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About This Document

Preface

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

June 2003

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.

C++ Language Mapping, v1.1 vii



The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

® Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

® Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

® Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

® Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Matif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

About CORBA Language Mapping Specifications

OMG Documents

viii

The CORBA Language Mapping specifications contain language mapping information
for the several languages. Each language is described in a separate stand-alone volume.

Alignment with CORBA

This language mapping is aligned with CORBA, v2.5.

The OMG collects information for each book in the documentation set by issuing
Requestsfor Information, Requests for Proposal's, and Requestsfor Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only when
representatives of the OMG membership accept them as such by vote.

Formal documents are available in PostScript and PDF format. You will find our docu-
ments in the OMG Specifications Catalog, which is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec _catalog.htm

The documentation is organized as follows:

C++ Language Mapping, v1.1 June 2003



OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOPR, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and I nterface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

You can download the OMG formal documents free-of-charge from our web site in
PostScript and PDF format. Please note the OMG address and telephone numbers
below:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Definition of CORBA Compliance

June 2003

The minimum required for a CORBA-compliant system is adherence to the specifications
in CORBA Core and one mapping. Each additional language mapping is a separate,
optional compliance point. Optional means users aren’t required to implement these points
if they are unnecessary at their site, but if implemented, they must adhere to the CORBA
specifications to be called CORBA-compliant. For instance, if avendor supports C++,
their ORB must comply with the OMG IDL to C++ binding specified in this manual .

Interoperability and I nterworking are separate compliance points. For detailed information
about Interworking compliance, refer to the CORBA/IIOP Specification (The Common
Object Request Broker: Architecture and Specification), Interworking Architecture
chapter.

As described in the OMA Guide, the OMG's Core Object Model consists of a core and
components. Likewise, the body of CORBA specificationsis divided into core and

C++ Language Mapping: Definition of CORBA Compliance iX



component-like specifications. The CORBA specifications are divided into these volumes:

1. The CORBA/IIOP Specification (Common Object Request Broker Architecture),
which includes the following chapters:

» CORBA Core, as specified in Chapters 1-11

» CORBA Interoperability, as specified in Chapters 12-16

» CORBA Interworking, as specified in Chapters 17-21

* CORBA Quality of Service, as specified in Chapters 22-24

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

» Ada Mapping to OMG IDL

e C Mapping to OMG IDL

e C++ Mapping to OMG IDL
COBOL Mapping to OMG IDL
« IDL Script Mapping

IDL to Java Mapping

» Java Mapping to OMG IDL

e Lisp Mapping to OMG IDL
Python Mapping to OMG IDL
Smalltalk Mapping to OMG IDL

Typographical Conventions

Acknowl edgements

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Couri er bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted the specification that was approved by the Object
Management Group to become the C++ Language Mapping specification:

« Digital Equipment Corporation
» Expersoft Corporation

» Hewlett-Packard Company

» IBM Corporation

* |ONA Technologies, Ltd.
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June 2003

* Novell USG
* SunSoft, Inc.
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Note — Numbers beside change bars refer to the corresponding issue number at
http://cgi.omg.org/issues/cxx_revision.html.

Note — The C++ Language Mapping specification is aligned with CORBA version 2.5.

This chapter explains how OMG IDL constructs are mapped to the constructs of the
C++ programming language. It provides mapping information for:

® Interfaces

® Constants

® Basic data types
®* Enums

® Types (string, struct, union, fixed, sequence, array, typedefs, any, valuetype, abstract
interface, exception)

® Operations and attributes

* Arguments
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1.1 Preliminary Information
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1.1.1 Overview

1111

1112

Key Design Decisions

The design of the C++ mapping was driven by a number of considerations, including a
design that achieves reasonable performance, portability, efficiency, and usability for
OMG IDL-to-C++ implementations. Several other considerations are outlined in this
section.

Compliance

The C++ mapping tries to avoid limiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains the
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters. An implementation conforms to this mapping
if it correctly executes any conforming client or server program. A conforming client
or server program is therefore portable across all conforming implementations.

C++ Mapping: Preliminary Information 1-3
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Comment:

1114

C++ Implementation Requirements

The mapping described here assumes that the target C++ environment supports all the
features described in The Annotated C++ Reference Manual (ARM) by Ellis and
Stroustrup as adopted by the ANSI/ISO C++ standardization committees, including
exception handling. In addition, it assumes that the C++ environment supports the
nanespace construct, but it does provide work-arounds for C++ compilers that do
not support nanespace.

| ssue 4243

No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that
would constrain implementations, but still allows clients to be fully source-compatible
with any compliant implementation. Some examples show possible implementations,
but these are not required implementations.

1.1.2 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes:
* OMG IDL modules are mapped to C++ namespaces.
* OMG IDL interfaces are mapped to C++ classes (as described in Section 1.3,
“Mapping for Interfaces,” on page 1-6).
» All OMG IDL constructs scoped to an interface are accessed via C++ scoped
names. For example, if atype mode were defined in interface printer, then the
type would be referred to as pri nt er : : npde.

These mappings allow the corresponding mechanisms in OMG IDL and C++ to be
used to build scoped names. For instance:

/I IDL
module M

{
struct E {

long L;
¥
|3

is mapped into:

Il C++
nanmespace M

{
struct E {

Long L;
s

C++ Language Mapping, v1.1 June 2003
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and E can be referred outside of Mas M : E. Alternatively, a C++ usi ng statement
for namespace Mcan be used so that E can be referred to simply as E:

[l C++

usi ng namespace M
E e;

e.L = 3

Another alternative is to employ a usi ng statement only for M : E:

/] C++
using M:E;
E e;

e.L = 3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ keyword as an
identifier is mapped into the same name preceded by the prefix “_cxx_.” For example,
an IDL interface named “try” would be named “_cxx_try” when its name is mapped
into C++. For consistency, this rule also applies to identifiers that are derived from IDL
identifiers. For example, an IDL interface “try” generates the names “_cxx_try var”
and “cxx_try_ptr,” that is, the IDL compiler behaves as if the interface were named
“cxx_try” and then applies the normal mapping rules.

The complete list of C++ keywords can be found in Section1.44, “ C++ Keywords,” on
page 1-172.

1.1.3 C++ Type Sze Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation-
dependent. That is, this mapping makes no requirements as to the si zeof (T) for
anything except basic types (see Section 1.5, “Mapping for Basic Data Types,” on

page 1-15) and string (see Section 1.7, “Mapping for String Types,” on page 1-17).

1.1.4 CORBA Module

The mapping relies on some predefined types, classes, and functions that are logically
defined in a module named CORBA. The module is automatically accessible from a
C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in this document, CORBA definitions are
referenced without explicit qualification for simplicity. In practice, fully scoped names
or C++ usi ng statements for the CORBA namespace would be required in the
application source. See the Common Object Request Broker Architecture (CORBA),
Appendix A for standard OMG IDL tags.

1.2 Mapping for Modules

As shown in Section 1.1.2, “Scoped Names,” on page 1-4, a module defines a scope,
and as such is mapped to a C++ nanmespace with the same name:

June 2003 C++ Mapping: Mapping for Modules 1-5



/I IDL
module M

/I definitions

b

/] Ct++
nanmespace M

// definitions

}

Because namespaces were only recently added to the C++ language, few C++
compilers currently support them. Alternative mappings for OMG IDL modules that do
not require C++ namespaces are in Section 1.43, “Alternative Mappings For C++
Dialects,” on page 1-170.

1.3 Mapping for Interfaces

An interface is mapped to a C++ class that contains public definitions of the types,
constants, operations, and exceptions defined in the interface.

A CORBA—-C++—compliant program cannot
« create or hold an instance of an interface class, or
 use a pointer (A*) or areference (A&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. For
example, interface classes could not be implemented as abstract base classes if
programs were allowed to create or hold instances of them. In a sense, the generated
class is like a namespace that one cannot enter via a usi ng statement. This example
shows the behavior of the mapping of an interface:

/I IDL
interface A

{
b

[l C++

/1l Conformant uses

A::Ss; // declare a struct variable
s.field = 3; // field access

struct S { short field; };

/'l Non-conformant uses:
/'l one cannot declare an instance of an interface class...

A a;

/1 ...nor declare a pointer to an interface class...
A *p;

/1 ...nor declare a reference to an interface class.
void f(A &);
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1.3.1 Object Reference Types

Comment:

I ssue 4325

The use of an interface type in OMG IDL denotes an object reference. Because of the
different ways an object reference can be used and the different possible
implementations in C++, an object reference maps to two C++ types. For an interface
A, these types are named A_var and A_pt r. To facilitate template-based
programming, typedefs for the A ptr and A var types are also provided in the
interface class (see Section 1.3.7, “Interface Mapping Example,” on page 1-11). The
typedef for A_ptr isnamed A: : _ptr _t ype and the typedef for A_var is named
A . _var_type.

An operation can be performed on an object by using an arrow (“- >") on areference
to the abject. For example, if an interface defines an operation op with no parameters
and obj isareference to the interface type, then a call would be written obj - >op() .
The arrow operator is used to invoke operations on both the _ptr and _var object
reference types.

Client code frequently will use the object reference variable type (A_var ) because a
variable will automatically release its object reference when it is deallocated or when
assigned a new object reference. The pointer type (A _pt r) provides a more primitive
object reference, which has similar semantics to a C++ pointer. Indeed, an
implementation may choose to define A_pt r as A*, but is not required to. Unlike C++
pointers, however, conversion to voi d*, arithmetic operations, and relational
operations, including test for equality, are all non-compliant. A compliant
implementation need not detect these incorrect uses because requiring detection is not
practical.

For many operations, mixing data of type A _var and A ptr is possible without any
explicit operations or casts. However, one needs to be careful in doing so because of
the implicit release performed when the variable is deallocated. For example, the
assignment statement in the code below will result in the object reference held by p to
be released at the end of the block containing the declaration of a.

/] Ct++

A var a;

Aptr p=// ...somehow obtain an objref...
a = p;

1.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ classes
are related, though that is certainly one possible implementation. However, if interface
B inherits from interface A, the following implicit widening operations for B must be
supported by a compliant implementation:

* B ptr toA ptr

* B ptr toQbj ect_ptr
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* B var toA ptr
« B var tobj ect_ptr

Implicit widening fromaB_var to A var or Qbj ect _var isnot supported; instead,
widening between _var types for object references requires a call to _dupl i cat e
(described in Section 1.3.3, “Object Reference Operations,” on page 1-8).1 An attempt
to implicitly widen from one _var type to another must cause a compile-time error.2
Assignment between two _var objects of the same type is supported, but widening
assignments are not and must cause a compile-time error. Widening assignments may
be done using _dupl i cat e. The same rules apply for object reference types that are
nested in a complex type, such as a structure or sequence.

[l C++

B ptr bp = ...

A ptr ap = bp; [l inmplicit w dening

oj ect _ptr objp = bp; [l inmplicit w dening

objp = ap; [l inmplicit w dening

B var bv = bp; /1 bv assunmes ownership of bp

ap = bv; [l inmplicit w dening, bv retains
/1 ownership of bp

obp = bv; [l inmplicit w dening, bv retains
/1 ownership of bp

A var av = bv; /[l illegal, conpile-time error

A var av = B:: _duplicate(bv);// av, bv both refer to bp

B var bv2 = bv; [l inmplicit _duplicate

A var av2;

av2 = av; [l inmplicit _duplicate

1.3.3 Object Reference Operations

Conceptually, the Object classin the CORBA module is the base interface type for all
CORBA objects; therefore, any object reference can be widened to the type

oj ect _pt r. Aswith other interfaces, the CORBA namespace also defines the type
oj ect _var.

CORBA defines three operations on any object reference: duplicate, release, and
is_nil. Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require that object references to

1. WhenT_pt r ismappedto T*, it isimpossiblein C++ to provide implicit widening
between T_var typeswhile also providing the necessary duplication semantics for
T _ptr types.

2. Thiscan be achieved by deriving all T_var typesfor object references from abase _var
class, then making the assignment operator for _var privatewithineach T_var type.
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themselves be C++ objects, the “- >" syntax cannot be employed to express the usage
of these operations. Also, for convenience these operations are allowed to be
performed on a nil object reference.

Therelease and is_nil operations depend only on type Object, so they can be
expressed as regular functions within the CORBA namespace as follows:

Il C++
void rel ease(Cbject_ptr obj);
Bool ean is_nil (Cbject_ptr obj);

Ther el ease operation indicates that the caller will no longer access the reference so
that associated resources may be deallocated. If the given object reference is nil,
r el ease does nothing. Thei s_ni | operation returns TRUE if the object reference
contains the special value for anil object reference as defined by the ORB. Neither the
r el ease operation nor thei s_ni | operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type as
the given reference. The mapping for an interface therefore includes a static member
function named _dupl i cat e in the generated class. For example;

/I IDL
interface A { };

/[l C++
class A
{
publi c:
static A ptr _duplicate(A ptr obj);
b

If the given object referenceis nil, _dupl i cat e will return a nil object reference.
The _dupl i cat e operation can throw CORBA system exceptions.

1.3.4 Narrowing Object References

The mapping for an interface defines a static member function named _nar r ow that
returns a new object reference given an existing reference. Like _dupl i cat e, the
_nar r ow function returns a nil object reference if the given reference is nil. Unlike
_dupl i cat e, the parameter to _nar r owis areference of an object of any interface
type (Qbj ect _ptr). If the actual (runtime) type of the parameter object can be
widened to the requested interface’s type, then _nar r ow will return a valid object
reference; otherwise, _nar r ow will return a nil object reference. For example,
suppose A, B, C, and D are interface types, and D inherits from C, which inherits from
B, which in turn inherits from A. If an object reference to a C object is widened to an
A ptr variable caled ap, then:

« A _narrow(ap) returns avalid object reference
e B:: _narrow(ap) returns avalid object reference
e C.: _narrow(ap) returns avalid object reference
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e D : _narrow( ap) returns anil object reference

Narrowing to A, B, and C all succeed because the object supports all those interfaces.
The D: : _nar r owreturns a nil object reference because the object does not support
the D interface.

For another example, suppose A, B, C, and D are interface types. C inherits from B,
and both B and D inherit from A. Now suppose that an object of type C is passed to a
function as an A. If the function calls B: : _narrowor C. : _nar r ow, a new object
reference will be returned. A call to D: : _nar r ow will fail and return nil.

If successful, the _nar r ow function creates a new object reference and does not
consume the given object reference, so the caller is responsible for releasing both the
original and new references.

The _nar r ow operation can throw CORBA system exceptions.

1.3.5 Nil Object Reference

The mapping for an interface defines a static member function named _ni | that
returns a nil object reference of that interface type. For each interface A, the following
call is guaranteed to return TRUE:

Il C++
Boolean true result =is nil(A: _nil());

A compliant application need not call r el ease on the object reference returned from
the ni | function.

As described in Section 1.3.1, “Object Reference Types,” on page 1-7, object
references may not be compared using oper at or ==; therefore, i s_ni | isthe only
compliant way an object reference can be checked to see if it isnil.

The _ni | function may not throw any CORBA exceptions.

A compliant program cannot attempt to invoke an operation through a nil object
reference, since a valid C++ implementation of a nil object reference is a null pointer.

1.3.6 Object Reference Out Parameter

When a _var is passed as an out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type results in the generation of an _out type that
is used solely as the out parameter type. For example, interface A results in the object
reference type A _pt r, the helper type A_var, and the out parameter type A _out .
The general form for object reference _out types is shown below.
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Il C++
class A out
{

publi c:

Aout(Aptr&p) : ptr_(p) { ptr_=A: _nil(); }
Aout(Avar&p) : ptr_(p.ptr_) {

rel ease(ptr_); ptr_ = A: nil();
}

A out(const Aout& a) : ptr_(a.ptr_) {}

A out & operator=(const A out& a) {
ptr_ = a.ptr_; return *this;

}

A out & operator=(const A var& a) {
ptr_ = A:: _duplicate(A ptr(a)); return *this;
}

A out & operator=(A ptr p) { ptr_ = p; return *this; }
operator A ptr&) { return ptr_; }

Aptr& ptr() { return ptr_; }

A ptr operator->() { return ptr_; }

private:
Aptr& ptr_;
b

The first constructor binds the reference data member with the A_pt r & argument. The
second constructor binds the reference data member with the A _pt r object reference
held by the A_var argument, and then callsr el ease() on the object reference. The
third constructor, the copy constructor, binds the reference data member to the same
A ptr object reference bound to the data member of its argument. Assignment from
another A_out copiesthe A ptr referenced by the argument A _out to the data
member. The overloaded assignment operator for A_pt r simply assignsthe A ptr
object reference argument to the data member. The overloaded assignment operator for
A var duplicatesthe A _ptr held by the A var before assigning it to the data
member. Note that assignment does not cause any previously-held object reference
value to be released; in thisregard, the A _out type behaves exactly asan A _ptr. The
A _pt r & conversion operator returns the data member. The pt r () member function,
which can be used to avoid having to rely on implicit conversion, also returns the data
member. The overloaded arrow operator (oper at or - >() ) returns the data member to
allow operations to be invoked on the underlying object reference after it has been
properly initialized by assignment.

1.3.7 Interface Mapping Example

The example below shows one possible mapping for an interface. Other mappings are
also possible, but they must provide the same semantics and usage as this example.
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/I IDL
interface A

{
A op(in A argl, out A arg?2);
|3

[l C++
cl ass A
typedef A *A ptr;
class A var;
class A : public virtual Object
{
publi c:
typedef A ptr _ptr_type;
typedef A var _var_type;

static A ptr _duplicate(A ptr obj);
static A ptr _narrow Object_ptr obj);
static A ptr _nil();

virtual A ptr op(A ptr argl, A out arg2) = O;

pr ot ect ed:

AQ);

virtual ~A();
private:

A(const A&);

voi d operator=(const A&);

b

class A var : public _var
{
publi c:
Avar() : ptr_(A:_nil()) {}
A var(Aptr p) @ ptr_(p) {}
A var(const A var &a) : ptr_(A: _duplicate(A ptr(a){}
~A var() { free(); }

A var &operator=(A ptr p) {
reset(p); return *this;
}

A var &operator=(const A var& a) {
if (this !'= &) {
free();
ptr_ = A: _duplicate(A ptr(a));
}

return *this;

}
A ptr in() const { return ptr_; }
Aptr& inout() { return ptr_; }
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A ptr& out () {
reset (A :_nil());
return ptr_;
}
A ptr _retn() {
/1 yield ownershi p of nanaged object reference
A ptr val = ptr_;
ptr_ = A nil();
return val;

}

operator const A ptré&() const { return ptr_; }
operator A ptr&) { return ptr_; }
A ptr operator->() const { return ptr_; }

pr ot ect ed:
A ptr ptr_;
void free() { release(ptr_); }
void reset(Aptr p) { free(); ptr_ =p; }

private:
/1 hidden assignnent operators for var types
voi d operator=(const _var &);

b

The definition for the A_out type is the same as the one shown in Section 1.3.6,
“Object Reference Out Parameter,” on page 1-10.

1.4 Mapping for Constants

June 2003

OMG IDL constants are mapped directly to a C++ constant definition that may or may
not define storage depending on the scope of the declaration. In the following example,
atop-level IDL constant maps to a file-scope C++ constant whereas a nested constant
maps to a class-scope C++ constant. This inconsistency occurs because C++ file-scope
constants may not require storage (or the storage may be replicated in each compilation
unit), while class-scope constants always take storage. As a side effect, this difference
means that the generated C++ header file might not contain values for constants
defined in the OMG IDL file.

// IDL
const string name = "testing";

interface A

{
b

const float pi = 3.14159;

C++ Mapping: Mapping for Constants 1-13



1-14

Il C++
static const char *const nane = "testing";

class A

{
publi c:
static const Float pi;

b

In certain situations, use of a constant in OMG IDL must generate the constant’s value
instead of the constant’s name.® For example,

/I IDL
interface A

{

const long n = 10;
typedef long V[n];

h
Il C++
class A
{
publi c:
static const long n;
typedef |ong V[10];
H

1.4.1 Wde Character and Wde String Constants

The mappings for wide character and wide string constantsis identical to character and
string constants, except that IDL literals are preceded by L in C++. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

static const WChar *const ws = L"Hello World”;

in C++.

3. A recent change made to the C++ language by the ANSI/ISO C++ standardization commit-
tees alows static integer constants to beinitialized within the class declaration, so for some
C++ compilers, the code generation issues described here may not be a problem.
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1.4.2 Fixed Point Constants

Because C++ does not have a native fixed point type, IDL fixed point literals are
mapped to C++ strings without the trailing ‘d’ or ‘D’ in order to guarantee that thereis
no loss of precision. For example;

/I IDL
const fixed F = 123.456D;

Il C++
const Fixed F = "123. 456";
1.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 1-1*. Note that the mapping of
the OMG IDL boolean type defines only the values 1 (TRUE) and 0 (FALSE); other
values produce undefined behavior.

Table1-1 Basic Data Type Mappings

OMG IDL C++ C++ Out Type

short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

long long CORBA::LongLong CORBA::LongLong_out
unsigned short CORBA::UShort CORBA::UShort_out
unsigned long CORBA::ULong CORBA::ULong_out
unsigned long long CORBA::ULongLong CORBA::ULongLong_out
float CORBA::Float CORBA::Float_out
double CORBA::Double CORBA::Double_out
long double CORBA::LongDouble CORBA::LongDouble_out
char CORBA::Char CORBA::Char_out
wchar CORBA:WChar CORBA::WChar_out
boolean CORBA::Boolean CORBA::Boolean_out
octet CORBA::Octet CORBA::Octet_out

4. Thismapping assumesthat CORBA: : LongLong, CORBA: : ULongLong, and
CORBA: : LongDoubl e are mapped directly to native numeric C++ types (e.g.,
CORBA: : LongLong to a64-bit integer type) that support therequired IDL semanticsand
can be manipulated viabuilt-in operators. An alternate mapping to C++ classesthat provides
appropriate creation, conversion, and manipulation operatorswill be provided in afuture
version of this specification.
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Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is
because some types, such as short and | ong, may have different representations on
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits, the
definition of CORBA: : Long would still refer to a 32-bit integer. Requirements for the
sizes of basic types are shown in the Common Object Request Broker Architecture
(CORBA), OMG IDL Syntax and Semantics chapter, Basic Types section.

Types boolean, char, and octet may all map to the same underlying C++ type. This
means that these types may not be distinguishable for the purposes of overloading.

Typewchar mapstowchar _t in standard C++ environments or, for nonstandard C++
environments, may also map to one of the integer types. This means that wchar may
not be distinguishable from integer types for purposes of overloading.

All other mappings for basic types are distinguishable for the purposes of overloading.
That is, one can safely write overloaded C++ functions for Shor t , UShort, Long,
ULong, LongLong, ULongLong, Fl oat , Doubl e, and LongDoubl e.

The _out types for the basic types are used to type out parameters within operation
signatures, as described in Section 1.22, “Argument Passing Considerations,” on
page 1-103. For the basic types, each _out typeisat ypedef to areference to the
corresponding C++ type. For example, the Short _out is defined in the CORBA
namespace as follows:

Il C++
typedef Short& Short _out;

The _out types for the basic types are provided for consistency with other out
parameter types.

Programmers concerned with portability should use the CORBA types. However, some
may feel that using these types with the CORBA qualification impairs readability. If
the CORBA module is mapped to a namespace, a C++ usi ng statement may help this
problem. On platforms where the C++ data type is guaranteed to be identical to the
OMG IDL data type, a compliant implementation may generate the native C++ type.

For the Bool ean type, only the values 1 (representing TRUE) and O (representing
FALSE) are defined; other values produce undefined behavior. Since many existing
C++ software packages and libraries already provide their own preprocessor macro
definitions of TRUE and FAL SE, this mapping does not require that such definitions be
provided by a compliant implementation. Requiring definitions for TRUE and FALSE
could cause compilation problems for CORBA applications that make use of such
packages and libraries. Instead, we recommend that compliant applications simply use
the values 1 and O directly®.

5. Examples and descriptions in this specification still use TRUE and FAL SE for purposes of
clarity.
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Alternatively, for those C++ compilers that support the bool type, the keywordst r ue
and f al se may be used.

IDL type boolean may be mapped to C++ signed, unsigned, or plain char. This
mapping is legal for both classic and ANSI C++ environments. In addition, in an ANSI
C++ environment, IDL boolean can be mapped to C++ bool . Mappings to C++
types other than a character type or bool areillegal.

1.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definition. The only
difference is that the generated C++ type may need an additional constant that is large
enough to force the C++ compiler to use exactly 32 bits for values declared to be of the
enumerated type.

// IDL
enum Color { red, green, blue };

Il C++
enum Col or { red, green, blue };

In addition, an _out type used to type out parameters within operation signatures is
generated for each enumerated type. For enum Col or shown above, the Col or _out
type is defined in the same scope as follows:

Il C++
typedef Col or& Col or _out;

The _out types for enumerated types are generated for consistency with other out
parameter types.

1.7 Mappingfor Sring Types

June 2003

Comment:

I ssue 4243

The OMG IDL string type, whether bounded or unbounded, is mapped to char *.
String data is NUL-terminated. In addition, the CORBA module defines a class
String_var that containsachar * value and automatically frees the pointer when a
String_var object isdeallocated. When a St ri ng_var is constructed or assigned
from achar *, the char * is consumed and thus the string data may no longer be
accessed through it by the caller. Assignment or construction from a const char* or
from another St ri ng_var causesacopy. The Stri ng_var class also provides
operations to convert to and from char * values, as well as subscripting operations to
access characters within the string. The full definition of the St ri ng_var interfaceis
givenin Section 1.42.2, “ String_var and String_out Class,” on page 1-154. Calling the
out or _retn functionsof aStri ng_var hasthe side effect of setting its internal
pointer back to null. An application may also explicitly assign a null pointer to the
String_var.
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C++ does not have abuilt-in type that would provide a*“ close match” for IDL-bounded
strings. As aresult, the programmer is responsible for enforcing the bound of bounded
strings at run time. Implementations of the mapping are under no obligation to prevent
assignment of a string value to a bounded string type if the string value exceeds the
bound. Implementations may choose to (at run time) detect attempts to pass a string
value that exceeds the bound as a parameter across an interface. If an implementation
chooses to detect this error, it must raise aBAD_PARAM system exception to signal
the error.

Because its mapping is char *, the OMG IDL string type is the only non-basic type
for which this mapping makes size requirements. For dynamic allocation of strings,
compliant programs must use the following functions from the CORBA namespace:

Il C++

nanespace CORBA {
char *string_all oc(ULong | en);
char *string_dup(const char*);
void string_free(char *);

}

Thestring_al | oc function dynamically allocates a string, or returns a null pointer
if it cannot perform the allocation. It allocates | en+1 characters so that the resulting
string has enough space to hold a trailing NUL character. The st ri ng_dup function
dynamically allocates enough space to hold a copy of its string argument, including the
NUL character, copies its string argument into that memory, and returns a pointer to
the new string. If allocation fails, a null pointer is returned. Thestri ng free
function deallocates a string that was allocated with st ri ng_al | oc or

st ri ng_dup. Passing anull pointer to st ri ng_f r ee is acceptable and resultsin no
action being performed. These functions allow ORB implementations to use special
memory management mechanisms for strings if necessary, without forcing them to
replace global oper at or newand operator new].

Thestring_alloc,string _dup,andstring_free functions may not throw
exceptions.

Note that a static array of char in C++ decays to achar * 8, so care must be taken
when assigning oneto a St ri ng_var, since the St ri ng_var will assume the
pointer points to data allocated viast ri ng_al | oc and thus will eventually attempt
tostring_free it

Il C++

/1 The following is an error, since the char* should point to
/] data allocated via string alloc so it can be consuned
String_var s = "static string";// error

6. Thishaschanged in ANSI/ISO C++, where string literals are const char*, not char*. How-
ever, since most C++ compilers do not yet implement this change, portable programs must
heed the advice given here.
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/1 The followi ng are OK, since const char* are copied,
/1 not consuned

const char* sp = "static string";
S = sp;
s = (const char*)"static string too";

When aString var ispassed as an out parameter, any previous value it refers to

must be implicitly freed. To give C++ mapping implementations enough hooks to meet
this requirement, the string type also results in the generation of a St ri ng_out type
in the CORBA namespace, which is used solely as the string out parameter type. The
general form for the St ri ng_out type is shown below.

