing struct or union is the target of the recursion, with the value 1 indicating the most immediate enclosing
struct or union, and larger values indicating successive enclosing struct or unions. For example, the offset would be 1 for
the following IDL structure:

struct foo {
long value;
sequence <foo> chain;

h

Once the recursive sequence TypeCode has been properly embedded in its enclosing TypeCodes, it will function as a
normal sequence TypeCode. Invoking operations on the recursive sequence TypeCode before it has been embedded in the
required number of enclosing TypeCodes will result in undefined behavior. Attempt to marshal incomplete typecodes
shall raise the BAD_TYPECODE exception with standard minor code 1. Attempt to use an incomplete TypeCode as a
parameter of any operation when detected shall cause the BAD_PARAM exception to be raised with standard minor code
13.

For create_value_tc operation, the concrete_base parameter is a TypeCode for the immediate concrete valuetype base of
the valuetype for which the TypeCode is being created. If the valuetype does not have a concrete base, the concrete_base
parameter is a nil TypeCode reference.

The create_recursive_tc operation is used to create a recursive TypeCode, which serves as a place holder for a concrete
TypeCode during the process of creating TypeCodes that contain recursion. The id parameter specifies the repository id
of the type for which the recursive TypeCode is serving as a place holder. Once the recursive TypeCode has been
properly embedded in the enclosing TypeCode, which corresponds to the specified repository id, it will function as a
normal TypeCode. Invoking operations on the recursive TypeCode before it has been embedded in the enclosing
TypeCode will result in undefined behavior. For example, the following IDL type declarations contain recursion:

struct foo {
long value;
sequence<foo> chain;

b

valuetype V {
public V member;

h

To create a TypeCode for valuetype V, you would invoke the TypeCode creation operations as shown below:

// C++
TypeCode var recursive tc
= orb->create recursive tc(“IDL:V:1.0”);

ValueMemberSeq v_seq;
v_seq.length(1);

146 CORBA - Part 1: Interfaces, v3.1



v_seq[0] .name = string dup (“member”) ;
v_seq[0] .type = recursive tc;
v_seq[0] .access = PUBLIC MEMBER;
TypeCode var v_val tc
= orb->create value tc(“IDL:V:1.0”,
wyn
VM_NONE,
TypeCode:: nil(),
v_seq);

For create_event_tc operation, the concrete_base parameter is a TypeCode for the immediate concrete base of the
eventtype for which the TypeCode is being created. If the eventtype does not have a concrete base, the concrete_base
parameter is a nil TypeCode reference.

8.12 Exceptions

The terms “system” and “user” exception are defined in this sub clause. Further the terms “standard system exception”
and “standard user exception” are defined, and then a list of “standard system exceptions” is provided.

8.12.1 Definition of Terms

In general the following terms should be used consistently in all OMG standards documents to refer to exceptions:
Standard Exception: Any exception that is defined in an OMG Standard.

System Exception: Clients must be prepared to handle these exceptions even though they are not declared in a raises
clause. These exceptions cannot appear in a raises clause. These have the structure defined in Annex A and they are of
type SYSTEM_EXCEPTION (see PIDL below).

Standard System Exception: A System Exception that is part of the CORBA Standard (e.g., BAD_PARAM). See Annex
A for more details.

Non-Standard System Exceptions: System exceptions that are proprietary to a particular vendor/implementation.

User Exception: Exceptions that can be raised only by those operations that explicitly declare them in the raises clause
of their signature. These exceptions are of type USER_EXCEPTION (see IDL below).

Standard User Exception: Any User Exception that is defined in a published OMG standard (e.g., WrongTransaction).
These are documented in the documentation of individual interfaces.

Non-standard User Exception: User exceptions that are not defined in any published OMG specification.
8.12.2 System Exceptions

In order to bound the complexity in handling the standard exceptions, the set of standard exceptions should be kept to a
tractable size. This constraint forces the definition of equivalence classes of exceptions rather than enumerating many
similar exceptions. For example, an operation invocation can fail at many different points due to the inability to allocate
dynamic memory. Rather than enumerate several different exceptions corresponding to the different ways that memory
allocation failure causes the exception (during marshaling, unmarshaling, in the client, in the object implementation,
allocating network packets), a single exception corresponding to dynamic memory allocation failure is defined.

CORBA - Part 1: Interfaces, v3.1 147



module CORBA {
const unsigned long OMGVMCID = 0x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE
k

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,

SYSTEM_EXCEPTION

3
Each system exception includes a minor code to designate the subcategory of the exception.

Minor exception codes are of type unsigned long and consist of a 20-bit “Vendor Minor Codeset ID”(VMCID), which
occupies the high order 20 bits, and the minor code that occupies the low order 12 bits.

The standard minor codes for the standard system exceptions are prefaced by the VMCID assigned to OMG, defined as the
unsigned long constant CORBA::OMGVMCID, which has the VMCID allocated to OMG occupying the high order 20 bits.
The minor exception codes associated with the standard exceptions that are found in Annex A, “Exception Codes” are
or-ed with OMGVMCID to get the minor code value that is returned in the ex_body structure (see “Standard System
Exception Definitions” on page 149 and “Standard Minor Exception Codes” on page 155).

Within a vendor assigned space, the assignment of values to minor codes is left to the vendor. Vendors may request
allocation of VMCIDs by sending email to tag-request@omg.org.

The VMCID 0 and Oxfffff are reserved for experimental use. The VMCID OMGVMCID (8.12.3, ’Standard System Exception
Definitions’) and 1 through Oxf are reserved for OMG use.

Each standard system exception also includes a completion_status code that takes one of the values
{COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}. These have the following meanings:

COMPLETED_YES The object implementation has completed processing prior to the exception being
raised.

COMPLETED_NO The object implementation was never initiated prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is indeterminate.

Client applications must be prepared to handle system exceptions other than the standard system exception defined below
in “Standard System Exception Definitions” on page 149, both because future versions of this specification may define
additional standard system exceptions, and because ORB implementations may raise non-standard system exceptions.

148 CORBA - Part 1: Interfaces, v3.1




Vendors may define non-standard system exceptions, but these exceptions are discouraged because they are non-portable.
A non-standard system exception, when passed to an ORB that does not recognize it, shall be presented by that ORB as
an UNKNOWN standard system exception. The completion status shall be preserved in the UNKNOWN exception, and
the minor code shall be set to standard value 2 for system exception and standard value 1 for user exception.

Non-standard system exceptions shall have the same structure as of standard standard system exceptions as specified in
“Standard System Exception Definitions” on page 149 (i.e., they have the same ex_body). They also shall follow the
same language mappings as standard system exceptions. Although they are PIDL, vendors should ensure that their names
do not clash with any other names following the normal naming and scoping rules as they apply to regular IDL
exceptions.

8.12.3 Standard System Exception Definitions

The standard system exceptions are defined in this sub clause.
module CORBA { /l PIDL

exception UNKNOWN ex_body;

/l the unknown exception
exception BAD_PARAM ex_body;

/[ an invalid parameter was passed
exception NO_MEMORY ex_body;

/I dynamic memory allocation failure
exception IMP_LIMIT ex_body;

/l violated implementation limit
exception COMM_FAILURE ex_body;

/I communication failure
exception INV_OBJREF ex_body;

/l invalid object reference
exception NO_PERMISSION ex_body;

/I no permission for attempted op.
exception INTERNAL ex_body;

/I ORB internal error
exception MARSHAL ex_body;

/I error marshaling param/result
exception INITIALIZE ex_body;

/l ORB initialization failure
exception NO_IMPLEMENT ex_body;

/l operation implementation unavailable
exception BAD_TYPECODE ex_body;

// bad typecode
exception BAD_OPERATION ex_body;

/l invalid operation
exception NO_RESOURCES ex_body;

/l insufficient resources for req.
exception NO_RESPONSE ex_body;

/I response to req. not yet available
exception PERSIST_STORE ex_body;

/I persistent storage failure
exception BAD_INV_ORDER ex_body;

/I routine invocations out of order
exception TRANSIENT ex_body;

/l transient failure - reissue request
exception FREE_MEM ex_body;

CORBA - Part 1: Interfaces, v3.1 149



h

/l cannot free memory
exception INV_IDENT ex_body;
// invalid identifier syntax
exception INV_FLAG ex_body;
/l'invalid flag was specified
exception INTF_REPOS ex_body;
/l error accessing interface repository
exception BAD_CONTEXT ex_body;
/I error processing context object
exception OBJ_ADAPTER ex_body;
// failure detected by object adapter
exception DATA_CONVERSION ex_body;
// data conversion error
exception OBJECT_NOT_EXIST ex_body;
/l non-existent object, delete reference
exception TRANSACTION_REQUIRED ex_body;
/I transaction required
exception TRANSACTION_ROLLEDBACK x_body;
/I transaction rolled back
exception INVALID_TRANSACTION ex_body;
/l invalid transaction
exception INV_POLICY ex_body;
/l'invalid policy
exception CODESET_INCOMPATIBLE ex_body
/l incompatible code set
exception REBIND ex_body;
// rebind needed
exception TIMEOUT ex_body;
// operation timed out
exception TRANSACTION_UNAVAILABLE ex_body;
// no transaction
exception TRANSACTION_MODE ex_body;
/l invalid transaction mode
exception BAD_QOS ex_bhody;
// bad quality of service
exception INVALID_ACTIVITY ex_body;
// bad quality of service
exception ACTIVITY_COMPLETED ex_body;
// bad quality of service
exception ACTIVITY_REQUIRED ex_body;
// bad quality of service

8.12.3.1 UNKNOWN

This exception is raised if an operation implementation throws a non-CORBA exception (such as an exception specific to
the implementation’s programming language), or if an operation raises a user exception that does not appear in the

operation’s raises expression. UNKNOWN is also raised if the server returns a system exception that is unknown to the
client. (This can happen if the server uses a later version of CORBA than the client and new system exceptions have been
added to the later version.)

150

CORBA - Part 1: Interfaces, v3.1



8.12.3.2 BAD_PARAM

A parameter passed to a call is out of range or otherwise considered illegal. An ORB may raise this exception if null
values or null pointers are passed to an operation (for language mappings where the concept of a null pointers or null
values applies). BAD_PARAM can also be raised as a result of client generating requests with incorrect parameters using
the DII.

8.12.3.3 NO_MEMORY
The ORB run time has run out of memory.
8.12.3.4 IMP_LIMIT

This exception indicates that an implementation limit was exceeded in the ORB run time. For example, an ORB may
reach the maximum number of references it can hold simultaneously in an address space, the size of a parameter may
have exceeded the allowed maximum, or an ORB may impose a maximum on the number of clients or servers that can
run simultaneously.

8.12.3.5 COMM_FAILURE

This exception is raised if communication is lost while an operation is in progress, after the request was sent by the client,
but before the reply from the server has been returned to the client.

8.12.3.6 INV_OBJREF

This exception indicates that an object reference is internally malformed. For example, the repository ID may have
incorrect syntax or the addressing information may be invalid.

An ORB may choose to detect calls via nil references (but is not obliged to detect them). INV_OBJREF is used to
indicate this.

If the client invokes an operation that results in an attempt by the client ORB to marshal wchar or wstring data for an in
parameter (or to unmarshal wchar or wstring data for an in/out parameter, out parameter or the return value), and the
associated object reference does not contain a codeset component, the INV_OBJREF standard system exception is raised.

8.12.3.7 NO_PERMISSION
An invocation failed because the caller has insufficient privileges.
8.12.3.8 INTERNAL

This exception indicates an internal failure in an ORB, for example, if an ORB has detected corruption of its internal data
structures.

8.12.3.9 MARSHAL

A request or reply from the network is structurally invalid. This error typically indicates a bug in either the client-side or
server-side run time. For example, if a reply from the server indicates that the message contains 1000 bytes, but the actual
message is shorter or longer than 1000 bytes, the ORB raises this exception. MARSHAL can also be caused by using the
DIl or DSI incorrectly, for example, if the type of the actual parameters sent does not agree with IDL signature of an
operation.

CORBA - Part 1: Interfaces, v3.1 151



8.12.3.10 INITIALIZE

An ORB has encountered a failure during its initialization, such as failure to acquire networking resources or detecting a
configuration error.

8.12.3.11 NO_IMPLEMENT

This exception indicates that even though the operation that was invoked exists (it has an IDL definition), no
implementation for that operation exists. NO_IMPLEMENT can, for example, be raised by an ORB if a client asks for an
object's type definition from the interface repository, but no interface repository is provided by the ORB.

8.12.3.12 BAD_TYPECODE

The ORB has encountered a malformed type code (for example, a type code with an invalid TCKind value).

8.12.3.13 BAD_OPERATION

This indicates that an object reference denotes an existing object, but that the object does not support the operation that
was invoked.

8.12.3.14 NO_RESOURCES

The ORB has encountered some general resource limitation. For example, the run time may have reached the maximum
permissible number of open connections.

8.12.3.15 NO_RESPONSE

This exception is raised if a client attempts to retrieve the result of a deferred synchronous call, but the response for the
request is not yet available.

8.12.3.16 PERSIST_STORE

This exception indicates a persistent storage failure, for example, failure to establish a database connection or corruption
of a database.

8.12.3.17 BAD_INV_ORDER

This exception indicates that the caller has invoked operations in the wrong order. For example, it can be raised by an
ORB if an application makes an ORB-related call without having correctly initialized the ORB first.

8.12.3.18 TRANSIENT
TRANSIENT indicates that the ORB attempted to reach an object and failed. It is not an indication that an object does not
exist. Instead, it simply means that no further determination of an object's status was possible because it could not be

reached. This exception is raised if an attempt to establish a connection fails, for example, because the server or the
implementation repository is down.

152 CORBA - Part 1: Interfaces, v3.1



8.12.3.19 FREE_MEM

The ORB failed in an attempt to free dynamic memory, for example because of heap corruption or memory segments
being locked.

8.12.3.20 INV_IDENT

This exception indicates that an IDL identifier is syntactically invalid. It may be raised if, for example, an identifier
passed to the interface repository does not conform to IDL identifier syntax, or if an illegal operation name is used with
the DII.

8.12.3.21 INV_FLAG
An invalid flag was passed to an operation (for example, when creating a DIl request).
8.12.3.22 INTF_REPOS

An ORB raises this exception if it cannot reach the interface repository, or some other failure relating to the interface
repository is detected.

8.12.3.23 BAD_CONTEXT

An operation may raise this exception if a client invokes the operation but the passed context does not contain the context
values required by the operation.

8.12.3.24 OBJ_ADAPTER

This exception typically indicates an administrative mismatch. For example, a server may have made an attempt to
register itself with an implementation repository under a name that is already in use, or is unknown to the repository.
OBJ_ADAPTER is also raised by the POA to indicate problems with application-supplied servant managers.

8.12.3.25 DATA_CONVERSION

This exception is raised if an ORB cannot convert the representation of data as marshaled into its native representation or
vice-versa. For example, DATA_CONVERSION can be raised if wide character codeset conversion fails, or if an ORB
cannot convert floating point values between different representations.

8.12.3.26 OBJECT_NOT_EXIST
The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted object was performed. It is an

authoritative “hard” fault report. Anyone receiving it is allowed (even expected) to delete all copies of this object
reference and to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold (for example, proxy objects used in
reference translation). The clients could in turn purge any of their own data structures.

8.12.3.27 TRANSACTION_REQUIRED

The TRANSACTION_REQUIRED exception indicates that the request carried a null transaction context, but an active
transaction is required.

CORBA - Part 1: Interfaces, v3.1 153



8.12.3.28 TRANSACTION_ROLLEDBACK

The TRANSACTION_ROLLEDBACK exception indicates that the transaction associated with the request has already
been rolled back or marked to roll back. Thus, the requested operation either could not be performed or was not
performed because further computation on behalf of the transaction would be fruitless.

8.12.3.29 INVALID_TRANSACTION

The INVALID_TRANSACTION indicates that the request carried an invalid transaction context. For example, this
exception could be raised if an error occurred when trying to register a resource.

8.12.3.30 INV_POLICY

INV_POLICY is raised when an invocation cannot be made due to an incompatibility between Policy overrides that apply
to the particular invocation.

8.12.3.31 CODESET_INCOMPATIBLE

This exception is raised whenever meaningful communication is not possible between client and server native code sets.
See CORBA, Part Il - ORB Interoperability Architecture.

8.12.3.32 REBIND

REBIND is raised when the current effective RebindPolicy, as described in “interface RebindPolicy” on page 422, has a
value of NO_REBIND or NO_RECONNECT and an invocation on a bound object reference results in a LocateReply
message with status OBJECT_FORWARD or a Reply message with status LOCATION_FORWARD. This exception is also
raised if the current effective RebindPolicy has a value of NO_RECONNECT and a connection must be re-opened. The
invocation can be retried once the effective RebindPolicy is changed to TRANSPARENT or binding is re-established
through an invocation of CORBA::Object::validate_connection.

REBIND is raised when there is a problem in carrying out a requested or implied attempt to rebind an object reference
(“interface RebindPolicy” on page 422).

8.12.3.33 TIMEOUT

TIMEOUT is raised when no delivery has been made and the specified time-to-live period has been exceeded. It is a
standard system exception because time-to-live QoS can be applied to any invocation.

8.12.3.34 TRANSACTION_UNAVAILABLE

TRANSACTION_UNAVAILABLE exception is raised by the ORB when it cannot process a transaction service context
because its connection to the Transaction Service has been abnormally terminated.

8.12.3.35 TRANSACTION_MODE

TRANSACTION_MODE exception is raised by the ORB when it detects a mismatch between the TransactionPolicy in
the IOR and the current transaction mode.

154 CORBA - Part 1: Interfaces, v3.1



8.12.3.36 BAD_QOS

The BAD_QOS exception is raised whenever an object cannot support the quality of service required by an invocation
parameter that has a quality of service semantics associated with it.

8.12.3.37 INVALID_ACTIVITY

The INVALID_ACTIVITY system exception may be raised on the Activity or Transaction services’ resume methods if a
transaction or Activity is resumed in a context different to that from which it was suspended. It is also raised when an
attempted invocation is made that is incompatible with the Activity’s current state.