Il C++
class String_out
{

publi c:

String_out(char*& p) : ptr_(p) { ptr_ = 0; }

String_out(String_var& p) : ptr_(p.ptr_) {
string_free(ptr_); ptr_ = 0;

}

String_out(const String_out& s) : ptr_(s.ptr_) {}

String_out& operator=(const String out& s) {
ptr_ = s.ptr_; return *this;

}

String_out& operator=(char* p) {
ptr_ = p; return *this;

}

String_out& operator=(const char* p) {
ptr_ = string _dup(p); return *this;

}

operator char*&() { return ptr_; }

char*& ptr() { return ptr_; }

private:
char*& ptr_;

/1 assignment from String_var disall owed
voi d operator=(const String_var&);

b

The first constructor binds the reference data member with the char * & argument. The
second constructor binds the reference data member with the char * held by the
String_var argument, and then calls st ri ng_free() on the string. The third
constructor, the copy constructor, binds the reference data member to the sasme char *
bound to the data member of its argument. Assignment from another St ri ng_out
copies the char * referenced by the argument St ri ng_out to the char * referenced
by the data member. The overloaded assignment operator for char * simply assigns
the char * argument to the data member. The overloaded assignment operator for
const char* duplicates the argument and assigns the result to the data member.
Note that assignment does not cause any previously-held string to be freed; in this
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regard, the St ri ng_out type behaves exactly as achar *. The char * & conversion
operator returns the data member. The pt r () member function, which can be used to
avoid having to rely on implicit conversion, aso returns the data member.

Assignment from Stri ng_var toaStri ng_out isdisallowed because of the
memory management ambiguities involved. Specifically, it is not possible to determine
whether the string owned by the St ri ng_var should be taken over by the

Stri ng_out without copying, or if it should be copied. Disallowing assignment from
String_var forces the application developer to make the choice explicitly:

Il C++
voi d
A :op(String_out arg)
{
String_var s = string_dup("some string");
arg = s; /1 disallowed; either
arg = string_dup(s); /1 1: copy, or
arg = s._retn(); /1 2: adopt

}

On the line marked with the comment “1,” the application writer is explicitly copying
the string held by the St ri ng_var and assigning the result to the ar g argument.
Alternatively, the application writer could use the technique shown on the line marked
with the comment “2” in order to forcethe St ri ng_var to give up its ownership of
the string it holds so that it may be returned in the ar g argument without incurring
memory management errors.

A compliant mapping implementation shall provide overloaded oper at or <<
(insertion) and oper at or >> (extraction) operators for using St ri ng_var and
String_out directly with C++ iostreams. The oper at or >> extraction operator has
the same semantics as the underlying standard C++ oper at or >> for extracting
strings from an input stream (extracting until whitespace or end of file). Space to store
the extracted characters are allocated by calling st ri ng_al | oc, and the previous
contents of the St ri ng_var arereleased by caling string free.

1.8 Mapping for Wide String Types

1-20

Both bounded and unbounded wide string types are mapped to CORBA: : WChar * in
C++. In addition, the CORBA module defines W5t ri ng_var and W5t ri ng_out
classes. Each of these classes provides the same member functions with the same
semantics as their string counterparts, except of course they deal with wide strings and
wide characters.

Dynamic allocation and deallocation of wide strings must be performed via the
following functions:

Il C++
nanespace CORBA {
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...

WChar *wstring_all oc(ULong | en);
WChar *wstring_dup(const WChar* ws);
void wstring free(Wchar*);

b

These functions have the same semantics as the same functions for the string type,
except they operate on wide strings.

A compliant mapping implementation provides overloaded oper at or << (insertion)
and oper at or >> (extraction) operators for using Wst ri ng_var and

W5t ri ng_out directly with C++ iostreams. The oper at or >> extraction operator
has the same semantics as the underlying standard C++ oper at or >> for extracting
wide strings from an input stream (extracting until whitespace or end of file). Space to
store the extracted characters are allocated by callingwst ri ng_al | oc, and the
previous contents of the WGt ri ng_var arereleased by callingwstri ng free.

1.9 Mapping for Sructured Types

June 2003

The mapping for struct, union, and sequence isa C++ struct or class with a default
constructor, a copy constructor, an assignment operator, and a destructor. The default
constructor initializes object reference members to appropriately-typed nil object
references, and string members and wide string members to the empty string (" " and
L"", respectively). All other members are initialized via their default constructors. The
copy constructor performs a deep-copy from the existing structure to create a new
structure, including calling _dupl i cat e on all object reference members and
performing the necessary heap allocations for al string members and wide string
members. The assignment operator first releases all object reference members and
frees all string members and wide string members, and then performs a deep-copy to
create a new structure. The destructor releases all object reference members and frees
al string members and wide string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A typeis variable-length if it is one of the following types:

* The type any.

A bounded or unbounded string or wide string.

A bounded or unbounded sequence.

» An object reference or reference to a transmissible pseudo-object.

* A valuetype.

A struct or union that contains a member whose type is variable-length.
» An array with a variable-length element type.

A typedef to a variable-length type.

The reason for treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings (for example, to alocate all the string storage in one area that is
deallocated in asingle call).
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As a convenience for managing pointersto variable-length data types, the mapping aso
provides a managing helper class for each variable-length type. This type, which is
named by adding the suffix “_var” to the original type’'s name, automatically deletes
the pointer when an instance is destroyed. An object of type T_var behaves similarly
to the structured type T, except that members must be accessed indirectly. For a struct,
this means using an arrow (“- >") instead of a dot (“.").

/I IDL
struct S { string name; float age; };
void f(out S p);

[l C++

S a;

S var b;

f(b);

a = b; // deep-copy

cout << "nanes " << a.nanme <<

<< b->nane << endl;

To facilitate template-based programming, al st r uct, uni on, and sequence
classes contain nested public typedefs for their associated T_var types. For example,
for an IDL sequence named Seq, the mapped sequence class Seq contains a
_var _t ype typedef as follows:

Il C++
cl ass Seq_var;
cl ass Seq

{
publi c:
typedef Seq_var _var_type;
11

b

1.9.1 T var Types

The general form of the T_var types is shown below.

[l C++
class T var
{
publi c:
T var();
T var(T *);
T var(const T var &);

~T _var();

T var &operator=(T *);
T _var &operator=(const T var &);

T* operator->();
const T* operator->() const;
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Comment:

Comment:

[* in paraneter type */ in() const;
[* inout paraneter type */ inout();
/* out paraneter type */ out();

[* return type */ _retn();

/1 other conversion operators to support
/1 paraneter passing

b

The default constructor createsa T_var containing a null T*. Compliant applications
may not attempt to convert a T_var created with the default constructor into a T* nor
use its overloaded oper at or - > without first assigning to it avalid T* or another
valid T_var. Due to the difficulty of doing so, compliant implementations are not
required to detect this error. Conversion of anull T_var toaT_out isallowed,
however, so that aT_var can legaly be passed as an out parameter. Conversion of a
null T_var toaT*&isaso alowed so as to be compatible with earlier versions of
this specification.

I ssue 3534

The T* constructor creates a T_var that, when destroyed, will del et e the storage
pointed to by the T* parameter. It islegal to initializeaT_var with a null pointer.

The copy constructor deep-copies any data pointed to by the T_var constructor
parameter. This copy will be destroyed when the T_var is destroyed or when a new
value is assigned to it. Compliant implementations may, but are not required to, utilize
some form of reference counting to avoid such copies.

The destructor uses del et e to deallocate any data pointed to by the T_var, except
for strings and array types, which are deallocated using the stri ng_free and
T_free (for array type T) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to by
the T_var before assuming ownership of the T* parameter.

| ssue 3534

The normal assignment operator deep-copies any data pointed to by the T_var
assignment parameter. This copy will be destroyed when the T_var is destroyed or
when a new value is assigned to it. Assigning a null pointer toaT_var islega and
results in deallocation of the data pointed to by the T_var.

The overloaded oper at or - > returns the T* held by the T_var, but retains
ownership of it. Compliant applications may not call this function unless the T_var
has been initialized with avalid non-null T* or T_var.

In addition to the member functions described above, the T_var types must support
conversion functions that allow them to fully support the parameter passing modes
shown in “Basic Argument and Result Passing” on page 1-106. The form of these
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conversion functions is not specified so as to allow different implementations, but the
conversions must be automatic (i.e., they must require no explicit application code to
invoke them).

Because implicit conversions can sometimes cause problems with some C++ compilers
and with code readability, the T_var types aso support member functions that allow
them to be explicitly converted for purposes of parameter passing.

TopassaT _var asan: an application can call the ...

in parameter i n() member function of the T_var
inout parameter i nout () member function

out parameter out () member function

To obtain a return value from the T_var, an application can call the _ret n()
function.”

For each T_var type, the return types of each of these functions match the types
shown in version 2.3 of the Common Object Request Broker Architecture (CORBA),
Mapping: OLE Automation and CORBA chapter, Mapping of Automation Types to
OMG IDL Types table for the in, inout, out and return modes for underlying type T
respectively.

For T_var types that return T* & from the out () member function, the out ()
member function calls del et e on the T* owned by the T_var, setsit equal to the
null pointer, and then returns a reference to it. Thisisto allow for proper management
of the T* owned by aT_var when passed as an out parameter, as described in
Section 1.22, “Argument Passing Considerations,” on page 1-103. An example
implementation of such an out () function is shown below:

[l C++

T*& T _var::out()

{
/] assume ptr_ is the T* data nenber of the T_var
delete ptr_;
ptr_ = 0;

return ptr_;

}

Similarly, for T_var types whose corresponding type T is returned from IDL
operations as T* (see “Basic Argument and Result Passing” on page 1-106), the
_retn() function stores the value of the T* owned by the T_var into atemporary
pointer, sets the T* to the null pointer value, and then returns the temporary. The

7. A leading underscoreisneeded onthe _r et n() function to keep it from clashing with
user-defined member names of constructed types, but leading underscores are not needed
forthei n(),i nout (),andout () functions because their names are IDL keywords,
S0 users can't define members with those names.
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T_var thus yields ownership of its T* to the caller of _r et n() without calling
del et e on it, and the caller becomes responsible for eventually deleting the returned
T*. An example implementation of sucha_r et n() function is shown below:

Il C++
T T_var::_retn()
{
/1 assune ptr_ is the T* data nenber of the T var
™ tnmp = ptr_;
ptr_ = 0;
return tnp;
}

This allows, for example, a method implementation to store a T* as a potential return
valueinaT_var sothat it will be deleted if an exception is thrown, and yet be able to
acquire control of the T* to be able to return it properly:

Il C++

Tvar t =newT;// t ows pointer to T

if (exceptional condition) {
/1 t owns the pointer and will delete it
/1 as the stack is unwound due to throw
t hrow AnException();

}

return t. retn(); /1 _retn() takes ownership of
/1 pointer fromt

After _retn() isinvoked onaT_var instance, its internal T* pointer is null, so
invoking either of its overloaded oper at or - > functions without first assigning a
valid non-null T* to the T_var will attempt to de-reference the null pointer, which is
illegal in C++.

For reasons of consistency, the T_var types are also produced for fixed-length
structured types. These types have the same semanticsas T_var types for variable-
length types. This allows applications to be coded in terms of T_var types regardless
of whether the underlying types are fixed- or variable-length. T_var types for fixed-
length structured types have the following general form:

Il C++
class T var {
publi c:

T var() : mptr(0) {}
T var(T *t) : mptr(t) {}
T var(const T&t) : mptr(new T(t)) {}
T var(const T var &) : mptr(0) {

if (t.mptr !'=0)

mptr = new T(*t.mptr);

}
~T_var() { delete mptr; }
T_var &operator=(T *t) {
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if (t '= mptr) {
delete mptr;
mptr =t;
}
return *this;
}
T var &operator=(const T& t) {
if (& !'= mptr) {
T* old_mptr = mptr;
mptr = new T(t);
delete old_mptr;

}

return *this;
}
T _var &operator=(const T var &) {
if (this !I'= &) {
T* old_mptr = mptr;
if (t.mptr 1= 0)
mptr = new T(*t.mptr);
el se
mptr = 0;
delete old_mptr;

}

return *this;
}
T* operator->() { return mptr; }
const T* operator->() const { return mptr; }
const T& in() const { return *mptr; }
T& inout() { return *mptr; }
T& out () {

if (mptr == 0)

mptr = new T;
return *mptr;

}

T retn() { return *mptr; }

private:
T mptr;
H

Each T_var type must be defined at the same level of nesting asits T type.

T_var types do not work with a pointer to constant T, since they provide no
constructor nor oper at or = taking aconst T* parameter. Since C++ does hot
allow del et e to be called on aconst T*8 the T _var object would normally have

8.Thistoo has changed in ANSI/ISO C++, but it not yet widely implemented by C++ compilers.
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to copy the const object; instead, the absence of the const T* constructor and
assignment operators will result in a compile-time error if such an initialization or
assignment is attempted. This allows the application developer to decide if a copy is
really wanted or not. Explicit copying of const T* objectsinto T_var types can be
achieved via the copy constructor for T:

/[l C++
const T *t = ...;
T var tv = new T(*t);

1.9.2 T out Types

When aT_var is passed as an out parameter, any previous value it referred to must
be implicitly deleted. To give C++ mapping implementations enough hooks to meet
this requirement, each T_var type has a corresponding T_out type, which is used
solely as the out parameter type. The genera form for T_out types for variable-
length types is shown below.

/] Ct++

cl ass T_out

{

publi c:
Tout(T*& p) : ptr_(p) { ptr_ =0; }
T out(T var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;
}

T out(const T out& p) : ptr_(p.ptr_) {}
T _out & operator=(const T out& p) {

ptr_ = p.ptr_;

return *this;

}
T out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

/1 assignment from T_var not allowed
voi d operator=(const T varé&):

b

The first constructor binds the reference data member with the T* & argument and sets
the pointer to the null pointer value. The second constructor binds the reference data
member with the pointer held by the T_var argument, and then calls del et e on the
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Comment:

pointer (or string_free() inthecaseof theString_out typeor T_free() in
the case of a T_var for an array type T). The third constructor, the copy constructor,
binds the reference data member to the same pointer referenced by the data member of
the constructor argument. Assignment from another T_out copies the T* referenced
by the T_out argument to the data member. The overloaded assignment operator for
T* simply assigns the pointer argument to the data member. Note that assignment does
not cause any previously-held pointer to be deleted; in this regard, the T_out type
behaves exactly as a T*. The T* & conversion operator returns the data member. The
pt r () member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow operator (oper at or -
>()) alows access to members of the data structure pointed to by the T* data member.
Compliant applications may not call the overloaded oper at or - >() unless the

T _out has been initialized with a valid non-null T*.

AssignmenttoaT_out from instances of the corresponding T_var typeis disallowed
because there is no way to determine whether the application developer wants a copy
to be performed, or whether the T_var should yield ownership of its managed pointer
so it can be assigned to the T_out . To perform acopy of aT_var toaT_out, the
application should use new:

Il C++
T var t = ...;
my_out = new T(t.in());// heap-allocate a copy

Thei n() function called ont typicaly returnsaconst T&, suitable for invoking the
copy constructor of the newly-allocated T instance.

Alternatively, to make the T_var yield ownership of its managed pointer so it can be
returned in a T_out parameter, the application should usethe T_var:: _retn()
function:

Il C++
T var t = ...;
my_out =t. retn();// t yields ownership, no copy

Issue 1519

For fixed-length underlying types, no memory management issues arise; however, a
compliant mapping must provide the following type definition in the scope of T:

typedef T &T out;

Note that the T_out types are not intended to serve as general-purpose data types to
be created and destroyed by applications; they are used only as types within operation
signatures to allow necessary memory management side-effects to occur properly.
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1.10 Mapping for Sruct Types

June 2003

Comment:

Comment:

I ssue 4340

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapped
to a corresponding member of the C++ struct. The C++ structure members appear in
the same order as the corresponding IDL structure members. This mapping allows
simple field access as well as aggregate initialization of most fixed-length structs. To
facilitate such initialization, C++ structs must not have user-defined constructors,
assignment operators, or destructors, and each struct member must be of self-managed
type. With the exception of strings and object references, the type of a C++ struct
member is the normal mapping of the OMG IDL member’s type.

For a string, wide string, or object reference member, the name of the C++ member’s
type is not specified by the mapping; therefore, a compliant program cannot create an

| ssue 4243

object of that type. The behavior of the type is the same as the normal mapping
(char * for string, WChar * for wide string, and A_pt r for an interface A) except the
type's copy constructor copies the member’s storage and its assignment operator

rel eases the member’s old storage. These types must also provide thei n(),

i nout (),out(),and_retn() functionsthat their corresponding T_var types
provide to allow them to support the parameter passing modes specified in Table 1-3
on page 1-106. A compliant mapping implementation also provides overloaded

oper at or << (insertion) and oper at or >> (extraction) operators for using string
members and wide string members directly with C++ iostreams.

For anonymous sequence members (required for recursive structures), a type name is
required for the member. This name is generated by prepending an underscore to the
member name, and appending “_seq”. For example:

// IDL
struct node {
long value;
sequence<node, 2> operand;
|3
This results in the following C++ code:
Il C++
struct node {
typedef ... _operand_seq;

Long val ue;
_operand_seq oper and;

b

In the C++ code shown above, the “...” in the _oper and_seq typedef refersto an
implementation-specific sequence type. The name of this type is not standardized.
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Assignment between a string, wide string, or object reference member and a
corresponding T_var type(String_var,Wstri ng_var, or A var) alwaysresults
in copying the data, while assignment with a pointer does not. The one exception to the
rule for assignment is when aconst char* or const WChar * is assigned to a
member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s
activation record), one can access the member directly as a pointer using the _ptr
field accessor. This usage is dangerous and generally should be avoided.

/I IDL
struct FixedLen { float x, y, z; };

[l C++

Fi xedLen x1 = {1.2, 2.4, 3.6};
Fi xedLen_var x2 = new Fi xedLen;
x2->y = x1.z;

The example above shows usage of the T and T_var types for a fixed-length struct.
When it goes out of scope, x2 will automatically free the heap-allocated Fi xedLen
object using del et e.

The following examples illustrate mixed usage of T and T_var types for variable-
length types, using the following OMG IDL definition:

/I IDL
interface A;
struct Variable { string name; };

Il C++
Vari abl e str1; /1 strl.name is initially enpty
Vari abl e var str2 = new Variable;// str2->nanme is

[] initially enpty

char *non_const;
const char *const 2;
String_var string_var;

const char *const3 = "string 1";
const char *const4 = "string 2";
strl.nanme = const 3; /1 1. free old storage, copy
str2->name = const4; /1 2: free old storage, copy

In the example above, the nane components of variables st r 1 and st r 2 both start
out as empty strings. On the line marked 1, const 3 is assigned to the nane
component of str 1. This results in the previous st r 1. nane being freed, and since
const 3 points to const data, the contents of const 3 being copied. In this case,
str 1. name started out as an empty string, so it must be freed before the copying of
const 3 takes place. Line 2 is similar to line 1, except that str2 isaT_var type.

C++ Language Mapping, v1.1 June 2003



Comment:

Continuing with the example:

Il C++
non_const = strl. nane; /1 3: no free, no copy
const2 = str2->nane; /1 4: no free, no copy

On the line marked 3, st r 1. nane is assigned to non_const . Since non_const is
a pointer type (char *), st r 1. name is not freed, nor are the data it points to copied.
After the assignment, st r 1. nane and non_const effectively point to the same
storage, with st r 1. nane retaining ownership of that storage. Line 4 is identical to
line 3, even though const 2 is a pointer to const char; st r 2- >nane is neither freed
nor copied because const 2 is a pointer type.

Il C++
strl. name = non_const; /1 5. free, no copy
strl.name = const?2; /1 6: free old storage, copy

Line 5 involves assignment of achar * to st r 1. nane, which results in the old

st r 1. name being freed and the value of the non_const pointer, but not the data it
points to, being copied. In other words, after the assignment st r 1. namne points to the
same storage asnon_const pointsto. Line 6 isthe same asline 5 except that because
const 2 isaconst char*, the data it points to are copied.

Il C++

str2->name = strl. nane; /1 7: free old storage, copy
strl.name = string_var; /1 8: free old storage, copy
string_var = str2->nane; /1 9: free old storage, copy

On line 7, assignment is performed to a member from another member, so the original
value is of the left-hand member is freed and the new value is copied. Similarly, lines
8 and 9 involve assignment to or from aStri ng_var, so in both cases the origina
value of the left-hand side is freed and the new value is copied.

Il C++
strl.name._ptr = str2. nane; /1 10: no free, no copy

Finally, line 10 uses the _pt r field accessor, so no freeing or copying takes place.
Such usage is dangerous and generally should be avoided.

| ssue 4243

Compliant programs use new to dynamically allocate structs and del et e to free
them.

1.11 Mapping for Fixed Types

June 2003

The C++ mapping for f i xed is defined by the following class:

/[l C++
cl ass Fi xed
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publi c:

/1 Constructors

Fi xed(int val = 0);

Fi xed(unsi gned val ) ;
Fi xed(Long val);

Fi xed(ULong val);

Fi xed(LongLong val);
Fi xed( ULongLong val);
Fi xed( Doubl e val);

Fi xed( LongDoubl e val);
Fi xed(const Fi xed& val);
Fi xed(const char*);
~Fi xed() ;

/' Conversi ons

operat or LonglLong() const;

oper at or LongDoubl e() const;

Fi xed round(UShort scal e) const;

Fi xed truncate(UShort scal e) const;

Comment: | ssue 3944

b

char *to_string() const;

/1 Operators

Fi xed& operat or =(const Fi xed& val);
Fi xed& operat or +=(const Fi xed& val);
Fi xed& operator-=(const Fixed& val);
Fi xed& operator*=(const Fi xed& val);
Fi xed& operator/=(const Fixed& val);

Fi xed& operator ++();

Fi xed operator++(int);

Fi xed& operator--();

Fi xed operator--(int);

Fi xed operator+() const;
Fi xed operator-() const;
Bool ean operator! () const;

/1 Ot her nenber functions
Ushort fixed_digits() const;
UsShort fixed_scal e() const;

i stream& operator>>(istream& i s, Fixed& val);
ostreanm& oper at or<<(ostream& os, const Fi xed& val);

Fi xed
Fi xed
Fi xed
Fi xed

operator + (const Fixed& vall, const Fixed& val 2);
operator - (const Fixed& vall, const Fixed& val 2);
operator * (const Fixed& vall, const Fixed& val 2);
operator / (const Fixed& vall, const Fixed& val 2);
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Bool ean operator > (const Fixed& vall, const Fixed& val 2);
Bool ean operator < (const Fixed& vall, const Fixed& val 2);
Bool ean operator >= (const Fixed& vall, const Fixed& val 2);
Bool ean operator <= (const Fixed& vall, const Fixed& val 2);
Bool ean operator == (const Fi xed& val 1, const Fi xed& val 2);
Bool ean operator != (const Fixed& vall, const Fixed& val2);

The Fi xed class is used directly by the C++ mapping for IDL fixed-point constant
values and for all intermediate results of arithmetic operations on fixed-point values.
For fixed-point parameters of IDL operations or members of IDL structured datatypes,
the implementation may use the Fi xed type directly, or aternatively, may use a
different type, with an effectively constant digits and scale, that provides the same C++
interface and can be implicitly converted from/to the Fi xed class. The name(s) of this
alternative class is not defined by this mapping. Since fixed-point types used as
parameters of IDL operations must be named via an IDL typedef declaration, the
mapping must use the typedef to define the type of the operation parameter to make
sure that server-side operation signatures are portable. Here is an example of the

mapping:

/I IDL
typedef fixed<5,2> F;

interface A

{
b

Il C++
typedef Inplementation_Defined O ass F;

void op(in F arg);

class A

{
publi c:

voi d op(const F& arg);

b

The Fi xed class has a number of constructors to guarantee that a fixed value can be
constructed from any of the IDL standard integer and floating point types. The

Fi xed( char *) constructor converts a string representation of a fixed-point literal,
with an optional leading sign (+ or -) and an optional trailing ‘d’ or ‘D, into areal
fixed-point value. The Fi xed class also provides conversion operators back to the
LongLong and LongDoubl e types. For conversion to integral types, digits to the
right of the decimal point are truncated. If the magnitude of the fixed-point value does
not fit in the target conversion type, then the DATA_CONVERSION system exception
is thrown.
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Theround and t r uncat e functions convert a fixed value to a new value with the
specified scale. If the new scale requires the value to lose precision on the right, the

r ound function will round away from zero values that are halfway or more to the next
absolute value for the new fixed precision. The t r uncat e function always truncates
the value towards zero. If the value currently has fewer digits on the right than the new
scale, r ound and t r uncat e return the argument unmodified. For example;

Il Ct++

Fixed f1 = "0.1";
Fi xed f2 = "0.05";
Fi xed f3 = "-0. 005;

In this example, f 1. round(0) andf 1. t runcat e(0) both return O,
f2.round(1) returns 0.1, f 2. truncat e( 1) returns 0.0, f 3. round( 2) returns
-0.01 and f 3. truncat e( 2) returns 0.00.

| ssue 3944

to_string() converts afixed value to a string. Leading zeros are dropped, but
trailing fractional zeros are preserved. (For example, af i xed<4, 2> with the

value 1.1 isconverted “1.10”.) The caller of Fi xed: : t o_stri ng() must deallocate
the return value by calling CORBA: : string_free() or assigning the return value
toaString_var.

Thefixed_digits andfixed_scal e functions return the smallest digits and
scale value that can hold the complete fixed-point value. If the implementation uses
alternative classes for operation parameters and structured type members, then
fixed_digits andfixed_scal e return the constant digits and scale values
defined by the source IDL fixed-point type.

Arithmetic operations on the Fi xed class must calculate the result exactly, using an
effective double precision (62 digit) temporary value. The results are then truncated at
run time to fit in a maximum of 31 digits using the method defined in version 2.3 of
the Common Object Request Broker Architecture (CORBA), OMG IDL Syntax and
Semantics chapter, Semantics section to determine the new digits and scale. If the
result of any arithmetic operation produces more than 31 digits to the left of the
decimal point, the DATA_CONVERSION exception will be thrown. If a fixed-point
value, used as an actual operation parameter or assigned to a member of an IDL
structured datatype, exceeds the maximum absolute value implied by the digits and
scale, the DATA_CONVERSION exception will be thrown.

The stream insertion and extraction operators << and >> convert a fixed-point value
to/from a stream. The exact definition of these operators may vary depending on the
level of standardization of the C++ environment. These operators insert and extract
fixed-point values into the stream using the same format as for C++ floating point
types. In particular, the trailing ‘d’ or ‘D’ from the IDL fixed-point literal
representation is not inserted or extracted from the stream. These operators use all
format controls appropriate to floating point defined by the stream classes except that
they never use the scientific format.
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Because fixed-point types are always passed by reference as operation parameters and
returned by value, there is no need for a_var type for a fixed-point type. For each
IDL fixed-point typedef a corresponding _out type is defined as a reference to the
fixed-point type:

/I IDL
typedef fixed<5,2> F;

I/ C++
typedef Inplementation_Defined_Name F;
typedef F& F_out;

1.12 Maypping for Union Types

June 2003

Unions map to C++ classes with access functions for the union members and
discriminant. Some member functions only provide read access to a member. Such
functions are called “accessor functions” or “accessors’ for short. For example:

Il C++
Long x() const;

Here, x() isan accessor that returns the value of the member x of a union (of type
Long in this example).

Other member functions only provide write access to a union member. Such functions
are called “modifier functions’ or “modifiers’ for short. For example:

Il C++
void x(Long val);

Here, x() isamodifier that sets the value of the member x of a union (of type Long
in this example).

Still other union member functions provide read-write access to a union member by
returning a reference to that member. Such functions are called “reference functions’
or “referents” for short. For example:

/] C++
S& W) ;

Here, W( ) is areferent to the member w (of type S) of a union.

The default union constructor performs no application-visible initialization of the
union. It does not initialize the discriminator, nor does it initialize any union members
to a state useful to an application. (The implementation of the default constructor can
do whatever type of initialization it wants to, but such initialization is implementation-
dependent. No compliant application can count on a union ever being properly
initialized by the default constructor alone.) Assigning, copying, and the destruction of
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default-constructed unions are safe. Assignment from or copying a default-constructed
union results in the target of the assignment or copy being initialized the same as a
default-constructed union.

It istherefore an error for an application to access the union before setting it, but ORB
implementations are not required to detect this error due to the difficulty of doing so.
The copy constructor and assignment operator both perform a deep-copy of their
parameters, with the assignment operator releasing old storage if necessary. The
destructor releases all storage owned by the union.

The union discriminant accessor and modifier functions have the name _d to both be
brief and to avoid name conflicts with the union members. The _d discriminator
modifier can only be used to set the discriminant to a value within the same union
member. In addition to the _d accessor and modifier, a union with an implicit default
member provides a_def aul t () modifier function that sets the discriminant to a
legal default value. A union has an implicit default member if it does not have a default
case and not all permissible values of the union discriminant are listed. Assigning,
copying, and the destruction of a union immediately after calling _def aul t () are
safe. Assignment from or copying of such a union results in the target of the
assignment or copy having the same safe state as it would if its_def aul t () function
were invoked.

Setting the union value through a modifier function automatically sets the discriminant
and may release the storage associated with the previous value. Attempting to get a
value through an accessor that does not match the current discriminant results in
undefined behavior. If a modifier for a union member with multiple legal discriminant
values is used to set the value of the discriminant, the union implementation is free to
set the discriminant to any one of the legal values for that member. The actual
discriminant value chosen under these circumstances is implementation-dependent.
Calling a referent for a member that does not match the current discriminant resultsin
undefined behavior.

The following example helps illustrate the mapping for union types:

//'1DL

typedef octet Bytes[64];

struct S { long len; };

interface A;

valuetype Val;

union U switch (long) {
case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4.
case 5: Sw;
case 6: Val v;
default: A obj;

b

Il C++
typedef Cctet Bytes[64];
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typedef Octet Bytes_slice;

class Bytes forany { ... };
struct S { Long len; };
typedef ... A ptr;
class val ... ;
class U
{
publi c:

u);

U(const U&);

~U();

U &operat or=(const Ug&);

void _d(Long);
Long _d() const;

voi d x(Long);
Long x() const;

voi d y(Bytes);
Bytes_slice *y() const;

void z(char*); /1l free old storage, no copy
void z(const char*); /1 free old storage,

void z(const String var & ;// free old storage, copy
const char *z() const;

void w(const S &); /1 deep copy

const S &) const; /1 read-only access

S &) ; /1l read-wite access

void v(Val *); /1 _renove_ref old val uetype,
/1 _add_ref argunent

Val * v() const; /1 no _add ref of return val ue

voi d obj (A ptr); /1 release old objref,
/1 duplicate

A ptr obj () const; /1 no duplicate

b

Accessor and modifier functions for union members provide semantics similar to that
of struct data members. Modifier functions perform the equivalent of a deep-copy of
their parameters, and their parameters should be passed by value (for small types) or
by reference to const (for larger types). Referents can be used for read-write access, but
are only provided for the following types: st r uct , uni on, sequence, any, and
fixed.

The reference returned from a reference function continues to denote that member only
for as long as the member is active. If the active member of the union is subsequently
changed, the reference becomes invalid, and attempts to read or write the member via
the reference result in undefined behavior.
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For an array union member, the accessor returns a pointer to the array slice, where the
dliceis an array with all dimensions of the original except the first (array slices are
described in detail in Section 1.14, “Mapping For Array Types,” on page 1-48). The
array slice return type allows for read-write access for array members via regular
subscript operators. For members of an anonymous array type, supporting typedefs for
the array must be generated directly into the union. For example;

/I IDL
union U switch (long) {
default: long array[20][20];

|3
Il C++
class U
{
publi c:
...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
11
H

The name of the supporting array slice typedef is created by prepending an underscore
and appending “_slice” to the union member name. In the example above, the array
member named “array” resultsin an array slice typedef called “_array_glice” nested in
the union class.

For string union members, the char * modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, while the const char *
modifier and the St ri ng_var modifier® both result in the freei ng of old storage
before the parameter’s storage is copied. The accessor for a string member returns a
const char* to allow examination but not modification of the string storage.10 The
union will also provide modifier functions that take the unnamed string struct member,
array member, and sequence member types as a parameter, with the same semantics as
the St ri ng_var modifier.

For object reference union members, object reference parameters to modifier functions
are duplicated after the old object reference is released. An object reference return
value from an accessor function is not duplicated because the union retains ownership
of the object reference.

9. A separate modifier for St ri ng_var isneeded because it can automatically convert to
bothachar* andaconst char *; since unions provide modifiersfor both of these
types, an attempt to set astring member of aunion fromaSt ri ng_var would otherwise
result in an ambiguity error at compile time.

10.A return type of char * alowing read-write access could mistakenly be assigned to a
String_var, resultinginthe St ri ng_var and the union both assuming ownership for
the string’s storage.
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For anonymous sequence union members (required for recursive unions), a type name
isrequired. This name is generated by prepending an underscore to the member name,
and appending “_seq”. For example:

// IDL
union node switch (long) {
case 0: long value;
case 1: sequence<node, 2> operand;

¥
This results in the following C++:
Il C++
cl ass node {
publi c:
typedef ... _operand_seq;

/1 Menmber functions dealing with the operand
/1 menber use _operand_seq for its type.

b

In the C++ code shown above, the“. . .” inthe _oper and_seq typedef refersto an
implementati on-specific sequence type. The name of this type is not standardized.

The restrictions for using the _d discriminator modifier function are shown by the
following examples, based on the definition of the union U shown above:

Il C++

Ss = {10};

U u;

u.w(s); /1 menmber w sel ected

u. _d(4); [l OK, nmenber w sel ected

u. _d(5); [l OK, nmenber w sel ected

u. _d(1); /1 error, different nenber sel ected
Aptr a= -

u. obj (a); /1 menber obj selected

u. _d(7); /1 OK, nenber obj selected

u. _d(1); /1 error, different nenber sel ected
s =uw); /1 error, member w not active

As shown here, neither the _d modifier function nor the w referent can be used to
implicitly switch between different union members. The following shows an example
of how the _def aul t () member function is used:

/I IDL
union Z switch(boolean) {
case TRUE: short s;

b
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Il Ct++

Z z;

z. _default(); [l implicit default menber sel ected
Bool ean disc = z. _d(); [// disc == FALSE

U u; /1 union U from previ ous exanpl e

u. _default(); /1 error, no _default() provided

For union Z, calling the _def aul t () modifier function causes the union’s value to be
composed solely of the discriminator value of FALSE, since there is no explicit default
member. For union U, calling _def aul t () causes a compilation error because U has
an explicitly declared default case and thus no _def aul t () member function. A
_defaul t () member function is only generated for unions with implicit default
members.

I ssue 4243

Compliant programs use new to dynamically allocate unions and del et e to free
them.

1.13 Mapping for Sequence Types

1-40

A sequence is mapped to a C++ class that behaves like an array with a current length
and a maximum length. For a bounded sequence, the maximum length isimplicit in the
sequence’s type and cannot be explicitly controlled by the programmer. For an
unbounded sequence, the initial value of the maximum length can be specified in the
sequence constructor to allow control over the size of the initial buffer allocation. The
length of a sequence never changes without an explicit call to the length() member
function.

For an unbounded seguence, setting the length to a larger value than the current length
may reallocate the sequence data. Reallocation is conceptually equivalent to creating a
new sequence of the desired new length, copying the old sequence elements zero
through length-1 into the new sequence, and then assigning the old sequence to be the
same as the new sequence. Setting the length to a smaller value than the current length
does not affect how the storage associated with the sequence is manipulated. Note,
however, that the elements orphaned by this reduction are no longer accessible and that
their values cannot be recovered by increasing the sequence length to its original value.

For a bounded sequence, attempting to set the current length to a value larger than the
maximum length given in the OMG IDL specification produces undefined behavior.

For each different typedef naming an anonymous sequence type, a compliant mapping
implementation provides a separate C++ segquence type. For example:

//'1DL

typedef sequence<long> LongSeq;
typedef sequence<LongSeq, 3> LongSeqSeq;
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Il C++
cl ass LongSeq /'l unbounded sequence
{
publi c:
LongSeq() ; /1 default constructor
LongSeq(ULong nmax); // maxi mum constructor
LongSeq( /1 T *data constructor

ULong max,
ULong | ength,
Long *val ue,
Bool ean rel ease = FALSE

)
LongSeq(const LongSeq&);
~LongSeq() ;
}
cl ass LongSeqSeq // bounded sequence
{
publi c:
LongSeqSeq() ; /1 default constructor
LongSeqSeq( /1 T *data constructor
ULong | ength,
LongSeq *val ue,
Bool ean rel ease = FALSE
)
LongSeqSeq(const LongSeqSeq&) ;
~LongSeqSeq() ;
s

For both bounded and unbounded sequences, the default constructor (as shown in the
example above) sets the sequence length equal to 0. For bounded sequences, the
maximum length is part of the type and cannot be set or modified, while for unbounded
sequences, the default constructor also sets the maximum length to 0. Default
constructors for bounded and unbounded sequences need not allocate buffers
immediately.

Unbounded sequences provide a constructor that allows only the initial value of the
maximum length to be set (the “maximum constructor” shown in the example above).
This allows applications to control how much buffer space is initially allocated by the
sequence. This constructor also sets the length to 0 and the r el ease flag to TRUE.

The “T *dat a” constructor (as shown in the example above) allows the length and
contents of a bounded or unbounded sequence to be set. For unbounded sequences, it
also allows the initial value of the maximum length to be set. For this constructor,
ownership of the buffer is determined by ther el ease parameter—FAL SE means the
caller owns the storage for the buffer and its elements, while TRUE means that the
sequence assumes ownership of the storage for the buffer and its elements. If

r el ease is TRUE, the buffer is assumed to have been allocated using the sequence
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al | ocbuf function, and the sequence will passit to f r eebuf when finished with it.
Theal | ocbuf and f r eebuf functions are described on Section 1.13.3, “Additional
Memory Management Functions,” on page 1-47.

The copy constructor creates a new sequence with the same maximum and length as
the given sequence, copies each of its current elements (items zero through length-1),
and sets ther el ease flag to TRUE.

The assignment operator deep-copies its parameter, releasing old storage if necessary.
It behaves as if the original sequence is destroyed via its destructor and then the source
seguence copied using the copy constructor.

If r el ease=TRUE, the destructor destroys each of the current elements (items zero
through length—1), and destroys the underlying sequence buffer.

For an unbounded sequence, if areallocation is necessary due to a change in the length
and the sequence was created using the r el ease=TRUE parameter in its constructor,
the sequence will deallocate the old storage for all elements and the buffer. If

r el ease is FALSE under these circumstances, old storage will not be freed for either
the elements or for the buffer before the reallocation is performed. After reallocation,
ther el ease flag is always set to TRUE.

For an unbounded sequence, the maxi mun( ) accessor function returns the total
number of sequence elements that can be stored in the current sequence buffer. This
allows applications to know how many items they can insert into an unbounded
sequence without causing a reallocation to occur. For a bounded sequence,

maxi mum() aways returns the bound of the sequence as given in its OMG IDL type
declaration.

Thel engt h() functions can be used to access and modify the length of the
sequence. Increasing the length of a sequence adds new elements at the tail. The
newly-added elements behave as if they are default-constructed when the sequence
length is increased. However, a sequence implementation may delay actual default
construction until a newly-added element isfirst accessed. For sequences of strings and
wide strings, default element construction requires initialization of each element to the
empty string or wide string. For sequences of object references, default element
construction requires initialization of each element to a suitably-typed nil reference.
For sequences of valuetypes, default element construction requires initialization of
each element to a null pointer. The elements of sequences of other complex types, such
as structs and sequences, are initialized by their default constructors. Union sequences
elements do not have any application-visible initialization; in particular, a default-
constructed union element is not safe for marshaling or access. Sequence elements of a
basic type, such as ULong, have undefined default values.

The overloaded subscript operators (oper at or [ ] ) return the item at the given index.
The non-const version must return something that can serve as an Ivalue (i.e.,
something that allows assignment into the item at the given index), while the const
version must allow read-only access to the item at the given index.
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The overloaded subscript operators may not be used to access or modify any element
beyond the current sequence length. Before either form of oper at or[] isused on a
sequence, the length of the sequence must first be set using the | engt h( ULong)
maodifier function, unless the sequence was constructed using the T * dat a constructor.

For strings, wide strings, and object references, oper at or [ ] for a sequence must
return a type with the same semantics as the types used for string, wide string, and
object reference members of structs and arrays, so that assignment to the string, wide
string, or object reference sequence member via oper at or =() will release old
storage when appropriate. Note that whatever these specia return types are, they must
honor the setting of the r el ease parameter in the T *dat a constructor with respect
to releasing old storage. A compliant mapping implementation also provides
overloaded oper at or << (insertion) and oper at or >> (extraction) operators for
using string sequence elements and wide string sequence elements directly with C++
iostreams.

Ther el ease() accessor function returns the state of the sequence release flag.

The overloaded get _buf f er () accessor and reference functions allow direct access
to the buffer underlying a sequence. This can be very useful when sending large blocks
of data as sequences, such as sending image data as a sequence of octet, and the per-
element access provided by the overloaded subscript operators is not sufficient.

The non-const get _buf f er () reference function allows read-write access to the
underlying buffer. If itsor phan argument is FAL SE (the default), the sequence returns
apointer to its buffer, allocating one if it has not yet done so. The size of the buffer can
be determined using the maxi mun() accessor. For bounded sequences, the size of the
returned buffer is equal to the sequence bound. The number of elements in the buffer
can be determined from the sequence | engt h() accessor. The sequence maintains
ownership of the underlying buffer. Elements in the returned buffer may be directly
replaced by the caller. For sequences of strings, wide strings, and object references, the
caller must use the sequencer el ease() accessor to determine whether elements
should be freed (using string_free,wstring free, or CORBA: : rel ease for
string, wide strings, and object references, respectively) before being directly assigned
to. Because the sequence maintains a notion of the length and size of the buffer, the
caller of get _buf f er () shal not lengthen or shorten the sequence by directly
adding elements to the buffer or directly removing elements from the buffer. Changing
the length of the sequence shall be performed only by invoking the sequence

| engt h() modifier function.

Alternatively, if the or phan argument to get _buf f er () is TRUE, the sequence
yields ownership of the buffer to the caller. If or phan is TRUE and the sequence does
not own its buffer (i.e, itsr el ease flag is FALSE), the return value is a null pointer.
If the buffer is taken from the sequence using this form of get _buffer (), the
sequence reverts to the same state it would have if constructed using its default
constructor. The caller becomes responsible for eventually freeing each element of the
returned buffer (for strings, wide string, and object references), and then freeing the
returned buffer itself using f r eebuf .
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The const get _buf f er () accessor function allows read-only access to the sequence
buffer. The sequence returns its buffer, allocating one if one has not yet been allocated.
No direct modification of the returned buffer by the caller is permitted.

For the non-const get _buf f er () reference function with an or phan argument of
FALSE, and for the const get _buf f er () accessor function, the return value remains
valid until another non-const member function of the sequence is invoked, or until the
sequence is destroyed, whichever occurs first.

Ther epl ace() function allows the buffer underlying a sequence to be replaced. The
parametersto r epl ace() areidentica in type, order, and purpose to those for the T
*dat a constructor for the sequence.

Access to the underlying sequences buffers seems to imply that a sequence
implementation must use contiguous memory to hold the elements, but this need not be
the case. A compliant sequence implementation could keep its elements in several
separate memory buffers and relocate them to a single buffer only if the application
called the get _buf f er () accessors. In fact, for applications that never invoke these
accessors, such an implementation would very likely be better suited to handling large
sequences than one using a large single contiguous buffer.

For the T * dat a sequence constructor and for the buffer parameter of the

repl ace() function, the type of T for strings, wide strings, and object references is
char *, CORBA: : WChar *, and T_pt r, respectively. In other words, string buffers are
passed as char * * , wide string buffers as CORBA: : WChar * * | and object reference
buffersas T_pt r *. The return type of the non-const get _buf f er () reference
function for sequences of stringsis char **, CORBA: : WChar ** for sequences of
wide strings, and T_pt r * for sequences of object references. The return type of the
const get _buf fer () accessor function for sequences of stringsisconst char*
const *, const CORBA: : WChar * const * for sequences of wide strings, and
const T_ptr* for sequences of object reference.

1.13.1 Sequence Example

The example below shows full declarations for both a bounded and an unbounded

sequence.
/I IDL

typedef sequence<T> V1; /l unbounded sequence
typedef sequence<T, 2> V2; /l bounded sequence
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class V1 /1 unbounded sequence
{
publi c:
Vi();

V1(ULong nmax);

V1(ULong max, ULong |l ength, T *data,
Bool ean rel ease = FALSE);

V1(const V1&);

~V1();

V1 &operator=(const V1&)

ULong maxi mum() const;

void | engt h(ULong);
ULong | ength() const;

T &operator[](ULong i ndex);
const T &operator[](ULong index) const;

Bool ean rel ease() const;

voi d replace(ULong nax, ULong length, T *data,
Bool ean rel ease = FALSE);

T* get buffer(Bool ean orphan = FALSE);
const T* get _buffer() const;

s
class V2 /1 bounded sequence
{
publi c:
V2();

V2(ULong |l ength, T *data, Bool ean rel ease = FALSE)
V2(const V2&);

~V2();

V2 &operat or=(const V2&)

ULong maxi num() const;

voi d | engt h(ULong);
ULong | ength() const;

T &operator[](ULong i ndex);
const T &operator[](ULong index) const;

Bool ean rel ease() const;

void replace(ULong I ength, T *data,
Bool ean rel ease = FALSE);
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T* get _buffer(Bool ean orphan = FALSE);
const T* get_buffer() const;

b

1.13.2 Using the “release” Constructor Parameter

Consider the following example:

/I IDL

typedef sequence<string, 3> StringSeq;

Il C++

char *static_arr[] = {"one", "two", "three"};

char **dyn_arr = StringSeq::allocbuf();
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seql(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seql[1] = "2"; /'l no free, no copy
char *str = string_dup("2");
seq2[1] = str; /1 free old storage, no copy

In this example, both seql and seq2 are constructed using user-specified data, but
only seq? istold to assume management of the user memory (because of the

r el ease=TRUE parameter in its constructor). When assignment occurs into

seql[ 1], the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occurs into seq2[ 1],
however, the old user data must be freed before ownership of the right-hand side can
be assumed, since seq2 manages the user memory. When seq2 goes out of scope, it
will call string_free for each of its elements and then call f r eebuf on the buffer
given to it in its constructor.

When ther el ease flag is set to TRUE and the sequence element type is either a
string or an object reference type, the sequence will individually release each element
before releasing the contents buffer. It will release stringsusing stri ng_free, and it
will release object references using the r el ease function from the CORBA
namespace.

In general, assignment should never take place into a sequence element via

operat or[] unlessr el ease=TRUE due to the possibility for memory management
errors. In particular, a sequence constructed with r el ease=FALSE should never be
passed asani hout parameter because previous versions of this specification provided
no means for the callee to determine the setting of the sequence r el ease flag, and
thus the callee always had to assume that r el ease was set to TRUE. Code that creates
a sequence with r el ease=FALSE and then knowingly and correctly manipulatesit in
that state, as shown with seql in the example above, is compliant, but care should
always be taken to avoid memory leaks under these circumstances.
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Comment:

| ssue 4244

For a sequence passed to an operation as an i n parameter, the operation must not
assign to the sequence if itsrelease flag is FALSE and the sequence has variable-length
elements.

For a sequence passed to a client as an out parameter or return value, the client must
not assign to the sequence if its release flag is FALSE and the sequence has variable-
length elements.

When a sequence is constructed with r el ease=TRUE, a compliant application should
make no assumptions about the continued lifetime of the data buffer passed to the
constructor, since a compliant sequence implementation is free to copy the buffer and
immediately free the original pointer.

1.13.3 Additional Memory Management Functions

Comment:

| ssue 4243

Compliant programs use new to dynamically allocate sequences and del et e to free
them.

Sequences also provide additional memory management functions for their buffers. For
an unbounded sequence of type T, the following static member functions are provided
in the sequence class public interface:

Il C++
static T *all ocbuf (ULong nel ens);
static void freebuf (T *);

The al | ocbuf function allocates a vector of T elements that can be passed to the T
*dat a constructor and to ther epl ace() member function. The length of the vector
is given by the nel ens function argument. The al | ocbuf function initializes each
element using its default constructor, except for strings and wide strings, which are
initialized to pointers to empty string, and object references, which are initialized to
suitably-typed nil object references. A null pointer is returned if for some reason

al | ocbuf cannot alocate the requested vector.

For bounded sequences, the following static member functions are provided in the
sequence class public interface:

Il C++

static T *allocbuf();

static T *allocbuf (ULong nel ens); // Deprecated
static void freebuf (T *);

For bounded sequences, the first (zero parameter) version of al | ocbuf allocates a
buffer of maxi mum() elements. A null pointer is returned if the function cannot
allocate the requested vector.
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Note that the version of al | ocbuf that accepts an element count is deprecated for
bounded sequences and will be removed in a future version of the mapping. Calls to
the deprecated version with an argument value other than the sequence maximum have
implementation-dependent behavior.

Vectors allocated by al | ocbuf must be freed using the f r eebuf function. The

f r eebuf function ensures that the destructor for each element is called before the
buffer is destroyed, except for string and wide string elements, which are freed using
string_free() andwstring free(), respectively, and object reference
elements, which are freed using CORBA: : r el ease() . Thefreebuf function will
ignore null pointers passed to it. Neither al | ocbuf nor f r eebuf may throw
CORBA exceptions.

A call to al | ocbuf with a zero-value argument causes al | ocbuf to allocate a zero-
length buffer and return a pointer to it. Like any buffer returned from al | ocbuf , this
buffer must be freed using the corresponding f r eebuf function.

1.13.4 Sequence T _var and T_out Types

In addition to the regular operations defined for T_var and T_out types, the T_var
and T_out for a sequence type also supports an overloaded oper at or[] that
forwards requests to the oper at or [ ] of the underlying sequence.!* This subscript
operator should have the same return type as that of the corresponding operator on the
underlying sequence type.

1.14 Mapping For Array Types

1-48

Arrays are mapped to the corresponding C++ array definition, which allows the
definition of statically-initialized data using the array. If the array element is a string,
wide string, or an object reference, then the mapping uses the same type as for
structure members. That is, the default constructor for string elements and wide string
elements initializes them to the empty string ("" and L" ", respectively), and
assignment to an array element that is a string, wide string, or object reference will
rel ease the storage associated with the old value.

// IDL

typedef float F[10];

typedef string V[10];

typedef string M[1][2][3];

void op(out F p1, out V p2, out M p3);

11.Notethat since T_var and T_out typesdo not handleconst T*, thereisno need to pro-
vide the const version of oper at or [ ] for Sequence_var and Sequence_out types.
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Il C++

typedef Float F[10];

typedef ... V[10]; /1 underlying type not shown
because

typedef ... M1][2][3]; /1 it is inplementation-dependent

Ffl, F var f2;
V vl; V_var v2;
MnmL; Mvar n2;
f(f2, v2, nR);
f1[0] = f2[1];
vi[1] = v2[1]; /1l free old storage, copy
mi[0][1][2] = nmR2[O][12]]2]; /1l free old storage, copy

In the above example, the last two assignments result in the storage associated with the
old value of the left-hand side being automatically released before the value from the
right-hand side is copied.

As shown in Table 1-3 on page 1-106, out and return arrays are handled via pointer to
array slice, where a slice is an array with all the dimensions of the original specified
except the first one. As a convenience for application declaration of slice types, the
mapping also provides a typedef for each array slice type. The name of the slice
typedef consists of the name of the array type followed by the suffix “_dlice”. For
example:

/I IDL
typedef long LongArray[4][5];

Il C++
typedef Long LongArray[4]][5];
typedef Long LongArray_slice[5];

Both the T_var typeand the T_out type for an array should overload oper at or [ ]
instead of oper at or - >. The use of array slices also means that the T_var type and
the T_out type for an array should have a constructor and assignment operator that
each take a pointer to array slice as a parameter, rather than T*. The T_var for the
previous example would be:

Il C++
cl ass LongArray_var
{

publi c:

LongArray var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray var &);
~LongArray_var();

LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[] (U ong index) const;
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const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

/1 other conversion operators to support
/] parameter passing

b

Because arrays are mapped into regular C++ arrays, they present special problems for
the type-safe any mapping described in “Mapping for the Any Type”’ on page 1-52. To
facilitate their use with the any mapping, a compliant implementation must also
provide for each array type a distinct C++ type whose name consists of the array name
followed by the suffix _f or any. These types must be distinct so as to allow functions
to be overloaded on them. Like Array_var types, Array_f or any types allow
access to the underlying array type, but unlike Array_var, the Array_f or any type
does not del et e the storage of the underlying array upon its own destruction. Thisis
because the Any mapping retains storage ownership, as described in Section 1.16.3,
“Extraction from any,” on page 1-57.

The interface of the Array_f or any typeisidentical to that of the Array_var type,
but it may not be implemented as a typedef to the Array_var type by a compliant
implementation since it must be distinguishable from other types for purposes of
function overloading. Also, the Array_f or any constructor taking an
Array_slice* parameter also takes a Bool ean nocopy parameter, which defaults
to FALSE:

/[l C++
class Array_forany
{

publi c:

Array_forany(Array_slice*, Bool ean nocopy = FALSE);

b

The nocopy flag allows for a non-copying insertion of an Array_sl i ce* into an
Any.

Each Ar ray_f or any type must be defined at the same level of nesting asits Arr ay
type.

For dynamic allocation of arrays, compliant programs must use specia functions
defined at the same scope as the array type. For array T, the following functions will be
available to a compliant program:

Il C++

T slice *T_alloc();

T slice *T_dup(const T_slice*);

void T _copy(T_slice* to, const T_slice* fron);
void T free(T_slice *);
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The T_al | oc function dynamically allocates an array, or returns a null pointer if it
cannot perform the allocation. The T_dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument array
into the new array, and returns a pointer to the new array. If allocation fails, a null
pointer is returned. The T_copy function copies the contents of the from array to the
to array. If either argument is a null pointer, T_copy does not attempt a copy and
results in no action being performed. The T_f r ee function deallocates an array that
was allocated with T_al | oc or T_dup. Passing a null pointer to T_f r ee is
acceptable and results in no action being performed. The T_al | oc, T_dup, and
T_free functions allow ORB implementations to utilize special memory management
mechanisms for array types if necessary, without forcing them to replace global
oper at or newand oper ator new | .

TheT_al | oc, T_dup, T_copy, and T_f r ee functions may not throw CORBA
exceptions.

1.15 Maypping For Typedefs

June 2003

A typedef creates an alias for a type. If the original type maps to several typesin C++,
then the typedef creates the corresponding alias for each type. The example below
illustrates the mapping.

/I IDL

typedef long T;

interface Al;

typedef A1 A2;

typedef sequence<long> S1,;
typedef S1 S2;

Il C++
typedef Long T;

[/ ...definitions for Al...

typedef Al A2;
typedef Al ptr A2 ptr;
typedef Al _var A2 var;

[/ ...definitions for S1...
class S1 { ... };

typedef S1 S2;
typedef S1_var S2 var;

For a typedef of an IDL type that maps to multiple C++ types, such as arrays, the
typedef mapsto all of the same C++ types and functions that its base type requires. For
example:
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/I IDL
typedef long array[10];
typedef array another_array;

Il C++

[l ...C++ code for array not shown...
typedef array anot her_array;

typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();

}

inline another_array_slice*
anot her _array_dup(another_array_slice *a) {
return array_dup(a);

}

inline void
anot her _array_copy(another_array_slice* to,
const another_array_slice* fron

{
}

array_copy(to, from;

inline void another_array_free(another_array_slice *a) {
array_free(a);

}

1.16 Mapping for the Any Type

1-52

A C++ mapping for the OMG IDL type any must fulfill two different requirements:
¢ Handling C++ types in a type-safe manner.

® Handling values whose types are not known at implementation compile time.

The first item covers most normal usage of the any type—the conversion of typed
values into and out of an any. The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with a C++ compiler.

1.16.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct type in
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided by each ORB implementation. Overloaded operators are used for
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these functions so as to completely avoid any name space pollution. The nature of
these functions, which are described in detail below, is that the appropriate TypeCode
isimplied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

» Asnoted in Section 1.5, “Mapping for Basic Data Types,” on page 1-15, the
boolean, octet, char, and wchar OMG IDL types are not required to map to
distinct C++ types, which means that a separate means of distinguishing them
from each other for the purpose of function overloading is necessary. The means
of distinguishing these types from each other is described in Section 1.16.4,
“Distinguishing boolean, octet, char, wchar, bounded string, and bounded
wstring,” on page 1-59.