8.12.3.38 ACTIVITY_COMPLETED

The ACTIVITY_COMPLETED system exception may be raised on any method for which Activity context is accessed. It
indicates that the Activity context in which the method call was made has been completed due to a timeout of either the
Activity itself or a transaction that encompasses the Activity, or that the Activity completed in a manner other than that
originally requested.

8.12.3.39 ACTIVITY_REQUIRED
The ACTIVITY_REQUIRED system exception may be raised on any method for which an Activity context is required. It

indicates that an Activity context was necessary to perform the invoked operation, but one was not found associated with
the calling thread.

8.12.4 Standard Minor Exception Codes

Please refer to Annex A for a table that specifies standard minor exception codes that have been assigned for the standard
system exceptions.

CORBA - Part 1: Interfaces, v3.1 155



156 CORBA - Part 1: Interfaces, v3.1



9 Value Type Semantics

9.1 Overview

Obijects, more specifically, interface types that objects support, are defined by an IDL interface, allowing arbitrary
implementations. There is great value, which is described in great detail elsewhere, in having a distributed object system
that places almost no constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object by value, rather than by reference.
This may be particularly useful when an object’s primary “purpose” is to encapsulate data, or an application explicitly
wishes to make a “copy” of an object.

The semantics of passing an object by value are similar to that of standard programming languages. The receiving side of
a parameter passed by value receives a description of the “state” of the object. It then instantiates a new instance with that
state but having a separate identity from that of the sending side. Once the parameter passing operation is complete, no
relationship is assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must necessarily know something about the
object’s state and implementation.

Value types provide semantics that bridge between CORBA structs and CORBA interfaces:
» They support description of complex state (i.e., arbitrary graphs, with recursion and cycles).

« Their instances are always local to the context in which they are used (because they are always copied when passed as
a parameter to a remote call).

« They support both public and private (to the implementation) data members.
« They can be used to specify the state of an object implementation (i.e., they can support an interface).
« They support single inheritance (of valuetype) and can support an interface.

- They may be also be abstract.

9.2 Architecture

The basic notion is relatively simple. A value type is, in some sense, half way between a “regular” IDL interface type
and a struct. The use of a value type is a signal from the designer that some additional properties (state) and
implementation details be specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types. This is reflected in both the semantics
specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local. That is, the explicit use of value type
in a concrete programming language is always guaranteed to use a local implementation, and will not require a remote
call. They have no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract (stateless) ones. As explained below
the essential characteristics of both are the same. The differences between them result from the differences in the way
they are mapped in the language mappings. In this specification the semantics of value types apply to both kinds, unless
specifically stated otherwise.

CORBA - Part 1: Interfaces, v3.1 157



Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:
« Single derivation (from other value types).
» Supports a single non-abstract interface.

« Arbitrary recursive value type definitions, with sharing semantics providing the ability to define lists, trees, lattices,
and more generally arbitrary graphs using value types.

« Null value semantics.

When an instance of such a type is passed as a parameter, the sending context marshals the state (data) and passes it to
the receiving context. The receiving context instantiates a new instance using the information in the GIOP request and
unmarshals the state. It is assumed that the receiving context has available to it an implementation that is consistent with
the sender’s (i.e., only needs the state information), or that it can somehow download a usable implementation. Provision
is made in the on-the-wire format to support the carrying of an optional call back object (CodeBase) to the sending
context, which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state as a degenerate case.
9.2.1 Abstract Values

Value types may also be abstract. They are called abstract because an abstract value type may not be instantiated. Only
concrete types derived from them may be actually instantiated and implemented. Their implementation, of course, is still
local. However, because no state information may be specified (only local operations are allowed), abstract value types
are not subject to the single inheritance restrictions placed upon concrete value types. Essentially they are a bundle of
operation signatures with a purely local implementation. This distinction is made clear in the language mappings for
abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They are considered to be stateful, may
be instantiated, marshaled, and passed as actual parameters. Consider them to be a degenerate case of stateful values.

9.2.2 Operations

Operations defined on a value type specify signatures whose implementation can only be local. Because these operations
are local, they must be directly implemented by a body of code in the language mapping (no proxy or indirection is
involved).

The language mappings of such operations require that instances of value types passed into and returned by such local
methods are passed by reference (programming language reference semantics, not CORBA object reference semantics)
and that a copy is not made. Note, such a (local) invocation is not a CORBA invocation. Hence it is not mediated by the
ORB, although the API to be used is specified in the language mapping.

The (copy) semantics for instances of value type are only guaranteed when instances of these value types are passed as a
parameter to an operation defined on a CORBA interface, and hence mediated by the ORB. If an instance of a value type
is passed as a parameter to a method of another value type in an invocation, then this call is a “normal” programming
language call. In this case both of the instances are local programming language constructs. No CORBA style copy
semantics are used and programming language reference semantics apply.

Operations on the value type are supported in order to guarantee the portability of the client code for these value types.
They have no representation on the wire and hence no impact on interoperability.

158 CORBA - Part 1: Interfaces, v3.1



9.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value types do not inherit from
CORBA::Object and do not support normal object reference semantics. However it is always possible to explicitly
declare that a given value type supports an interface type. In this case instances of the type may support CORBA object
reference semantics (if they are registered with the ORB using an object adapter).

9.2.4 Parameter Passing

This sub clause describes semantics when a value instance is passed as parameter in a CORBA invocation. It does not
deal with the case of calling another non-CORBA (i.e., local) programming method, which happens to have a parameter
of the same type.

9.2.4.1 Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by examining the parameter’s formal
type (i.e., the signature of the operation it is being passed to). If it is a value type, then it is passed by value. If it is an
ordinary interface, then it is passed by reference (the case today for all CORBA objects). This rule is simple and
consistent with the handling of the same situation in recursive state definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See “Semantics of Abstract Interfaces” on
page 173 for a description of the rules.

9.2.4.2 Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees, etc., value types support sharing and null
semantics. Instances of a value type can be shared by others across or within other instances. They can also be null. This
is unlike other IDL data types such as structs, unions, and sequences that can never be shared. The sharing of values
within and between the parameters to an operation is preserved across an invocation; that is, the graph that is
reconstructed in the receiving context is structurally isomorphic to the sending context’s.

9.2.4.3 Identity Semantics

When an instance of the value type is passed as a parameter to an operation of a non-local interface, the effect in all cases
shall be as if an independent copy of the instance is instantiated in the receiving context. While certain implementation
optimizations are possible the net effect shall be as if the copy is a separate independent entity and there is no explicit or
implicit sharing of state. This applies to all valuetypes involved in the invocation, including those embedded in other IDL
datatypes or in an any. This notional copying occurs twice, once for in and inout parameters when the invocation is
initiated, and once again for inout, out, and return parameters when the invocation completes. Optimization techniques
such as copy on write, etc. must make sure that the semantics of copying as described above is preserved.

9.2.4.4 Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing instances to an any, it is the
responsibility of the implementor to insert and extract the value according to the language mapping specification.

CORBA - Part 1: Interfaces, v3.1 159



9.2.5 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happens when an instance of a derived value
type is passed as a parameter that is declared to be a base value type or an instance of a value type that supports an
interface is passed as a parameter that is declared as the interface type.

There are three cases to consider: the parameter type is a regular interface, the parameter type is an abstract interface, and
the parameter type is a value type.

9.2.5.1 Valueinstance -> Interface type

A value type that supports a regular interface is not a subtype of that interface, and hence cannot be substituted for that
interface in an invocation parameter. In this case an object reference corresponding to the value type instance that has
been registered with the ORB must be obtained and this object reference must be used as the actual parameter. Different
language mappings provide different facilities to aid in such parameter passing.

9.2.5.2 Value Instance -> Abstract interface type

A value type that supports an abstract interface is a subtype of that interface, and can be substituted for that interface in
an invocation parameter.

9.2.5.3 Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the receiving context currently has the
appropriate implementation class, then there is no problem.

If the receiving context does not currently hold an implementation with which to reconstruct the original type, then the
following algorithm is used to find such an implementation:

1. Load - Attempt to load (locally in C/C++, possibly remotely in Java and other “portable” languages) the real type of
the object (with its methods). If this succeeds, OK.

2. Truncate - Truncate the type of the object to the base type (if specified as truncatable in the IDL). Truncation can
never lead to faulty programs because, from a structural point view base types structurally subsume a derived type
and an object created in the receiving context bears no relationship with the original one. However, it might be
semantically puzzling, as the derived type may completely re-interpret the meaning of the state of the base. For that
reason a derived value needs to indicate if it is safe to truncate to its immediate non-abstract parent.

3. Raise Exception - If none of these work or are possible, then raise the NO_IMPLEMENT exception with standard
minor code 1.

Truncatability is a transitive property.

Example

valuetype EmployeeRecord { /I note this is not a CORBA::Object
Il state definition
private string name;
private string email;
private string SSN;
Il'initializer
factory init(in string name, in string SSN);

160 CORBA - Part 1: Interfaces, v3.1



valuetype ManagerRecord: truncatable EmployeeRecord {
/I state definition
private sequence<EmployeeRecord> direct_reports;

h
9.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other value types. Each language
mapping is responsible for specifying how these operations are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed. If the interface designer wants to allow
the receiving context to create a local implementation of the value type (i.e., a value representing the interface), an
operation that returns the appropriate value type may be defined.

9.2.7 Value Base Type

All value types have a conventional base type called ValueBase. This is a type, which fulfills a role that is similar to that
played by Object. Conceptually it supports the common operations available on all value types. See “ValueBase

Operations” on page 114 for a description of those operations. In each language mapping ValueBase will be mapped to
an appropriate base type that supports the marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as getting meta information about the type,
may be found in the specifics for each language mapping.

9.2.8 Life Cycle issues

Value type instances are always local to their creating context. For example, in a given language mapping an instance of
a value type is always created as a local “language” object with no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving context and that copy starts its life
as a local programming language entity with no POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be passed by reference when the formal
parameter type is an interface type (see “Parameter Passing” on page 159). In this case they behave like ordinary object
implementations and must be associated with a POA policy and also be registered with the ORB (e.g.,
POA::activate_object() before they can be passed by reference. Not registering the value as a CORBA object and/or
not associating an appropriate policy with it results in an exception when trying to use it as a remote object, the “normal”
behavior. The exception raised shall be OBJECT_NOT_EXIST with standard minor code 1.

9.2.8.1 Creation and Factories

When an instance of a value type is received by the ORB, it must be unmarshaled and an appropriate factory for its actual
type found in order for the new instance to be created. The type is encoded by the RepositorylD, which is passed over the
wire as part of an invocation. The mapping between the type (as specified by the RepositorylD) and the factory is
language specific. In certain languages it may be possible to specify default policies that are used to find the factory,
without requiring that specific routines be called. In others the runtime and/or generated code may have to explicitly
specify the mapping on a per type basis. In others a combination may be used. In any event the ORB implementation is
responsible for maintaining this mapping See “Language Specific Value Factory Requirements” on page 163 for more
details on the requirements for each language mapping. Value box types do not need or use factories.

CORBA - Part 1: Interfaces, v3.1 161



9.2.9 Security Considerations

The addition of value types has few impacts on the CORBA security model. In essence, the security implications in
defining and using value types are similar to those involved with the use of IDL structs. Instances of value types are
mapped to local, concrete programming language constructs. Except for providing the marshaling mechanisms, the ORB
is not directly involved with accessing value type implementations. This specification is mostly about two things: how
value types manifest themselves as concrete programming language constructs and how they are transmitted.

To see this consider how value types are actually used. The IDL definition of a value type in conjunction with a
programming language mapping is used to generate the concrete programming language definitions for that type.

Let us consider its life cycle. In order to use it, the programmer uses the mechanisms in the programming language to
instantiate an instance. This is instance is a local programming language construct. It is not “registered” with the ORB,
object adapter, etc. The programmer may manipulate this programming construct just like any other programming
language construct. So far there are no security implications. As long as no ORB-mediated invocations are made, the
programmer may manipulate the construct. Note, this includes making “local,” non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the programmer and have no special
security implications.

Things get interesting when the program attempts to pass one of these constructs through an orb-mediated invocation (i.e.,
calls a stub that uses it as a parameter type, or uses the DII). There are two cases to consider: 1) Value as Value and 2)
Value as Object Reference.

9.2.9.1 Value as Value

The formal type of the parameter is a value. This case is no different from using any other kind of a value (long, string,
struct) in a CORBA invocation, with respect to security. The value (data) is marshaled and delivered to the receiving
context. On the receiving context, the knowledge of the type is used (at least implicitly) to find the factory to create the
correct local programming language construct. The data is then unmarshaled to fill in the newly created construct. This is
similar to using other values (longs, strings, structs) except that the knowledge of the factory is not “built-in” to the
ORB'’s skeleton/DSI engine.

9.2.9.2 Value as Object Reference

The formal type of the parameter is an interface type that is supported by a value. The program must have “registered” the
value with an object adapter and is really using the returned object reference (see for the specific rules.) Thus this case
“reduces” to a regular CORBA invocation, using a regular object reference. An IOR is passed to the receiving context.
All the “normal” security considerations apply. From the point of view of the receiving context, the IOR is a “normal”
object reference. No “special” rules, with respect to security or otherwise, apply to it. The fact that it is ultimately a
reference to an implementation that was created from instantiating and registering a value type implementation is not
relevant.

In both of these cases, security considerations are involved with the decision to allow the ORB-mediated invocation to
proceed. The fact that a value type is involved is not material.

9.3 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of nulls are likely to be important,
the following value box type definitions are added to the CORBA module:

162 CORBA - Part 1: Interfaces, v3.1



module CORBA {
valuetype StringValue string;
valuetype WStringValue wstring;

9.4 Language Mappings
9.4.1 General Requirements

A concrete value is mapped to a concrete usable “class” construct in each programming language, plus possibly some
helper classes where appropriate. In Java, C++, and Smalltalk this is a real concrete class. In C it is a struct.

An abstract value is mapped to some sort of an abstract construct--an interface in Java, and an abstract class with pure
virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation classes with “extra” data members
and methods. When an instance of such a class is used as a parameter, only the portions that correspond directly to the
IDL declaration, are marshaled and delivered to the receiving context. This allows freedom of implementations while
preserving the notion of contract and type safety in IDL.

9.4.2 Language Specific Marshaling

Each language mapping defines an appropriate marshaling/unmarshaling API and the entry point for custom marshaling/
unmarshaling.

9.4.3 Language Specific Value Factory Requirements

Each language mapping specifies the algorithm and means by which RepositorylDs are used to find the appropriate
factory for an instance of a value type so that it may be created as it is unmarshaled “off the wire.”

It is desirable, where it makes sense, to specify a “default” policy for automatically using RepositorylDs that are in
common formats to find the appropriate factory. Such a policy can be thought of as an implicit registration.

Each language mapping specifies how and when the registration occurs, both explicit and implicit. The registration must
occur before an attempt is made to unmarshal an instance of a value type. If the ORB is unable to locate and use the
appropriate factory, then a MARSHAL exception with standard minor code 1 is raised.

Because the type of the factory is programming language specific and each programming language platform has different
policies, the factory type is specified as native. It is the responsibility of each language mapping to specify the actual
programming language type of the factory.

module CORBA {

/1''DL
native ValueFactory;
I3
9.4.4 Value Method Implementation

The mapped class must support method bodies (i.e., code) that implement the required IDL operations. The means by
which this association is accomplished is a language mapping “detail” in much the same way that an IDL compiler is.

CORBA - Part 1: Interfaces, v3.1 163



9.5 Custom Marshaling

Value types can override the default marshaling/unmarshaling model and provide their own way to encode/decode their
state. Custom marshaling is intended to be used to facilitate integration of existing “class libraries” and other legacy
systems. It is explicitly not intended to be a standard practice, nor used in other OMG specifications to avoid “standard
ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in the IDL. This explicit declaration has
two goals:

« type safety - stub and skeleton can know statically that a given type is custom marshaled and can then do a sanity check
on what is coming over the wire.

- efficiency - for value types that are not custom marshaled no run time test is necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated the same as that of a non custom
value type for mapping purposes (i.e., the fields show up in the same fashion in the concrete programming language). It
is provided to help with application portability.

A custom marshaled value type is always a stateful value type.
/l Example IDL

custom valuetype T {
I/l optional state definition

h

Custom value types can never be safely truncated to base (i.e., they always require an exact match for their Repositoryld
in the receiving context).

Once a value type has been marked as custom, it needs to provide an implementation that marshals and unmarshals the
valuetype. The marshaling code encapsulates the application code that can marshal and unmarshal instances of the value
type over a stream using the CDR encoding. It is the responsibility of the implementation to marshal the state of all of its
base types.

The following sub clauses define the operations and streams that are used for custom marshaling.
9.5.1 Implementation of Custom Marshaling

Once a value type has been marked as custom, an implementation of the custom marshaling code must be provided. This
is specified by providing a concrete implementation of an abstract value type, CustomMarshal, as part of the
implementation of the value type. CustomMarshal encapsulates the application code that can marshal and unmarshal
instances of the value type over a stream using the CDR encoding.

The following IDL defines the interfaces that are used to support the definition and use of custom marshaling.

module CORBA {
abstract valuetype CustomMarshal {
void marshal (in DataOutputStream 0s);
void unmarshal (in DatalnputStream is);
b
h

164 CORBA - Part 1: Interfaces, v3.1



CustomMarshal is an abstract value type that is meant to be used by the ORB, not the user. Semantically it is treated as
a custom valuetype’s implicit base class, although the custom valuetype does not actually inherit it in IDL. The
implementor of a custom value type provides an implementation of the CustomMarshal operations. The manner in
which this is done is specified for each language mapping. Each custom marshaled value type has its own
implementation. The interface is exposed in the CORBA module so that the implementor can use the skeletons generated
by the IDL compiler as the basis for the implementation. Hence there is no need for the application to acquire a reference
to a Stream.

Note that while nothing prevents a user from writing IDL that inherits from CustomMarshal, doing so will not make the
type custom, nor will it cause the ORB to treat it as custom.

The implementation requirements of the streaming mechanism require that the implementations must be local since local
memory addresses (i.e., the marshal buffers) have to be manipulated.