 Since all strings and wide strings are mapped to char * and WChar *,
respectively, regardless of whether they are bounded or unbounded, another
means of creating or setting an any with a bounded string or wide string value is
necessary. This is described in Section 1.16.4, “Distinguishing boolean, octet,
char, wchar, bounded string, and bounded wstring,” on page 1-59.

 In C++, arrays within a function argument list decay into pointers to their first
elements. This means that function overloading cannot be used to distinguish
between arrays of different sizes. The means for creating or setting an any when
dealing with arrays is described below and in Section 1.14, “Mapping For Array
Types,” on page 1-48.

1.16.2 Insertion into any

To alow avalue to be set in an any in a type-safe fashion, an ORB implementation
must provide the following overloaded operator function for each separate OMG IDL
type T.

Il C++
voi d operator<<=(Any&, T);
This function signature suffices for types that are normally passed by value:

® Short, UShort, Long, ULong, LongLong, ULongLong, Fl oat, Doubl e,
LongDoubl e

® Enumerations

¢ Unbounded strings and wide strings (char * and WChar * passed by value)
® Object references (T_ptr)

® Pointers to valuetypes (T*)

For values of type T that are too large to be passed by value efficiently, such as structs,
unions, sequences, Any, and exceptions, two forms of the insertion function are
provided.
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Il C++
voi d operator<<=(Any&, const T&);// copying form
voi d operator<<=(Any&, T*); /1 non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any as
follows.

[l C++

Long val ue = 42;
Any a;

a <<= val ue;

In this case, the version of oper at or <<= overloaded for type Long must be able to
set both the value and the TypeCode properly for the any variable.

Setting avalue in an any using oper at or <<= means that:

® For the copying version of oper at or <<=, the lifetime of the value in the any is
independent of the lifetime of the value passed to oper at or <<=. The
implementation of the any may not store its value as a reference or pointer to the
value passed to oper at or <<=.

® For the noncopying version of oper at or <<=, theinserted T* is consumed by the
any. The caller may not use the T* to access the pointed-to data after insertion,
since the any assumes ownership of it, and it may immediately copy the pointed-to
data and destroy the original.

® With both the copying and non-copying versions of oper at or <<=, any previous
value held by the Any is properly deallocated. For example, if the
Any( TypeCode_pt r, voi d*, TRUE) constructor was called to create the Any,
the Any is responsible for de-allocating the memory pointed to by the voi d*
before copying the new value.

Copying insertion of a string type or wide string type causes one of the following
functions to be invoked:

Il C++
voi d operator<<=(Any&, const char*);
voi d operat or<<=(Any&, const WChar*);

Since all string types are mapped to char *, and all wide string types are mapped to
WChar *, these insertion functions assume that the values being inserted are
unbounded. Section 1.16.4, “Distinguishing boolean, octet, char, wchar, bounded
string, and bounded wstring,” on page 1-59 describes how bounded strings and
bounded wide strings may be correctly inserted into an Any. Note that insertion of
wide strings in this manner depends on standard C++, in which wchar _t is adistinct
type. Code that must be portable across standard and older C++ compilers must use the
Any: : from wstri ng helper. Noncopying insertion of both bounded and unbounded
strings can be achieved using the Any: : f r om st ri ng helper type. Similarly,
noncopying insertion of bounded and unbounded wide strings can be achieved using
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the Any: : from wst ri ng helper type. Both of these helper types are described in
Section 1.16.4, “ Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring,” on page 1-59.

Note that the following code has undefined behavior in nonstandard C++
environments:

!/l C++

Any a = ...;

WChar wc;

a >>= Wwc; /'l undefined behavi or

This code may erroneously extract an integer type in environments wherewchar _t is
not a distinct type.

Because valuetypes may be represented legally using null pointers, a conforming
application may insert a null valuetype pointer into an Any.

Type-safe insertion of arrays uses the Ar r ay_f or any types described in

Section 1.14, “Mapping For Array Types,” on page 1-48. Compliant implementations
must provide a version of oper at or <<= overloaded for each Arr ay_f or any type.
For example;

// IDL
typedef long LongArray[4][5];

Il C++

typedef Long LongArray[4]][5];
typedef Long LongArray_slice[5];
class LongArray forany { ... };

voi d operator<<=(Any & const LongArray_forany &);

The Array_f or any types are always passed to oper at or <<= by reference to
const. The nocopy flag in the Array_f or any constructor is used to control whether
the inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T*, it is highly
recommended that portable code explicitly12 use the appropriate Ar r ay_f or any type
when inserting an array into an any:

// IDL
struct S{... };
typedef S SA[5];

12. A mapping implementor may use the new C++ keyword “explicit” to prevent implicit con-
versions through the Array_forany constructor, but this featureis not yet widely available
in current C++ compilers.
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Il C++

struct S { ... };
typedef S SA[5];
typedef S SA slice;

class SA forany { ... };

SA s;

/[l ...initialize s...

Any a;

a <<= s; /1 line 1
a <<= SA forany(s); /1 line 2

Line 1 results in the invocation of the noncopying oper at or <<=( Any&, S*) due
to the decay of the SA array type into a pointer to its first element, rather than the

invocation of the copying SA f or any insertion operator. Line 2 explicitly constructs
the SA _f or any type and thus results in the desired insertion operator being invoked.

The noncopying version of oper at or <<= for object references takes the address of
the T_ptr type.

/I IDL

interface T { ... };

Il C++

voi d operator<<=(Any& T ptr); /1 copying

voi d operator<<=(Any&, T _ptr*); /'l non-copyi ng

The noncopying object reference insertion consumes the object reference pointed to by
T_pt r *; therefore after insertion the caller may not access the object referred to by
T_ptr since the any may have duplicated and then immediately released the original
object reference. The caller maintains ownership of the storage for the T_pt r itself.

The noncopying version of oper at or <<= for valuetypes takes the address of the T*
pointer type.

// IDL

valuetype T{ ... };

Il C++

voi d operator<<=(Any& T*); /1 copying

voi d operat or<<=(Any&, T**); /'l non-copyi ng

The noncopying valuetype insertion consumes the valuetype pointed to by the pointer
that T** points to. After insertion, the caller may not access the valuetype instance
pointed to by the pointer that T* points to. The caller maintains ownership of the
storage for the pointed-to T* itself.

In general, the copying versions of oper at or <<= are also supported on the
Any_var type. Note that due to the conversion operators that convert Any_var to
Any & for parameter passing, only those oper at or <<= functions defined as member
functions of any need to be explicitly defined for Any_var.
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1.16.3 Extraction from any

To alow type-safe retrieval of a value from an any, the mapping provides the
following operators for each OMG IDL type T:

Il C++
Bool ean oper at or >>=(const Any& T&);

This function signature suffices for primitive types that are normally passed by value.
For values of type T that are too large to be passed by value efficiently (such as structs,
unions, sequences, Any, valuetypes, and exceptions) this function may be prototyped as
follows:

Il C++
Bool ean operator>>=(const Any& T*&); [/ deprecated
Bool ean operator>>=(const Any& const T*&);

The non-constant version of the operator will be deprecated in a future version of the
mapping and should not be used.

The first form of this function is used only for the following types:

®* Short, UShort, Long, ULong, LongLong, ULongLong, Fl oat, Doubl e,
LongDoubl e

® Enumerations

® Unbounded strings and wide strings (const char* and const WChar * passed
by reference (i.e.,, const char * & and const V\l:har*&)13

® Object references (T_ptr)
For all other types, the second form of the function is used.

All versions of oper at or >>= implemented as member functions of class Any, such
as those for primitive types, should be marked as const .

This “right-shift-assign” operator is used to extract a typed value from an any as
follows:

Il C++

Long val ue;

Any a;

a <<= Long(42);

if (a >>= value) {

}

/Il ... use the value ...

13.Note that extraction of wide strings in this manner depends on standard C++, in which
wechar _t isadistinct type. Code that must be portable across standard and older C++ com-
pilersmust usethet o_wst ri ng helper type.
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In this case, the version of oper at or >>= for type Long must be able to determine
whether the Any truly does contain a value of type Long and, if so, copy its value into
the reference variable provided by the caller and return TRUE. If the Any does not
contain a value of type Long, the value of the caller’s reference variable is not
changed, and oper at or >>= returns FALSE.

For non-primitive types, such as struct, union, sequence, exception, and Any, extraction
is done by pointer to const (valuetypes are extracted by pointer to non-const
because valuetype operations do not support const ). For example, consider the
following IDL struct:

// IDL

struct MyStruct {
long Imem;
short smem;

b

Such a struct could be extracted from an any as follows:

Il C++

Any a;

/[l ... ais sonehow given a value of type MyStruct
const MyStruct *struct_ptr;

if (a >>= struct_ptr) {

/1 ... use the value ...

}

If the extraction is successful, the caller’s pointer will point to storage managed by the
any, and oper at or >>= will return TRUE. The caller must not try to del et e or
otherwise release this storage. The caller also should not use the storage after the
contents of the any variable are replaced via assignment, insertion, or the r epl ace
function, or after the any variable is destroyed. An attempt to extracttoaT_var type
is non-conforming and must cause a compile-time error.

If the extraction is not successful, the value of the caller’s pointer is set equal to the
null pointer, and oper at or >>= returns FALSE. Note that because valuetypes may
legally be represented as null pointers, however, a pointer to T extracted from an Any,
where T is avaluetype, may be null even when extraction is successful if the Any holds
a null valuetype pointer.

Correct extraction of array types relies on the Array_f or any types described in
Section 1.14, “Mapping For Array Types,” on page 1-48.

/I IDL
typedef long A[20];
typedef A B[30][40][50];

Il C++
typedef Long Al 20];

C++ Language Mapping, v1.1 June 2003



typedef Long A slice;
class A forany { ... };
typedef A B[30][40][50];
typedef A B slice[40][50];
class B forany { ... };

Bool ean operator>>=(const Any & A forany&);// for type A
Bool ean operator>>=(const Any & B forany&); /1 for
type B

The Array_f or any types are always passed to oper at or >>= by reference.

For strings, wide strings, and arrays, applications are responsible for checking the
TypeCode of the any to be sure that they do not overstep the bounds of the array,
string, or wide string object when using the extracted value.

The oper at or >>= is also supported on the Any_var type. Note that due to the
conversion operators that convert Any_var to const Any& for parameter passing,
only those oper at or >>= functions defined as member functions of any need to be
explicitly defined for Any_var.

1.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring

Since the boolean, octet, char, and wchar OMG IDL types are not required to map
to distinct C++ types, another means of distinguishing them from each other is
necessary so that they can be used with the type-safe any interface. Similarly, since
both bounded and unbounded strings map to char *, both bounded and unbounded
wide strings map to WChar *, and all fixed-point types map to the Fi xed class,
another means of distinguishing them must be provided. This is done by introducing
several new helper types nested in the any class interface. For example, this can be
accomplished as shown next.

/] C++
cl ass Any
{

publi c:

/'l special hel per types needed for bool ean, octet,
char,

/1 and bounded string insertion

struct from bool ean {
from bool ean(Bool ean b) : val (b) {}
Bool ean val ;

3

struct fromoctet {
fromoctet(Cctet o) : val (o) {}
Cctet val;

s

struct fromchar {
fromchar(Char c) : val (c) {}
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Char val;
b
struct fromwchar ({
fromwchar (WChar we) : val (we) {}
WChar val ;
H
struct fromstring {
fromstring(char* s, ULong b,
Bool ean n = FALSE)
val (s), bound(b), nocopy(n) {}
fromstring(const char* s, ULong b)
val (const_cast<char*>(s)), bound(b),
nocopy (0) {}
char *val;
ULong bound;
Bool ean nocopy;
b
struct fromwstring {
fromwstring(Whar* s, ULong b,
Bool ean n = FALSE)
val (s), bound(b), nocopy(n) {}
fromwstring(const Wchar* s, ULong b)
val (const _cast <WChar*>(s)), bound(b),
nocopy(0) {}
WChar *val
ULong bound;
Bool ean nocopy;
b
struct fromfixed {
fromfixed(const Fixed& f, UShort d, UShort s)
val (f), digits(d), scale(s) {}
const Fi xed& val
UShort digits;
UShort scal e;

voi d operat or<<=(from bool ean);
voi d operator<<=(fromchar);
voi d operator<<=(fromwchar);
voi d operator<<=(fromoctet);
voi d operator<<=(fromstring);
voi d operator<<=(fromwstring);
voi d operator<<=(fromfixed);
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/'l special hel per types needed for bool ean, octet,
/1 char, and bounded string extraction
struct to_bool ean {
to_bool ean(Bool ean &) : ref(b) {}
Bool ean &ref;
s
struct to_char {
to_char(Char &c) : ref(c) {}
Char &ref;
s
struct to_wchar {
to_wchar (WChar &wc) : ref(we) {}
WChar &ref;
3
struct to_octet {
to octet(COctet &) : ref(o) {}
Cctet &ref;
s
struct to_string {
to_string(const char *&s, ULong b)
val (s), bound(b) {}
const char *&val
ULong bound;

/1 the follow ng constructor is deprecated

to_string(char *&, ULong b) : val(s), bound(b) {}

s
struct to_wstring {
to_wstring(const WChar *&s, ULong b)
val (s), bound(b) {}
const Wchar *&val;
ULong bound;

/1 the follow ng constructor is deprecated
to _wstring(Wchar *&s, ULong b)
:val (s), bound(b) {}
¥
struct to_fixed {
to fixed(Fixed& f, UShort d, UShort s)
val (f), digits(d), scale(s) {}
Fi xed& val
UShort digits;
UsShort scal e;

Bool ean operat or >>=(to_bool ean) const;
Bool ean operator>>=(to_char) const;
Bool ean operator>>=(to_wchar) const;
Bool ean operator>>=(to_octet) const;
Bool ean operator>>=(to_string) const;
Bool ean operator>>=(to_wstring) const;
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Bool ean operator>>=(to_fixed) const;
/1 other public Any details onmtted

private:
/1 these functions are private and not inplenmented
/1 hiding these causes conpile-time errors for
/1 unsigned char
voi d oper at or <<=(unsi gned char);
Bool ean oper at or >>=(unsi gned char &) const;

b

An ORB implementation provides the overloaded oper at or <<= and oper at or >>=
functions for these specia helper types. These helper types are used as shown next.

Il C++

Bool ean b = TRUE

Any any;

any <<= Any::from bool ean(b);

...

if (any >>= Any::to_bool ean(b)) {
/1 ...any contai ned a Bool ean. .

}

const char* p = "bounded";

any <<= Any::fromstring(p, 8);

...

if (any >>= Any::to_string(p, 8)) {
/1 ...any contained a string<8>..

}

A bound value of zero passed to the appropriate helper type indicates an unbounded
string or wide string.

For noncopying insertion of a bounded or unbounded string into an any, the nocopy
flag on the f r om st ri ng constructor should be set to TRUE.

Il C++

char* p = string_alloc(8);

[l ...initialize string p...

any <<= Any::fromstring(p, 8, 1); /'l any consunes p

The same rules apply for bounded and unbounded wide strings and the

from wstri ng helper type. Note that the non-constant versions of thet o_stri ng
andt o_wst ri ng constructors will be removed in a future version of the mapping and
should not be used.

Assuming that bool ean, char, and oct et all map the C++typeunsi gned char,
the private and unimplemented oper at or <<= and oper at or >>= functions for
unsi gned char will cause a compile-time error if straight insertion or extraction of
any of the bool ean, char, or oct et typesis attempted.
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Il C++

Cctet oct = 040;

Any any;

any <<= oct; [l this line will not conpile
any <<= Any::fromoctet(oct);// but this one wll

It is important to note that the previous example is only one possible implementation
for these helpers, not a mandated one. Other compliant implementations are possible,
such as providing them via in-lined static any member functions if bool ean, char,
and oct et are in fact mapped to distinct C++ types. All compliant C++ mapping
implementations must provide these helpers, however, for purposes of portability.

In standard C++ environments, the mapping implementation must declare the
constructors of the f rom_andt o_ helper classes as expl i ci t. This prevents
undesirable conversions via temporaries.

1.16.5 Widening to Object

Sometimes it is desirable to extract an object reference from an Any as the base
hj ect type. This can be accomplished using a helper type similar to those required
for extracting Bool ean, Char, and Cct et :

Il C++
cl ass Any
{

publi c:

struct to_object {
to_object(Object _out obj) : ref(obj) {}
oj ect _ptr &ref;

s

Bool ean oper at or >>=(t 0_obj ect) const;

b

Thet o_obj ect helper typeis used to extract an object reference from an Any as the
base Obj ect type. If the Any contains a value of an object reference type as indicated
by its TypeCode, the extraction function oper at or >>=(t o_obj ect) explicitly
widens its contained object reference to Obj ect and returns true, otherwise it returns
false. Thisis the only object reference extraction function that performs widening on
the extracted object reference. Unlike for regular object reference extraction, the
lifetime of an object reference extracted usingt 0_obj ect isindependent of that of
the Any that it is extracted from, and so the responsibility for invoking r el ease on it
becomes that of the caller.
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1.16.6 Widening to Abstract Interface

The CORBA: : Any: : t 0_abst ract _base type alows the contents of an Any to be
extracted as an Abst r act Base if the entity stored in the Any is an object reference
type or a valuetype directly or indirectly derived from the Abst r act Base base class.
Thet o_abst ract _base type is shown below:

Il C++
class Any {
publi c:

struct to_abstract_base {
to_abstract _base(Abstract Base_ptr& base)
ref (base) {}
Abstract Base_ptr& ref;

H

Bool ean operator>>=(to_abstract_base val) const;
H
The caller is responsible for releasing the returned Abst r act Base_ptr.

See Section 1.18.1, “Abstract Interface Base,” on page 1-93 for a description of
Abstract Base.

1.16.7 Widening to ValueBase

The CORBA: : Any: : t o_val ue type allows the contents of an Any to be extracted as
aVal ueBase* if the entity stored in the Any is avaluetype. Thet o_val ue typeis
shown below:

Il C++
class Any {
publi c:

struct to_value {
to_val ue(Val ueBase*& base) : ref(base) {}
Val ueBase*& ref;

Bool ean operator>>=(to_val ue val) const;

b

The caller is responsible for calling _r enpve_r ef on the returned Val ueBase
pointer.

See Section 1.17.5, “ValueBase and Reference Counting,” on page 1-72 for a
description of Val ueBase.
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Comment:

Issue 1700

1.16.8 TypeCode Replacement

Comment:

Thet ype accessor function returns a TypeCode_pt r pseudo-object reference to the
TypeCode associated with the Any. Like all object reference return values, the caller
must release the reference when it is no longer needed, or assign it to a
TypeCode_var variable for automatic management.

TypeCode_ptr type() const;

Because C++ t ypedef s are only aliases and do not define distinct types, inserting a
typewithatk_al i as TypeCode into an Any while preserving that TypeCode is
not possible. For example:

/I IDL
typedef long LongType;

[l C++

Any any;

LongType val = 1234;

any <<= val;

TypeCode var tc = any.type();

assert(tc->kind() == tk_alias); /1 assertion failure!
assert(tc->kind() == tk_long); /1 assertion K

In this code, the LongType isan alias for CORBA: : Long. Therefore, when the value
is inserted, standard C++ overloading mechanisms cause the insertion operator for
CORBA: : Long to be invoked. In fact, because LongType is an dlias for

CORBA: : Long, an overloaded oper at or <<= for LongType cannot be generated

anyway.

In cases where the TypeCode in the Any must be preserved asat k_al i as
TypeCode, the application can use the t ype modifier function on the Any to replace
its TypeCode with an equivalent one.

Issue 1700

void type(TypeCode_ptr);
Revising the previous example:

/] C++

Any any;

LongType val = 1234;

any <<= val;

any.type(_tc_LongType); /'l replace TypeCode
TypeCode var tc = any.type();
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assert(tc->kind() == tk_alias); /] assertion K

Thet ype modifier function invokes the TypeCode: : equi val ent operation on the
TypeCode in the target Any, passing the TypeCode it received as an argument. |If
TypeCode: : equi val ent returns true, the t ype modifier function replaces the
original TypeCode in the Any with its argument TypeCode. If the two TypeCodes
are not equivalent, thet ype modifier function raises the BAD_TYPECODE
exception.

1.16.9 Any Constructors, Destructor, Assignment Operator

Comment:

The default constructor creates an Any with a TypeCode of typet k_nul | and no
value. The copy constructor calls _dupl i cat e on the TypeCode_ptr of its Any
parameter and deep-copies the parameter’s value. The assignment operator releases its
own TypeCode_pt r and deallocates storage for the current value if necessary, then
duplicates the TypeCode_pt r of its Any parameter and deep-copies the parameter’s
value. The destructor callsr el ease on the TypeCode_pt r and deallocates storage
for the value, if necessary.

I ssue 4243

Compliant programs use new to dynamically allocate anys and del et e to free them.

1.16.10 The Any Class

The full definition of the Any class can be found in “Any Class’ on page 1-156.

1.16.11 The Any var and Any_out Classes

Because Anys are returned via pointer as out and return parameters (see Table 1-3 on
page 1-106), there exists an Any_var class similar to the T_var classes for object
references. Any_var obeysthe rulesfor T_var classes described in Section 1.9,
“Mapping for Structured Types,” on page 1-21, calling del et e on its Any* when it
goes out of scope or is otherwise destroyed. The full interface of the Any_var classis
shown in Section 1.42.6, “Any_var Class,” on page 1-160. An Any_out classis also
available that is similar in form to the T_out class described in Section 1.9.2, “T_out
Types,” on page 1-27.

1.17 Mapping for Valuetypes

1-66

The IDL valuetype has features that make its C++ mapping unlike that of any other
IDL type. Specifically, from an application perspective al other IDL types comprise
either pure state or pure interface, but a valuetype may include both. Because of this,
the C++ mapping for the valuetype is necessarily more restrictive in terms of
implementation than other parts of the C++ mapping.
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An IDL valuetype is mapped to a C++ class with the same name as the IDL valuetype.
This class is an abstract base class (ABC), with pure virtual accessor and modifier
functions corresponding to the state members of the valuetype, and pure virtual
functions corresponding to the operations of the valuetype.

A C++ class whose name is formed by prepending the string “OBV_" to the fully-
scoped name of the valuetype provides default implementations for the accessors and
modifiers of the ABC base class. The application developer then overrides the pure
virtual functions corresponding to valuetype operations in a concrete class derived
directly or indirectly from the OBV_ base class.

Applications are responsible for the creation of valuetype instances, and after creation,
they deal with those instances only via C++ pointers. Unlike object references, which
map to C++ _ptr typesthat may be implemented either as actual C++ pointers or as
C++ pointer-like objects, “handles’ to C++ valuetype instances are actual C++
pointers. This helps to distinguish them from object references.

Because val uetype supports the sharing of instances within other constructed types
(such as graphs), the lifetimes of C++ valuetype instances are managed via reference
counting. Unlike the semantics of object reference counting, where neither duplicate
nor release actually affect the object implementation, reference counting operations for
C++ valuetype instances are directly implemented by those instances. Reference
counting mix-in classes are provided by ORB implementations for use by valuetype
implementors (see Section 1.17.6, “Reference Counting Mix-in Classes,” on

page 1-74).

As for most other types in the C++ mapping, each valuetype also has an associated
C++ _var type that automates its reference counting.

All init initializers declared for a valuetype are mapped to pure virtual functions on a
separate abstract C++ factory class. The class is named by appending “_i ni t ” to the
name of the valuetype (e.g., type A has afactory classnamed A init).

1.17.1 Valuetype Data Members

The C++ mapping for valuetype data members follows the same rules as the C++
mapping for unions, except that the accessors and modifiers are pure virtual. Public
state members are mapped to public pure virtual accessor and modifier functions of the
C++ vauetype base class, and private state members are mapped to protected pure
virtual accessor and modifier functions (so that derived concrete classes may access
them). Portable applications that use OBV__ classes, including derived value type
classes, shall not access the actual data members of OBV_ classes, and ORB
implementations are free to make such members private. The only requirement on the
actual data members in a concrete or partially-concrete class such as an OBV_ classis
that they be self-managing so that derived classes can correctly implement copying
without needing direct access to them.
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Like C++ unions, the accessor and modifier functions for valuetype state members do
not follow the regular C++ parameter passing rules. This is because they allow local
program access to the state stored inside the valuetype instance. Modifier functions
perform the equivalent of a deep-copy of their parameters, and accessors that return a
reference or pointer to a state member can be used for read-write access. For example:

//'1DL

typedef octet Bytes[64];

struct S{ ... };

interface A{ ... };

valuetype Val {

public Val t;
private long v;
public Bytes w;
public string x;
private S y;
private A z;

b

Il C++

typedef Cctet Bytes[64];
typedef COctet Bytes_slice;

struct S { };
typedef ... A ptr;
class Val : public virtual Val ueBase {
publi c:
virtual Vval* t() const = 0;
virtual void t(Val*) = 0;
virtual const Bytes_slice* w() const
virtual Bytes_slice* w() = 0;
virtual void w(const Bytes) = 0;
virtual const char* x() const = 0;
virtual void x(char*) = 0;
virtual void x(const char*) = 0;
virtual void x(const String_varg&)
pr ot ect ed:
virtual Long v() const = O;
virtual void v(Long) = 0;
virtual const S& y() const = O;
virtual S& y() = 0;
virtual void y(const S& = O;
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virtual A ptr z() const = 0;
virtual void z(A ptr) = 0;

b

The following rules apply to the accessor and modifier functions shown in the above
example:

® Thet accessor function does not increment the reference count of the returned
valuetype. This implies that the caller of t does not adopt the return value.

®* Thet modifier function increments the reference count of its argument, then
decrements the reference count of the t member it is replacing before returning.

®* The x(char*) modifier function frees the old string member and adopts its
argument.

® Thex(const char*) modifier function frees the old string member and copies
its argument.

® Thex(const String var&) modifier function frees the old string member and
copies its argument.

® By returning areference to a const S, the first y accessor function provides read-
only access to the y member.

® By returning areference to an S, the second y accessor function provides read-write
access to the y member.

®* They modifier function deep-copies its S argument.

® The z accessor function does not invoke _dupl i cat e on the object reference it
returns. This implies that the caller of z is not responsible for invoking r el ease
on the return value.

®* The z modifier function releases its old object reference corresponding to the z
member, then duplicates its argument before returning.

These rules correspond directly to the parameter passing rules for union accessors and
modifiers as explained in Section 1.12, “Mapping for Union Types,” on page 1-35.

State members of anonymous array and sequence types require the same supporting
C++ typedefs as required for union members of anonymous array and sequence types,
see Section 1.12, “Mapping for Union Types,” on page 1-35 for more details.

1.17.2 Constructors, Assignment Operators, and Destructors

A C++ val uet ype class defines a protected default constructor and a protected
virtual destructor. The default constructor is protected to allow only derived class
instances to invoke it, while the destructor is protected to prevent applications from
invoking delete on pointers to value instances instead of using reference counting
operations. The destructor is virtual to provide for proper destruction of derived value
class instances when their reference counts drop to zero.
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Comment:

I ssue 3298

For the same reasons, a C++ OBV _ class defines a protected default constructor, a
protected constructor that takes an initializer for each valuetype data member, and a
protected destructor. The parameters of the constructor that takes an initializer for each
member appear in the same order as the data members appear, top to bottom, in the
IDL valuetype definition, regardiess of whether they are public or private. If the
valuetype inherits from a concrete valuetype, then parameters for the data members of
the inherited valuetype appear first. All parameters for the member initializer
constructor follow the C++ mapping parameter passing rules for i n arguments of their
respective types. For valuetypes that have no operations other than factory initializers,
the same constructors and destructors are generated, but with public access so that they
can be called directly by application code.

Portable applications shall not invoke aval uet ype class copy constructor or default
assignment operator. Due to the required value reference counting, the default
assignment operator for aval uet ype class shall be private and preferably
unimplemented to completely disallow assignment of val uet ype instances.