9.5.2 Marshaling Streams

The streams used for marshaling are defined below. They are responsible for marshaling and demarshaling the data that
makes up a custom value in CDR format.

module CORBA {

typedef sequence<any> AnySeq;

typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;

typedef sequence<wchar> WCharSeq;

typedef sequence<octet> OctetSeq;

typedef sequence<short> ShortSeq;

typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;

typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;

typedef sequence<double> DoubleSeq;

typedef sequence<long double> LongDoubleSeq;
typedef sequence<string> StringSeq;

typedef sequence<wstring> WStringSeq;

exception BadFixedValue {
unsigned long offset;

h

abstract valuetype DataOutputStream {
void write_any(in any value);
void write_boolean(in boolean value);
void write_char (in char value);
void write_wchar(in wchar value);
void write_octet (in octet value);
void write_short(in short value);
void write_ushort(in unsigned short value);
void write_long(in long value);
void write_ulong(in unsigned long value);
void write_longlong (in long long value);
void write_ulonglong(in unsigned long long value);

CORBA - Part 1: Interfaces, v3.1 165



166

void write_float (in float value);
void write_double(in double value);

void write_longdouble(in long double value);

void write_string(in string value);

void write_wstring(in wstring value);

void write_Object(in Object value);

void write_Abstract(in AbstractBase value);
void write_Value(in ValueBase value);

void write_TypeCode(in TypeCode value);

void write_any_array(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_boolean_array(
in BooleanSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_char_array(
in CharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_wchar_array(
in WCharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_octet_array(
in OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_short_array(
in ShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ushort_array(
in UShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_long_array(
in LongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_ulong_array(
in ULongSeq seq,
in unsigned long offset,
in unsigned long length

CORBA - Part 1: Interfaces, v3.1



void write_ulonglong_array(
in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_longlong_array(
in LongLongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_float_array(
in FloatSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_double_array(
in DoubleSeq seq,
in unsigned long offset,
in unsigned long length
);
void write_long_double_array(
in LongDoubleSeq seq,
in unsigned long offset,
in unsigned long length
)i
void write_fixed(
in any fixed_value
) raises (BadFixedValue);
void write_fixed_array/(
in AnySeq seq,
in unsigned long offset,
in unsigned long length
) raises (BadFixedValue);

b

abstract valuetype DatalnputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long read_longlong();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string();
wstring read_wstring();
Object read_Object();
AbstractBase read_Abstract();
ValueBase read_Value();

CORBA - Part 1: Interfaces, v3.1 167



168

TypeCode read_TypeCode();

void read_any_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_boolean_array(
inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_char_array(
inout CharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_wchar_array(
inout WCharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_octet_array(
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_short_array(
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_ushort_array(
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_long_array(
inout LongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_ulong_array(
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_ulonglong_array(
inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

void read_longlong_array(
inout LongLongSeq seq,
in unsigned long offset,

CORBA - Part 1: Interfaces, v3.1



in unsigned long length

);

void read_float_array(
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

void read_long_double_array(
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length

)i

any read_fixed(
in unsigned short digits,
in short scale

) raises (BadFixedValue);

void read_fixed_array(
inout AnySeq seq,
in unsigned long offset,
in unsigned long length,
in unsigned short digits,
in short scale

) raises (BadFixedValue);

h
h

Note that the Data streams are abstract value types. This ensures that their implementation will be local, which is required
in order for them to properly flatten and encode nested value types.

The read_ operations that have an inout parameter named seq are expected to extend the sequence to fit the read value.

The ORB (i.e., the CDR encoding engine) is responsible for actually constructing the value’s encoding. The application
marshaling code merely calls the above operations. The details of writing the value tag, header information, end tag(s) are
specifically not exposed to the application code. In particular the size of the custom data is not written by the application.
This guarantees that the custom marshaling (and unmarshaling code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, then the standard system exception MARSHAL is raised.

A possible implementation might have the engine determine that a custom marshal parameter is “next.” It would then
write the value tag and other header information and then return control back to the application defined marshaling policy,
which would do the marshaling by calling the DataOutputStream operations to write the data as appropriate. (Note the
stream takes care of breaking the data into chunks, if necessary.) When control was returned back to the engine, it
performs any other cleanup activities to complete the value type, and then proceeds onto the next parameter. How this is
actually accomplished is an implementation detail of the ORB.

The Data Streams shall test for possible shared or null values and place appropriate indirections or null encodings (even
when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB implicitly acts as a factory. In a sense
they are always available.

CORBA - Part 1: Interfaces, v3.1 169



For write_fixed, the fixed_value parameter must be an “any” containing a fixed value. If the “any” passed in does not
contain a fixed value, then a BadFixedValue exception is raised with the offset field set to 0.

For write_fixed_array, the elements of the seq parameter that are specified by the offset and length parameters must be
a sequence of “any”s each of which contains a fixed value. If any of these “any”s do not contain a fixed value, or if any
of them contain a fixed value whose digits and scale (as specified by the TypeCode in the “any”) differ from those of
the first of these “any”s (as specified by its TypeCode), then a BadFixedValue exception is raised with the offset field
set to a zero-origin ordinal number indicating the position of the first incorrect “any” within the subsequence of fixed
values written to the stream.

For both write_fixed and write_fixed_array, the TypeCode within each “any” being written specifies the digits and
scale to be used to write the fixed value contained in the “any.” The TypeCode itself is not written to the
DataOutputStream.

The read_fixed operation returns an “any” containing the fixed value that was read from the DatalnputStream. The
digits and scale in the TypeCode of the returned “any” are set to the digits and scale parameters passed to read_fixed.
If the fixed value read from the DatalnputStream is incompatible with the digits and scale parameters passed to
read_fixed, then a BadFixedValue exception is raised with the offset field set to 0.

The read_fixed_array operation sets the elements of the seq parameter that are specified by the offset and length
parameters. These elements are set to “any”s with TypeCodes specifying a fixed value whose digits and scale are the
same as the digits and scale parameters, and fixed values that were read from the DatalnputStream. The previous
contents of these “any”s, including their TypeCodes, are destroyed by the read_fixed_array operation. Other “any”s in
the seq parameter (if any) are left unchanged. No TypeCode information is read from the DatalnputStream. If any of
the fixed values read from the DatalnputStream are incompatible with the digits and scale parameters, then a
BadFixedValue exception is raised with the offset field set to a zero-origin ordinal number indicating the position of the
first incorrect “any” within the subsequence of fixed values read from the stream.

The stream representation of a fixed value is considered incompatible if its digit and scale values do not match the
digits and scale values being used to read it from the stream.

9.6 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time environment of the sending context:
« To attempt the downloading of some missing implementation for the value.
- To access some meta information about the version of the value just received.

In order to provide that kind of service a call back object interface is defined. It may optionally be supported by the
sending context (it can be seen as a service). If such a callback object is supported, its IOR may be added to an optional
service context in the GIOP header passed from the sending context to the receiving context.

A service context tagged with the ServicelD SendingContextRunTime (see CORBA, Part 2 - ORB Interoperability
Architecture) contains an encapsulation of the IOR for a SendingContext::RunTime object. Because ORBs are always
free to skip a service context they don’t understand, this addition does not impact I1OP interoperability.

module SendingContext {
interface RunTime {}; // so that we can provide more
/l sending context run time
Il services in the future

170 CORBA - Part 1: Interfaces, v3.1



interface CodeBase: RunTime {
typedef string URL; // blank-separated list of one or more URLs
typedef sequence<URL> URLSeq;
typedef sequence
<CORBA::ValueDef::FullValueDescription> ValueDescSeq;

/l Operation to obtain the IR from the sending context
CORBA::Repository get_ir();

/| Operations to obtain a location of the implementation code
URL implementation(in CORBA::Repositoryld x);
URLSeq implementations(in CORBA::RepositoryldSeq x);

/I Operations to obtain complete meta information about a Value
/I This is just a performance optimization the IR can provide

/l the same information

CORBA::FullValueDescription meta(in CORBA::Repositoryld x);
ValueDescSeq metas(in CORBA::RepositoryldSeq x);

/l To obtain atype graph for a value type

/l same comment as before the IR can provide similar

/I information

CORBA::RepositoryldSeq bases(in CORBA::Repositoryld x);

h

h
Supporting the CodeBase interface for a given ORB run time is an issue of quality of service. The point here is that if
the sending context does not support a CodeBase, then the receiving context will simply raise an exception with which
the sending context had to be prepared to deal. There will always be cases where a receiving context will get a value type
and won’t be able to interpret it because:

« ltcan’t get a legal implementation for it (even if it knows where it is, possibly due to security and/or resource access
issues).

« Its local version is so radically different that it cannot make sense out of the piece of state being provided.

These two failure modes will be represented by the CORBA system exception NO_IMPLEMENT with identified minor
codes, for a missing local value implementation and for incompatible versions (see “Standard Minor Exception Codes” on
page 155).

Under certain conditions it is possible that when several values of the same CORBA type (same repository id) are sent in
either a request or reply, that the reality is that they have distinct implementations. In this case, in addition to the codebase
URL(s) sent in the service context, each value that has a different codebase may have codebase URL(S) associated with
it. This is encoded by using a different tag to encode the value on the wire.

The sending context does not need to resend the same value for this service context on subsequent requests over the same
underlying connection. Resending a different value for this service context is only necessary if the callback object
reference in use is changed by the sending context within the lifetime of the underlying connection.

CORBA - Part 1: Interfaces, v3.1 171



172 CORBA - Part 1: Interfaces, v3.1



10

Abstract Interface Semantics

10.1 Overview

In many cases it may be useful to defer the determination of whether an object is passed by reference or by value until
runtime. An IDL abstract interface provides this capability. See “Example” on page 174 for an example of when this
might be useful.

10.2 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

1.

When used in an operation signature, they do not determine whether actual parameters are passed as an object refer-
ence or by value. Instead, the type of the actual parameter (regular interface or value) is used to make this determina-
tion using the following rules:

« The actual parameter is passed as an object reference if it is a regular interface type (or a subtype of a regular
interface type), and that regular interface type is a subtype of the signature abstract interface type, and the object is
already registered with the ORB/OA.

« The actual parameter is passed as a value if it cannot be passed as an object reference but can be passed as a value.
Otherwise, a BAD_PARAM exception is raised.

Abstract interfaces do not implicitly inherit from CORBA::Object. This is because they can represent either value
types or CORBA object references, and value types do not necessarily support the object reference operations (see
“Object Reference Operations” on page 104). If an IDL abstract interface type can be successfully narrowed to an
object reference type (a regular IDL interface), then the CORBA::Object operations can be invoked on the
narrowed object reference.

Abstract interfaces implicitly inherit from CORBA::AbstractBase. This type is defined as native. It is the
responsibility of each language mapping to specify the actual programming language type that is used for this type.

module CORBA {
/I IDL
native AbstractBase;

h

Abstract interfaces do not imply copy semantics for value types passed as arguments to their operations. This is
because their operations may be either CORBA invocations (for abstract interfaces that represent CORBA object
references) or local programming language calls (for abstract interfaces that represent CORBA value types). See
“Operations” on page 158 and “Parameter Passing” on page 159 for details of these differences.

Special inheritance rules that apply to abstract interfaces are described in “Abstract Interface” on page 51.

See the General Inter-orb Protocol clause in CORBA, Part 2 - for special consideration when transmitting an abstract
interface using GIOP.

In other respects, abstract interfaces are identical to regular IDL interfaces. For example, consider the following operation
m1() in abstract interface foo.

abstract interface foo {

void m1(in AninterfaceType X, in AnAbstractinterfaceTypey,

CORBA - Part 1: Interfaces, v3.1 173



in AValueType 2);
I3

x’s are always passed by reference.

Z’s are passed as:
« copied values if foo refers to an ordinary interface.
« non-copied values if foo refers to a value type.

y’s are passed as:

« reference if their concrete type is an ordinary interface subtype of AnAbstractinterfaceType (registered with the
ORB), no matter what foo’s concrete type is.

« copied values if their concrete type is value and foo’s concrete type is ordinary interface.

« non-copied values if their concrete type is value and foo’s concrete type is value.

10.3 Usage Guidelines

Abstract interfaces are intended for situations where it cannot be known at compile time whether an object reference or a
value will be passed. In other cases, a regular interface or value type should be used. Abstract interfaces are not intended
to replace regular CORBA interfaces in situations where there is no clear need to provide runtime flexibility to pass either
an object reference or a value. If reference semantics are intended, regular interfaces should be used.

10.4 Example

For example, in a business application it is extremely common to need to display a list of objects of a given type, with
some identifying attribute like account number and a translated text description such as “Savings Account.” A developer
might define an interface such as Describable whose methods provide this information, and implement this interface on
a wide range of types. This allows the method that displays items to take an argument of type Describable and query it
for the necessary information. The Describable objects passed in to the display method may be either CORBA
interface types (passed in as object references) or CORBA value types (passed in by value).

In this example, Describable is used as a polymorphic abstract type. No instances of type Describable exist, but many
different instances have interfaces that support the Describable type abstraction. In C++, Describable would be an
abstract base class; in Java, an interface. In statically typed languages, the compiler can check that the actual parameter
type passed by callers of display is a valid subtype of Describable and therefore supports the methods defined by
Describable. The display method can simply invoke the methods of Describable on the objects that it receives,
without concern for any details of their implementation.

Describable could not be declared as a regular IDL interface. This is because arguments of declared interface type are
always passed as object references (see “Parameter Passing” on page 159) and we also want the display method to be
able to accept value type objects that can only be passed by value. Similarly we cannot define Describable as a value
type because then the display method would not be able to accept actual parameter objects that only support passing as
an object reference. Abstract interfaces are needed to cover such cases.

The Describable abstract interface could be defined and used by the following IDL:

174 CORBA - Part 1: Interfaces, v3.1



abstract interface Describable {
string get_description();

b

interface Example {
void display (in Describable anObject);

b

interface Account : Describable {// passed by reference
/l add Account methods here

|3

valuetype Currency supports Describable {// passed by value
/l add Currency methods here

b

If Describable was defined as a regular interface instead of an abstract interface, then it would not be possible to pass a
Currency value to the display method, even though the Currency IDL type supports the Describable interface.

10.5 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfaces and values (see “Security
Considerations” on page 162). This is because an abstract interface formal parameter type allows either a regular interface
(IOR) or a value to be passed. Likewise, an operation defined in an abstract interface can be implemented by either a
regular interface (with “normal” security considerations) or by a value type (in which case it is a local call, not mediated
by the ORB). The security implication of making the choice between these alternatives a runtime determination is that the
programmer must ensure that for both alternatives, no security violations can occur. For example, a technique similar to
that described in “Passing Values to Trusted Domains” could be used to avoid inadvertently passing values outside a
domain of trust.

10.5.1 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control policies will apply to any attempt to access
anything through that object reference. When the underlying object is passed as a value, the granularity and level/
semantics of access control are different. In the “by value” case, all the data for the object is passed, and method
invocations on the passed object are local calls that are not mediated by the ORB. Whether the server wants to use the
(potentially more permissive) pass by value access control or not could depend on the security domain, which is receiving
the said object or object reference.

Consider the case where the server S has an object O that it is willing to pass only in the form of an object reference Or'
to a domain Du that it does not trust, but is willing to pass the object by value Ow to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to be written to either always pass
references or always pass values, irrespective of the level of trust of the invocation target domain. However, abstract
interfaces provide the necessary flexibility. The formal parameter type MyType can be declared as an abstract interface
and the method invocation can be coded along the lines of

myExample->foo(security check (myExample,mydata)) ;

where the security check function determines the level of trust of myExample’s domain and returns a regular
interface subtype of My Type for untrusted domains and a value subtype of MyType for trusted domains. The rules for
abstract interfaces will then pass the correct thing in both these cases.

CORBA - Part 1: Interfaces, v3.1 175



176 CORBA - Part 1: Interfaces, v3.1



11 Dynamic Invocation Interface

The Dynamic Invocation Interface (DII) describes the client’s side of the interface that allows dynamic creation and
invocation of request to objects. All types defined in this clause are part of the CORBA module.

11.1 Overview

The Dynamic Invocation Interface (DII) allows dynamic creation and invocation of requests to objects. A client using this
interface to send a request to an object obtains the same semantics as a client using the operation stub generated from the
type specification.

A request consists of an object reference, an operation, and a list of parameters. The ORB applies the implementation-
hiding (encapsulation) principle to requests.

In the Dynamic Invocation Interface, parameters in a request are supplied as elements of a list. Each element is an
instance of a NamedValue (see “Common Data Structures” on page 177). Each parameter is passed in its native data
form.

Parameters supplied to a request may be subject to run-time type checking upon request invocation. Parameters must be
supplied in the same order as the parameters defined for the operation in the Interface Repository.

The standard user exception WrongTransaction is defined in the CORBA module, prior to the definitions of the ORB
and Request interfaces, as follows:

exception WrongTransaction {};

This exception can be raised only if the request is implicitly associated with a transaction (the current transaction at the
time that the request was issued).

11.1.1 Common Data Structures

The type NamedValue is a well known data type in OMG IDL. It can be used either as a parameter type directly or as a
mechanism for describing arguments to a request. The types are described in OMG IDL as:

module CORBA {

typedef unsigned long Flags;

struct NamedValue { PIDL
Identifier name; /l argument name
any argument; // argument
long len; /l length/count of argument value
Flags arg_modes; // argument mode flags

h

h

For out parameters, applications can set the argument member of the NamedValue structure to a value that includes
either a NULL or a non-NULL storage pointer. If a non-null storage pointer is provided for an out parameter, the ORB
will attempt to use the storage pointed to for holding the value of the out parameter. If the storage pointed to is not
sufficient to hold the value of the out parameter, the behavior is undefined.

CORBA - Part 1: Interfaces, v3.1 177



A named value includes an argument name, argument value (as an any), length of the argument, and a set of argument
mode flags. When named value structures are used to describe arguments to a request, the names are the argument
identifiers specified in the OMG IDL definition for a specific operation.

As described in CORBA (Mapping: COM and CORBA) an any consists of a TypeCode and a pointer to the data value.
The TypeCode is a well known opaque type that can encode a description of any type specifiable in OMG IDL. See this
sub clause for a full description of TypeCodes.

For most data types, len is the actual number of bytes that the value occupies. For object references, len is 1. Table 11.1
shows the length of data values for the C language binding. The behavior of a NamedValue is undefined if the len value
is inconsistent with the TypeCode.

Table 11.1- C Type Lengths

Data type: X Length (X)

short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA_unsigned_long)

long long sizeof (CORBA_long_long)

unsigned long long sizeof (CORBA _unsigned_long_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

long double sizeof (CORBA_long_double)

fixed<d,s> sizeof (CORBA_fixed_d_s)

char sizeof (CORBA_char)

wchar sizeof (CORBA_wchar)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include \O’ byte! */
wstring number of wide characters in string, not including wide null terminator
enum E {}; sizeof (CORBA_enum)

union U { }; sizeof (U)

struct S {}; sizeof (S)

Object 1

array N of type T1

Length (T1) * N

sequence V of type T2

Length (T2) *V  /* Vs the actual, dynamic, number of elements */

178

CORBA - Part 1: Interfaces, v3.1




The arg_mode field is of type Flags which is an unsigned long. This field is used as follows in this structure. It

should be noted that Flags type is used as parameter type in many operations and the meaning of the constants passed in
those cases are specific to those operations. Those values should not be confused with the specific use of this type in the
context of the NamedValue structure. These values are reserved, as are the high order 16 bits of the unsigned long.:

CORBA::ARG_IN 1 The associated value is an input only argument.
CORBA::ARG_OUT 2 The associated value is an output only argument.
CORBA::ARG_INOUT 3 The associated value is an in/out argument.

The specific usage of Flags in other contexts are described as part of the description of the operation that uses this type
of parameters.

11.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded sequences are returned as pointers to
dynamically allocated memory. In order to facilitate the freeing of all “out-arg memory,” the request routines provide a
mechanism for grouping, or keeping track of, this memory. If so specified, out-arg memory is associated with the
argument list passed to the create request routine. When the list is deleted, the associated out-arg memory will
automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the programmer is responsible for
freeing each out parameter using CORBA_free (), which is discussed in the C Language Mapping specification
(Mapping for Structure Types sub clause).

11.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, routines typically indicate errors or exceptional conditions either via programming
language exception mechanisms, or via an Environment parameter for those languages that do not support exceptions.
Thus, the return type of these routines is void.

11.2 Request Operations

The request operations (except create_request) are defined in terms of the Request pseudo-object. The Request
routines use the NvList definition defined in the preceding sub clause.

module CORBA {

native OpaqueValue;

interface Request { // PIDL
void add_arg (
in Identifier name, /l argument name
in TypeCode arg_type, /largument datatype
in OpagqueValue value, /l argument value to be added
in long len, // length/count of argument value
in Flags arg_flags  // argument flags

CORBA - Part 1: Interfaces, v3.1 179



void invoke (
in Flags invoke_flags /I invocation flags

);
void delete ();

void send (
in Flags invoke_flags /I invocation flags

)i

void get_response () raises (WrongTransaction);
boolean poll_response();

Object sendp();

void prepare(in Object p);

void sendc(in Object handler);
I
I
In IDL, The native type OpaqgueValue is used to identify the type of the implementation language representation of the
value that is to be passed as a parameter. For example in the C language this is the C language type (void *). Each
language mapping specifies what OpaqueValue maps to in that specific language.

For each Request pseudo-object instance, only one call to either the invoke or the send operations is legal during the
lifetime of the Request object. In addition, once a Request object was passed to one of the
send_multiple_requests_* operations, neither invoke nor send can be called, nor can it be passed in another
invocation of send_multiple_request_* operation.Violations raise BAD_INV_ORDER with standard minor code 5 or
10.

11.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see “Object Reference Operations”
on page 104 for the complete interface definition). The create_request operation is performed on the Object that is to
be invoked.

module CORBA{

interface Object{ /I PIDL

void create_request (

in Context ctx, /I context object for operation
in Identifier operation, //intended operation on object
in NVList arg_list, I/l args to operation

inout NamedValue result, /l operation result

out Request request, / newly created request

in Flags req_flags //request flags

180 CORBA - Part 1: Interfaces, v3.1



This operation creates an ORB request. The actual invocation occurs by calling invoke or by using the send /
get_response calls.

The operation name specified on create_request is the same operation identifier that is specified in the OMG IDL
definition for this operation. In the case of attributes, it is the name as constructed following the rules specified in the
ServerRequest interface as described in the DSI in “ServerRequestPseudo-Object” on page 194.

The arg_list, if specified, contains a list of arguments (input, output, and/or input/output) that become associated with the
request. If arg_list is omitted (specified as NULL), the arguments (if any) must be specified using the add_arg call
below.

Arguments may be associated with a request by passing in an argument list or by using repetitive calls to add_arg. One
mechanism or the other may be used for supplying arguments to a given request; a mixture of the two approaches is not
supported.

If specified, the arg_list becomes associated with the request; until the invoke call has completed (or the request has
been deleted), the ORB assumes that arg_list (and any values it points to) remains unchanged.

When specifying an argument list, the value and len for each argument must be specified. An argument’s datatype,
name, and usage flags (i.e., in, out, inout) may also be specified; if so indicated, arguments are validated for data type,
order, name, and usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow arguments to be specified out of
order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object implementation. The object implementation
may not modify the context information passed to it.

The operation result is placed in the result argument after the invocation completes.
The req_flags argument is defined as a bitmask (long) that may contain the following flag values:
CORBA::OUT_LIST_MEMORY indicates that any out-arg memory is associated with the argument list (NVList).

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism for out-arg memory (output
arguments, for which memory is dynamically allocated). If OUT_LIST_MEMORY is specified, an argument list must
also have been specified on the create_request call. When output arguments of this type are allocated, they are
associated with the list structure. When the list structure is freed (see below), any associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains available until the programmer
explicitly frees it with procedures provided by the language mappings (see the C Language Mapping specification,
Argument Passing Considerations sub clause; C++ Language Mapping specification, NVList sub clause; and the COBOL
Language Mapping specification, Argument Passing Considerations sub clause).

The implicit object reference operations non_existent, is_a, repository_id and get_interface may be invoked using
DII. No other implicit object reference operations may be invoked via DII.

To create a request for any one of these allowed implicit object reference operations, create_request must be passed the
name of the operation with a “_” prepended, in the parameter “operation.” For example to create a DIl request for
“is_a”, the name passed to create_request must be “_is_a.” If the name of an implicit operation that is not invocable
through DIl is passed to create_request with a “_” prepended, create_request shall raise a BAD_PARAM standard
system exception with the standard minor code 32. For example, if “_is_equivalent” is passed to create_request as
the “operation” parameter will cause create_request to raise the BAD_PARAM standard system exception with the
standard minor code 32.

CORBA - Part 1: Interfaces, v3.1 181



11.2.2 add_arg

void add_arg ( // PIDL
in Identifier name, /[ argument name
in TypeCode arg_type, //argument datatype
in OpaqueValue value, /l argument value to be added
in long len, /l'length/count of argument value
in Flags arg_flags //argument flags
)i

add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. len is the length in octets, of the thing that the value
parameter refers to. An argument’s data type, name, and usage flags (i.e., in, out, inout) may also be specified. If so
indicated, arguments are validated for data type, order, name, and usage correctness against the set of arguments expected
for the indicated operation.

An implementation of the request services may relax the order constraint (and allow arguments to be specified out of
order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are assumed to be unchanged until the invoke
has completed (or the request has been deleted).

Arguments may be associated with a request by specifying them on the Object::create_request call or by adding them
via calls to add_arg. Using both methods for specifying arguments for the same request is not supported.

In addition to the argument modes defined in “Common Data Structures” on page 177, arg_flags may also take the flag
value IN_COPY_VALUE. The argument passing flags defined in “Common Data Structures” may be used here to
indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead. This flag is ignored for inout
and out arguments.

11.2.3 invoke
void invoke ( / PIDL
in Flags invoke_flags /I invocation flags
)i

This operation calls the ORB, which performs method resolution and invokes an appropriate method. If the method
returns successfully, its result is placed in the result argument specified on create_request. Calling invoke on a
Request after invoke, send, or ORB::send_multiple_requests for that Request was called raises
BAD_INV_ORDER with standard minor code 5 or 10.

11.2.4 delete

void delete (); /I PIDL

This operation deletes the request. Any memory associated with the request (i.e., by using the IN_COPY_VALUE flag) is
also freed.

182 CORBA - Part 1: Interfaces, v3.1



11.2.5 send

void send ( / PIDL
in Flags invoke_flags /I invocation flags

);

Send initiates an operation according to the information in the Request. Unlike invoke, send returns control to the
caller without waiting for the operation to finish. To determine when the operation is done, the caller must use the
get_response or ORB::get_next_response operations described below. The out parameters and return value must
not be used until the operation is done.

Although it is possible for some standard system exceptions to be raised by the send operation, there is no guarantee that
all possible errors will be detected. For example, if the object reference is not valid, send might detect it and raise an
exception, or might return before the object reference is validated, in which case the exception will be raised when
get_response is called.

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, and the effective SyncScopePolicy
does not have a value of WITH_SERVER or WITH_TARGET, then get_response does not need to be called. In such
cases, some errors might go unreported, since if they are not detected before send returns there is no way to inform the
caller of the error.

The following invocation flags are currently defined for send:

CORBA::INV_NO_RESPONSE indicates that the invoker wishes the request to be subject to the effective
SyncScopePolicy. If the SyncScopePolicy has a value of NONE or WITH_TRANSPORT, the invoker will not
receive a response, nor does it expect any of the output arguments (in/out and out) to be updated. This option may be
specified even if the operation has not been defined to be oneway.

11.2.6 poll_response

/I PIDL
boolean poll_response ();

poll_response determines whether the request has completed. A TRUE return indicates that it has; FALSE indicates it
has not.

Return is immediate, whether the response has completed or not. Values in the request are not changed.

11.2.7 get_response

//IPIDL
void get_response () raises (WrongTransaction);

get_response returns the result of a request. If get_response is called before the request has completed, it blocks
until the request has completed. Upon return, the out parameters and return values defined in the Request are set
appropriately and they may be treated as if the Request invoke operation had been used to perform the request.

A request has an associated transaction context if the thread originating the request had a non-null transaction context and
the target object is a transactional object. The get_response operation may raise the WrongTransaction exception if
the request has an associated transaction context, and the thread invoking get_response either has a null transaction
context or a non-null transaction context that differs from that of the request. If a BAD_INV_ORDER exception with
standard minor code X3599 is received it shall be trapped and a WrongTransaction shall be returned to the caller.

CORBA - Part 1: Interfaces, v3.1 183



11.2.8 sendp

sendp initiates an operation according to the information in the Request and returns a reference to a
MessageRouting::PersistentRequest as a CORBA::Object. As with send, the results of invocations made with
sendp will be available once the caller uses get_response or get_next_response. The out parameters and return
value must not be used before the operation is done. A new CORBA::Request may be constructed (in this same or a
different process) and used to poll for the response to this request by calling create_request, properly associating the
out arguments and return value with that request and then passing the PersistentRequest reference to the new
Request’s prepare (described below). The caller can then invoke get_response or get_next_response to obtain the
operation results.

As with send, sendc may raise a standard system exception if a failure is detected before control is returned to the
client, but this is not guaranteed. All other exceptions will be raised when get_response is called.

11.2.9 prepare

prepare is called to associate an initialized CORBA::Request with a previous operation that was initiated via sendp.
The Request must be created and associated with the operation’s out arguments and return value prior to calling prepare.
Once prepare has been called, it is as if that prepared Request was the one that actually had sendp used. Each Request
is subject only to one of these operations, which puts it in a valid state for an invocation of get_response: send,
sendp, sendc, or prepare. Invoking prepare on a Request that had previously been used for a send (or one of its
variants) raises the standard system exception BAD_INV_ORDER. Invoking prepare with an object reference that was
not previously returned from an invocation of sendp raises the standard system exception BAD_PARAM.

11.2.10 sendc

sendc initiates an operation according to the information in the Request. Unlike send, the results of invocations made
with sendc will be available through the callback Messaging::ReplyHandler passed into sendc as a base
CORBA::Object. For an invocation of operation “foo,” the “foo” or “foo_excep” methods of the ReplyHandler is
invoked to receive the reply. See “Type-Specific ReplyHandler Mapping” on page 435 for details of how the names of the
operations to be invoked to return the reply are constructed, as well as the form of the argument lists for the reply
invocations. A truly dynamic client can implement this ReplyHandler using the DSI. Specifying a nil ReplyHandler is
equivalent to invoking send with a flag of CORBA::INV_NO_RESPONSE.

As with send, sendc may raise a standard system exception if a failure is detected before control is returned to the
client, but this is not guaranteed. All other exceptions will be passed to the ReplyHandler.

11.3 ORB Operations

11.3.1 send_multiple_requests

module CORBA {

interface Request; /I forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

184 CORBA - Part 1: Interfaces, v3.1



void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req
)i
3
3

send_multiple_requests initiates more than one request in parallel. Like send, send_multiple_requests returns to
the caller without waiting for the operations to finish. To determine when each operation is done, the caller must use the
Request::get_response or get_next_response operations.

Calling send on a request after invoke, send, or send_multiple_requests for that request was called raises
BAD_INV_ORDER with standard minor code 10.

Calling send_multiple_requests for a request after invoke, send, or send_multiple_requests for that request was
called raises BAD_INV_ORDER with standard minor code 10. If send_multiple_requests raises BAD_INV_ORDER,
the actual number of requests that were sent is implementation dependent.

11.3.2 get_next_response and poll_next_response

module CORBA {

interface Request; /l forward declaration
typedef sequence <Request> RequestSeq;

interface ORB {

boolean poll_next_response();

void get_next_response(
out Request req
) raises (WrongTransaction);

h
b

Poll_next_response determines whether any request has completed. A TRUE return indicates that at least one has;
FALSE indicates that none have completed. Return is immediate, whether any response has completed or not.

Get_next_response returns the next request that completes. Despite the name, there is no guaranteed ordering among
the completed requests, so the order in which they are returned from successive get_next_response calls is not
necessarily related to the order in which they finish.

A request has an associated transaction context if the thread originating the request had a non-null transaction context and
the target object is a transactional object. The get_next_response operation may raise the WrongTransaction
exception if the request has an associated transaction context, and the thread invoking get_next_response has a non-
null transaction context that differs from that of the request. If a BAD_INV_ORDER exception with standard minor code
X3599 is received it shall be trapped and a WrongTransaction shall be returned to the caller.

CORBA - Part 1: Interfaces, v3.1 185



Calling poll_response before send or send_multiple_requests for that request raises BAD_INV_ORDER with
standard minor code 11. Calling poll_response after calling invoke raises BAD_INV_ORDER with standard minor
code 13. Calling poll_response after calling get_response raises BAD_INV_ORDER with standard minor code 12.
Calling poll_response after that request was returned by get_next_response raises BAD_INV_ORDER with
standard minor code 12.

Calling get_next_response or poll_next_response at a time when no requests are outstanding raises
BAD_INV_ORDER with standard minor code 11. If concurrent calls to get_next_response or poll_next_response
are in progress, the exact outcome is implementation dependent; however, get_next_response is guaranteed not to
return the same completed request to more than one caller.

11.4 Polling

There are two types of Polling model invocations that allow a client to proceed before the request finishes: The DII’s
send (which supports deferred synchronous invocations) and the typed sendp variants of the interface stubs (which
support both deferred synchronous and asynchronous invocations). This sub clause describes a single mechanism that
allows a client to query or block on the completion of outstanding requests.

« For the typed polling model (sendp), a client invokes the request’s type-specific Poller to receive the response.
This poll can either block (wait for the completion) or return immediately if the request isn’t finished yet, depending
on the value of the first parameter. Alternately, a client can simply query whether the request has completed by
using the generic non-blocking CORBA::Pollable::is_ready( ) operation defined on the base interface that is
inherited by all type-specific pollers. For the sake of efficiency, it must be possible to query or block on multiple
async pollers in a single operation. To do this, it is necessary to identify precisely, which such pollers are to be
polled.

« A client might want to mix deferred typed and dynamic operations. Deferred DIl (in some unholy combination of
language mappings) has operations somewhat similar to those of the typed Poller: ORB::poll_next_response
and ORB::get_next_response. It should be possible to mix the two kinds of polling: typed and dynamic.

« Other potential happenings might occur that are susceptible to polling in current or future CORBA. This mechanism
is designed for extensibility so that other ORB services can perform a poll as a part of the single poll operation
described here.

The mechanism for generalized polling on multiple types of occurrences uses the CORBA::PollableSet interface.
module CORBA {

local interface PollableSet;

abstract valuetype Pollable {

boolean is_ready(
in unsigned long timeout

);

PollableSet create_pollable_set();

h

186 CORBA - Part 1: Interfaces, v3.1



abstract valuetype DIIPollable : Pollable { };

local interface PollableSet {

exception NoPossiblePollable { };
exception UnknownPollable { };

DlIPollable create_dii_pollable();

void add_pollable(
in Pollable potential

);

Pollable get_ready_pollable(
in unsigned long timeout
) raises( NoPossiblePollable );

void remove(
in Pollable potential
) raises( UnknownPollable );

unsigned short number_left();
3
3

11.4.1 Abstract Valuetype Pollable

A Pollable supports queries to see if it is ready to be used, and can be registered with a pollable set to allow a single
client thread to block on multiple potential happenings at the same time.

11.4.1.1 is_ready

boolean is_ready(
in unsigned long timeout

);

Returns the value TRUE if and only if the specific happening represented by the pollable is ready to be consumed.
Returns the value FALSE if the pollable is not yet ready to be consumed. If the timeout argument is the maximum value
for unsigned long, the operation will block until it can return the value TRUE indicating that its happening is ready to
be consumed. If the timeout argument is the value O, the operation returns immediately.

11.4.1.2 create_pollable_set

PollableSet create_pollable_set();

Once there is a Pollable, it is possible to create a set of such pollables, which can be queried or upon which a client can
block. The create_pollable_set operation creates a PollableSet object reference for an object with an empty set of
pollable entities.

CORBA - Part 1: Interfaces, v3.1 187



11.4.2 Abstract Valuetype DIlIPollable

The specific Pollable that indicates interest in DIl requests. A DIIPollable can be used in conjunction with a pollable
set to allow a client to block or poll for the completion of DII requests, similar to the use of
CORBA::ORB::get_next_response. When the DIIPollable is returned from PollableSet::poll, the reply to some
DIl request must be ready for processing.