1.17.3 Valuetype Operations

Operations declared on a valuetype are mapped to public pure virtual member
functions in the corresponding val uet ype C++ class. (Note that state member
accessor and modifier functions are not considered to be operations—they have
different parameter passing rules than operations and so they are always referred to as
accessor and modifier functions.) None of the pure virtual member functions
corresponding to operations shall be declared const because unlike C++, IDL
provides no way to distinguish between operations that change the state of an object
and those that merely access that state. This choice, similar to the choice made for the
C++ mapping for operations declared in IDL interface types, has an impact on
parameter passing rules, as described in Section 1.22, “Argument Passing
Considerations,” on page 1-103. The alternative, declaring all pure virtual member
functions as const , is less desirable because it would not allow member functions
inherited from interface classes to be invoked on const value instances, since all such
member functions are already mapped as non-const .

The C++ signatures and memory management rules for val uet ype operations (but
not state member accessor and modifier functions) are identical to those described in
Section 1.22, “Argument Passing Considerations,” on page 1-103 for client-side
interface operations.

A static_downcast function is provided by each valuetype class to provide a portable
way for applications to cast down the C++ inheritance hierarchy. This is especialy
required after an invocation of the _copy_val ue function (see Section 1.17.5,
“ValueBase and Reference Counting,” on page 1-72). If a null pointer is passed to
_downcast, it returns a null pointer. Otherwise, if the valuetype instance pointed to
by the argument is an instance of the valuetype class being downcast to, a pointer to the
downcast-to class type is returned. If the valuetype instance pointed to by the argument
is not an instance of the valuetype class being downcast to, a null pointer is returned.
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1.17.4 Valuetype Example

For example, consider the following IDL valuetype:

/I IDL

valuetype Example {
short op1();
long op2(in Example x);
private short vall,;
public long val2;

private string val3;
private float val4;
private Example val5;

|3

The C++ mapping for this valuetype is:

Il C++

class Exanple : public virtual Val ueBase {
publi c:

virtual Short opl() = O;
virtual Long op2(Exanple*) = 0;

virtual Long val 2() const = 0;
virtual void val 2(Long) = O;

static Exanple* _downcast (Val ueBase*);

pr ot ect ed:
Exanpl e() ;
virtual ~Exanple();

virtual Short val 1() const = 0;
virtual void val 1(Short) = 0;

virtual const char* val 3() const = O;
virtual void val 3(char*) = 0;

virtual void val 3(const char*) = 0;
virtual void val 3(const String_ var& = 0;

virtual Float val4() const = 0;
virtual void val 4(Float) = O;

virtual Exanple* val 5() const = O;
virtual void val 5( Exanpl e*) = 0;

private:

/1 private and uni npl enent ed
voi d operator=(const Exanpl e&);
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class OBV_Exanple : public virtual Exanple {
publi c:
virtual Long val 2() const;
virtual void val 2(Long);

pr ot ect ed:
OBV_Exanpl e();
OBV_Exanpl e(Short init_vall, Long init_val 2,
const char* init_val 3, Float init_val4,
Exanpl e* init_val5);
rtual ~OBV_Exanpl e();

\Y

\'
\'

rtual Short val 1() const;
rtual void val 1(Short);

virtual const char* val 3() const;
virtual void val 3(char*);

virtual void val 3(const char*);
virtual void val 3(const String var&)
virtual Float val 4() const;

virtual void val 4(Float);

virtual Exanpl e* val 5() const;
virtual void val 5(Exanpl e*);

/1
b

1.17.5 ValueBase and Reference Counting

The C++ mapping for the ValueBase IDL type serves as an abstract base class for all
C++ val uet ype classes. ValueBase provides several pure virtual reference counting

functions inherited by all valuetype classes:

Il C++
nanespace CORBA {
cl ass Val ueBase {
publi c:

virtual Val ueBase* _add_ref() = 0;
virtual void _renove_ref() = 0;
virtual ValueBase* _copy_value() = 0;
virtual ULong _refcount_value() = O;

static Val ueBase* _downcast (Val ueBase*);
pr ot ect ed:

Val ueBase() ;
Val ueBase(const Val ueBaseg&);
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virtual ~Val ueBase();

private:
voi d operator=(const Val ueBaseg&);
b
}
Table 1-2 Operation Descriptions
Operation Description
_add_ref Used to increment the reference count of a valuetype
instance.
_remove_r ef Used to decrement the reference count of a valuetype

instance and delete the instance when the reference count
drops to zero. Note that the use of del et e to destroy
instances requires that all valuetype instances be allocated
using new

_copy_val ue Used to make a deep copy of the valuetype instance. The
copy has no connections with the original instance and has
a lifetime independent of that of the original. Since C++
supports covariant return types, derived classes can override
the copy_val ue function to return a pointer to the
derived class rather than Val ueBase*, but since covariant
return types are still not commonly supported by
commercial C++ compilers, the return value of
_copy_val ue can aso be Val ueBase*, even for
derived classes.

A compliant ORB implementation may use either approach.
For now, portable applications will not rely on covariant
return types and will instead use downcasting® to regain the
most derived type of a copied valuetype.

_refcount _val ue | Returns the value of the reference count for the valuetype
instance on which it is invoked.

1. The C++ dynamic_cast<> operator may also be used to cast down the value hierarchy, but it
tooisstill not availablein all C++ compilersand thusitsuseisstill not portable at thistime.

The names of these operations begin with underscore to keep them from clashing with
user-defined operations in derived valuetype classes.

Val ueBase also provides a protected default constructor, a protected copy
constructor, and a protected virtual destructor. The copy constructor is protected to
disallow copy construction of derived valuetype instances except from within derived
class functions, and the destructor is protected to prevent direct deletion of instances of
classes derived from Val ueBase.
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With respect to reference counting, Val ueBase is intended to introduce only the
reference counting interface. Depending upon the inheritance hierarchy of a valuetype
class, itsinstances may require different reference counting mechanisms. For example,
the reference counting mechanisms needed for a valuetype class that supports an
interface are likely to be different from those needed for a regular concrete valuetype
class, since the former has object adapter issues to consider. Therefore, Val ueBase
normally serves as a virtual base class multiply inherited into a valuetype class. One
inheritance path is through the IDL inheritance hierarchy for the valuetype, since all
valuetypes inherit from Val ueBase, which provides the reference counting interface.
The other inheritance path is through the reference counting implementation mix-in
base class (see Section 1.17.6, “Reference Counting Mix-in Classes,” on page 1-74),
which itself also inherits from Val ueBase.

CORBA Module Additions

The C++ mapping also adds two additional reference counting functions to the CORBA
namespace, as shown below:

/] C++
nanespace CORBA {
voi d add_ref (Val ueBase* vbh)

{
if (vb !=0) vb->_add_ref();
}
voi d renove_ref (Val ueBase* vbh)
{
if (vb !=0) vb-> renmove_ref();
}
/1

}

These functions are provided for consistency with object reference reference counting
functions. They are similar in that unlikethe _add_ref and _renove_ref member
functions, they can be called with null valuetype pointers. The CORBA: : add_r ef
function increments the reference count of the valuetype instance pointed to by the
function argument if non-null, or does nothing if the argument is a null pointer. The
CORBA: : remove_r ef function behaves the same except it decrements the reference
count. (The implementations shown above are intended to specify the required
semantics of the functions, not to imply that conforming implementations must inline
the functions.)

1.17.6 Reference Counting Mix-in Classes

The C++ mapping provides two standard reference counting implementation mix-in
base classes:
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® CORBA: : Def aul t Val ueRef Count Base, which can serve as a base class for
any application-provided concrete valuetype class whose corresponding IDL value
type does not derive from any IDL interfaces. For these types of valuetype classes,
applications are aso free to use their own reference-counting implementation mix-
ins as long as they fulfill the Val ueBase reference counting interface.

® Portabl eServer: : Val ueRef Count Base, which must serve as a base class
for any application-provided concrete valuetype class whose corresponding IDL
valuetype does derive from one or more IDL interfaces, and whose instances will be
registered with the POA as servants. If IDL interface inheritance is present, but
instances of the application-provided concrete valuetype class will not be registered
with the POA, the CORBA: : Def aul t Val ueRef Count Base or an application-
specific reference counting implementation mix-in may be used as a base class
instead.

Each of these classes shall be fully concrete and shall completely fulfill the

Val ueBase reference counting interface, except that since they provide
implementation, not interface, they shall not provide support for downcasting. In
addition, each of these classes shall provide a protected default constructor that sets the
reference count of the instance to one, a protected virtual destructor, and a protected
copy constructor that sets the reference count of the newly-constructed instance to one.
Just as with the Val ueBase base class, the default assignment operator should be
private and preferably unimplemented to completely disallow assignment.

Note that it is the application-supplied concrete valuetype classes that must derive from
these mix-in classes, not the valuetype classes generated by the IDL compiler. Thisis
to avoid the need to inherit these mix-ins as virtual bases, or to avoid inheriting
multiple copies of the mix-ins (and thus multiple reference counts) if virtual bases are
not employed. Also, only the final implementor of a valuetype knows whether it will
ever be used as a POA servant or not, and thus the implementor must specify the
desired reference counting mix-in.

1.17.7 Value Boxes

1.17.7.1

A value box class essentially provides a reference-counted version of its underlying
type. Unlike normal valuetype classes, C++ classes for value boxes can be concrete
since value boxes do not support methods, inheritance, or interfaces. Value box classes
differ depending upon their underlying types.

To fulfill the Val ueBase interface, al value box classes are derived from
CORBA: : Def aul t Val ueRef Count Base.

Parameter Passing for Underlying Boxed Type

All value box classes provide _boxed_i n, _boxed_i nout, and _boxed_out
member functions that allow the underlying boxed value to be passed to functions
taking parameters of the underlying boxed type. The signatures of these functions
depend on the parameter passing modes of the underlying boxed type. The return
values of the _boxed_i nout and _boxed_out functions shall be such that the
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1.17.7.2

boxed value is referenced directly, allowing it to be replaced or set to a new value. For
example, invoking _boxed_out on aboxed string allows the actual string owned by
the value box to be replaced:

/I IDL
valuetype StringValue string;
interface X {

void op(out string s);

|3

Il Ct++

StringVal ue* sval = new StringValue("string val");

X var x = ...

x->op(sval ->_boxed_out ()); /1 boxed string is replaced

/1 by op() invocation

Assume the implementation of op is as follows:

Il C++
void MyXInpl::op(String_out s)
{

}

The return value of the _boxed_out function shall be such that the string value
boxed in the instance pointed to by sval issetto"new string val" after op
returns, with the instance pointed to by sval maintaining ownership of the string.

s = string_dup("new string val");

Basic Types, Enums, and Object References

For all the signed and unsigned integer types except for the fixed type, and for
boolean, octet, char, wchar, float, double, long double, and enumerated types,
and for typedefs of al of these, value box classes provide:

® A public default constructor. Note that except for the object reference case, the
value of the underlying boxed value will be indeterminate after this constructor runs
(i.e., the default constructor does not initialize the boxed value to a given value).
This is because the built-in constructors for each of the basic types and
enumerations do not initialize instances of their types to particular values, either.
For boxed object references, this constructor sets the underlying boxed object
reference to nil.

® A public constructor that takes one argument of the underlying type. This argument
is used to initialize the value of the underlying boxed type.

® A public assignment operator that takes one argument of the underlying type. This
argument is used to replace the value of the underlying boxed type.

® Public accessor and modifier functions for the boxed value. The accessor and
modifier functions are always named _val ue. For boxed object references, the
return value of the accessor is not a duplicate.
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® Explicit conversion functions that allow the boxed value to be passed where its
underlying type is called for. These functions are named _boxed_i n,
_boxed_i nout, and _boxed_out, and their return types match the in, inout,
and out parameter passing modes, respectively, of the underlying boxed type.
Implicit conversions to the underlying type are not provided because values are
normally handled by pointer.

A public copy constructor.
® A public static _downcast function.
® A protected destructor.

® A private and preferably unimplemented default assignment operator.

Comment: | ssue 3224

Value box classes for object references maintain a private managed copy of the object
reference. The constructor, assignment operator, and _val ue modifier methods for
these classes call _dupl i cat e on the object reference argument; the destructor calls
CORBA: : r el ease on the boxed reference.

An example value box class for an enumerated type is shown below:

// IDL
enum Color { red, green, blue };
valuetype ColorValue Color;

Il C++
cl ass Col orVval ue : public DefaultVal ueRef Count Base {
publi c:
Col or Val ue();

Col or Val ue( Col or val);
Col or Val ue(const Col or Val ue& val);

Col or Val ue& oper at or=(Col or val);

Col or _value() const;// accessor
void value(Color val);// nodifier

/1 explicit conversion functions for
/1 underlying boxed type

/1

Col or _boxed_in() const;

Col or & _boxed_inout ();

Col or & _boxed out();

static Col orVal ue* _downcast (Val ueBase* base);

pr ot ect ed:
~Col or Val ue();
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1.17.7.3

private:
voi d operator=(const Col orVal ue& val);
H
Sruct Types

Value box classes for struct types map to classes that provide accessor and modifier
functions for each struct member. Specifically, the classes provide:

® A public default constructor. The underlying boxed struct type isinitialized as it
would be by its own default constructor.

® A public constructor that takes a single argument of type const T&, where T isthe
underlying boxed struct type.

® A public assignment operator that takes a single argument of type const T&,
where T is the underlying boxed struct type.

® Public accessor and modifier functions, all named _val ue, for the underlying
boxed struct type. Two accessors are provided: one a const member function
returning const T&, and the other a non-const member function returning a T&.
The modifier function takes a single argument of type const T&.

® The boxed_in, boxed inout,and boxed out functionsthat allow access
to the boxed value to pass it in signatures expecting the underlying boxed struct
type. The return values of these functions correspond to the in, inout, and out
parameter passing modes for the underlying boxed struct type, respectively.

® For each struct member, a set of accessor and modifier functions. These functions
have the same signatures as accessor and modifier functions for union members.

® A public copy constructor.

® A public static _downcast function.

® A protected destructor.

® A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed type
are provided since values are normally handled by pointer.

For example:

// IDL

struct S {
string str;
long len;

¥

valuetype BoxedS S;

Il C++
cl ass BoxedS : public DefaultVal ueRef Count Base {
publi c:
BoxedS() ;
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BoxedS(const S& val);
BoxedS(const BoxedS& val);

BoxedS& oper at or=(const S& val);

const S& _value() const;
S& val ue();
void value(const S& val);

const S& _boxed_in() const;
S& boxed_ i nout();
S*& boxed out ();

static BoxedS* _downcast (Val ueBase* base);

const char* str() const;

void str(char* val);

void str(const char* val);

void str(const String varé& val);

Long |l en() const;
void |l en(Long val);

pr ot ect ed:
~BoxedS() ;

private:
voi d operator=(const BoxedS& val);

b

Sring and WString Types

In order to allow boxed strings to be treated as normal strings where appropriate, value
box classes for strings provide largely the same interface asthe St ri ng_var class.
The only differences from the interface of the St ri ng_var class are:

® The value box class interface does not provide thei n, i nout, out,and _retn
functions that St ri ng_var provides. Rather, the value box class provides
replacements for these functions called _boxed_i n, boxed_i nout, and
_boxed_out . They have mostly the same semantics and signatures as their
St ring_var counterparts, but their names have been changed to make it clear that
they provide access to the underlying string, not to the value box itself.

® There are no overloaded operators for implicit conversion to the underlying string
type because values are normally handled by pointer.

In addition to most of the St ri ng_var interface, value box classes for strings
provide:

® Public accessor and modifier functions for the boxed string value. These functions
are all named _val ue. The single accessor function takes no arguments and returns
aconst char*. There are three modifier functions, each taking a single
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argument. One takes a char * argument which is adopted by the value box class,
one takesaconst char* argument which is copied, and one takes a const
Stri ng_var & from which the underlying string value is copied.

A public default constructor that initializes the underlying string to an empty string.

Three public constructors that take string arguments. One takes a char * argument
that is adopted, one takesaconst char* that is copied, and one takes a const
St ri ng_var & from which the underlying string value is copied. If the

St ring_var holds no string, the boxed string value is initialized to the empty
string.

Three public assignment operators: one that takes a parameter of typechar * that is
adopted, one that takes a parameter of type const char * that is copied, and one
that takes a parameter of type const St ri ng_var & from which the underlying
string value is copied. Each returns a reference to the object being assigned to. If
the St ri ng_var holds no string, the boxed string value is set equal to the empty
string.

A public copy constructor.

A public static _downcast function.

A protected destructor.

A private and preferably unimplemented default assignment operator.

An example of a value box class for a string is shown below:

/I IDL
valuetype StringValue string;

Il C++
class StringVal ue : public DefaultVal ueRef Count Base {

publi c:
/] constructors
/11
StringVal ue();
StringVal ue(const StringVal ue& val);
StringVal ue(char* str);
StringVal ue(const char* str);
StringVal ue(const String_var& var);

/] assignment operators

/11

StringVal ue& operator=(char* str);

StringVal ue& operator=(const char* str);
StringVal ue& operator=(const String_varé& var);

/'l accessor
11
const char* _value() const;

// nmodifiers
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b

/1

void _value(char* str);

void _value(const char* str);

void _value(const String_varé& var);

/1 explicit argunent passing conversions for
/1 the underlying string

/1

const char* _boxed_ in() const;

char*& boxed i nout();

char*& boxed out();

/1 ...other String var functions such as overl oaded
/1 subscript operators, etc....

static StringVal ue* _downcast (Val ueBase* base);

pr ot ect ed:
~StringVal ue();

private:
voi d operator=(const StringVal ue& val);

Note that even though value box classes for strings provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.

Union, Sequence, Fixed, and Any Types

Value boxes for these types map to classes that have exactly the same public interfaces
as the underlying boxed types, except that each has:

In addition to the constructors provided by the class for the underlying boxed type,
a public constructor that takes a single argument of type const T&, where T isthe
underlying boxed type.

An assignment operator that takes a single argument of type const T&, where T
is the underlying boxed type.

Accessor and modifier functions for the underlying boxed value. All such functions
are named _val ue. There are two accessor functions, one a const member function
returning aconst T&, and the other a non-const member function returning Té&.
The modifier function takes a single argument of type const T&.

The _boxed_in, boxed inout,and boxed_out functionsthat allow access
to the boxed value to pass it in signatures expecting the underlying boxed value
type. The return values of these functions correspond to thei n, i nout , and out
parameter passing modes for the underlying boxed type, respectively.

A protected destructor.
A private and preferably unimplemented default assignment operator.
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As with other value box classes, no implicit conversions to the underlying boxed type
are provided since values are normally handled by pointer.

Note that the value box class for sequence types provides overloaded subscript
operators (oper at or [ ]) just as a sequence class does. However, since values are
normally handled by pointer, the value instance must be dereferenced before the
overloaded subscript operator can be applied to it.

Value box instances for the any type can be passed to the overloaded operators for
insertion and extraction by invoking the appropriate explicit conversion function:

Il C++

AnyVal ueBox* val = ...

val - > boxed_i nout () <<= sonet hi ng;

if (val->_boxed_in() >>= sonething_el se)

Below is an example value box along with its corresponding C++ class:
// IDL

typedef sequence<long> LongSeq;
valuetype LongSeqValue LongSeq;

Il C++
cl ass LongSeqVal ue : public DefaultVal ueRef Count Base {
publi c:

LongSeqVal ue() ;
LongSeqgVal ue(ULong max) ;
LongSeqVal ue(ULong nax,

ULong | engt h,

Long* buf,

Bool ean rel ease = 0);
LongSeqVal ue(const LongSeq& init);
LongSeqgVal ue(const LongSeqVal ue& val);

LongSeqgVal ue& oper at or=(const LongSeq& val);
const LongSeq& _val ue() const;

LongSeq& _val ue();

voi d _val ue(const LongSeq&)

const LongSeq& _boxed_in() const;

LongSeq& _boxed_i nout ();

LongSeq*& _boxed_out ();

static LongSeqgVal ue* _downcast (Val ueBase*);
ULong maxi num() const;

ULong | ength() const;

void | ength(ULong | en);

Long& operator[] (ULong index);
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Long operator[] (ULong index) const;

pr ot ect ed:
~LongSeqVal ue();

private:
voi d operator=(const LongSeqVal ueg&);
s
Array Types

In order to allow boxed arrays to be treated as normal arrays where appropriate, value
box classes for arrays provide largely the same interface as the corresponding array
_var class. The only differences from the interface of the _var class are:

® The value box class interface does not provide thei n, i nout, out,and _retn
functionsthat _var provides. Rather, the value box class provides replacements for
these functions called _boxed_i n, boxed_i nout, and boxed_out . They
have mostly the same semantics and signatures astheir _var counterparts, but their
names have been changed to make it clear that they provide access to the underlying
array, not to the value box itself.

® There are no overloaded operators for implicit conversion to the underlying array
type because values are normally handled by pointer.

In addition to most of the _var interface, value box classes for arrays provide:

® Public accessor and modifier functions for the boxed array value. These functions
are named _val ue. The single accessor function takes no arguments and returns a
pointer to array slice. The modifier function takes a single argument of type const
array.

A public default constructor.

A public constructor that takes a const array argument.

A public assignment operator that takes a const array argument.

® A public copy constructor.

A public static _downcast function.
® A protected destructor.
® A private and preferably unimplemented default assignment operator.

An example of a value box class for an array is shown below:

/I IDL
typedef long LongArray[3][4];
valuetype ArrayValue LongArray;

Il Ct++

typedef Long LongArray[3]][4];
typedef Long LongArray_slice[4];
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class ArrayValue : public DefaultVal ueRef Count Base {
publi c:
ArrayVal ue();
ArrayVal ue(const ArrayVal ue& val);
ArrayVal ue(const LongArray val);

ArrayVal ue& operat or=(const LongArray val);

const LongArray_slice* _value() const;
LongArray_slice* _value();

void _val ue(const LongArray val);

/1 explicit argunent passing conversions for
/1 the underlying array

11

const LongArray_slice* _boxed_in() const;
LongArray_slice* _boxed_inout();
LongArray_slice* _boxed_out();

/1 ...overl oaded subscript operators...
static ArrayVal ue* _downcast (Val ueBase* base);

pr ot ect ed:
~ArrayVal ue();

private:
voi d operator=(const ArrayVal ue& val);

b

Note that even though value box classes for arrays provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.

1.17.8 Abstract Valuetypes

Abstract IDL valuetypes follow the same C++ mapping rules as concrete IDL
valuetypes, except that because they have no data members, the IDL compiler does not
generate OBV_ classes for them.

1.17.9 Valuetype Inheritance

For an IDL valuetype derived from other valuetypes or that supports interface types,
several C++ inheritance scenarios are possible:

® Concrete value base classes are inherited as public virtual basesto allow for “ladder
style” implementation inheritance.

® Abstract value base classes are inherited as public virtual base classes, since they
may be multiply inherited in IDL.
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Comment:

I ssue 3328

* [nterface classes supported by the IDL valuetype are not inherited. Instead, the
operations on the interface (and base interfaces, if any) are mapped to pure virtual
functions in the generated C++ base value class. In addition to this abstract base
value class and the OBV _ class, the IDL compiler generates a POA skeleton for this
value type; the name of this skeleton is formed by prepending the string "POA_" to
the fully-scoped name of the valuetype. The base value class and the POA skeleton
of the interface type are public virtual base classes of this skeleton. No tie skeleton
class is generated for the valuetype because the tie for the supported class can be
used instead.

The reason that interface classes are not inherited is that valuetype instances, like POA
servants, are themselves not object references. Providing this inheritance would allow
for error-prone code that implicitly widened pointers to valuetype instances to C++
object references for the supported interfaces, but without first obtaining valid object
references for those valuetype instances from the POA. When such an application
attempted to use an invalid object reference obtained in this manner, it would
encounter errors that could be difficult to track back to the implicit widening of the
pointer to valuetype to object reference. The C++ language provides no hooks into the
implicit pointer-to-class widening mechanism by which an application might guard
against this type of error.

Avoiding the derivation of valuetype classes from interface classes also separates the
lifetimes of valuetype instances from the lifetimes of object reference instances. It
would be surprising to an application if a valid object reference that had not yet been
released unexpectedly became invalid because another part of the program had
decremented the valuetype part of the object reference instance to zero. This scenario
could be solved by the provision of an appropriate reference counting mix-in class.
However, given that such an approach breaks local/remote transparency by having
object reference release operations affect the servant, and given the associated
problems described in the preceding paragraphs, deriving valuetype classes from
interface classes is best avoided.

An example of the mapping for a valuetype that supports an interface is shown below.

// IDL
interface A {
void op();

b

valuetype B supports A {
public short data;

b
Il C++
class B : public virtual ValueBase {

publi c:
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virtual void op();

virtual Short data() const = O;
virtual void data(Short) = O;

11
b
class POA B : public virtual POA A, public virtual B {
publi c:
virtual void op();
11
s
| ssue 4265

1.17.10 Valuetype Factories

1.17.10.1

Because concrete valuetype classes are provided by the application developer, the
creation of values is problematic under certain circumstances. These circumstances
include:

® Unmarshaling. The ORB cannot know a priori about all potential concrete value
classes supplied by the application, and so the ORB unmarshaling mechanisms do
not possess the capability to directly create instances of those classes.

® Component Libraries. Portions of an application, such as parts of a framework, may
be limited to only manipulating valuetype instances while leaving creation of those
instances to other parts of the application.

ValueFactoryBase Class

Just as they provide concrete C++ valuetype classes, applications must also provide
factories for those concrete classes. The base of all value factory classes is the C++
CORBA: : Val ueFact or yBase class:

Il C++
nanespace CORBA {
cl ass Val ueFact or yBase;
typedef Val ueFact oryBase* Val ueFactory;

cl ass Val ueFact or yBase
{
publi c:
virtual ~Val ueFact oryBase();

virtual void _add_ref();
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virtual void renmove ref();
static Val ueFactory _downcast(Val ueFactory vf);

pr ot ect ed:
Val ueFact or yBase() ;

private:
virtual Val ueBase* create for_unmarshal () = 0;

b

11
}
The C++ mapping for the IDL CORBA::ValueFactory native type is a pointer to a
Val ueFact or yBase class, as shown above. Applications derive concrete factory
classes from Val ueFact or yBase, and register instances of those factory classes
with the ORB viathe ORB: : r egi st er _val ue_f act ory function. If afactory is

registered for a given value type and no previous factory was registered for that type,
ther egi st er _val ue_f act ory function returns a null pointer.

When unmarshaling value instances, the ORB needs to be able to call up to the
application to ask it to create those instances. Value instances are normally created via
their type-specific value factories (see Section 1.17.10, “Valuetype Factories,” on
page 1-86) so as to preserve any invariants they might have for their state. However,
creation for unmarshaling is different because the ORB has no knowledge of
application-specific factories, and in fact in most cases may not even have the
necessary arguments to provide to the type-specific factories.

To alow the ORB to create value instances required during unmarshaling, the

Val ueFact or yBase class provides the cr eat e_f or _unmar shal pure virtua
function. The function is private so that only the ORB, through implementation-
specific means (e.g., viaafriend class), can invoke it. Applications are not expected to
invoke the cr eat e_f or _unmar shal function. Derived classes shall override the
create_for_unmarshal functionand shall implement it such that it creates a new
value instance and returns a pointer to it. The caller assumes ownership of the returned
instance and shall ensure that _r enove_r ef is eventually invoked on it. Since the
create_for_unmarshal function returnsa pointer to Val ueBase, the caller may
use the downcasting functions supplied by value types to downcast the pointer back to
a pointer to a derived value type.

Once the ORB has created a value instance viathe cr eat e_f or _unnmar shal
function, it can use the value data member modifier functions to set the state of the
new value instance from the unmarshaled data. How the ORB accesses the protected
value data member modifiers of the value is implementation-specific and does not
affect application portability.

The Val ueFact or yBase uses reference counting to prevent itself from being
destroyed while still in use by the application. A Val ueFact or yBase initialy hasa
reference count of one. Invoking _add_r ef onaVal ueFact or yBase increases its
reference count by one. Invoking _renove_ref onaVal ueFact or yBase
decrements its reference count by one, and if the resulting reference count equals zero,
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_remove_ref invokes del et e onitst hi s pointer in order to destroy the factory.
For ORBs that operate in multi-threaded environments, the implementations of

Val ueFact oryBase: : _add_ref and Val ueFact oryBase: : _renove_r ef
are thread-safe.

When a valuetype factory is registered with the ORB, the ORB invokes _add_r ef
once on the factory before returning from register_value_factory. When the ORB is
done using that factory, the reference count is decremented once. This can occur in any
of the following circumstances:

® |f the factory is explicitly unregistered via unregister_value_factory the ORB
invokes _r enmove_r ef once on the factory.