11.4.3 interface PollableSet

The pollable set contains potential happenings for which a poll can be performed. The client adds potential happenings
to the set and later queries the set to see if any have occurred. PollableSet is a locality constrained object.

Note — There is a factory for PollableSet on the generic Pollable interface. Some implementation of this interface, such
as a type-specific poller value, must first be accessible before a client can create a PollableSet.

11.4.3.1 create_dii_pollable

DilPollable create_dii_pollable();

Returns an instance of DIIPollable that can subsequently be registered to indicate interest in replies to DIl requests.

11.4.3.2 add_pollable

void add_pollable(
in Pollable potential

);

The add_pollable operation adds a potential happening to the PollableSet. The supplied Pollable parameter is some
implementation that can be polled for readiness. To register interest in DIl requests, an instance of DIIPollable is added
to the pollable set.

If the supplied Pollable has already been added to another PollableSet, this operation raises the standard
BAD_PARAM system exception with minor code 43.

11.4.3.3 get_ready_pollable

Pollable get_ready_pollable(
in unsigned long timeout
) raises( NoPossiblePollable );

The get_ready_pollable operation asks the PollableSet if any of its potential happenings have occurred. The
timeout parameter indicates how many milliseconds this call should wait until the response becomes available. If this
timeout expires before a reply is available, the operation raises the standard system exception TIMEOUT. Any delegated
invocations used by the implementation of this polling operation are subject to the single timeout parameter, which
supersedes any ORB or thread-level timeout quality of service. Two specific values are of interest:

« 0 -the call is a non-blocking query that raises the standard system exception NO_RESPONSE if the reply is not
immediately available.

«  2%2.1 - the maximum value for unsigned long indicates no timeout should be used. The query will not return until
the reply is available.

188 CORBA - Part 1: Interfaces, v3.1



If the PollableSet contains no potential happenings, the NoPossiblePollable exception is raised. If an actual happening
is returned, the PollableSet removes that happening from the set. For the typed Poller, removing the happening is
necessary since its usefulness ends once the Poller completes. In the case of a DIl happening, there may still be deferred
requests outstanding; if this is the case, the client application must add the DIIPollable again to the PollableSet.

When the get_ready_pollable operation blocks, the ORB has control of the thread and can process any work it has
(such as receiving and dispatching requests through its Object Adapter). The get_ready_pollable operation can be used
in an “event-style main loop” using ORB::work_pending and ORB::perform_work.

If the ORB supports multiple threads, one thread may be blocking on a PollableSet while another is adding and
removing potential happenings from the set. It is valid for the PollableSet to change dynamically while a poll is in
progress. If another thread’s PollableSet::remove operation leaves the PollableSet empty, any blocked threads raise
the NoPossiblePollable exception.

11.4.3.4 remove

void remove(
in Pollable potential
) raises( UnknownPollable );

The remove operation deletes the potential happening identified by the potential parameter from the PollableSet. If it
was not a member of the set, the UnknownPollable exception is raised.

11.4.3.5 number_|left

unsigned short number_left();

The number_left operation returns the number of potential happenings in the pollable set. A returned value of zero
means that there are no potential happenings in the set, in which case a query on the set would raise the
NoPossibleHappening exception. A return value of 65535 indicates that there are at least 65535 remaining number of
potential happenings.

11.5 List Operations

NVList is a pseudo-interface that facilitates manipulation of list of name value pairs. The operations that create NVList
objects are defined in the ORB interface Clause, but are described in this sub clause. The NVList pseudo-interface is
shown below.

interface NVList { // PIDL
void add_item (
in ldentifier item_name, /I name of item
in TypeCode item_type, /l item datatype
in OpaqueValue value, /I item value
in long value_len, /l'length of item value
in Flags item_flags // item flags
);
void free ();

void free_memory ();
void get_count (
out long count /l number of entries in the list

);

CORBA - Part 1: Interfaces, v3.1 189



Interface NVList is defined in the CORBA module.
11.5.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and excerpted below.

void create_list ( //IPIDL
in long count, /I number of items to allocate for list
out NVList new_list I newly created list

)i

This operation allocates a list and clears it for initial use. The specified count is a “hint” to help with the storage
allocation. List items may be added to the list using the add_item routine. Items are added starting with the “slot(),” in
the next available slot.

An NVList is a partially opaque structure. It may only be allocated via a call to create_list.

11.5.2 add_item

void add_item ( // PIDL
in ldentifier item_name, /I name of item
in TypeCode item_type, /l item datatype
in OpaqueValue value, /I item value
in long value_len, /l'length of item value
in Flags item_flags /l item flags

)i

This operation adds a new item to the indicated list. The item is added after the previously added item.

In addition to the argument modes defined in “Common Data Structures” on page 177, item_flags may also take the
following flag values: IN_COPY_VALUE, DEPENDENT _LIST. The argument passing flags defined in “Common Data
Structures” on page 177 may be used here to indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead.

If a list structure is added as an item (e.g., a “sublist”), the DEPENDENT _LIST flag may be specified to indicate that the
sublist should be freed when the parent list is freed.

11.5.3 free

void free (); // PIDL

This operation frees the list structure and any associated memory (an implicit call to the list free_memory operation is
done).

11.5.4 free_memory

void free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the list. The list structure itself is not
freed.

190 CORBA - Part 1: Interfaces, v3.1



11.5.5 get_count

void get_count ( // PIDL
out long count /I number of entries in the list

);

This operation returns the total number of items added to the list.

11.5.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

void create_operation_list ( /I PIDL
in OperationDef oper, /l operation
out NVList new_list /I argument definitions

)i

This operation returns an NVList initialized with the argument descriptions for a given operation. The information is

returned in a form that may be used in Dynamic Invocation requests. The arguments are returned in the same order as they

were defined for the operation.

The list free operation is used to free the returned information.

CORBA - Part 1: Interfaces, v3.1

191



192 CORBA - Part 1: Interfaces, v3.1



12 Dynamic Skeleton Interface

The Dynamic Skeleton Interface (DSI) allows dynamic handling of object invocations. That is, rather than being accessed
through a skeleton that is specific to a particular operation, an object’s implementation is reached through an interface that
provides access to the operation name and parameters in a manner analogous to the client side’s Dynamic Invocation
Interface. Purely static knowledge of those parameters may be used, or dynamic knowledge (perhaps determined through
an Interface Repository) may also be used, to determine the parameters.

12.1 Introduction

The Dynamic Skeleton Interface is a way to deliver requests from an ORB to an object implementation that does not have
compile-time knowledge of the type of the object it is implementing. This contrasts with the type-specific, OMG IDL-
based skeletons, but serves the same architectural role.

DSl is the server side’s analogue to the client side’s Dynamic Invocation Interface (DII). Just as the implementation of an
object cannot distinguish whether its client is using type-specific stubs or the DI, the client who invokes an object cannot
determine whether the implementation is using a type-specific skeleton or the DSI to connect the implementation to the
ORB.

Dynamic Object Implementation

Dynamy€ Skeleton Skeleton

/ Object Adapter
/ ORB Core

Figure 12.1- Requests are delivered through skeletons, including dynamic ones

DS, like DII, has many applications beyond interoperability solutions. Uses include interactive software development
tools based on interpreters, debuggers, and monitors that want to dynamically interpose on objects, and support for
dynamically-typed languages such as LISP.

12.2 Overview

The basic idea of the DSI is to implement all requests on a particular object by having the ORB invoke the same upcall
routine, a Dynamic Implementation Routine (DIR). Since in any language binding all DIRs have the same signature, a
single DIR could be used as the implementation for many objects, with different interfaces.

CORBA - Part 1: Interfaces, v3.1 193



The DIR is passed all the explicit operation parameters, and an indication of the object that was invoked and the operation
that was requested. The information is encoded in the request parameters. The DIR can use the invoked object, its object
adapter, and the Interface Repository to learn more about the particular object and invocation. It can access and operate
on individual parameters. It can make the same use of an object adapter as other object implementations.

This chapter describes the elements of the DSI that are common to all object adapters that provide a DSI. See “Single
Servant, Many Obijects and Types, Using DSI” on page 354 for the specification of the DSI for the Portable Object
Adapter.

12.3 ServerRequestPseudo-Object

12.3.1 ExplicitRequest State: ServerRequestPseudo-Object

The ServerRequest pseudo-object captures the explicit state of a request for the DSI, analogous to the Request pseudo-
object in the DII. The object adapter dispatches an invocation to a DSI-based object implementation by passing an
instance of ServerRequest to the DIR associated with the object implementation. The following shows how it provides
access to the request information:

module CORBA {

interface ServerRequest { 1 PIDL
readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

h
h

The identity and/or reference of the target object of the invocation is provided by the object adapter and its language
mapping. In the context of a bridge, the target object will typically be a proxy for an object in some other ORB.

The operation attribute provides the identifier naming the operation being invoked; according to OMG IDL’s rules,
these names must be unique among all operations supported by the object’s “most-derived” interface. Note that the
operation names for getting and setting attributes are _get_<attribute_name> and _set_<attribute_name>,
respectively. The operation attribute can be accessed by the DIR at any time.

Operation parameter types will be specified, and “in” and “inout” argument values will be retrieved, with arguments.
Unless it calls set_exception, the DIR must call arguments exactly once, even if the operation signature contains no
parameters. Once arguments or set_exception has been called, calling arguments on the same ServerRequest will
result in a BAD_INV_ORDER system exception with standard minor code 7. The DIR must pass in to arguments an
NVList initialized with TypeCodes and Flags describing the parameter types for the operation, in the order in which they
appear in the IDL specification (left to right). A potentially-different NVList will be returned from arguments, with the
“in” and “inout” argument values supplied. If it does not call set_exception, the DIR must supply the returned NVList
with return values for any “out” arguments before returning, and may also change the return values for any “inout”
arguments.

When the operation is not an attribute access, and the operation’s IDL definition contains a context expression, ctx will
return the context information specified in IDL for the operation. Otherwise it will return a nil Context reference. Calling
ctx before arguments has been called or after ctx, set_result, or set_exception has been called will result in a
BAD_INV_ORDER system exception with standard minor code 8.

194 CORBA - Part 1: Interfaces, v3.1



The set_result operation is used to specify any return value for the call. Unless set_exception is called, if the invoked
operation has a non-void result type, set_result must be called exactly once before the DIR returns. If the operation has a
void result type, set_result may optionally be called once with an Any whose type is tk_void. Calling set_result before
arguments has been called or after set_result or set_exception has been called will result in a BAD_INV_ORDER
system exception with standard minor code 8. Calling set_result without having previously called ctx when the operation
IDL contains a context expression will result in a MARSHAL system exception with standard minor code 2. If the NVList
passed to arguments did not describe all parameters passed by the client, it may result in a MARSHAL system exception
with standard minor code 3.

The DIR may call set_exception at any time to return an exception to the client. The Any passed to set_exception must
contain either a system exception or one of the user exceptions specified in the raises expression of the invoked operation’s
IDL definition. Passing in an Any that does not contain an exception will result in a BAD_PARAM system exception with
standard minor code 21. Passing in an unlisted user exception will result in either the DIR receiving a BAD_PARAM system
exception with standard minor code 22 or in the client receiving an UNKNOWN system exception with standard minor code
1.

See each language mapping for a description of the memory management aspects of the parameters to the
ServerRequest operations.
12.4 DSI: Language Mapping

Because DSI is defined in terms of a pseudo-object, special attention must be paid to it in the language mapping. This
section provides general information about mapping the Dynamic Skeleton Interface to programming languages. Each
language provides its own mapping for DSI.

12.4.1 ServerRequest’s Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo-object be usable as a general argument in OMG IDL operations,
or listed in “orb.idl.”

The client-side memory management rules normally applied to pseudo-objects do not strictly apply to a ServerRequest’s
handling of operation parameters. Instead, the memory associated with parameters follows the memory management rules
applied to data passed from skeletons into statically typed implementation routines, and vice versa.

12.4.2 Registering Dynamic Implementation Routines
In an ORB implementation, the Dynamic Skeleton Interface is supported entirely through the Object Adapter. An Object

Adapter does not have to support the Dynamic Skeleton Interface but, if it does, the Object Adapter is responsible for the
details.

CORBA - Part 1: Interfaces, v3.1 195



196 CORBA - Part 1: Interfaces, v3.1



13 Dynamic Management of Any Values

An any can be passed to a program that doesn’t have any static information for the type of the any (code generated for
the type by an IDL compiler has not been compiled with the object implementation). As a result, the object receiving the
any does not have a portable method of using it.

The facility presented here enables traversal of the data value associated with an any at runtime and extraction of the
primitive constituents of the data value. This is especially helpful for writing powerful generic servers (bridges, event
channels supporting filtering).

Similarly, this facility enables the construction of an any at runtime, without having static knowledge of its type. This is
especially helpful for writing generic clients (bridges, browsers, debuggers, user interface tools).

13.1 Overview

Unless explicitly stated otherwise, all IDL presented in “Overview” through “Usage in C++ Language” is part of the
DynamicAny module.

Any values can be dynamically interpreted (traversed) and constructed through DynAny objects. A DynAny object is
associated with a data value, which corresponds to a copy of the value inserted into an any.

A DynAny object may be viewed as an ordered collection of component DynAnys. For DynAnys representing a basic
type, such as long, or a type without components, such as an empty exception, the ordered collection of components is
empty. Each DynAny object maintains the notion of a current position into its collection of component DynAnys. The
current position is identified by an index value that runs from 0 to n—1, where n is the number of components. The special
index value —1 indicates a current position that points nowhere. For values that cannot have a current position (such as an
empty exception), the index value is fixed at —1. If a DynAny is initialized with a value that has components, the index
is initialized to 0. After creation of an uninitialized DynAny (that is, a DynAny that has no value but a TypeCode that
permits components), the current position depends on the type of value represented by the DynAny. (The current position
is set to 0 or —1, depending on whether the new DynAny gets default values for its components.)

The iteration operations rewind, seek, and next can be used to change the current position and the
current_component operation returns the component at the current position. The component_count operation
returns the number of components of a DynAny. Collectively, these operations enable iteration over the components of a
DynAny, for example, to (recursively) examine its contents.

A constructed DynAny object is a DynAny object associated with a constructed type. There is a different interface,
inheriting from the DynAny interface, associated with each kind of constructed type in IDL (fixed, enum, struct,
sequence, union, array, exception, and valuetype).

A constructed DynAny object exports operations that enable the creation of new DynAny objects, each of them
associated with a component of the constructed data value.

As an example, a DynStruct is associated with a struct value. This means that the DynStruct may be seen as owning an
ordered collection of components, one for each structure member. The DynStruct object exports operations that enable
the creation of new DynAny objects, each of them associated with a member of the struct.

If a DynAny object has been obtained from another (constructed) DynAny object, such as a DynAny representing a
structure member that was created from a DynStruct, the member DynAny is logically contained in the DynStruct.

CORBA - Part 1: Interfaces, v3.1 197



Destroying a top-level DynAny object (one that was not obtained as a component of another DynAny) also destroys any

component DynAny objects obtained from it. Destroying a non-top level DynAny object does nothing. Invoking operations
on a destroyed top-level DynAny or any of its descendants raises OBJECT_NOT_EXIST. Note that simply releasing all

references to a DynAny object does not delete the DynAny or components; each DynAny created with one of the create
operations or with the copy operation must be explicitly destroyed to avoid memory leaks.

If the programmer wants to destroy a DynAny object but still wants to manipulate some component of the data value
associated with it, then he or she should first create a DynAny for the component and, after that, make a copy of the
created DynAny object.

The behavior of DynAny objects has been defined in order to enable efficient implementations in terms of allocated
memory space and speed of access. DynAny objects are intended to be used for traversing values extracted from anys or
constructing values of anys at runtime. Their use for other purposes is not recommended.