® |f the factory is implicitly unregistered due to ORB::shutdown, the ORB is
responsible for invoking _r enove_r ef once on each registered factory.

® |f the factory is replaced with a new invocation of register_value_factory, the
previously registered factory is returned to the caller who assumes ownership of one
reference to that factory. When the caller is done with the factory, it invokes
_renove_r ef once on that factory.

The caller of lookup_value_factory assumes ownership of one reference to the
factory. When the caller is done with the factory, it invokes _r enove_r ef once on
that factory.

The _downcast function on the factory allows the return type of the

ORB: : | ookup_val ue_fact ory function to be downcast to a pointer to a type-
specific factory (see Section 1.17.10, “Valuetype Factories,” on page 1-86). It is
important to note that the return value of the factory _downcast does not become the
memory management responsibility of the caller, and thus_r enove_r ef isnot called
on it.

ValueFactoryBase var Class

For the convenience of automatically managing valuetype factory reference counts, the
CORBA namespace provides the Val ueFact or yBase_var class. This class behaves
similarly to the Por t abl eSer ver : : Ser vant Base_var classfor servant memory
management (see Section 1.37.4, “ ServantBase var Class,” on page 1-137).

Il C++
namespace CORBA

{

cl ass Val ueFact oryBase_var

{
publi c:
Val ueFact oryBase _var() : _ptr(0) {}
Val ueFact oryBase_var ( Val ueFact or yBase* p)

_ptr(p) {}

Val ueFact oryBase_var (const Val ueFact oryBase var & b)
_ptr(b. _ptr)
{

if (_ptr '=0) _ptr->_add ref();
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}
~Val ueFact oryBase_var ()
{
if (_ptr '=0) _ptr->renove ref();
}

Val ueFact oryBase_var &
oper at or =( Val ueFact or yBase* p)
{
if (_ptr '=0) _ptr->renove ref();
_btr = p;
return *this;
}

Val ueFact oryBase_var &
oper at or =(const Val ueFact oryBase_var & b)

{
if (_ptr !'=b. _ptr) {
if (_ptr '=0) _ptr->renove ref();
if ((_ptr = b. _ptr) 1= 0)
_ptr->_add _ref();
}
return *this;
}

Val ueFact oryBase* operator->() const {return _ptr;}
Val ueFact oryBase* in() const { return ptr; }

Val ueFact oryBase*& inout() { return _ptr; }

Val ueFact or yBase* & out ()

{
if (_ptr '=0) _ptr->renove ref();
_ptr =0;
return _ptr;

}

Val ueFact oryBase* _retn()

{
Val ueFact oryBase* retval = _ptr;
_ptr =0;
return retval;

}

private:

Val ueFact oryBase* ptr;
s
11
}

The implementation shown above for the Val ueFact or yBase_var isintended only
as an example that conveys required semantics. Variations of this implementation are

conforming as long as they provide the same semantics as the implementation shown

here.
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1.17.10.3 Type-Specific Value Factories

All valuetypes that have initializer operations declared for them also have type-specific
C++ value factory classes generated for them. For a valuetype A, the name of the
factory class, which is generated at the same scope as the value class, shall be

A _init.Eachinitializer operation maps to a pure virtual function in the factory class,
and each of these initializers defined in IDL is mapped to an initializer function of the
same name. Base valuetype initializers are not inherited, and so do not appear in the
factory class. The initializer parameters are mapped using normal C++ parameter
passing rules for i n parameters. The return type of each initializer function is a pointer
to the created valuetype.

For example, consider the following valuetype:

/I IDL
valuetype V {
factory create_bool(boolean b);
factory create_(char c);
factory create_(octet 0);
factory create_(short s, string p);

|3
The factory class for the example given above will be generated as follows:
[l C++
class V_init : public Val ueFactoryBase {
publi c:

virtual ~V_init();

virtual WV*
creat e_bool (Bool ean val) = 0;

virtual V* create_char(Char val) =0;
virtual V* create_octet(Cctet val)=0;
virtual V* create_other(Short s, const char* p) = O;

static V_init* _downcast(Val ueFactory vf);

pr ot ect ed:
V_init();
H

Each generated factory class has a public virtual destructor, a protected default
constructor, and a public _downcast function allowing downcasting from a pointer to
the base Val ueFact or yBase class. Each also supplies a public pure virtual

cr eat e function corresponding to each initializer. Applications derive concrete
factory classes from these classes and register them with the ORB. Note that since each
generated value factory derives from the base Val ueFact or yBase, al derived
concrete factory classes shall also override the private pure virtual

creat e_for_unmar shal function inherited from Val ueFact or yBase.
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For valuetypes that have no operations or initiaizers, a concrete type-specific factory

class is generated whose implementation of the cr eat e_f or _unnmar shal function
simply constructs an instance of the OBV_ class for the valuetype using new and the

default constructor. The constructor for a concrete factory is public, not protected.

For valuetypes that have operations, but no initializers, there are no type-specific
abstract factory classes, but applications must still supply concrete factory classes.
These classes, which are derived directly fromVal ueFact or yBase, need not supply
_downcast functions'*, and only need to override the cr eat e_f or _unmar shal
function.

1.17.10.4 Unmarshaling Issues

When the ORB unmarshals a valuetype for a request handled via C++ static stubs or
skeletons, it tries to find a factory for the valuetype via the
ORB::lookup_value_factory operation. If the factory lookup fails, the client
application receives a CORBA::MARSHAL exception. Thus, applications utilizing
static stubs or skeletons must ensure that a valuetype factory is registered for every
valuetype it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the DIl or DSI are not expected to
have compile-time information for all the valuetypes they might receive. For these
applications, valuetype instances are represented as CORBA: : Any, and so value
factories are not required to be registered with the ORB to allow such valuetypes to be
unmarshaled. However, value factories must be registered with the ORB and available
for lookup if the application attempts extraction of the valuetypes via the statically-
typed Any extraction functions. See “Extraction from any” on page 1-57 for more
details.

1.17.11 Custom Marshaling

The C++ mappings for the IDL CORBA::CustomerMarshal,
CORBA::DataOutputStream, and CORBA::DatalnputStream types follow
normal C++ valuetype mapping rules.

1.17.12 Another Valuetype Example

/I IDL

valuetype Node {
public long data;
public Node next;
void print();

14. Since the factory class hierarchy hasvirtual functionsin it, a C++ dynamic_cast can
aways be used to traverse the factory inheritance hierarchy, but it is not portable since all
C++ compilers do not yet support it.
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Node change(in Node inval,
inout Node ioval,
out Node outval);

|3
Il C++
cl ass Node : public virtual Val ueBase
{
publi c:
virtual Long data() const = O;
virtual void data(Long) =
virtual Node* next() const = 0;
virtual void next(Node*) = 0;
virtual void print() = 0;
virtual Node* change(Node* inval
Node* & i oval
Node_out outval) = 0;
static Node* _downcast (Val ueBase*);
pr ot ect ed:
Node() ;
virtual ~Node();
private:
/1 private and uni npl enent ed
voi d operator=(const Nodeg&)
b
cl ass OBV_Node : public virtual Node
{
publi c:
virtual Long data() const;
virtual void data(Long);
virtual Node* next() const;
virtual void next(Node*);
pr ot ect ed:
OBV_Node() ;
OBV_Node(Long data_init, Node* next_init);
virtual ~OBV_Node();
private:
/1 private and uni npl enent ed
voi d operat or=(const OBV_Node&)
b
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1.17.13 Valuetype Members of Structs

As described in Section 1.9, “Mapping for Structured Types,” on page 1-21, struct
members are required to be self-managing. This results in the need for manager types
for both strings and object references. Since valuetypes are handled by pointer, similar
to the way strings and object references are handled, they too require manager types to
represent them when they are used as struct members.

The valuetype instance manager types have semantics similar to that of the manager
types for object references:

® Any assignment to a managed valuetype member causes that member to decrement
the reference count of the valuetype it is managing, if any.

® A valuetype pointer assigned to a managed valuetype member is adopted by the
member.

® A valuetype var assigned to a managed valuetype member results in the reference
count of the instance being incremented. The _var types and valuetype member
manager types follow the same rules for widening assignment that those for object
references do.

® |f the constructed type holding the managed valuetype member is assigned to
another constructed type (for example, an instance of a struct with a valuetype
member is assigned to another instance of the same struct), the reference count of
the managed valuetype instance in the struct on the right-hand side of the
assignment is incremented, while the reference count of the managed instance on
the left-hand side is decremented. As usual in C++, assignment to self must be
guarded against to avoid any mishandling of the reference count.

®* When it is destroyed, the managed valuetype member decrements the reference
count of the managed valuetype instance.

The semantics of valuetype managers described here provide for sharing of valuetype
instances across constructed types by default. Each C++ valuetype also provides an
explicit copy function that can be used to avoid sharing when desired.

1.18 Mapping for Abstract Interfaces

June 2003

The C++ mapping for abstract interfaces is ailmost identical to the mapping for regular
interfaces. Rather than defining a complete C++ mapping for abstract interfaces, which
would only duplicate much of the specification of the mapping for regular interfaces
found in Section 1.3, “Mapping for Interfaces,” on page 1-6, only the ways in which
the abstract interface mapping differs from the regular interface mapping are described
here.

1.18.1 Abstract Interface Base

C++ classes for abstract interfaces are not derived from the CORBA: : Cbj ect C++
class. In IDL, abstract interfaces have no common base. However, to facilitate
narrowing from an abstract interface base class down to derived abstract interfaces,
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derived interfaces, and derived valuetype types, al abstract interface base classes that
have no other base abstract interfaces derive directly from CORBA: : Abst r act Base.
This base class provides the following:

® A protected default constructor.

® A protected copy constructor.

® A protected pure virtual destructor.

® A public static _dupl i cat e function.
® A public static _nar r ow function.

® A public static_ni | function.

The Abst r act Base class is shown below:

Il C++
cl ass Abstract Base;
typedef ... AbstractBase ptr;// either pointer or class

cl ass AbstractBase {
publi c:
static AbstractBase ptr _duplicate(AbstractBase ptr);
static AbstractBase ptr _narrow( AbstractBase _ptr);
static AbstractBase ptr _nil();

oj ect_ptr _to_object();
Val ueBase* _to_val ue();

pr ot ect ed:
Abst ract Base() ;
Abstract Base(const AbstractBase& val);
virtual ~AbstractBase() = O;

b

The _dupl i cat e function operates polymorphically over both object references and
valuetype types. If an Abst r act Base_pt r that actually refersto an object reference
is passed to the _dupl i cat e function, the object reference is duplicated and a
duplicate object reference is returned. Otherwise, the argument refers to a valuetype
instance, so the _add_r ef function is called on the valuetype and the argument is
returned. If the argument is a nil Abstract Base_pt r, the return value is nil.

The implementation of Abst ract Base: : _nar r ow merely passes its argument to
_dupl i cat e and uses the value it returns as its own return value. Strictly speaking,
the nar r owfunction is not needed in the Abst r act Base interface because it is of
little use to narrow an Abst r act Base to its own type, but it is required by all
conforming implementations to make writing C++ templates that deal with abstract
interfaces easier (Abst r act Base does not present a special case).

Aswith regular object references, the _ni | function returns atyped Abst r act Base
nil reference.
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Boththei s_ni | andr el ease functionsin the CORBA namespace are overloaded to
handle abstract interface references:

Il C++

nanespace CORBA {
Bool ean is_nil (AbstractBase _ptr);
voi d rel ease(AbstractBase_ptr);

}

These behave the same as their object reference counterparts. Note that r el ease is
expected to operate polymorphically over both valuetype types and object reference
types. If its argument is nil, it does nothing. If its argument refers to a valuetype
instance, it invokes _r enove_r ef on that instance. Otherwise, its argument refers to
an object reference, on which it invokes CORBA: : r el ease for object references.

If the concrete type of an abstract interface instance is a normal object reference, the
_to_obj ect function returns a reference to that object, otherwise it returns a nil
reference. If the concrete type is a valuetype, _t o_val ue returns a pointer to that
valuetype, otherwise it returns a null pointer. The caller of _t o_obj ect or
_to_val ue isresponsible for properly releasing the returned reference or pointer.

1.18.2 Client Sde Mapping

The client side mapping for abstract interfaces is aimost identical to the mapping for
object references, except:

® C++ classes for abstract interfaces derive from CORBA: : Abst r act Base, not
CORBA: : Obj ect .

® Because abstract interface classes can serve as base classes for application-supplied
concrete valuetype classes, they shall provide a protected default constructor, a
protected copy constructor, and a protected destructor (which is virtual by virtue of
inheritance from Abst r act Base).

®* The mapping for object reference classes does not specify the type of inheritance
used for base object reference classes. However, because abstract interfaces can
serve as base classes for application-supplied concrete valuetype classes, which
themselves can be derived from regular interface classes, abstract interface classes
shall always be inherited as public virtual base classes.

®* Normal Any insertion and extraction operators are generated for abstract interfaces.
The Any: :to_obj ect, Any::to_abstract base and Any: :to_val ue
types can be used to extract the contents of an Any as a generic object reference,
abstract object reference, or valuetype respectively.

Other than that, the mapping for abstract interfaces is identical to that for regular

interfaces, including the provision of _var types, out types, manager types for
struct, sequence, and array members, identical memory management, and identical
C++ signatures for operations.
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Comment:

Both interfaces that are derived from one or more abstract interfaces, and valuetypes
that support one or more abstract interfaces support implicit widening to the _ptr
type for each abstract interface base class. Specifically, the T* for valuetype T and the
T_ptr type for interface type T support implicit widening to the Base_pt r type for
abstract interface type Base. The only exception to thisrule is for valuetypes that

I ssue 3080

only support an abstract interface indirectly via support for aregular interface type (see
Section 1.17.9, “Valuetype Inheritance,” on page 1-84). In this case, it is the object
reference for the valuetype, not the pointer to the valuetype, that supports widening to
the abstract interface base. If a valuetype supports an abstract interface directly (or
inherits that support via derivation from another valuetype) and at the same time
supports a normal interface that inherits from the same abstract interface, then either
the valuetype pointer or the object reference may be widened to the abstract interface.

1.19 Mapping for Exception Types

1-96

Comment:

An OMG IDL exception is mapped to a C++ class that derives from the standard
User Except i on class defined in the CORBA module (see Section 1.1.4, “CORBA
Module,” on page 1-5). The generated class is like a variable-length struct, regardless
of whether or not the exception holds any variable-length members. Just as for
variable-length structs, each exception member must be self-managing with respect to
its storage. String and wide string exception members must be initialized to the empty
string ("" and L" ", respectively) by the default constructor for the exception.

The copy constructor, assignment operator, and destructor automatically copy or free
the storage associated with the exception. For convenience, the mapping also defines a
constructor with one parameter for each exception member—this constructor initializes
the exception members to the given values. For exception types that have a string
member, this constructor should take a const char * parameter, since the
constructor must copy the string argument. Similarly, constructors for exception types
that have an object reference member must call _dupl i cat e on the corresponding
object reference constructor parameter. The default constructor performs no explicit
member initialization.

/] C++
cl ass Exception
{

publi c:

virtual ~Exception();

virtual void raise() const = 0;
virtual const char * _nane() const;
virtual const char * _rep_id() const;

| ssue 2897

pr ot ect ed:
Exception();
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Excepti on(const Exception &);
Excepti on &operator=(const Exception &);

b

The Except i on base classis abstract and may not be instantiated except as part of an
instance of a derived class. It supplies one pure virtual function to the exception
hierarchy: the _rai se() function. This function can be used to tell an exception
instance to t hr ow itself so that a cat ch clause can catch it by a more derived type.
Each class derived from Excepti on implements _r ai se() asfollows:

Il C++
voi d SonmeDerivedException:: _raise() const

{
}

For environments that do not support exception handling, please refer to
Section 1.43.2, “Without Exception Handling,” on page 1-170 for information about
the raise() function.

throw *this;

Comment: I ssue 3381

The _nane() function returns the unqualified (unscoped) name of the exception. The
_rep_id() function returns the repository 1D of the exception. The return value from
_name() and _rep_id() must not be deallocated.

The User Except i on class is derived from a base Except i on class, which is also
defined in the CORBA module.

All standard exceptions are derived from a Syst enExcept i on class, also defined in
the CORBA module. Like User Except i on, Syst enExcept i on is derived from
the base Except i on class. The Syst enExcept i on class interface is shown below.

Il C++

enum Conpl etionStatus {
COVPLETED _VYES,
COVPLETED_NO,
COVPLETED_MAYBE

b

cl ass SystenkException : public Exception
{

Comment: | ssue 2897

publi c:
~Syst enException();

ULong mi nor () const;
voi d m nor (ULong);
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virtual void _raise() const = 0;

Conpl eti onSt at us conpl eted() const;
voi d conpl et ed( Conpl eti onSt at us) ;
pr ot ect ed:
Syst enException();
Syst enExcepti on(const SystenException &);
Syst enExcepti on(ULong minor, Conpl etionStatus status);
Syst enExcepti on &oper at or=(const SystenException &) ;

b

The default constructor for Syst enExcept i on causes m nor () to return 0 and
compl et ed() to return COVPLETED_NO.

Each specific system exception is derived from Syst emExcept i on:

Il C++

cl ass UNKNOMN : public SystenkException { ... };
cl ass BAD PARAM : public SystenException { ... };
/1l etc.

All specific system exceptions are defined within the CORBA module.

This exception hierarchy alows any exception to be caught by simply catching the
Excepti on type:

/] C++
try {

} catch (const Exception &exc) {

}

Alternatively, all user exceptions can be caught by catching the User Except i on
type, and all system exceptions can be caught by catching the Syst enExcepti on

type:

/[l C++
try {

} catch (const UserException &ue) {

} catch (const SystenkException &se) {

}

Naturally, more specific types can also appear in cat ch clauses.

Exceptions are normally thrown by value and caught by reference. This approach lets
the exception destructor release storage automatically.

The Except i on class provides for downcasting within the exception hierarchy:
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Il C++
cl ass User Exception : public Exception
{

publi c:

static UserException *_downcast (Exception *);
static const UserException *_ downcast (
const Exception *

)
virtual void raise() const = 0;
/1
s
cl ass SystenkException : public Exception
{
publi c:
static SystenException *_downcast (Exception *);
static const SystenkException *_downcast (
const Exception *
)
virtual void _raise() const = 0;
/1
s

Each exception class supports an overloaded static member function named
_downcast . The parameter to the _downcast callsis a pointer to aconst or non-
const instance of the base class Except i on. If the parameter is a null pointer, the
return type of _downcast isanull pointer. If the actual (run time) type of the
parameter exception can be widened to the requested exception’s type, then
_downcast will return a valid pointer to the parameter Except i on. Otherwise,
_downcast will return anull pointer. The version of _downcast overloaded to take
apointer to aconst Excepti on returns a pointer to const in order to preserve
const -correctness.

Unlike the _nar r ow operation on object references, the _downcast operation on
exceptions is equivalent to the C++ dynami c¢_cast operator in that it returns a
suitably-typed pointer to the same exception parameter, not a pointer to a new
exception. If the original exception goes out of scope or is otherwise destroyed, the
pointer returned by _downcast is no longer valid. The semantics for _downcast
are thus the same as for valuetype as described in Section 1.17.3, “Valuetype
Operations,” on page 1-70.

For application portability, conforming C++ mapping implementations built using C++
compilers that support the standard C++ Run Time Type Information (RTTI)
mechanisms still need to support downcasting for the Except i on hierarchy. RTTI
supports, among other things, determination of the run-time type of a C++ object. In
particular, the dynami c¢_cast <T*> operator'® allows for downcasting from a base
pointer to a more derived pointer if the object pointed to really is of the more derived
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type. This operator is not useful for narrowing object references, since it cannot
determine the actual type of remote objects, but it can be used by the C++ mapping
implementation to downcast within the exception hierarchy.

Previous versions of this mapping provided support for downcasting via a static
member function called _nar r ow which had exactly the same semantics as
_downcast . Due to confusion over memory management differences between object
reference _nar r ow functions and exception _nar r ow functions, the exception

_nar r ow function is now deprecated in favor of _downcast . Portable applications
shall use _downcast for exception downcasting, not _nar r ow. ORB
implementations that provide _nar r ow functions for exceptions for purposes of
backwards compatibility shall provide overloaded _nar r ow functions for both const
and non-const Excepti on*, same asfor _downcast .

1.19.1 ostream Inserters

Conforming implementations shall provide ostream inserters with the following
signatures:

Il C++
ostreanm& operat or<<(ostream & const CORBA:: Exception &);
ostreanm& operat or<<(ostream & const CORBA:: Exception *);

These inserters print information about an exception on an ost r eam The format and
amount of detail of the printed information is implementation dependent. To guarantee
that applications can control formatting of exceptions by providing custom overloaded
inserters for more derived exception types, a conforming implementation must never
provide overloaded inserters for Syst enExcepti on, User Excepti on or other
more derived exception types.

1.19.2 UnknownUser Exception

Request invocations made through the DIl may result in user-defined exceptions that
cannot be fully represented in the calling program because the specific exception type
was not known at compile-time. The mapping provides the

UnknownUser Except i on so that such exceptions can be represented in the calling
process:

/] C++
cl ass UnknownUser Exception : public UserException

{
publi c:
Any &exception();
s

15.1tisunlikely that a compiler would support RTTI without supporting exceptions, since much
of a C++ exception handling implementation is based on RTTI mechanisms.
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As shown here, UnknownUser Except i on is derived from User Except i on. It
provides the except i on() accessor that returns an Any holding the actual
exception. Ownership of the returned Any is maintained by the

UnknownUser Except i on—the Any merely allows access to the exception data.
Conforming applications should never explicitly throw exceptions of type
UnknownUser Except i on—it is intended for use with the DII.

1.19.3 Any Insertion and Extraction for Exceptions

Conforming implementations shall generate Any insertion and extraction operators
(oper at or <<= and oper at or >>=, respectively) that allow all system and user
exceptions to be correctly inserted into and extracted from Any. Both copying and non-
copying forms of the Any insertion operator shall be provided for all system and user
exceptions.

In addition, conforming mapping implementations must support Any insertion (but not
extraction) for CORBA: : Excepti on. Thisisrequired to allow DSI-based
applications to catch exceptions as CORBA: : Except i on& and store them into a
Ser ver Request :

Il C++

try {
/1

} catch (Exception& exc) {
Any any;
any <<= exc;
server _request->set_exception(any);

}

Note that this shall result in both the TypeCode and value for the actual derived
exception type being stored into the Any. Both copying and non-copying forms of Any
insertion for CORBA: : Except i on shall be provided:

Il C++
voi d operator<<=(Any& const Exceptiong&);
voi d operator<<=(Any& const Exception*);

For applications using the DIl or portable interceptors, it is useful to be able to extract
system exceptions generically. The mapping provides the following operator to do this:

Il C++
Bool ean operat or>>=(const SystenExcepti on*& se) const;

The operator returnstrue if the Any on which it is invoked contains a system exception
and the ORB has static type information for the actual system exception contained in
the Any. In that case, se points at the base part of the actual exception after the
operator returns. If the ORB does not have static type information for the system
exception, the operator returns true and se points at an instance of
CORBA::UNKNOWN. Otherwise, the operator returns false and the value of se is
unchanged.

C++ Mapping: Mapping for Exception Types 1-101



1

1.20 Maypping For Operationsand Attributes

Comment:

Comment:

An operation maps to a C++ function with the same name as the operation. Each read-
write attribute maps to a pair of overloaded C++ functions (both with the same name),
one to set the attribute’s value and one to get the attribute’s value. The set function
takes an in parameter with the same type as the attribute, while the get function takes
no parameters and returns the same type as the attribute. An attribute marked
“readonly” maps to only one C++ function, to get the attribute’s value. Parameters and
return types for attribute functions obey the same parameter passing rules as for regular
operations.

OMG IDL oneway operations are mapped the same as other operations; that is, there
is no way to know by looking at the C++ whether an operation is oneway or not.

| ssue 4265

Operation and attribute signatures do not have exception specifications.

/I IDL

interface A

{
void f();
oneway void g();
attribute long x;

b

!/l C++

A var a;

a->f();

a->g();

Long n = a->x();
a->x(n + 1);

| ssue 4243

C++ operations do not require an additional Envi r onnment parameter for passing
exception information—real C++ exceptions are used for this purpose. See
Section 1.19, “Mapping for Exception Types,” on page 1-96 for more details.

1.21 Implicit Argumentsto Operations

1-102

If an operation in an OMG IDL specification has a context specification, then a

Cont ext _ptr input parameter (see Section 1.31, “Context,” on page 1-121) follows
all operation-specific arguments. In an implementation that does not support real C++
exceptions, an output Envi r onnment parameter is the last argument following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode for Envi r onment is described in Section 1.43.2, “Without
Exception Handling,” on page 1-170.
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The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references, the
modes are straightforward, passing the type P for primitives and enumerations and the
type A _ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
is alocated and deallocated. Mapping i n parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and inout
parameters is more problematic. For variable-length types, the callee must allocate
some if not al of the storage. For fixed-length types, such as a Point type represented
as a struct containing three floating point members, caller allocation is preferable (to
allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mapping
isT& for afixed-length aggregate T and T* & for a variable-length T. This approach has
the unfortunate consequence that usage for structs depends on whether the struct is
fixed- or variable-length; however, the mapping is consistently T_var & if the caller
uses the managed type T_var.

The mapping for out and inout parameters additionally requires support for
deallocating any previous variable-length data in the parameter when aT_var is
passed. Even though their initial values are not sent to the operation, we include out
parameters because the parameter could contain the result from a previous call. There
are many ways to implement this support. The mapping does not require a specific
implementation, but a compliant implementation must free the inaccessible storage
associated with a parameter passed asa T_var managed type. The provision of the
T_out typesisintended to give implementations the hooks necessary to free the
inaccessible storage while converting from the T_var types. The following examples
demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
void f(out S p);

Il C++
S var s;

f(s);
/'l use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out

f(sp);
/1 use sp
del ete sp; // cannot assune next call will free old val ue

f(sp);

Note that implicit deallocation of previous values for out and inout parameters works
only with T_var types, not with other types:
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/I IDL

void g(out string s);

Il C++

char *s;

for (int i =0; i < 10; i++)

q(s); // nmenory | eak!

Each call to the g function in the loop results in a memory leak because the caller is
not invoking st ri ng_f r ee on the out result. There are two ways to fix this, as
shown below:

Il C++

char *s;

String_var svar;

for (int i =0 ; i < 10; i++) {
a(s);
string_free(s);// explicit deallocation
/[l OR

g(svar); // inplicit deallocation

}

Using a plain char * for the out parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
using a St ri ng_var means that any deallocation is performed implicitly upon each
use of the variable as an out parameter.

If strings or wide strings are passed as inout parameters, the callee may modify the
contents of the string or wide string in place. However, if the new string or wide string
is longer than the initial string or wide string, reallocation becomes necessary. For a
new string or wide string that is shorter than the original string or wide string,
reallocation may also be used to conserve memory. However, shortening the string or
wide string by replacing a character that is part of the initial string or wide string with
the appropriate NUL character is also legal.

For inout object references, reallocation is necessary whenever the callee needs to
change the initial value of the reference. The example below illustrates this.

For in valuetypes, the callee shall receive a copy of each valuetype argument passed to
it even if the caller and callee are collocated in the same process. The caleeis alowed
to invoke operations and modifier functions that modify the state of the valuetype
instance, but the state of the caller’s copy of that valuetype instance shall not be
affected by the calleg s state changes. Thisisrequired to preserve location transparency
for interface operations.

For inout valuetypes, the callee may either modify the incoming valuetype instance, or
may replace the incoming pointer with a pointer to a different valuetype instance. The
callee shall invoke _r enmove_r ef on the valuetype instance passed in before
replacing it with a valuetype instance to be passed back out. The caller shall eventually
invoke renove_r ef on the vauetype instance it receives back as either an inout,
out, or return value.
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The example below illustrates the replacement of inout arguments. For the operation f,
sl isaninout string that is modified in place and whose length is not changed by the
calleg, s2 isan inout string that is grown by the callee, obj is an inout object
reference that is changed by the callee, vall is an inout valuetype that is changed in
place by the callee, and val2 is an inout valuetype that is replaced by the callee. The
example code useslocal T_var variables to ensure automatic deallocation, but explicit
callsto CORBA: : string_free and CORBA: : r el ease could have been used
instead.

// IDL
valuetype V { public long state; };
interface A {
void f(inout string s1, inout string s2, inout A obj,
inout V vall, inout V val2);

b

Il C++

void Ainpl::f(char *&s1l, char *&s2, A ptr &obj,
V *&val 1, V *&val 2)

{

/1 Convert sl to uppercase in place
while (*s1 !=\0") to upper(*sl++);

/1l Return a different string value for s2
String var s2_tnp = s2;
s2 = string_dup("new s2");

/1 Assign new val ue to obj
A ptr newobj = ...

A var obj _tnp = obj;

obj = A:: _duplicate(newbj);

/1 Change value of vall in place
if (vall !'= 0) val 1->state(42);

/1l Replace val2 entirely

CORBA: : renmove_ref(val 2);

val 2 = new WVI npl (1234);
}

For parameters that are passed or returned as a pointer (T*) or reference to pointer
(T* &), except for valuetypes, a compliant program is not allowed to pass or return a
null pointer; the result of doing so is undefined. In particular, a caller may not pass a
null pointer under any of the following circumstances:

* in and inout string

 in and inout array (pointer to first element)

A caller may pass a reference to a pointer with a null value for out parameters,
however, since the callee does not examine the value but rather just overwrites it.
Furthermore, conforming applications may also pass and return null pointers for all
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valuetype parameters and return types, and may embed null valuetype pointers within
constructed types that are passed as parameters or return values, such as structs,
unions, arrays, sequences, Any, and other valuetypes. A callee may not return a null
pointer under any of the following circumstances:

» out and return variable-length struct

» out and return variable-length union

» out and return string

 out and return sequence

» out and return variable-length array, return fixed-length array
» out and return any

Since OMG IDL has no concept of pointers in general or null pointersin particular,
except for valuetypes, allowing the passage of null pointers to or from an operation
would project C++ semantics onto OMG IDL operations.2® A compliant
implementation is allowed but not required to raise a BAD_PARAM exception if it
detects such an error.

1.22.1 Operation Parameters and Sgnatures

Table 1-3 displays the mapping for the basic OMG IDL parameter passing modes and
return type according to the type being passed or returned, while Table 1-4 on

page 1-107 displays the same information for T_var types. “T_var Argument and
Result Passing” is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter passing
modes shown in “Basic Argument and Result Passing”, with the exception that the
T_out types will be used as the actual parameter types for all out parameters. It is
also expected that T_var types will support the necessary conversion operators to
allow them to be passed directly. Callers should always pass instances of either T_var
types or the base types shown in “Basic Argument and Result Passing”, and callees
should treat their T_out parameters as if they were actually the corresponding
underlying types shown in Table 1-3.

In Table 1-3, fixed-length arrays are the only case where the type of an out parameter
differs from a return value, which is necessary because C++ does not alow a function
to return an array. The mapping returns a pointer to a slice of the array, where a dlice
is an array with all the dimensions of the original specified except the first one.

A caller is responsible for providing storage for all arguments passed as in arguments.

Table1-3 Basic Argument and Result Passing

Data Type In Inout Out Return
short Short Short& Short& Short
long Long Long& Long& Long

16.When real C++ exceptions are not available, however, it isimportant that null pointers are
returned whenever an Envi r onment containing an exception is returned; see
Section 1.43.2, “Without Exception Handling,” on pag e1-170 for more details.
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Table1-3 Basic Argument and Result Passing (Continued)

Data Type In I nout Out Return
long long LongLong LongLong& LongLong& LongLong
unsigned short UShort UShort& UShort& UShort
unsigned long ULong ULong& ULong& ULong
unsigned long long ULongLong ULongLong& ULongLong& ULongLong
float Float Float& Float& Float
double Double Double& Double& Double
long double LongDouble LongDouble& LongDouble& LongDouble
boolean Boolean Boolean& Boolean& Boolean
char Char Char& Char& Char
wchar WChar WChar& WChar& WChar
octet Octet Octet& Octet& Octet
enum enum enumé& enumé& enum
object reference ptrt objref_ptr objref_ptr& objref_ptr& objref_ptr
struct, fixed const struct& struct& struct& struct
struct, variable const struct& struct& struct*& struct*
union, fixed const union& union& union& union
union, variable const union& union& union*& union*
string const char* char*& char*& char*
wstring const WChar* WChar*& WChar*& WChar*
sequence const sequence& | sequence& sequence*& sequence*
array, fixed const array array array array slice*?
array, variable const array array array slice*&? array slice*?
any const any& any& any*& any*
fixed const fixed& fixed& fixed& fixed
valuetype® valuetype* valuetype*& valuetype*& valuetype*

1. Including pseudo-object references.

2. Aslice is an array with all the dimensions of the original except the first one.

3. Including value boxes.

Table1-4 T_var Argument and Result Passing’

Data Type In I nout Out Return
object reference var? const objref_var& objref_var& objref_var& objref_var
struct_var const struct_var& struct_var& struct_var& struct_var
union_var const union_var& union_varé& union_var& union_var
string_var const string_var& string_var& string_var& string_var

sequence_var

const sequence_var&

sequence_var&

sequence_var&

sequence_var

array_var

const array_var&

array_var&

array_var&

array_var

any_var

const any_var&

any_var&

any_var&

any_var

valuetype_var®

const valuetype_var&

valuetype_var&

valuetype_var&

valuetype_var
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1. Fixed types have no corresponding_var type and are therefore not shown in this table.
2. Including pseudo-object references.
3. Including value boxes.

“Caller Argument Storage Responsibilities’ on page 1-108 and “Argument Passing
Cases’ on page 1-109 describe the caller’s responsibility for storage associated with
inout and out parameters and for return results.

Table1-5 Caller Argument Storage Responsibilities

Inout Out Return
Type Param Param Result
short 1 1 1
long 1 1 1
long long 1 1 1
unsigned short 1 1 1
unsigned long 1 1 1
unsigned long long 1 1 1
float 1 1 1
double 1 1 1
long double 1 1 1
boolean 1 1 1
char 1 1 1
wchar 1 1 1
octet 1 1 1
enum 1 1 1
object reference ptr 2 2 2
struct, fixed 1 1 1
struct, variable 1 3 3
union, fixed 1 1 1
union, variable 1 3 3
string 4 3 3
wstring 4 3 3
sequence 5 3 3
array, fixed 1 1 6
array, variable 1 6 6
any 5 3 3
fixed 1 1 1
valuetype 7 7 7
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Table1-6 Argument Passing Cases

Case

1 Caller allocates all necessary storage, except that which may be encapsulated and managed within
the parameter itself. For inout parameters, the caller provides the initial value, and the callee may
change that value. For out parameters, the caller allocates the storage but need not initialize it, and
the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an initial
value; if the callee wants to reassign the inout parameter, it will first call CORBA::release on the
original input value. To continue to use an object reference passed in as an inout, the caller must first
duplicate the reference. The caller is responsible for the release of all out and return object
references. Release of all object references embedded in other structures is performed
automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The callee
sets the pointer to point to a valid instance of the parameter's type. For returns, the callee returns a
similar pointer. The callee is not allowed to return a null pointer in either case. In both cases, the
caller is responsible for releasing the returned storage.To maintain local/remote transparency, the
caller must always release the returned storage, regardless of whether the callee is located in the
same address space as the caller or is located in a different address space.

4 For inout strings, the caller provides storage for both the input string and the char * or wchar *
pointing to it. Since the callee may deallocate the input string and reassign the char * or wchar * to
point to new storage to hold the output value, the caller should allocate the input string using
string_alloc() orwstring_alloc(). The size of the out string is therefore not limited by the
size of the in string. The caller is responsible for deleting the storage for the out using
string_free() orwstring free(). The callee is not allowed to return a null pointer for an
inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
Boolean release parameter with which the sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the callee.
The callee sets the pointer to point to a valid instance of the array. For returns, the callee returns a
similar pointer. The callee is not allowed to return a null pointer in either case. In both cases, the
caller is responsible for releasing the returned storage.To maintain local/remote transparency, the
caller must always release the returned storage, regardless of whether the callee is located in the
same address space as the caller or is located in a different address space.

7 Caller allocates storage for the valuetype instance. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout pointer value to point to a different valuetype
instance, it will first call _remove_ref on the original input valuetype.To continue to use a valuetype
instance passed in as an inout after the invoked operation returns, the caller must first invoke
_add_ref on the valuetype instance. The caller is responsible for invoking _remove_ref on all out and
return valuetype instances. The reduction of reference counts via _remove_ref for all valuetype
instances embedded in other structures is performed automatically by the structures themselves.

1.23 Maypping of Pseudo Objectsto C++

CORBA pseudo objects may be implemented either as normal CORBA objects or as
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:
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1.24 Usage

1.25 Mapping Rules
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* Serverless object types do not inherit from CORBA: : Obj ect
* Individual serverless objects are not registered with any ORB

* Serverless objects do not necessarily follow the same memory management rules
as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects that are
passed as parameters may result in the construction of independent functionally-
identical copies of objects used by receivers of these references. To support this, the
otherwise hidden representational properties (such as data layout) of serverless objects
are made known to the ORB. Specifications for achieving this are not contained in this
chapter. Making serverless objects known to the ORB is an implementation detail.

This section provides a standard mapping algorithm for all pseudo object types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo object
types, and accommodates any pseudo object types that may be proposed in future

| ssue 4243

revisions of CORBA.

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo object types follow the exact
same rules as norma OMG IDL interfaces, with the following exceptions:

» They are prefaced by the keyword pseudo.

« Their declarations may refer to other'’ serverless object types that are not
otherwise necessarily allowed in OMG IDL.

Asexplained in Section 1.23, “Mapping of Pseudo Objectsto C++,” on pagel-109, the
pseudo prefix means that the interface may be implemented in either a normal or
serverless fashion. That is, apply either the rules described in the following sections or
the normal mapping rules described in this chapter.

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA: : Ohj ect ,
and are not necessarily subclasses of any other C++ class. Thus, they do not
necessarily support, for example, the Obj ect : : creat e_r equest operation.

17.In particular, exception used asadatatype and afunction name.
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For each class representing a serverless object type T, overloaded versions of the
following functions are provided in the CORBA namespace:

/[l C++
void rel ease(T _ptr);
Boolean is_nil (T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users,
although subclasses can be provided by implementations. Implementations are allowed
to make assumptions about internal representations and transport formats that may not
apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is due to the fact that
some serverless objects, such as CORBA: : NVLi st , are essentially just containers for
several levels of other serverless objects. Requiring callers to explicitly free the values
returned from accessor functions for the contained serverless objects would be counter
to their intended usage.

All other elements of the mapping are the same. In particular:

1. The types of references to serverless objects, T_pt r, may or may not simply be a
typedef of T*.

2. Each mapped class supports the following static member functions:

Il C++
static T _ptr _duplicate(T_ptr p);
static T ptr _nil();

Legal implementations of _dupl i cat e include simply returning the argument
or constructing references to a new instance. Individual implementations may
provide stronger guarantees about behavior.

1. The corresponding C++ classes may or may not be directly instantiable or have
other instantiation constraints. For portability, users should invoke the appropriate
constructive operations.

2. Aswith normal interfaces, assignment operators are not supported.

3. Although they can transparently employ “copy-style” rather than “reference-style’
mechanics, parameter passing signatures and rules as well as memory management
rules are identical to those for normal objects, unless otherwise noted.

1.26 Relationtothe C PIDL Mapping

June 2003

Comment:
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All serverless abject interfaces and declarations that rely on them have direct analogs
in the C mapping. Differences between the pseudo object specifications for C-PIDL
and C++ PIDL are as follows:
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1.27 Environment

1-112

» C++-PIDL calls for removal of representation dependencies through the use of
interfaces rather than structs and typedefs.

» C++-PIDL callsfor placement of operations on pseudo objects in their interfaces,
including a few cases of redesignated functionality as noted.

e In C++-PIDL, ther el ease performs the role of the associated f r ee and
del et e operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
specification.

Some of the pseudo-interfaces shown in this chapter rely on a user-defined exception
supplied in the CORBA module by ORB implementations. This exception is called
Bounds and is defined as follows:

/I IDL

module CORBA

{
exception Bounds {};
...

5

Note that this exception is not the same as the CORBA::TypeCode::Bounds
exception.

Environment provides a vehicle for dealing with exceptions in those cases where true
exception mechanics are unavailable or undesirable (for example in the DII). They may
be set and inspected using the exception attribute.

Aswith normal OMG IDL attributes, the exception attribute is mapped into a pair of
C++ functions used to set and get the exception. The semantics of the set and get
functions, however, are somewhat different than those for normal OMG IDL attributes.
The set C++ function assumes ownership of the Except i on pointer passed to it.
The Envi r onment will eventually call del et e on this pointer, so the Except i on
it points to must be dynamically allocated by the caler. The get function returns a
pointer to the Except i on, just as an attribute for a variable-length struct would, but
the pointer refers to memory owned by the Envi r onment . Once the Envi r onnent
is destroyed, the pointer is no longer valid. The caller must not call del et e on the
Except i on pointer returned by the get function. The Envi r onnent isresponsible
for deallocating any Except i on it holds when it is itself destroyed. If the

Envi ronment holds no exception, the get function returns a null pointer.

The cl ear () function causes the Envi r onnent to del et e any Exception itis
holding. It is not an error to call ¢l ear () on an Envi r onnent holding no
exception. Passing a null pointer to the set exception function is equivalent to calling
cl ear (). If an Envi ronnent contains exception information, the caler is
responsible for calling cl ear () on it before passing it to an operation.
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1.27.1 Environment Interface

/I IDL
pseudo interface Environment

{

attribute exception exception;
void clear();

1.27.2 Environment C++ Class

/[l C++
cl ass Envi r onnent
{

publi c:

voi d exception(Exception*);
Exception *exception() const;
void clear();

}s

1.27.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
« Defines an interface rather than a struct.

 Supports an attribute allowing operations on exception values as a whole rather
than on major numbers and/or identification strings.

» Supportsacl ear () function that is used to destroy any Except i on the
Envi r onment may be holding.

 Supports a default constructor that initializes it to hold no exception information.

1.27.4 Memory Management

Envi ronnment has the following special memory management rules:

® Thevoid exception(Exception*) member function adopts the
Excepti on* given to it.

® Ownership of the return value of the Excepti on *excepti on() member
function is maintained by the Envi r onnent ; this return value must not be freed

by the caller.
NamedValue
NamedValue is used only as an element of NVList and for return values in the
CORBA::Object::create_request operation. NamedValue maintains an (optional)
name, an any value, and labelling flags. Legal flag values are ARG_IN, ARG_OUT,
and ARG_INOUT.
C++ Mapping: NamedValue 1-113



The value in a NamedValue may be manipulated via standard operations on any.

1.28.1 NamedValue Interface

// IDL

pseudo interface NamedValue

{
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

|3

1.28.2 NamedValue C++ Class

[/l C++
cl ass NanedVal ue
{

publi c:

const char *name() const;
Any *val ue() const;
Fl ags flags() const;

1.28.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
 Defines an interface rather than a struct.
* Provides no analog of the len field.

1.28.4 Memory Management

NanmedVal ue has the following special memory management rules:

® Ownership of the return values of the nane() and val ue() functionsis
maintained by the NamedVal ue; these return values must not be freed by the
caller.

1.29 NVList

NVList isalist of NamedValues. A new NVList is constructed using the
ORB::create_list operation (see Section 1.33, “ORB,” on page 1-124). New
NamedValues may be constructed as part of an NVList, in any of three ways:

® add—creates an unnamed value, initializing only the flags.
e add_item—initializes name and flags.
e add_value—initializes name, value, and flags.

» add_item_consume—initializes name and flags, taking over memory
management responsibilities for the char * name parameter.
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e add_value_consume—initializes name, value, and flags, taking over memory
management responsibilities for both the char * name parameter and the Any*
value parameter. Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item,
add_value, add_item_consume, and add_value_consume functions lengthen

the NVList to hold the new element each time they are called. The item function can
be used to access existing elements.

1.29.1 NVList Interface

// 1DL

pseudo interface NVList

{

b

readonly attribute unsigned long count;
NamedValue add(in Flags flags);

NamedValue add_item(in Identifier item_name, in Flags flags);
NamedValue add_value(

in Identifier item_name,
in any val,
in Flags flags

1.29.2 NVList C++ Class

/[l C++
cl ass NVLi st

{

publi c:

ULong count () const;
NanedVal ue_ptr add(Fl ags);
NanedVal ue_ptr add_itemconst char*,
NanedVal ue_ptr add_val ue(
const char*,

const Anyé&,
Fl ags
)
NanedVal ue_ptr add_item consune(
char*,
Fl ags
)

C++ Mapping: NVList

NamedValue item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

Fl ags) ;
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b

NanmedVal ue_ptr add_val ue_consumng(
char*,
Any *|
Fl ags

)

NanmedVal ue_ptr item ULong);

voi d renmove(ULong);

1.29.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

 Defines an interface rather than a typedef.

* Provides different signatures for operations that add items in order to avoid
representation dependencies.

» Provides indexed access methods.

1.29.4 Memory Management

1.30 Request

1-116

NVLi st has the following special memory management rules:

Ownership of the return values of the add, add_i t em add_val ue,
add_item consune, add_val ue_consune, andi t emfunctionsis maintained
by the NVLi st ; these return values must not be freed by the caller.

The char * parametersto theadd_i t em consune and add_val ue_consune
functions and the Any* parameter to the add_val ue_consune function are
consumed by the NVLi st . The caller may not access these data after they have
been passed to these functions because the NVLi st may copy them and destroy the
originals immediately. The caller should use the NanedVal ue: : val ue()
operation in order to modify the val ue attribute of the underlying NamedVal ue,
if desired.

The r enpve function also calls CORBA: : r el ease on the removed
NanmedVal ue.

Request provides the primary support for DII. A new request on a particular target
object may be constructed using the short version of the request creation operation
shown in Section 1.34, “Object,” on page 1-128:

Il C++
Request _ptr (bject:: request(ldentifier operation);

Arguments and contexts may be added after construction via the corresponding
attributes in the Request interface. Results, output arguments, and exceptions are
similarly obtained after invocation. The following C++ code illustrates usage:
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Il C++

Request _ptr req = anQbj -> request ("an0Op");

*(reqg->argunents()->add(ARG I N) - >val ue()) <<= anArg;

/1

req- >i nvoke();

if (reg->env()->exception() == 0) {
*(reg->result()->value()) >>= aResult;

}

While this example shows the semantics of the attribute-based accessor functions, the
following example shows that it is much easier and preferable to use the equivalent
argument manipulation helper functions:

Il C++
Request _ptr req = anQbj -> request ("an0p");
reg->add _in_arg() <<= anArg;

/1

req- >i nvoke();

if (reg->env()->exception() == 0) {
reqg->return_val ue() >>= aResult;

}

Alternatively, requests can be constructed using one of the long forms of the creation
operation shown in the Object interface in Section 1.34, “Object,” on page 1-128:

/] C++
void Cbject:: create_request(
Context _ptr ctx,
const char *operation,
NVLi st _ptr arg_list,
NanedVal ue_ptr result,
Request _out request,
Fl ags req_fIl ags
)
void Cbject:: create_request(
Context _ptr ctx,
const char *operation,
NVLi st _ptr arg list,
NanedVal ue_ptr result,
ExceptionLi st _ptr,
ContextList _ptr,
Request _out request,
Fl ags req_fl ags

)

Usage is the same as for the short form except that all invocation parameters are
established on construction. Note that the QUT_LI ST_MEMORY and

I N_COPY_VALUE flags can be set as flagsin ther eq_f | ags parameter, but they are
meaningless and thus ignored because argument insertion and extraction are done via
the Any type.
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Request aso allows the application to supply all information necessary for it to be
invoked without requiring the ORB to utilize the Interface Repository. In order to
deliver arequest and return the response, the ORB requires:

® A target object reference.
® An operation hame.
® A list of arguments (optional).
® A place to put the result (optional).
® A place to put any returned exceptions.
®* A Cont ext (optional)
* A list of the user-defined exceptions that can be thrown (optional).
® A list of Cont ext strings that must be sent with the operation (optional).

Sincethe Obj ect : : creat e_request operation allows all of these except the last
two to be specified, an ORB may have to utilize the Interface Repository in order to
discover them. Some applications, however, may not want the ORB performing
potentially expensive Interface Repository lookups during a request invocation, so two
new serverless objects have been added to allow the application to specify this
information instead:

® ExceptionLi st: allows an application to provide alist of TypeCodes for all user-
defined exceptions that may result when the Request is invoke.

® Cont ext Li st: alows an application to provide a list of Context strings that must
be supplied with the Request invocation.

The ContextList differs from the Context in that the former supplies only the context
strings whose values are to be looked up and sent with the request invocation (if
applicable), while the latter is where those values are obtained.

The IDL descriptions for ExceptionList, ContextList, and Request are shown
below.

1.30.1 Request Interface

/I IDL
pseudo interface ExceptionList
{
readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

b

pseudo interface ContextList

{

readonly attribute unsigned long count;
void add(in string ctxt);
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string item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Bounds);

¥

pseudo interface Request

{
readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;
attribute context ctx;
void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

|3

1.30.2 Request C++ Class

Il C++
cl ass ExceptionlLi st
{

publi c:

ULong count ();

voi d add( TypeCode_ptr tc);

voi d add_consune( TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
voi d renove(ULong i ndex);

H

cl ass Cont ext Li st

{

publi c:

ULong count ();
voi d add(const char* ctxt);
voi d add_consune(char* ctxt);
const char* itenm(ULong i ndex);
voi d renove(ULong i ndex);

b
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cl ass Request

{

b

publi c:
oj ect_ptr target() const;
const char *operation() const;
NVLi st _ptr argunents();
NanedVal ue_ptr result();
Envi ronment _ptr env();
ExceptionLi st _ptr exceptions();
ContextList_ptr contexts();

void ctx(Context _ptr);
Context _ptr ctx() const;

/1 argument mani pul ati on hel per functions
Any &add_in_arg();

Any &add_i n_arg(const char* nane);

Any &add_i nout _arg();

Any &add_i nout _arg(const char* nane);
Any &add_out _arg();

Any &add_out _arg(const char* nane);
void set_return_type(TypeCode_ptr tc);
Any &return_val ue();

voi d i nvoke();

voi d send_oneway();

voi d send_deferred();

voi d get_response();

Bool ean pol |l _response();

1.30.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

Replacement of add_ar gument , and so forth, with attribute-based accessors.
Use of env attribute to access exceptions raised in DIl calls.

Thei nvoke operation does not take a flag argument, since there are no flag
values that are listed as legal in CORBA.

The send_oneway and send_def er r ed operations replace the single send
operation with flag values, in order to clarify usage.

The get _r esponse operation does not take a flag argument. If invoked before
the request has completed, get _r esponse blocks until the request completes; if
invoked after the request has completed, get _r esponse returns immediately.
The pol | _r esponse operation returns immediately. A true return value
indicates that the request has completed. A false return value indicates that the
reply for the request is still outstanding.

Theadd_*_arg, set_return_type,andreturn_val ue member
functions are added as shortcuts for using the attribute-based accessors.
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1.30.4 Memory Management

Request has the following special memory management rules:

® Ownership of the return values of thet ar get , oper ati on, ar gunent s,
resul t, env, exceptions, cont exts, and ct x functions is maintained by the
Request ; these return values must not be freed by the caller.

Excepti onLi st has the following special memory management rules:

® Theadd_consune function consumes its TypeCode_pt r argument. The caller
may not access the object referred to by the TypeCode_pt r after it has been
passed in because the add_consune function may copy it and release the original
immediately.

® Ownership of the return value of the i t emfunction is maintained by the
Excepti onLi st ; this return value must not be released by the caller.

Cont ext Li st has the following special memory management rules:

®* Theadd_consune function consumes its char * argument. The caller may not
access the memory referred to by the char * after it has been passed in because the
add_consune function may copy it and free the original immediately.

® Ownership of the return value of the i t emfunction is maintained by the
Cont ext Li st ; this return value must not be released by the caller.

1.31 Context

A Context supplies optional context information associated with a method invocation.

1.31.1 Context Interface

/I IDL

pseudo interface Context

{
readonly attribute Identifier context_name;
readonly attribute context parent;

void create_child(in Identifier child_ctx_name, out Context child_ctx);

void set_one_value(in Identifier propname, in any propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
void get_values(
in Identifier start_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values
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1.31.2 Context C++ Class

[/l C++
cl ass Cont ext
{

publi c:

const char *context_nanme() const;
Context _ptr parent() const;

void create_child(const char *, Context_out);

voi d set_one_val ue(const char *, const Any &);
voi d set_val ues(NVLi st _ptr);
voi d del ete_val ues(const char *);
voi d get _val ues(
const char*,

Fl ags,
const char*,
NVLi st _out

b

1.31.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:
* Introduction of attributes for context name and parent.
» The signatures for values are uniformly set to any.

* In the C mapping, set _one_val ue used strings, while others used
NamedVal ues containing any. Even though implementations need only support
strings as values, the signatures now uniformly allow alternatives.

» Ther el ease operation frees child contexts.

1.31.4 Memory Management

Cont ext has the following special memory management rules:

® Ownership of the return values of the cont ext _nane and par ent functionsis
maintained by the Cont ext ; these return values must not be freed by the caller.

1.32 TypeCode

A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo object reference (TypeCode_pt r) of the form
_tc_<type>that may be used to set typesin Any, as arguments for equal, and so on.
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In the names of these TypeCode reference constants, <t ype> refer to the local name
of the type within its defining scope. Each C++ _t c_<t ype> constant must be
defined at the same scoping level as its matching type.

Comment: | ssue 4243

In all C++ TypeCode pseudo object reference constants, the prefix “_tc " should be
used instead of the “TC_" prefix prescribed in “TypeCode” on page 1-122.

Like all other serverless objects, the C++ mapping for TypeCode providesa _ni | ()
operation that returns a nil object reference for a TypeCode. This operation can be used
to initialize TypeCode references embedded within constructed types. However, a nil
TypeCode reference may never be passed as an argument to an operation, since
TypeCodes are effectively passed as values, not as object references.

1.32.1 TypeCode Interface

The TypeCode IDL interface is fully defined in version 2.3 of the Common Object
Request Broker Architecture (CORBA), Interface Repository chapter, The TypeCode
Interface section and is thus not duplicated here.

1.32.2 TypeCode C++ Class

Il C++
cl ass TypeCode
{
publi c:
cl ass Bounds : public UserException { ... };
class BadKind : public UserException { ... };

Bool ean equal (TypeCode_ptr) const;

Bool ean equi val ent ( TypeCode_ptr) const;
TCKi nd ki nd() const;

TypeCode_ptr get_conpact _typecode() const;

const char* id() const;
const char* name() const;

ULong menber _count () const;
const char* nenber _nanme(ULong index) const;

TypeCode_ptr mnenber _type(ULong i ndex) const;
Any *menber | abel (ULong i ndex) const;

TypeCode_ptr discrimnator_type() const;
Long default_index() const;
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ULong | ength() const;
TypeCode_ptr content _type() const;

Ushort fixed_digits() const;
Short fixed_scal e() const;

Visibility nmember _visibility(ULong index) const;

Val ueMbdi fier type_nodifier() const;
TypeCode_ptr concrete_base type() const;

1.32.3 Differences from C-PIDL

For C++, use of prefix “_t c_" instead of “TC_" for constants.

1.32.4 Memory Management

TypeCode has the following special memory management rules:

» Ownership of the returnvalues of the i d, nane, and menber _nane functionsis
maintained by the Ty peCode; these return values must not be freed by the caller.

1.33 ORB

An ORB is the programmer interface to the Object Request Broker.