13.2 DynAny API

The DynAny API comprises the following IDL definitions, located in the DynamicAny module:

//\DL

/l File: DynamicAny.idl

#ifndef _DYNAMIC_ANY_IDL_
#define _DYNAMIC_ANY_IDL_

import ::CORBA;

module DynamicAny {
typeprefix DynamicAny “omg.org”;

local interface DynAny {
exception InvalidValue {};
exception TypeMismatch {};

CORBA::TypeCode type();

void assign(in DynAny dyn_any) raises(TypeMismatch);
void from_any(in any value) raises(TypeMismatch, InvalidValue);
any to_any();

boolean equal(in DynAny dyn_any);

void destroy();
DynAny copy();

void insert_boolean(in boolean value)
raises(TypeMismatch, InvalidValue);
void insert_octet(in octet value)
raises(TypeMismatch, InvalidValue);
void insert_char(in char value)
raises(TypeMismatch, InvalidValue);
void insert_short(in short value)
raises(TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)
raises(TypeMismatch, InvalidValue);
void insert_long(in long value)

198 CORBA - Part 1: Interfaces, v3.1



raises(TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)
raises(TypeMismatch, InvalidValue);
void insert_float(in float value)
raises(TypeMismatch, InvalidValue);
void insert_double(in double value)
raises(TypeMismatch, InvalidValue);
void insert_string(in string value)
raises(TypeMismatch, InvalidValue);
void insert_reference(in Object value)
raises(TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)
raises(TypeMismatch, InvalidValue);
void insert_longlong(in long long value)
raises(TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)
raises(TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)
raises(TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)
raises(TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)
raises(TypeMismatch, InvalidValue);
void insert_any(in any value)
raises(TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)
raises(TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)
raises(TypeMismatch, InvalidValue);

boolean get_boolean()

raises(TypeMismatch, InvalidValue);
octet get_octet()

raises(TypeMismatch, InvalidValue);
char get_char()

raises(TypeMismatch, InvalidValue);
short get_short()

raises(TypeMismatch, InvalidValue);
unsigned short get_ushort()

raises(TypeMismatch, InvalidValue);
long get_long()

raises(TypeMismatch, InvalidValue);
unsigned long get_ulong()

raises(TypeMismatch, InvalidValue);
float get_float()

raises(TypeMismatch, InvalidValue);
double get_double()

raises(TypeMismatch, InvalidValue);
string get_string()

raises(TypeMismatch, InvalidValue);
Object get_reference()

raises(TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()

raises(TypeMismatch, InvalidValue);
long long get_longlong()

CORBA - Part 1: Interfaces, v3.1 199



200

raises(TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()
raises(TypeMismatch, InvalidValue);
long double get_longdouble()
raises(TypeMismatch, InvalidValue);
wchar get_wchar()
raises(TypeMismatch, InvalidValue);
wstring get_wstring()
raises(TypeMismatch, InvalidValue);
any get_any()
raises(TypeMismatch, InvalidValue);
DynAny get_dyn_any()
raises(TypeMismatch, InvalidValue);
ValueBase get_val()
raises(TypeMismatch, InvalidValue);

boolean seek(in long index);

void rewind();

boolean next();

unsigned long component_count();

DynAny current_component() raises(TypeMismatch);

void insert_abstract(in CORBA::AbstractBase value)
raises(TypeMismatch, InvalidValue);

CORBA::AbstractBase get_abstract()
raises(TypeMismatch, InvalidValue);

void insert_boolean_seq(in CORBA::BooleanSeq value)
raises(TypeMismatch, InvalidValue);

void insert_octet_seq(in CORBA::OctetSeq value)
raises(TypeMismatch, InvalidValue);

void insert_char_seq(in CORBA::CharSeq value)
raises(TypeMismatch, InvalidValue);

void insert_short_seq(in CORBA::ShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ushort_seq(in CORBA::UShortSeq value)
raises(TypeMismatch, InvalidValue);

void insert_long_seq(in CORBA::LongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulong_seq(in CORBA::ULongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_float_seq(in CORBA::FloatSeq value)
raises(TypeMismatch, InvalidValue);

void insert_double_seq(in CORBA::DoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longlong_seq(in CORBA::LongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_ulonglong_seq(in CORBA::ULongLongSeq value)
raises(TypeMismatch, InvalidValue);

void insert_longdouble_seq(in CORBA::LongDoubleSeq value)
raises(TypeMismatch, InvalidValue);

void insert_wchar_seq(in CORBA::WCharSeq value)
raises(TypeMismatch, InvalidValue);

CORBA::BooleanSeq get_boolean_seq()
raises(TypeMismatch, InvalidValue);

CORBA - Part 1: Interfaces, v3.1



CORBA::OctetSeq get_octet_seq()
raises(TypeMismatch, InvalidValue);
CORBA::CharSeq get_char_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ShortSeq get_short_seq()
raises(TypeMismatch, InvalidValue);
CORBA::UShortSeq get_ushort_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongSeq get_long_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ULongSeq get_ulong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::FloatSeq get_float_seq()
raises(TypeMismatch, InvalidValue);
CORBA::DoubleSeq get_double_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongLongSeq get_longlong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::ULongLongSeq get_ulonglong_seq()
raises(TypeMismatch, InvalidValue);
CORBA::LongDoubleSeq get_longdouble_seq()
raises(TypeMismatch, InvalidValue);
CORBA::WCharSeq get_wchar_seq()
raises(TypeMismatch, InvalidValue);

b

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val) raises(TypeMismatch, InvalidValue);

h

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidValue);

h
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

3
typedef sequence<NameValuePair> NameValuePairSeq;
struct NameDynAnyPair {

FieldName id;

DynAny value;
h

CORBA - Part 1: Interfaces, v3.1 201



202

typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {

h

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members();

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

local interface DynUnion : DynAny {

h

DynAny get_discriminator();

void set_discriminator(in DynAny d) raises(TypeMismatch);
void set_to_default_member() raises(TypeMismatch);

void set_to_no_active_member() raises(TypeMismatch);
boolean has_no_active_member();

CORBA::TCKind discriminator_kind();

DynAny member() raises(InvalidValue);

FieldName member_name() raises(InvalidValue);

CORBA:: TCKind member_kind() raises(InvalidValue);

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {

h

unsigned long get_length();

void set_length(in unsigned long len) raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

local interface DynArray : DynAny {

h

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

local interface DynValueCommon : DynAny {

h

boolean is_null();
void set_to_null();
void set_to_value();

CORBA - Part 1: Interfaces, v3.1



local interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidValue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidValue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises(TypeMismatch, InvalidValue);

b

local interface DynValueBox : DynValueCommon {

any get_boxed_value()
raises(InvalidValue);

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

k
exception MustTruncate { };

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny
create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

DynAny create_dyn_any_without_truncation(in any value)
raises(InconsistentTypeCode, MustTruncate);
DynAnySeq create_multiple_dyn_anys(
in AnySeq values,
in boolean allow_truncate)
raises(InconsistentTypeCode, MustTruncate);

AnySeq create_multiple_anys(in DynAnySeq values);
k
}; // module DynamicAny
#endif // _DYNAMIC_ANY_IDL_

13.2.1 Creating a DynAny Object

A DynAny object can be created as a result of:
« invoking an operation on an existing DynAny object.

« invoking an operation on a DynAnyFactory object.

CORBA - Part 1: Interfaces, v3.1

203



A constructed DynAny object supports operations that enable the creation of new DynAny objects encapsulating access
to the value of some constituent. DynAny objects also support the copy operation for creating new DynAny objects.

In addition, DynAny objects can be created by invoking operations on the DynAnyFactory object. A reference to the
DynAnyFactory object is obtained by calling CORBA::ORB::resolve_initial_references with the identifier
parameter set to “DynAnyFactory.”

local interface DynAnyFactory {
exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)
raises(InconsistentTypeCode);
DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises(InconsistentTypeCode);

h

The create_dyn_any operation creates a new DynAny object from an any value. A copy of the TypeCode associated
with the any value is assigned to the resulting DynAny object. The value associated with the DynAny object is a copy
of the value in the original any. The create_dyn_any operation sets the current position of the created DynAny to zero
if the passed value has components; otherwise, the current position is set to —1. The operation raises
InconsistentTypeCode if value has a TypeCode with a TCKind of tk_Principal or tk_native.

The create_dyn_any_from_type_code operation creates a DynAny from a TypeCode. Depending on the
TypeCode, the created object may be of type DynAny, or one of its derived types, such as DynStruct. The returned
reference can be narrowed to the derived type.

For both create_dyn_any and create_dyn_any_from_type_code, the source type code is copied into the DynAny
object unchanged. This means that, after creation of a DynAny object, the source type code and the type code inside the
DynAny must compare equal as determined by TypeCode::equal. The same is true for type codes extracted from a
DynAny with the type operation and for type codes that are part of any values that are constructed from a DynAny: such
type codes compare equal to to the type code that was originally used to create the DynAny. For a given parent DynAny
with its associated TypeCode, the TypeCode of a component DynAny also compares equal to the corresponding results
of the member_type or component_type operation on the parent TypeCode.

The create_dyn_any_without_truncation operation has the same semantics as create_dyn_any, but will raise the
MustTruncate exception if it cannot avoid truncating a valuetype.

The create_multiple_dyn_anys operation converts a sequence of anys into a sequence of DynAnys, ensuring that
each reference to a valuetype instance is converted consistently to the same DynValue or DynValueBox instance. If the
allow_truncate parameter is false, the operation will raise the MustTruncate exception if it cannot avoid truncating a
valuetype.

The create_multiple_anys operation converts a sequence of DynAnys into a sequence of anys, ensuring that each
DynValue or DynValueBox instance is consistently converted to the same valuetype instance.

Creation of DynAnys with TCKind tk_null and tk_void is legal and results in the creation of a DynAny without a
value and with zero components.

In all cases, a DynAny constructed from a TypeCode has an initial default value. The default values of basic types are:
- FALSE for Boolean
« zero for numeric types

« zero for types octet, char, and wchar

204 CORBA - Part 1: Interfaces, v3.1



the empty string for string and wstring
nil for object references
a type code with a TCKind value of tk_null for type codes

for any values, an any containing a type code with a TCKind value of tk_null type and no value

For complex types, creation of the corresponding DynAny assigns a default value as follows:

For DynSequence, the operation sets the current position to —1 and creates an empty sequence.

For DynEnum, the operation sets the current position to —1 and sets the value of the enumerator to the first enumera-
tor value indicated by the TypeCode.

For DynFixed, operations set the current position to —1 and sets the value zero.

For DynStruct, the operation sets the current position to —1 for empty exceptions and to zero for all other Type-
Codes. The members (if any) are (recursively) initialized to their default values.

For DynArray, the operation sets the current position to zero and (recursively) initializes elements to their default
value.

For DynUnion, the operation sets the current position to zero. The discriminator value is set to a value consistent with
the first named member of the union. That member is activated and (recursively) initialized to its default value.

DynValue and DynValueBox are initialized to a null value.

Dynamic interpretation of an any usually involves creating a DynAny object using DynAnyFactory::.create_dyn_any
as the first step. Depending on the type of the any, the resulting DynAny object reference can be narrowed to a
DynFixed, DynStruct, DynSequence, DynArray, DynUnion, DynEnum, or DynValue object reference.

Dynamic creation of an any involves creating a DynAny object using
DynAnyFactory::create_dyn_any_from_type code, passing the TypeCode associated with the value to be
created. The returned reference is narrowed to one of the complex types, such as DynStruct, if appropriate. Then, the
value can be initialized by means of invoking operations on the resulting object. Finally, the to_any operation can be
invoked to create an any value from the constructed DynAny.

13.2.2 The DynAny Interface

The following operations can be applied to a DynAny object:

Obtaining the TypeCode associated with the DynAny object.
Generating an any value from the DynAny object.

Comparing two DynAny objects for equality.

Destroying the DynAny object.

Creating a DynAny object as a copy of the DynAny object.
Inserting/getting a value of some basic type into/from the DynAny object.
Iterating through the components of a DynAny.

Initializing a DynAny object from another DynAny object.

CORBA - Part 1: Interfaces, v3.1 205



« Initializing a DynAny object from an any value.
13.2.2.1 Obtaining the TypeCode associated with a DynAny object

CORBA::TypeCode type();

A DynAny object is created with a TypeCode value assigned to it. This TypeCode value determines the type of the
value handled through the DynAny object. The type operation returns the TypeCode associated with a DynAny object.

Note that the TypeCode associated with a DynAny object is initialized at the time the DynAny is created and cannot be
changed during the lifetime of the DynAny object.

13.2.2.2 Initializing a DynAny object from another DynAny object

void assign(in DynAny dyn_any) raises(TypeMismatch);

The assign operation initializes the value associated with a DynAny object with the value associated with another
DynAny object.

If the type of the passed DynAny is not equivalent to the type of target DynAny, the operation raises TypeMismatch.
The current position of the target DynAny is set to zero for values that have components and to —1 for values that do not
have components.

13.2.2.3 Initializing a DynAny object from an any value

void from_any(in any value) raises(TypeMismatch, InvalidValue);
The from_any operation initializes the value associated with a DynAny object with the value contained in an any.

If the type of the passed Any is not equivalent to the type of target DynAny, the operation raises TypeMismatch. If the
passed Any does not contain a legal value (such as a null string), the operation raises InvalidValue. The current position
of the target DynAny is set to zero for values that have components and to —1 for values that do not have components.

13.2.2.4 Generating an any value from a DynAny object

any to_any();

The to_any operation creates an any value from a DynAny object. A copy of the TypeCode associated with the
DynAny object is assigned to the resulting any. The value associated with the DynAny object is copied into the any.

13.2.2.5 Comparing DynAny values

boolean equal(in DynAny dyn_any);

The equal operation compares two DynAny references for equality and returns true if the DynAnys are equal, false
otherwise. For DynAny references that are not derived from DynValueCommon, they are equal if their TypeCodes are
equivalent and, recursively, all component DynAnys are equal. For DynAny references that are derived from
DynValueCommon, they are equal only if they are exactly the same reference. The current position of the two
DynAnys being compared has no effect on the result of equal. To determine equality of object references, the equal
operation uses Object::is_equivalent. To determine equality of type codes, the equal operation uses
TypeCode::equivalent.

206 CORBA - Part 1: Interfaces, v3.1



Note — If two DynAnys happen to contain *values* of type TypeCode, these values are compared using
TypeCode::equal. The type codes that *describe* the values of DynAnys are always compared using
TypeCode::equivalent, however. (In the case of comparing two DynAnys containing type code values, the type codes
describing these type code values are tk_TypeCode in each DynAny, and will therefore always compare as equivalent.)

13.2.2.6 Destroying a DynAny object

void destroy();

The destroy operation destroys a DynAny object. This operation frees any resources used to represent the data value
associated with a DynAny object. destroy must be invoked on references obtained from one of the creation operations
on the DynAnyFactory interface or on a reference returned by DynAny::copy to avoid resource leaks. Invoking
destroy on component DynAny objects (for example, on objects returned by the current_component operation) does
nothing.

Destruction of a DynAny object implies destruction of all DynAny objects obtained from it. That is, references to
components of a destroyed DynAny become invalid; invocations on such references raise OBJECT_NOT_EXIST.

It is possible to manipulate a component of a DynAny beyond the life time of the DynAny from which the component
was obtained by making a copy of the component with the copy operation before destroying the DynAny from which the
component was obtained.

13.2.2.7 Creating a copy of a DynAny object

DynAny copy();

The copy operation creates a new DynAny object whose value is a deep copy of the DynAny on which it is invoked.
The operation is polymorphic, that is, invoking it on one of the types derived from DynAny, such as DynStruct, creates
the derived type but returns its reference as the DynAny base type.

13.2.2.8 Accessing a value of some basic type in a DynAny object

The insert and get operations enable insertion/extraction of basic data type values into/from a DynAny object.

Both bounded and unbounded strings are inserted using insert_string and insert_wstring. These operations raise the
InvalidValue exception if the string inserted is longer than the bound of a bounded string.

Calling an insert or get operation on a DynAny that has components but has a current position of —1 raises InvalidValue.

Get operations raise TypeMismatch if the accessed component in the DynAny is of a type that is not equivalent to the
requested type. (Note that get_string and get_wstring are used for both unbounded and bounded strings.)

A type is consistent for inserting or extracting a value if its TypeCode is equivalent to the TypeCode contained in the
DynAny or, if the DynAny has components, is equivalent to the TypeCode of the DynAny at the current position.

The get_dyn_any and insert_dyn_any operations are provided to deal with any values that contain another any. The
operations behave identically to get_any and insert_any, but use parameters of type DynAny (instead of any); they are
useful to avoid otherwise redundant conversions between any and DynAny.

Calling an insert or get operation leaves the current position unchanged.

CORBA - Part 1: Interfaces, v3.1 207



These operations are necessary to handle basic DynAny objects but are also helpful to handle constructed DynAny
objects. Inserting a basic data type value into a constructed DynAny object implies initializing the current component of
the constructed data value associated with the DynAny object. For example, invoking insert_boolean on a DynStruct
implies inserting a boolean data value at the current position of the associated struct data value. If dyn construct
points to a constructed DynAny object, then:

result = dyn construct->get boolean() ;
has the same effect as:
DynamicAny: :DynAny var temp =

dyn construct->current component () ;
result = temp->get boolean() ;

Calling an insert or get operation on a DynAny whose current component itself has components raises TypeMismatch.

In addition, availability of these operations enable the traversal of anys associated with sequences of basic data types
without the need to generate a DynAny object for each element in the sequence.

In the same way that basic types are inserted/extracted from a DynAny object, arrays or sequences of basic types can be
inserted/extracted from a DynAny. For example, the get_boolean_seq operation extracts a sequence of booleans
from a DynAny that contains either a sequence or an array of booleans, and the insert_boolean_seq operation stores
the sequence back into the DynAny.

The TypeCode of the DynAny, or the TypeCode of the component at the current position of the DynAny, must be
equivalent to a sequence or array TypeCode with the basic type as its element, otherwise the operations raise
TypeMismatch. For the insert operations, if the length of the sequence is incompatible with a bounded sequence or array
represented by the DynAny, then the operations raise InvalidValue.

13.2.2.9 lterating through components of a DynAny

The DynAny interface allows a client to iterate through the components of the values pointed to by DynStruct,
DynSequence, DynArray, DynUnion, DynAny, and DynValue objects.

As mentioned previously, a DynAny object may be seen as an ordered collection of components, together with a current
position.
boolean seek(in long index);

The seek operation sets the current position to index. The current position is indexed 0 to n—1, that is, index zero
corresponds to the first component. The operation returns true if the resulting current position indicates a component of
the DynAny and false if index indicates a position that does not correspond to a component.

Calling seek with a negative index is legal. It sets the current position to —1 to indicate no component and returns false.
Passing a non-negative index value for a DynAny that does not have a component at the corresponding position sets the
current position to —1 and returns false.

void rewind();

The rewind operation is equivalent to calling seek(0);

boolean next();

208 CORBA - Part 1: Interfaces, v3.1



The next operation advances the current position to the next component. The operation returns true while the resulting
current position indicates a component, false otherwise. A false return value leaves the current position at —1. Invoking
next on a DynAny without components leaves the current position at —1 and returns false.

unsigned long component_count();

The component_count operation returns the number of components of a DynAny. For a DynAny without
components, it returns zero. The operation only counts the components at the top level. For example, if
component_count is invoked on a DynStruct with a single member, the return value is 1, irrespective of the type of
the member.

For sequences, the operation returns the current number of elements. For structures, exceptions, and valuetypes, the
operation returns the number of members. For arrays, the operation returns the number of elements. For unions, the
operation returns 2 if the discriminator indicates that a named member is active; otherwise, it returns 1. For DynFixed
and DynEnum, the operation returns zero.

DynAny current_component() raises(TypeMismatch);

The current_component operation returns the DynAny for the component at the current position. It does not advance
the current position, so repeated calls to current_component without an intervening call to rewind, next, or seek
return the same component.

The returned DynAny object reference can be used to get/set the value of the current component. If the current
component represents a complex type, the returned reference can be narrowed based on the TypeCode to get the
interface corresponding to the to the complex type.

Calling current_component on a DynAny that cannot have components, such as a DynEnum or an empty exception,
raises TypeMismatch. Calling current_component on a DynAny whose current position is —1 returns a nil reference.

The iteration operations, together with current_component, can be used to dynamically compose an any value. After
creating a dynamic any, such as a DynStruct, current_component and next can be used to initialize all the
components of the value. Once the dynamic value is completely initialized, to_any creates the corresponding any value.

13.2.3 The DynFixed Interface

DynFixed objects are associated with values of the IDL fixed type.

local interface DynFixed : DynAny {
string get_value();
boolean set_value(in string val)
raises (TypeMismatch, InvalidValue);

h

Because IDL does not have a generic type that can represent fixed types with arbitrary number of digits and arbitrary
scale, the operations use the IDL string type.

The get_value operation returns the value of a DynFixed.

The set_value operation sets the value of the DynFixed. The val string must contain a fixed string constant in the same
format as used for IDL fixed-point literals. However, the trailing d or D is optional. If val has more fractional digits than
specified by the scale of the DynFixed, the extra digits are truncated. If the truncated value has more digits than the
DynFixed, the operation raises InvalidValue. If the value is not too large, set_value returns TRUE if no truncation was
required, FALSE otherwise. The return value is TRUE if val can be represented as the DynFixed without loss of

CORBA - Part 1: Interfaces, v3.1 209



precision. If val has more fractional digits than can be represented in the DynFixed, fractional digits are truncated and
the return value is FALSE. If val does not contain a valid fixed-point literal or contains extraneous characters other than
leading or trailing white space, the operation raises TypeMismatch.

13.2.4 The DynEnum Interface

DynEnum objects are associated with enumerated values.

local interface DynEnum : DynAny {
string get_as_string();
void set_as_string(in string value) raises(InvalidValue);
unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value) raises(InvalidVvalue);

|3
The get_as_string operation returns the value of the DynEnum as an IDL identifier.

The set_as_string operation sets the value of the DynEnum to the enumerated value whose IDL identifier is passed in
the value parameter. If value contains a string that is not a valid IDL identifier for the corresponding enumerated type,
the operation raises InvalidValue.

The get_as_ulong operation returns the value of the DynEnum as the enumerated value’s ordinal value. Enumerators
have ordinal values 0 to n—1, as they appear from left to right in the corresponding IDL definition.

The set_as_ulong operation sets the value of the DynEnum as the enumerated value’s ordinal value. If value contains
a value that is outside the range of ordinal values for the corresponding enumerated type, the operation raises
InvalidValue.

The current position of a DynEnum is always —1.
13.2.5 The DynStruct Interface

DynStruct objects are associated with struct values and exception values.
typedef string FieldName;

struct NameValuePair {
FieldName id;
any value;

b

typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair {
FieldName id;
DynAny value;
3
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

local interface DynStruct : DynAny {
FieldName current_member_name()
raises(TypeMismatch, InvalidValue);
CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);
NameValuePairSeq get_members();

210 CORBA - Part 1: Interfaces, v3.1



void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any();

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

The current_member_name operation returns the name of the member at the current position. If the DynStruct
represents an empty exception, the operation raises TypeMismatch. If the current position does not indicate a member,
the operation raises InvalidValue.

This operation may return an empty string since the TypeCode of the value being manipulated may not contain the
names of members.

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

current_member_kind returns the TCKind associated with the member at the current position. If the DynStruct
represents an empty exception, the operation raises TypeMismatch. If the current position does not indicate a member,
the operation raises InvalidValue.

NameValuePairSeq get_members();

The get_members operation returns a sequence of name/value pairs describing the name and the value of each member
in the struct associated with a DynStruct object. The sequence contains members in the same order as the declaration
order of members as indicated by the DynStruct’s TypeCode. The current position is not affected. The member names
in the returned sequence will be empty strings if the DynStruct’s TypeCode does not contain member names.

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

The set_members operation initializes the struct data value associated with a DynStruct object from a sequence of
name value pairs. The operation sets the current position to zero if the passed sequences has non-zero length; otherwise,
if an empty sequence is passed, the current position is set to —1.

Members must appear in the NameValuePairSeq in the order in which they appear in the IDL specification of the
struct. If one or more sequence elements have a type that is not equivalent to the TypeCode of the corresponding
member, the operation raises TypeMismatch. If the passed sequence has a number of elements that disagrees with the
number of members as indicated by the DynStruct’s TypeCode, the operation raises InvalidValue.

If member names are supplied in the passed sequence, they must either match the corresponding member name in the
DynStruct’s TypeCode or must be empty strings, otherwise, the operation raises TypeMismatch. Members must be
supplied in the same order as indicated by the DynStruct’s TypeCode. (The operation makes no attempt to assign
member values based on member names.)

The get_members_as_dyn_any and set_members_as_dyn_any operations have the same semantics as their Any
counterparts, but accept and return values of type DynAny instead of Any.

DynStruct objects can also be used for handling exception values. In that case, members of the exceptions are handled
in the same way as members of a struct.

CORBA - Part 1: Interfaces, v3.1 211



13.2.6 The DynUnion Interface

DynUnion objects are associated with unions.

local interface DynUnion : DynAny {

DynAny get_discriminator();

void set_discriminator(in DynAny d)
raises(TypeMismatch);

void set_to_default_member()
raises(TypeMismatch);

void set_to_no_active_member()
raises(TypeMismatch);

boolean has_no_active_member()
raises(InvalidValue);

CORBA::TCKind discriminator_kind();

DynAny member()
raises(InvalidValue);

FieldName member_name()
raises(InvalidValue);

CORBA::TCKind member_kind()
raises(InvalidValue);

boolean is_set_to_default_member();

|3
The DynUnion interface allows for the insertion/extraction of an OMG IDL union type into/from a DynUnion object.

A union can have only two valid current positions: zero, which denotes the discriminator, and one, which denotes the
active member. The component_count value for a union depends on the current discriminator: it is 2 for a union whose
discriminator indicates a named member, and 1 otherwise.

DynAny get_discriminator()

The get_discriminator operation returns the current discriminator value of the DynUnion.

void set_discriminator(in DynAny d)
raises(TypeMismatch);

The set_discriminator operation sets the discriminator of the DynUnion to the specified value. If the TypeCode of
the d parameter is not equivalent to the TypeCode of the union’s discriminator, the operation raises TypeMismatch.

Setting the discriminator to a value that is consistent with the currently active union member does not affect the currently
active member. Setting the discriminator to a value that is inconsistent with the currently active member deactivates the
member and activates the member that is consistent with the new discriminator value (if there is a member for that value)
by initializing the member to its default value.

Setting the discriminator of a union sets the current position to 0 if the discriminator value indicates a non-existent union
member (has_no_active_member returns true in this case). Otherwise, if the discriminator value indicates a named
union member, the current position is set to 1 (has_no_active_member returns false and component_count
returns 2 in this case).

void set_to_default_member()
raises(TypeMismatch);

212 CORBA - Part 1: Interfaces, v3.1



The set_to_default_member operation sets the discriminator to a value that is consistent with the value of the default
case of a union; it sets the current position to zero and causes component_count to return 2. Calling
set_to_default_member on a union that does not have an explicit default case raises TypeMismatch.

void set_to_no_active_member()
raises(TypeMismatch);

The set_to_no_active_member operation sets the discriminator to a value that does not correspond to any of the
union’s case labels; it sets the current position to zero and causes component_count to return 1. Calling
set_to_no_active_member on a union that has an explicit default case or on a union that uses the entire range of
discriminator values for explicit case labels raises TypeMismatch.

boolean has_no_active_member();

The has_no_active_member operation returns true if the union has no active member (that is, the union’s value
consists solely of its discriminator because the discriminator has a value that is not listed as an explicit case label).
Calling this operation on a union that has a default case returns false. Calling this operation on a union that uses the
entire range of discriminator values for explicit case labels returns false.

CORBA::TCKind discriminator_kind();

The discriminator_kind operation returns the TCKind value of the discriminator’s TypeCode.

CORBA:: TCKind member_kind()
raises(InvalidValue);

The member_kind operation returns the TCKind value of the currently active member’s TypeCode. Calling this
operation on a union that does not have a currently active member raises InvalidValue.

DynAny member()
raises(InvalidValue);

The member operation returns the currently active member. If the union has no active member, the operation raises
InvalidValue. Note that the returned reference remains valid only for as long as the currently active member does not
change. Using the returned reference beyond the life time of the currently active member raises OBJECT_NOT_EXIST.

FieldName member_name()
raises(InvalidValue);

The member_name operation returns the name of the currently active member. If the union’s TypeCode does not
contain a member name for the currently active member, the operation returns an empty string. Calling member_name
on a union without an active member raises InvalidValue.

boolean is_set_to_default_member();

The is_set_to_default_member operation returns TRUE if a union has an explicit default label and the discriminator
value does not match any of the union’s other case labels.

13.2.7 The DynSequence Interface

DynSequence objects are associated with sequences.

CORBA - Part 1: Interfaces, v3.1 213



typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

local interface DynSequence : DynAny {

unsigned long get_length();

void set_length(in unsigned long len)
raises(InvalidValue);

AnySeq get_elements();

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements_as_dyn_any();

void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

unsigned long get_length();

The get_length operation returns the current length of the sequence.

void set_length(in unsigned long len)
raises(InvalidValue);

The set_length operation sets the length of the sequence. Increasing the length of a sequence adds new elements at the
tail without affecting the values of already existing elements. Newly added elements are default-initialized.

Increasing the length of a sequence sets the current position to the first newly-added element if the previous current
position was —1. Otherwise, if the previous current position was not —1, the current position is not affected.

Increasing the length of a bounded sequence to a value larger than the bound raises InvalidValue.

Decreasing the length of a sequence removes elements from the tail without affecting the value of those elements that
remain. The new current position after decreasing the length of a sequence is determined as follows:

« If the length of the sequence is set to zero, the current position is set to —1.
« If the current position is —1 before decreasing the length, it remains at —1.

- If the current position indicates a valid element and that element is not removed when the length is decreased, the cur-
rent position remains unaffected.

« If the current position indicates a valid element and that element is removed, the current position is set to —1.
DynAnySeq get_elements();

The get_elements operation returns the elements of the sequence.

void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the elements of a sequence. The length of the DynSequence is set to the length of
value. The current position is set to zero if value has non-zero length and to —1 if value is a zero-length sequence.

If value contains one or more elements whose TypeCode is not equivalent to the element TypeCode of the
DynSequence, the operation raises TypeMismatch. If the length of value exceeds the bound of a bounded sequence,
the operation raises InvalidValue.

214 CORBA - Part 1: Interfaces, v3.1



The get_elements_as_dyn_any and set_elements_as_dyn_any operations have the same semantics, but accept
and return values of type DynAny instead of Any.

13.2.8 The DynArray Interface

DynArray objects are associated with arrays.

local interface DynArray : DynAny {
AnySeq get_elements();
void set_elements(in AnySeq value)
raises(TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

DynAnySeq get_elements();

The get_elements operation returns the elements of the DynArray.

void set_elements(in DynAnySeq value)
raises(TypeMismatch, InvalidValue);

The set_elements operation sets the DynArray to contain the passed elements. If the sequence does not contain the
same number of elements as the array dimension, the operation raises InvalidValue. If one or more elements have a type
that is inconsistent with the DynArray’s TypeCode, the operation raises TypeMismatch.

The get_elements_as_dyn_any and set_elements_as_dyn_any operations have the same semantics as their Any
counterparts, but accept and return values of type DynAny instead of Any.

Note that the dimension of the array is contained in the TypeCode, which is accessible through the type attribute. It can
also be obtained by calling the component_count operation.

13.2.9 The DynValueCommon Interface

DynValueCommon provides operations supported by both the DynValue and DynValueBox interfaces.

local interface DynValueCommon : DynAny {
boolean is_null();
void set_to_null();
void set_to_value();

h
boolean is_null();

The is_null operation returns TRUE if the DynValueCommon represents a null valuetype.

void set_to_null();

The set_to_null operation changes the representation of a DynValueCommon to a null valuetype.

void set_to_value();

CORBA - Part 1: Interfaces, v3.1 215



If the DynValueCommon represents a null valuetype, then set_to_value replaces it with a newly constructed value,
with its components initialized to default values as in DynAnyFactory::create_dyn_any from_type_code. If the
DynValueCommon represents a non-null valuetype, then this operation has no effect.

A reference to a DynValueCommon interface (and interfaces derived from it) exhibit the same sharing semantics as the
underlying valuetype that it represents. This means that the relationships between valuetypes in a graph of valuetypes
will remain unchanged when converted into DynAny form and vice versa. This is necessary to ensure that applications
that use the DIl and DSI can correctly view and preserve the semantics of the valuetype graph.

13.2.10 The DynValue Interface

DynValue objects are associated with non-boxed valuetypes.

local interface DynValue : DynValueCommon {

FieldName current_member_name()
raises(TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises(TypeMismatch, InvalidValue);

NameValuePairSeq get_members()
raises(InvalidValue);

void set_members(in NameValuePairSeq value)
raises(TypeMismatch, InvalidValue);

NameDynAnyPairSeq get_members_as_dyn_any()
raises(InvalidValue);

void set_members_as_dyn_any(in NameDynAnyPairSeq value)
raises(TypeMismatch, InvalidValue);

h

The DynValue interface can represent both null and non-null valuetypes. For a DynValue representing a non-null
valuetype, the DynValue’s components comprise the public and private members of the valuetype, including those
inherited from concrete base valuetypes, in the order of definition. A DynValue representing a null valuetype has no
components and a current position of -1.

The remaining operations on the DynValue interface generally have equivalent semantics to the same operations on
DynStruct. When invoked on a DynValue representing a null valuetype, get_members and
get_members_as_dyn_any raise InvalidValue. When invoked on a DynValue representing a null valuetype,
set_members and set_members_as_dyn_any convert the DynValue to a non-null valuetype.

Warning — Indiscriminately changing the contents of private valuetype members can cause the valuetype implementation
to break by violating internal constraints. Access to private members is provided to support such activities as ORB
bridging and debugging and should not be used to arbitrarily violate the encapsulation of the valuetype.

13.2.11 The DynValueBox Interface

DynValueBox objects are associated with boxed valuetypes.

local interface DynValueBox : DynValueCommon {
any get_boxed_value()
raises(InvalidValue);
void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

216 CORBA - Part 1: Interfaces, v3.1



DynAny get_boxed_value_as_dyn_any()
raises(InvalidValue);

void set_boxed_value_as_dyn_any(in DynAny boxed)
raises(TypeMismatch);

h

The DynValueBox interface can represent both null and non-null valuetypes. For a DynValueBox representing a non-
null valuetype, the DynValueBox has a single component of the boxed type. A DynValueBox representing a null
valuetype has no components and a current position of -1.

any get_boxed_value()
raises(InvalidValue);

The get_boxed_value operation returns the boxed value as an any. If the DynBoxedValue represents a null
valuetype, the operation raises InvalidValue.

void set_boxed_value(in any boxed)
raises(TypeMismatch, InvalidValue);

The set_boxed_value operation replaces the boxed value with the specified value. If the type of the passed Any is not
equivalent to the boxed type, the operation raises TypeMismatch. If the passed Any does not contain a legal value, the
operation raises InvalidValue. If the DynBoxedValue represents a null valuetype, it is converted to a non-null value.

The get_boxed_value_as_dyn_any and set_boxed_value_as_dyn_any have the same semantics as their any
counterparts, but accept and return values of type DynAny instead of any.

13.3 Usage in C++ Language

13.3.1 Dynamic Creation of CORBA::Any values
13.3.1.1 Creating an any that contains a struct

Consider the following IDL definition:

/I IDL

struct MyStruct {
long memberl;
boolean member2;

b

The following example illustrates how a CORBA: : Any value may be constructed on the fly containing a value of type
MyStruct:

// C++
CORBA::0RB var orb = ...;
DynamicAny: :DynAnyFactory var dafact

= orb->resolve initial references (“DynAnyFactory”) ;
CORBA: : StructMemberSeq mems (2) ;
CORBA: :Any var result;
CORBA: :Long valuel
CORBA: :Boolean value2
mems.length(2) ;

99;
1;

CORBA - Part 1: Interfaces, v3.1 217



mems [0] .name
mems [0] . type
mems [1] .name
mems [1] . type

= CORBA: :TypeCode:: duplicate(CORBA:: tc boolean) ;

CORBA: :string dup (“memberl”) ;
CORBA: :TypeCode:: duplicate(CORBA:: tc long);
CORBA: :string dup (“member2”) ;

CORBA: :TypeCode var new tc = orb->create struct tc(
“IDL:MyStruct:1.0”,
“MyStruct”,
mems

// Construct the DynStruct object. Values for members are
// the valuel and value2 variables

DynamicAny: :DynAny ptr dyn any
= dafact->create dyn any(new tc);
DynamicAny: :DynStruct ptr dyn struct
= DynamicAny::DynStruct:: narrow(dyn any) ;
CORBA: :release(dyn any);
dyn struct->insert long(valuel) ;
dyn struct->next();
dyn struct->insert boolean(value2) ;
result = dyn struct->to _any();
dyn struct->destroy() ;
CORBA: :release(dyn struct);

13.3.2 Dynamic Interpretation of CORBA::Any values

13.3.2.1 Filtering of events

Suppose there is a CORBA object that receives events and prints all those events, which correspond to a data structure
containing a member called is_urgent whose value is true.

The following fragment of code corresponds to a method that determines if an event should be printed or not. Note that
the program allows several struct events to be filtered with respect to some common member.

// C++

CORBA: :Boolean Tester::eval filter(
DynamicAny: :DynAnyFactory ptr dafact,
const CORBA::Any & event

CORBA: :Boolean success = FALSE;
DynamicAny: :DynAny var;
try {
// First, convert the event to a DynAny.
// Then attempt to narrow it to a DynStruct.
// The narrow only returns a reference
// if the event is a struct.

218 CORBA - Part 1: Interfaces, v3.1



dyn var = dafact->create dyn any(event) ;
DynamicAny: :DynStruct var dyn struct
= DynamicAny: :DynStruct:: narrow(dyn any) ;
if (!CORBA::is nil(dyn struct)) {
CORBA: :Boolean found = FALSE;
do {
CORBA::String var member name
dyn struct->current member name() ;
found (strcmp (member name, "is urgent") == 0);
} while (!found && dyn struct->next());
if (found) {
// We only create a DynAny object for the member
// we were looking for:
DynamicAny: :DynAny var dyn member
= dyn struct->current component () ;
success = dyn member->get boolean() ;

}
}
catch(...) {};
if (!CORBA::is nil(dyn var))
dyn var->destroy () ;
return success;

CORBA - Part 1: Interfaces, v3.1 219



220 CORBA - Part 1: Interfaces, v3.1



14 The Interface Repository

14.1 Overview

The Interface Repository is the component of the ORB that provides persistent storage of interface definitions—it
manages and provides access to a collection of object definitions specified in OMG IDL.

An ORB provides distributed access to a collection of objects using the objects’ publicly defined interfaces specified in
OMG IDL. The Interface Repository provides for the storage, distribution, and management of a collection of related
objects’ interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the objects it is handling. Object
definitions can be made available to an ORB in one of two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that maps C language subroutines into
communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e., as interface objects accessed
through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository to interpret and handle the values
provided in a request to:

« Provide type-checking of request signatures (whether the request was issued through the DII or through a stub).
 Assist in checking the correctness of interface inheritance graphs.
» Assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is public, the information maintained in
the Repository can also be used by clients and services. For example, the Repository can be used to:

» Manage the installation and distribution of interface definitions.

« Provide components of a CASE environment (for example, an interface browser).
 Provide interface information to language bindings (such as a compiler).

» Provide components of end-user environments (for example, a menu bar constructor).

The complete OMG IDL specification for the Interface Repository is in “OMG IDL for Interface Repository” on
page 282; however, fragments of the specification are used throughout this clause as necessary.

14.2 Scope of an Interface Repository

Interface definitions are maintained in the Interface Repository as a set of objects that are accessible through a set of
OMG IDL-specified interface definitions. An interface definition contains a description of the operations it supports,
including the types of the parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constant values, which might be used in other interface and value definitions or
might simply be defined for programmer convenience and it stores TypeCodes [“TypeCodes” on page 138], which are
values that describe a type in structural terms.

CORBA - Part 1: Interfaces, v3.1 221



The Interface Repository uses modules as a way to group interfaces and to navigate through those groups by name.
Modules can contain constants, typedefs, exceptions, interface/ component/home definitions, and other modules. Modules
may, for example, correspond to the organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.

The Interface Repository consists of a set of interface repository objects that represent the information in it. There are
operations that operate on this apparent object structure. It is an implementation’s choice whether these objects exist
persistently or are created when referenced in an operation on the repository. There are also operations that extract
information in an efficient form, obtaining a block of information that describes a whole interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because
« two ORBs have different requirements for the implementation of the Interface Repository,
 an object implementation (such as an OODB) prefers to provide its own type information, or
« itis desired to have different additional information stored in different repositories.

The use of TypeCodes (“TypeCodes” on page 138) and repository identifiers is intended to allow different repositories to
keep their information consistent.

As shown in Figure 14.1, the same interface Doc is installed in two different repositories, one at SoftCo, Inc., which sells
Doc objects, and one at Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets the repository id for the Doc
interface when it defines it. Customer might first install the interface in its repository in a module where it could be tested
before exposing it for general use. Because it has the same repository id, even though the Doc interface is stored in a
different repository and is nested in a different module, it is known to be the same.

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new repository id 456, which allows the
ORBs to distinguish it from the current product Doc interface.

SoftCo, Customer, Inc., Repository
Inc.,

Reposi-

tory module testfirst {

module softco {

interface Doc <id 123> {
mMe\L void print();
softco { 5
int Doc <id 123> { 5
v¥id print(); I8
|3
|3

module newrelease {
interface Doc <id 456> {

Figure 14.1- Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees cannot see the new release of the
Doc interface. However, widely used interfaces will generally be visible in most repositories.

222 CORBA - Part 1: Interfaces, v3.1



This Interface Repository specification defines operations for retrieving information from the repository as well as
creating definitions within it. There may be additional ways to insert information into the repository (for example,
compiling OMG IDL definitions, copying objects from one repository to another).

A critical use of the interface repository information is for connecting ORBs together. When an object is passed in a
request from one ORB to another, it may be necessary to create a new object to represent the passed object in the
receiving ORB. This may require locating the interface information in an interface repository in the receiving ORB. By
getting the repository id from a repository in the sending ORB, it is possible to look up the interface in a repository in the
receiving ORB. To succeed, the interface for that object must be installed in both repositories with the same repository id.

14.3 Implementation Dependencies

An implementation of an Interface Repository requires some form of persistent object store. Normally the kind of
persistent object store used determines how interface definitions are distributed and/or replicated throughout a network
domain. For example, if an Interface Repository is implemented using a filing system to provide object storage, there may
be only a single copy of a set of interfaces maintained on a single machine. Alternatively, if an OODB is used to provide
object storage, multiple copies of interface definitions may be maintained each of which is distributed across several
machines to provide both high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provided by an implementation of the
Interface Repository. For example, it may determine whether each user has a local copy of a set of interfaces or if there is
one copy per community of users. The object store may also determine whether or not all clients of an interface set see
exactly the same set at any given point in time or whether latency in distributing copies of the set gives different users
different views of the set at any point in time.

An implementation of the Interface Repository is also dependent on the security mechanism in use. The security
mechanism (usually operating in conjunction with the object store) determines the nature and granularity of access
controls available to constrain access to objects in the repository.

14.3.1 Managing Interface Repositories

Interface Repositories contain the information necessary to allow programs to determine and manipulate the type
information at run-time. Programs may attempt to access the interface repository at any time by using the get_interface
operation on the object reference. Once information has been installed in the repository, programs, stubs, and objects may
depend on it. Updates to the repository must be done with care to avoid disrupting the environment. A variety of
techniques are available to help do so.

A coherent repository is one whose contents can be expressed as a valid collection of OMG IDL definitions. For example,
all inherited interfaces exist, there are no duplicate operation names or other name collisions, all parameters have known
types, and so forth. As information is added to the repository, it is possible that it may pass through incoherent states.
Media failures or communication errors might also cause it to appear incoherent. In general, such problems cannot be
completely eliminated.

Replication is one technique to increase the availability and performance of a shared database. It is likely that the same
interface information will be stored in multiple repositories in a computing environment. Using repository IDs, the
repositories can establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also be used to insulate production environments from development activity. Developers
might be permitted to make arbitrary updates to their repositories, but administrators may control updates to widely used
repositories. Some repository implementations might permit sharing of information, for example, several developers’

CORBA - Part 1: Interfaces, v3.1 223



repositories may refer to parts of a shared repository. Other repository implementations might instead copy the common
information. In any case, the result should be a repository facility that creates the impression of a single, coherent
repository.

The interface repository itself cannot make all repositories have coherent information, and it may be possible to enter
information that does not make sense. The repository will report errors that it detects (e.g., defining two attributes with
the same name) but might not report all errors, for example, adding an attribute to a base interface may or may not detect
a name conflict with a derived interface. Despite these limitations, the expectation is that a combination of conventions,
administrative controls, and tools that add information to the repository will work to create a coherent view of the
repository information.

Transactions and concurrency control mechanisms defined by the Object Services may be used by some repositories when
updating the repository. Those services are designed so that they can be used without changing the operations that update
the repository. For example, a repository that supports the Transaction Service would inherit the Repository interface,
which contains the update operations, as well as the Transaction interface, which contains the transaction management
operations. (For more information about Object Services, including the Transaction and Concurrency Control Services,
refer to the individual CORBA Services specifications).

Often, rather than change the information, new versions will be created, allowing the old version to continue to be valid.
The new versions will have distinct repository 1Ds and be completely different types as far as the repository and the
ORBs are concerned. The IR provides storage for version identifiers for named types, but does not specify any additional
versioning mechanism or semantics.

14.4 Basics

This sub clause introduces some basic ideas that are important to understanding the Interface Repository. Topics
addressed in this sub clause are:

« Names and Identifiers
» Types and TypeCodes
« Interface Repository Objects

« Structure and Navigation of the Interface Repository
14.4.1 Names and ldentifiers

Simple names are not necessarily unique within an Interface Repository; they are always relative to an explicit or implicit
module. In this context, interface, struct, union, exception, and value type definitions are considered implicit modules.

Scoped names uniquely identify modules, interfaces, components, homes, value and event types, value members, value
boxes, constant, typedefs, exceptions, attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, components, homes, value and event types, value members,
value boxes, constants, typedefs, exceptions, attributes, and operations. They can be used to synchronize definitions
across multiple ORBs and Repositories.

224 CORBA - Part 1: Interfaces, v3.1



14.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data value called a TypeCode. From
the TypeCode alone it is possible to determine the complete structure of a type. See “TypeCodes” on page 138 for more
information on the internal structure of TypeCodes.

14.4.3 Interface Repository Objects

Information about the entities that are managed in an Interface Repository is maintained as a collection of interface
repository objects of the following types:

» Repository: the top-level module for the repository name space; it contains constants, typedefs, exceptions, interface,
component, home, value or event type definitions, and modules.

» ModuleDef: a logical grouping of interfaces and value types; it contains constants, typedefs, exceptions, interface,
component, home, value or event type definitions, and other modules.

- InterfaceDef: an interface definition; it contains lists of constants, types, exceptions, operations, and attributes.

» ExtInterfaceDef: an extended version of InterfaceDef that is capable of accommodating attributes with
exceptions.

« AbstractinterfaceDef: an abstract interface definition; it contains lists of constants, types, exceptions, operations,
and attributes.

- ExtAbstractinterfaceDef: an extended version of AbstractinterfaceDef that is capable of accommodating
attributes with exceptions.

» LocallnterfaceDef: a local interface definition; it contains lists of constants, types, exceptions, operations, and
attributes.

« ExtLocallnterfaceDef: an extended version of LocallnterfaceDef that is capable of accommodating attributes
with exceptions.

« ValueDef: a value type definition that contains lists of constants, types, exceptions, operations, attributes, and
members

» ExtValueDef: an extended version of ValueDef that is capable of accommodating attributes and initializers with
exceptions.

« EventDef: an event type definition that contains lists of constants, types, exceptions, operations, attributes, and
members.

» ValueBoxDef: the definition of a boxed value type.
» ValueMemberDef: the definition of a member of the value type.
« AttributeDef: the definition of an attribute of the interface or value type.

« ExtAttributeDef: an extended version of AttributeDef that is capable of accommodating attributes with
exceptions.

- OperationDef: the definition of an operation of the interface, value or event type; it contains lists of parameters and
exceptions raised by this operation.

CORBA - Part 1: Interfaces, v3.1 225



« TypedefDef: base interface for definitions of named types that are not interfaces components, homes, or value and
event types.

« ConstantDef: the definition of a named constant.
« ExceptionDef: the definition of an exception that can be raised by an operation.

« ComponentDef: a component definition; it contains lists of provides, uses, consumes, publishes, supports, emits,
and attributes.

- HomeDef: a home definition; it contains lists of constants, types, exceptions, operations, attributes, factories and
finders.

« FactoryDef: the definition of a factory; it is an operation that is specifically used for creating new instances of
components in a home.

« FinderDef: the definition of a finder; it is an operation that is specifically used to find components within a home.
» ProvidesDef: the definition of an interface that is provided by a component.

» UsesDef: the definition of an interface that is used by a component.

- EmitsDef: the definition of events that are emitted by a component.

« PublishesDef: the definition of events that are published by a component.

« ConsumesDef: the definition of events that are consumed by a component.

The interface specifications for each interface repository object lists the attributes maintained by that object (see
“Interface Repository Interfaces” on page 229). Many of these attributes correspond directly to OMG IDL statements. An
implementation can choose to maintain additional attributes to facilitate managing the Repository or to record additional
(proprietary) information about an interface. Implementations that extend the IR interfaces shall do so by deriving new
interfaces, not by modifying the standard interfaces.

The CORBA specification defines a minimal set of operations for interface repository objects. Additional operations that
an implementation of the Interface Repository may provide could include operations that provide for the versioning of
entities and for the reverse compilation of specifications (i.e., the generation of a file containing an object’s OMG IDL
specification).

14.4.4 Structure and Navigation of the Interface Repository

The definitions in the Interface Repository are structured as a set of interface repository objects. These objects are
structured the same way definitions are structured—some objects (definitions) “contain” other objects.

226 CORBA - Part 1: Interfaces, v3.1



The containment relationships for the interface repository objects types in the Interface Repository are shown in
Figure 14.2

Repository or ComponentIR::Repository Each interface repository is represented
by a global root repository object.

ConstantDef The Repository IR object represents the constants,
TypedefDef typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes and modules that are defined outside
[Ext]interfaceDef the scope of a module.

[Ext]ValueDef

EventDef - only in ComponentIR::Repository

ValueBoxDef

ModuleDef

ComponentDef - only in ComponentIR::Repository
HomeDef - only in ComponentIR::Repository

ConstantDef The Module IR object represents the constants,
TypedejDef typedefs, exceptions, interfaces, valuetypes,
ExceptionDef value boxes, eventtypes, components, homes and other
ValueBoxDef modules defined within the scope of the module.
ModuleDef

[Ext][Abstract | local]InterfaceDef

An Interface IR object represents constants,

ConstantDef typedefs, exceptions, attributes, and operations
B’(%‘Zgﬁg%gef defined within or inherited by the interface.
[Ext]AttributeDef ) )

OperationDef Operation IR objects reference

exception objects.
[Ext]ValueDef | EventDef - only in ComponentIR::Repository
ConstantDef A Valuetype IR object represents constants,

typedefs, exceptions, attributes, and operations
TypedefDef ; e : X b
ExceptionDef defined within or inherited by the interface.

[Ext]AttributeDef ) ]
OperationDef Operation IR objects reference
ValueMemberDef ExceptionDef exception objects.

ComponentDef - only in ComponentIR::Repository

ProvidesDef A ComponentDef IR object represents the provides, uses,

UsesDef emits, publishes, consumes and attributes

Emlthef contained in the component.

PublishesDef Emits, publishes and consumes refers to event objects.
?sxr:thrt?i%Su[t):I;ef Provides and uses refers to interface objects.

AttributeDef IR objects reference exception objects

HomeDef - only in ComponentIR::Repository

A HomeDef IR object represents factory and finder
defined within or inherited by home.
Factory and finder refer to exception objects.

FactoryDef
FinderDef

Figure 14.2Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository, by:

1. Obtaining an InterfaceDef object directly from the ORB.

CORBA - Part 1: Interfaces, v3.1

227



2. Navigating through the module name space using a sequence of names.

3. Locating the InterfaceDef object that corresponds to a particular repository
identifier.

There are four ways to locate a component in the Interface Repository, by:
1. Obtaining an ComponentDef object directly from the ORB.
2. Navigating through the module name space using a sequence of names.

3. Locating the ComponentDef object that corresponds to a particular repository
identifier.

4. Obtaining the ComponentDef from the HomeDef object corresponding to its home.
There are three ways to locate a home in the Interface Repository, by:

1. Obtaining a HomeDef object directly from the ORB.

2. Navigating through the module name space using a sequence of names.

3. Locating the HomeDef object that corresponds to a particular repository
identifier.

Note — It should be noted that given a ComponentDef IR object, it is not possible to obtain the HomeDef IR object for
the home that manages this component, since there could be multiple such homes, and the actual relation of a specific
component to a specific home is available only at runtime. To get to the HomeDef object corresponding to the home of
a given component, one needs to do a CCMObject::get_home, and then do a CCMHome::get_home_def on the
home thus obtained.

Obtaining an InterfaceDef object directly is useful when an object is encountered whose type was not known at compile
time. By using the get_interface operation on the object reference, it is possible to retrieve the Interface Repository
information about the object. That information could then be used to perform operations on the object. Similarly, by using
the CCMODbject::get_component_def operation, it is possible to retrieve the Component Repository information about
a component.

Navigating the module name space is useful when information about a particular named interface is desired. Starting at
the root module of the repository, it is possible to obtain entries by name.

Locating the InterfaceDef object by ID is useful when looking for an entry in one repository that corresponds to another.
A repository identifier must be globally unique. By using the same identifier in two repositories, it is possible to obtain
the interface identifier for an interface in one repository, and then obtain information about that interface from another
repository that may be closer or contain additional information about the interface.

Analogous operations are provided for manipulating value and event types.

The ComponentIR module contains the IR Objects that were added to reflect new IDL constructs that were added to
support Components. These are built upon the IR interfaces defined in CORBA module including ExtinterfaceDef,
ExtValueDef, and ExtAttributeDef and thus are backward compatible extensions of the 2.5 and earlier versions of the
IR.

228 CORBA - Part 1: Interfaces, v3.1



14.5 Interface Repository Interfaces

Several interfaces are used as base interfaces for objects in the IR. These base interfaces are not instantiable.

A common set of operations is used to locate objects within the Interface Repository. These operations are defined in the
interfaces IRObject, Container, and Contained described below. All IR objects inherit from the IRObject interface,
which provides an operation for identifying the actual type of the object. Objects that are containers inherit navigation
operations from the Container interface. Objects that are contained by other objects inherit navigation operations from
the Contained interface.

The IDLType interface is inherited by all IR objects that represent IDL types, including interfaces, typedefs, and
anonymous types. The TypedefDef interface is inherited by all named non-interface types.

The base interfaces IRObject, Contained, Container, IDLType, TypedefDef ComponentIR::Container and
ComponentlIR::EventPortDef are not instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1 coded character set.

Interface Repository operations indicate error conditions using the system exceptions BAD_PARAM and
BAD_INV_ORDER with specific minor codes. The specific operations that raise these exceptions are documented in the
description of the operations. For a description of how these minor codes are encoded in the ex_body of standard
exceptions see “System Exceptions” on page 147 and “Standard Minor Exception Codes” on page 155. The exceptions
and minor codes that are used by Interface Repository interfaces are as follows:

Table 14.1- Standard Exceptions used by the Interface Repository Operations

Exception Minor Code | Explanation

BAD_PARAM 2 RID is already defined in IFR
3 Name already used in the context in IFR
4 Target is not a valid container
5 Name clash in inherited context

31 Attempt to define a oneway operation with non-void result, out or inout
parameters or user exceptions.

BAD_INV_ORDER 1 Dependency exists in IFR preventing destruction of this object

2 Attempt to destroy indestructible objects in IFR

14.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {

typedef string Identifier;
typedef string ScopedName;
typedef string Repositoryld;

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,

CORBA - Part 1: Interfaces, v3.1 229




dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native,
dk_Abstractinterface,
dk_Locallnterface
dk_Component, dk_Home,
dk_Factory, dk_Finder,
dk_Emits, dk_Publishes, dk_Consumes,
dk_Provides, dk_Uses,
dk_Event
I3
b
Identifiers are the simple names that identify modules, interfaces, components, homes, value and event types, value
members, value boxes, constants, typedefs, exceptions, attributes, operati