1.33.1 ORB Interface

// IDL
pseudo interface ORB
{
typedef sequence<Request> RequestSeq;
string object_to_string(in Object obj);
Object string_to_object(in string str);
void create_list(in long count, out NVList new_list);
void create_operation_list(in OperationDef oper, out NVList
new_list);
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void create_named_value(out NamedValue nmval);
void create_exception_list(out ExceptionList exclist);
void create_context_list(out ContextList ctxtlist);

void get_default_context(out Context ctx);
void create_environment(out Environment new_env);

void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();

void get_next_response(out Request req);

Boolean work_pending();

void perform_work();

void shutdown(in Boolean wait_for_completion);
void run();

Boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

);

typedef string Objectld;
typedef sequence<Objectld> ObjectldList;
Object resolve_initial_references(
in Objectld id
) raises(InvalidName);
ObjectldList list_initial_services();

Policy create_policy(in PolicyType type, in any val)
raises(PolicyError);

1.33.2 ORB C++ Class

[/l C++
class ORB
{

publi c:

cl ass RequestSeq {...};
char *object _to_string(Object _ptr);
oj ect _ptr string_to_object(const char *);
void create_list(Long, NVList_out);
void create_operation_Ilist(
Oper ati onDef _ptr,
NVLi st _out

)
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b

voi d create_naned_val ue( NamedVal ue_out);
void create_exception_Ilist(ExceptionList_out);
void create_context _|ist(ContextList_out);

voi d get _default_context(Context_out);
voi d create_environnent (Envi ronment _out);

void send_mul tipl e_requests_oneway(
const Request Seq&

)

void send_multiple_requests_deferred(
const Request Seq &

)

Bool ean pol | _next _response();

voi d get_next_response(Request _out);

Bool ean wor k_pendi ng();

voi d performwork();

voi d shut down(Bool ean wait_for_conpl etion);
void run();

Bool ean get _service_i nformation(
Servi ceType svc_type,
Servi cel nformation_out svc_info

)
typedef char* Objectld;
class bjectldList { ... };

oj ect_ptr resolve_initial _references(const char* id);

ojectldList* list_initial_services();

Policy_ptr create_policy(
Pol i cyType type,
const Any& val
)

1.33.3 Differences from C-PIDL

» Added create_environment. Unlike the struct version, Environment requires a
construction operation. (Since thisisoverly constraining for implementations that
do not support real C++ exceptions, these implementations may allow
Environment to be declared on the stack. See Section 1.43.2, “Without Exception
Handling,” on page 1-170 for details.)

 Assigned multiple request support to ORB, made usage symmetrical with that in
Request, and used a sequence type rather than otherwise illegal unbounded
arrays in signatures.
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» Added create_named_value, which is required for creating NamedValue
objects to be used as return value parameters for the Object::create_request
operation.

» Added create_exception_list and create_context_list (see Section 1.30,
“Request,” on page 1-116 for more details).

1.33.4 Mapping of ORB Initialization Operations

The following PIDL specifiesinitialization operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in version 2.3 of the
Common Object Request Broker Architecture (CORBA), ORB Interface chapter, ORB
Initialization section.

// PIDL
module CORBA {

typedef string ORBId;

typedef sequence <string> arg_list;

ORB ORB _init (inout arg_list argv, in ORBid orb_identifier);
¥

The mapping of the preceding PIDL operations to C++ is as follows:

Il C++
nanespace CORBA {
typedef char* ORBi d;
static ORB ptr ORB init(
int& argc,
char** argv,
const char* orb_identifier =""
)
}

The C++ mapping for ORB_i ni t deviates from the OMG IDL PIDL inits handling of
thear g | i st parameter. Thisisintended to provide a meaningful PIDL definition of
the initialization interface, which has a natural C++ bhinding. To this end, the

arg_l i st structure isreplaced with ar gv and ar gc parameters.

The ar gv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the ar gc (i nt &) parameter.

If an empty ORBId string is used then argc arguments can be used to determine which
ORB should be returned. This is achieved by searching the ar gv parameters for one
tagged ORBId, e.g., -ORBid "ORBid_example." If an empty ORBId string is used and
no ORB is indicated by the ar gv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB i ni t ,
the ar gv arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBId string is passed to ORB_i ni t , all -ORBIid parameters in the ar gv
are ignored. All other -ORB< suffix> parameters may be of significance during the
ORSB initialization process.
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For C++, the order of consumption of ar gv parameters may be significant to an
application. In order to ensure that applications are not required to handle ar gv
parameters they do not recognize the ORB initialization function must be called before
the remainder of the parameters is consumed. Therefore, after the ORB_i ni t call the
ar gv and ar gc parameters will have been modified to remove the ORB understood
arguments. It is important to note that the ORB _init call can only reorder or remove
references to parameters from the argv lit, this restriction is made in order to avoid
potential memory management problems caused by trying to free parts of the argv list
or extending the argv list of parameters. Thisiswhy ar gv is passed asachar ** and
not achar ** &.

1.34 Object

The rules in this section apply to OMG IDL interface Object, the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a
pseudo object. However, it is included here because it references other pseudo objects.

1.34.1 Object Interface

// IDL
interface Object
{
boolean is_nil();
Object duplicate();
void release();
ImplementationDef get_implementation();
InterfaceDef get_interface();
boolean is_a(in string logical_type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(in unsigned long maximum);
void create_request(
in Context ctx,
in Identifier operation,
in NVList arg_list,

in NamedValue result,

out Request request,
in Flags req_flags
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void create_request2(
in Context ctx,
in Identifier operation,
in NVList arg_list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,
out Request request,
in Flags req_flags
)i
Policy ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_overrides(in PolicyList policies,
in SetOverrideType set_or_add);
¥

1.34.2 Object C++ Class

In addition to other rules, all operation names in interface Obj ect have leading
underscores in the mapped C++ class. Also, the mapping for cr eat e_r equest is
split into three forms, corresponding to the usage styles described in Section 1.30,
“Request,” on page 1-116 of this specification. Thei s_ni | andr el ease functions
are provided in the CORBA namespace, as described in Section 1.3.3, “Object
Reference Operations,” on page 1-8.

Il C++
cl ass Obj ect
{

publi c:

static Object _ptr _duplicate(Chject _ptr obj);
static Qoject _ptr _nil();
I npl enent ati onDef _ptr _get _inplementation();
InterfaceDef ptr _get _interface();
Bool ean _is_a(const char* |ogical _type_ id);
Bool ean _non_exi stent();
Bool ean _is_equival ent (Cbj ect _ptr other_object);
ULong _hash(ULong maxi nmunj;
void create_request(

Context _ptr ctx,

const char *operation,

NVLi st _ptr arg list,
NanedVal ue_ptr result,
Request _out request,
Fl ags req_fl ags
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1.35 Local Object
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b

void _create_request(

Context _ptr ctx,

const char *operation,

NVLi st _ptr arg_list,

NanedVal ue_ptr result,

Excepti onLi st_ptr,

Cont ext Li st_ptr,

Request _out request,

Fl ags reqg_fI ags
)
Request _ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);
Domai nManager Li st* _get _domai n_managers();
oj ect _ptr _set_policy_overrides(

const PolicylList&,

Set Overri deType

),

The C++ mapping of Local Obj ect isa class derived from CORBA: : Obj ect that
is used as a base class for locality constrained object implementations. A locality
constrained object is implemented by a class derived both from the class mapping the
interface and from CORBA: : Local Obj ect.

nanmespace CORBA

{

b

class Local Object : public virtual Object

{
publi c:
virtual void _add ref() {}
virtual void renove ref() {}
/1 ...other pseudo ops not shown...
pr ot ect ed:
Local Obj ect ();
~Local Obj ect();
3

Member functions and any data members needed to implement the Qbj ect pseudo-

operations and any other ORB support functions shall also be supplied but are not
shown.
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_add ref

The _add_r ef member function is called when the reference is duplicated. A default
implementation is provided that does nothing. A derived implementation may use this
operation to maintain a reference count.

_remove ref

The renove_ref member function is called when the reference is released. A
default implementation is provided that does nothing. A derived implementation may
use this operation to maintain a reference count, and delete the object when the count
becomes zero.

1.36 Server-SdeMapping

Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross address space or machine boundaries. This mapping
addresses any implementation of an OMG IDL interface.

1.37 Implementing Interfaces

June 2003

To define an implementation in C++, one defines a C++ class with any valid C++
name. For each operation in the interface, the class defines a non-static member
function with the mapped name of the operation (the mapped name is the same as the
OMG IDL identifier except when the identifier is a C++ keyword, in which case the
string “_cxx_" is prepended to the identifier, as noted in Section 1.1, “Preliminary
Information,” on page 1-3). Note that the ORB implementation may allow one
implementation class to derive from another, so the statement “the class defines a
member function” does not mean the class must explicitly define the member
function—it could inherit the function.

The mapping specifies two alternative relationships between the application-supplied
implementation class and the generated class or classes for the interface. Specifically,
the mapping requires support for both inheritance-based relationships and delegation-
based relationships. CORBA-compliant ORB implementations are required to provide
both of these alternatives. Conforming applications may use either or both of these
alternatives.

1.37.1 Mapping of PortableServer::Servant

The Por t abl eSer ver module for the Portable Object Adapter (POA) defines the
native Ser vant type. The C++ mapping for Ser vant is as follows:

Il C++
nanespace Port abl eServer

{

cl ass Servant Base

{
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Comment:

Comment:

publi c:
virtual ~ServantBase();

virtual POA ptr _default_PQA();

virtual InterfaceDef ptr

| ssue 4265

_get _interface();

virtual Bool ean
_is_a(const char* |ogical _type_id);

virtual Bool ean
_non_existent();

virtual void _add_ref();
virtual void _renmove_ref();

Issues 2441, 4114

virtual ULong _refcount_val ue();

pr ot ect ed:
Servant Base() : _ref _count(1) {}
Servant Base(const ServantBase &) : _ref _count (1) {}
Servant Base& oper at or =(const Servant Baseg&) ;
/1 ...all other constructors...
private:

ULong _ref count;
s
typedef Servant Base* Servant;

}

The Ser vant Base destructor is public and virtual to ensure that skeleton classes
derived from it can be properly destroyed. The default constructor, along with other
implementation-specific constructors, must be protected so that instances of

Ser vant Base cannot be created except as sub-objects of instances of derived classes.
A default constructor (a constructor that either takes no arguments or takes only
arguments with default values) must be provided so that derived servants can be
constructed portably. Both copy construction and a protected default assignment
operator must be supported so that application-specific servants can be copied if
necessary. Note that copying a servant that is already registered with the object adapter,
either by assignment or by construction, does not mean that the target of the
assignment or copy is also registered with the object adapter. Similarly, assigning to a
Ser vant Base or aclass derived from it that is already registered with the object
adapter does not in any way change its registration.
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Comment:

Comment:

The default implementation of the _def aul t _PQA function provided by

Ser vant Base returns an object reference to the root POA of the default ORB in this
process—the same as the return value of an invocation of

ORB: :resolve_initial _references("Root POA") on the default ORB.
Classes derived from Ser vant Base can override this definition to return the POA of
their choice, if desired.

Ser vant Base provides default implementations of the _get i nterface, _is_a,
and _non_exi st ent object reference operations that can be overridden by derived
servants if the default behavior is not adequate. The POA invokes these just like normal
skeleton operations, thus allowing overriding definitions in derived servant classes to
use _t hi s and the Por t abl eSer ver: : Current interface within their function
bodies.

For static skeletons, the default implementation of the _get _interfaceand _is_a
functions provided by Ser vant Base use the interface associated with the skeleton
class to determine their respective return values. For dynamic skeletons

(seeSection 1.39, “Mapping of DSI to C++,” on page 1-150), these functions use the
_primary_interface function to determine their return values.

The default implementation of _non_exi st ent simply returns false.

Issues 2441, 4114

Servant instances implement reference counting to prevent themselves from being
destroyed while the application is still using them. The constructor and copy
constructor initialize the _r ef _count member to one. The assignment operator
returns *t hi s and does not affect the reference count. _r ef count _val ue returns
the current value of the _ref count member. _add_r ef increments the

_ref _count member by one. _renove_ref decrementsthe ref count
member by one; if the resulting reference count equals zero, _r enove_r ef invokes
delete on itst hi s pointer in order to destroy the servant. For ORBSs that operate in
multi-threaded environments, the implementations of _r ef count _val ue,
_add_ref,and _renove_ref shal be thread-safe.

Il C++
voi d Portabl eServer:: Servant Base:: _add_ref ()

{

Issues 2441, 4114

++ ref _count;

}

voi d Portabl eServer:: Servant Base:: _renove_ref ()

{

if (--_ref_count == 0)
del ete this;
}
ULong Portabl eServer: : Servant Base:: _refcount_val ue()
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{
}

Servants can be allocated on the stack even though they are reference-counted: because
the constructor sets the initial reference count to one, and the ORB makes an equal
number of calsto _add_ref and_renove_r ef, when the servant is popped off the
stack, the destructor simply destroys a servant with a reference count of one (that is,
the reference count never drops to zero).

return _ref _count;

Note that reference counting can be disabled completely by providing no-op
implementations of _add_r ef and _r enove_r ef in the derived servant
implementation.

1.37.2 Servant Reference Counting Mix-In

Comment:

Issues 2441, 4114

The Por t abl eSer ver namespace provides a Ref Count Ser vant Base class. This
class exists for backward compatibility reasons; its use is deprecated and the class will
be removed in a future revision of the C++ mapping. The Ref Count Ser vant Base
class is defined as follows:

Il C++
nanespace Port abl eServer

{
}

struct Ref Count Servant Base {};

1.37.3 Servant Memory Management Considerations

Comment:

Portable memory management of servants requires an exact specification of when and
how a servant may be deleted:

Issues 2441, 4114

®* The POA ensures that a servant will not be deleted while invocations are currently
outstanding on that servant by maintaining a reference to the servant until the
invocations have completed. For example, the POA may increment the reference
count of the servant before invoking the implementation (but after pr ei nvoke)
and decrement the reference count after the invocation (but before post i nvoke).

* Beware that explicit deletion of a servant will cause memory access violations if
that servant is still in use by some other part of the application. For example, if the
same servant instance was obtained from POA: : ref erence_t o_servant or
POA: : i d_to_servant (perhapsin another thread), the caler that obtained the
servant instance may still be using it. Also, explicit deletion may cause problems if
the same servant instance is registered in multiple POAs.
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For each POA, Ser vant Acti vat or, or Ser vant Locat or operation that either
passes a Ser vant as aparameter or returns a Ser vant , the following rules described
caller and callee memory management responsibilities:

Servant Acti vat or: : i ncar nat e—returns a Ser vant . The POA may use
this Ser vant until it is passed to et hereal i ze.

Servant Activator::ethereali ze—hasanin Servant argument. The
POA assumes that et her eal i ze consumes the Ser vant argument, and does not
access a Ser vant in any way after it has been passed to et her eal i ze. A
conforming implementation of et her eal i ze may invoke renove_ref onthe
Servant .

Servant Locat or: : prei nvoke—returns a Ser vant . The POA may use this
Servant until it is passed to post i nvoke.

Servant Locat or: : posti nvoke—has anin Ser vant argument. The POA
assumes that post i nvoke consumes the Ser vant argument, and does not access
a Servant in any way after it has been passed to post i nvoke. A conforming
implementation invoke _r ermove_r ef onthe Servant.

POA: : get _servant —returns a Ser vant . The POA invokes _add_r ef once
on the Ser vant before returning it; the caller of get _ser vant isresponsible for
invoking _r enove_r ef once on the returned Ser vant when it isfinished with it.

POA: : set _servant —has an in Ser vant argument. The implementation of
set _servant will invoke add_r ef at least once on the Ser vant argument
before returning. When the POA no longer needs the Ser vant , it will invoke
_renove_ref on it the same number of times.

POA: : acti vat e_obj ect —hasanin Ser vant argument. The implementation
of acti vat e_obj ect will invoke add_r ef at least once on the Ser vant
argument before returning. When the POA no longer needs the Ser vant , it will
invoke _renpve_r ef on it the same number of times.

POA: : activate object with id—hasanin Servant argument. The
implementation of act i vat e_obj ect _wi t h_i d will invoke _add_r ef at least
once on the Ser vant argument before returning. When the POA no longer needs
the Ser vant , it will invoke renove_r ef on it the same number of times.

POA: : servant _to_i d—hasanin Servant argument. If this operation causes
the object to be activated, add_r ef isinvoked at least once on the Ser vant
argument before returning. Otherwise, the POA does not increment or decrement
the reference count of the Ser vant passed to this function.

POA: : servant _to_reference—hasanin Servant argument. If this
operation causes the object to be activated, add_r ef isinvoked at least once on
the Ser vant argument before returning. Otherwise, the POA does not increment or
decrement the reference count of the Ser vant passed to this function.

POA: : ref erence_t o_servant —returns a Ser vant . The POA invokes
_add_r ef once on the Ser vant before returning it; the caller of

ref erence_t o_servant isresponsible for invoking renove_ref once on
the returned Ser vant when it is finished with it.
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® PQA: :id to_servant —returns a Ser vant . The POA invokes add_r ef

once on the Ser vant before returning it; the caller of i d_t o_ser vant is
responsible for invoking _r emove_r ef once on the returned Ser vant wheniitis
finished with it.

The following operations do not receive or return Ser vant s in their signatures, but
have behavior that may require invocations of _add_ref or _renove_ref:

_t hi s—invoked on a Ser vant to obtain an object reference for an object

implemented by that Ser vant . If this operation causes the object to be activated,

_add_r ef isinvoked at least once on the Ser vant argument before returning.
Otherwise, the POA does not increment or decrement the reference count of the
Ser vant passed to this function.

POA: : deacti vat e_obj ect —upon activation, _add_r ef isinvoked on the
Ser vant . Therefore, the act of deactivation must cause _r enove_r ef to be
invoked. If the POA has no Ser vant Act i vat or associated with it, the POA
implementation calls _r enove_r ef when all operation invocations have
completed. If thereisa Ser vant Act i vat or, the Servant is consumed by the call
to Servant Acti vat or: : et hereal i ze instead.

POA: : dest r oy —upon activation of a servant or registration of a default servant,

_add_r ef isinvoked on the Ser vant . Therefore, the destruction of a POA must

cause _renove_r ef to beinvoked. The POA implementation invokes
_remnpove_r ef on any default servant. If the POA has no Ser vant Acti vat or

associated with it, the POA implementation calls _r enove_r ef on each

Ser vant inthe Active Object Map when all operation invocations have completed.

If thereisa Ser vant Act i vat or, each Ser vant is consumed by the call to

Servant Activator::ethereali ze instead.

POAManager : : deact i vat e—upon activation of a servant or registration of a
default servant, add_r ef isinvoked on the Ser vant . Therefore, the destruction
of aPOA must cause _renpove_ref tobeinvoked. If et hereal i ze_obj ects
is true the POA implementation invokes _r enmove_r ef on any default servant. If
et hereal i ze_obj ect s is true and a managed POA does not have a
Servant Act i vat or associated with it, the POA implementation invokes
_remove_r ef on each Servant in that POA's Active Object Map after all
dispatched operations have completed. If there is a Ser vant Act i vat or, each
Ser vant is consumed by the call to Ser vant Acti vator::etherealize
instead.

Note that in those cases where the caller becomes responsible for invoking
_renove_ref onaServant returned to it, the caller can assign the return value to
a Ser vant Base_var instance for automatic reference count management.
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1.37.4 ServantBase var Class

Comment:

Comment:

Comment:

For the convenience of automatically managing servant reference counts, the

Por t abl eSer ver namespace also provides the Ser vant Base_var class. This
class behaves similarly to _var classes for object references (seeSection 1.3.1, “Object
Reference Types,” on page 1-7). Class Ser vant Base_var isatype definition of the
Servant _var template for type Ser vant Base:

| ssue 2445

Il C++
nanespace Port abl eServer

{

class ServantBase { /* ... */ };
typedef Servant var<Servant Base> Servant Base_var;

}

The definition of the Ser vant _var template is as follows:

Il C++
nanespace Port abl eServer

{

t enpl at e<t ypenane Servant >
cl ass Servant var

{

| ssues 2445, 4210

pr ot ect ed:
voi d swap(Servant* | hs, Servant* rhs)
{
Servant *tnp = | hs;
I hs = rhs;
rhs = tnp;
}
publi c:
Servant _var() : _ptr(0) {}
Servant _var(Servant* p) : _ptr(p) {}
Servant _var (const Servant_var& b)
_ptr(b. _ptr)
{
if (_ptr '=0) _ptr->_add_ref();
}
I ssue 2445

~Servant _var ()

{
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Comment: Issue 4210
if (_ptr '=0) {
try {
_ptr->_renove_ref();
} catch (...) {
/1 swal | ow exceptions
}
}
}
Comment: | ssue 2445

Servant _var & oper at or =( Servant * p)

{
Comment: I ssues 2445, 4210
if (_ptr '=p) {
Servant _var<Servant> tnp = p;
swap(_ptr, p);
return *this;
}
Comment: | ssue 2445

Servant _var &
operat or=(const Servant_var & b)

{
Comment: | ssues 2445, 4210
if (_ptr !'=b. _ptr) {
Servant _var<Servant> tnp = b;
swap(_ptr, b._ptr);
}
return *this;
}
Comment: | ssue 2445

Servant* operator->() const { return _ptr; }

Servant* in() const { return _ptr; }
Servant*& inout() { return _ptr; }
Servant*& out ()

{

1-138 C++ Language Mapping, v1.1 June 2003



June 2003

Comment:

Comment:

Comment:

I'ssues 2445, 4210

if (_ptr '=0) {
Servant _var<Servant> tnp;

swap(_ptr, tnmp. _ptr);

}

return _ptr;

| ssue 2445

Servant* _retn()

{
Servant* retval = _ptr;
_ptr = 0;
return retval;

}

private:
Servant* _ptr;
b
}

The implementation shown above for the Ser vant Base_var isintended only as an
example that conveys required semantics. Variations of this implementation are
possible as long as they provide the same semantics as the implementation shown here.

| ssue 2445

The Servant _var template can be used to write exception-safe and type-safe code
for heap-alocated servants. For example:

void some_function(/*...*/)

{
Servant _var <Foo_i npl > foo_servant = new Foo_i npl;
f oo_servant - >do_sonet hi ng() ; /1 might throw. ..
some_poa->activate_object_with_id(...);
return foo_servant->this;
}

1.37.5 Skeleton Operations

All skeleton classes provide a _t hi s() member function. This member function has
three purposes:
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1. Within the context of a request invocation on the target object represented by the
servant, it allows the servant to obtain the object reference for the target CORBA
object it is incarnating for that request. This is true even if the servant incarnates
multiple CORBA objects. In this context, t hi s() can be called regardless of the
policies used to create the dispatching POA.

2. Outside the context of arequest invocation on the target object represented by the
servant, it allows a servant to be implicitly activated if its POA allows implicit
activation. This requires the activating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, the PortableServer::WrongPolicy exceptionis
thrown. The POA used for implicit activation is gotten by invoking
_defaul t _POA() on the servant.

3. Outside the context of arequest invocation on the target object represented by the
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. This
requires the POA with which the servant was activated to have been created with the
UNIQUE_ID and RETAIN palicies. If the POA was created with the
MULTIPLE_ID or NON_RETAIN policies, the PortableServer::WrongPolicy
exception is thrown. The POA is gotten by invoking _def aul t _POA() on the
servant.

For example, for interface A defined as follows:

/I DL
interface A
{
short op1();
void op2(in long val);

b

The return value of _t hi s() is atyped object reference for the interface type
corresponding to the skeleton class. For example, the _t hi s() function for the
skeleton for interface A would be defined as follows:

Il C++
class POA A : public virtual ServantBase
{

publi c:

A ptr _this();

b

The _t hi s() function follows the normal C++ mapping rules for returned object
references, so the caller assumes ownership of the returned object reference and must
eventually call CORBA: : r el ease() onit.

The _t hi s() function can be virtual if the C++ environment supports covariant
return types, otherwise the function must be non-virtual so the return type can be
correctly specified without compiler errors. Applications use _t hi s() the same way
regardless of which of these implementation approaches is taken.
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Assuming A i npl is aclass derived from POA_A that implements the A interface,
and assuming that the servant’s POA was created with the appropriate policies, a
servant of type A i npl can be created and implicitly activated as follows:

Il C++

Ainpl ny_a;
A var a = ny_a. _this();

1.37.6 Inheritance-Based Interface Implementation

Implementation classes can be derived from a generated base class based on the OMG
IDL interface definition. The generated base classes are known as skeleton classes, and
the derived classes are known as implementation classes. Each operation of the
interface has a corresponding virtual member function declared in the skeleton class.
The signature of the member function isidentical to that of the generated client stub
class. The implementation class provides implementations for these member functions.
The object adapter typically invokes the methods via calls to the virtual functions of
the skeleton class.

Assume that IDL interface A is defined as follows:

/I IDL
interface A

{
short op1();

void op2(in long val);

b

For IDL interface A as shown above, the IDL compiler generates an interface class A.
This class contains the C++ definitions for the typedefs, constants, exceptions,
attributes, and operations in the OMG IDL interface. It has a form similar to the
following:

Il C++
class A : public virtual Object
{

publi c:

virtual Short opl() = O;
virtual void op2(Long val) = 0;

b

Some ORB implementations might not use public virtual inheritance from
CORBA: : Obj ect, and might not make the operations pure virtual, but the signatures
of the operations will be the same.

On the server side, a skeleton class is generated. This class is partialy opague to the
programmer, though it will contain a member function corresponding to each operation
in the interface. For the POA, the name of the skeleton class is formed by prepending
the string “POA_" to the fully-scoped name of the corresponding interface, and the
class is either directly or indirectly derived from the servant base class

C++ Mapping: Implementing Interfaces 1-141



1-142

Comment:

Comment:

Port abl eServer:: Servant Base. The Port abl eServer: : Servant Base
class must be a virtual base class of the skeleton to alow portable implementations to
multiply inherit from both skeleton classes and implementation classes for other base
interfaces without error or ambiguity.

The skeleton class for interface A shown above would appear as follows:

Il C++
class POA_A : public virtual Portabl eServer:: ServantBase
{
publi c:
[l ...server-side inplenmentation-specific detail
/1 goes here...

| ssue 4265

virtual Short opl();
virtual void op2(Long val);

b

If interface A were defined within a module rather than at global scope, e.g., Mod::A,
the name of its skeleton class would be POA_Mod: : A. This helps to separate server-
side skeleton declarations and definitions from C++ code generated for the client.

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. An
implementation class declaration for interface A would take the form;

Il C++
class Ainpl : public POA A

{
publi c:

| ssue 4265

Short opl();
void op2(Long val);

b

Note that the presence of the _t hi s() function implies that C++ servants must only
be derived directly from a single skeleton class. Direct derivation from multiple
skeleton classes could result in ambiguity errors due to multiple definitions of

_thi s(). This should not be a limitation, since CORBA objects have only a single
most-derived interface. Servants that are intended to support multiple interface types
can utilize the delegation-based interface implementation approach, described below in
“Delegation-Based Interface Implementation”, or can be registered as DSI-based
servants, as described in Section 1.39, “Mapping of DSI to C++,” on page 1-150.

For interfaces which inherit from one or more base interfaces, the generated POA
skeleton class uses virtual inheritance:
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// IDL

interface A{ ... };
interfaceB: A{..};
interface C: A{..};
interfaceD:B,C{ ... };

Il C++

class POA A : public virtual Portabl eServer:: ServantBase
{ ... b

class POA B : public virtual POA A{ ... };

class POA C: public virtual POA A{ ... };

class POA D : public virtual POA B, public virtual POA C
{ ... b

This guarantees that the POA skeleton class inherits only one version of each
operation, and also allows optional inheritance of implementations. In this example,
the implementation of interface B reuses the implementation of interface A:

(9]

Il C++

class Ainpl: public virtual POA A{ ... };

class B inpl: public virtual POA B, public virtual A_inpl
{}:

For interfaces which inherit from an abstract interface, the POA skeleton class is also
virtually derived directly from the abstract interface class, but with protected access:

/I IDL
abstract interface A{ ... };
interfaceB: A{..};

Il C++

class A{ ... };

class POA B : public virtual Portabl eServer:: Servant Base,
protected virtual A{ ... };

The abstract interface is inherited with protected access to prevent accidental
conversion of the POA skeleton pointer to an abstract interface reference, for ORBs
that implement object references as pointers. This also allows implementation classes
and valuetypes to share an implementation of the abstract interface;

// IDL

valuetype V : supports A{ ... };

Il C++

class MPA : virtual A{ ... };

class MyB : public virtual POA B, protected virtual MA
{ ... b

class MyV : public virtual V, public virtual WA { ... };
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1.37.7 Delegation-Based Interface Implementation

Inheritance is not always the best solution for implementing servants. Using
inheritance from the OMG |IDL—generated classes forces a C++ inheritance hierarchy
into the application. Sometimes, the overhead of such inheritanceis too high, or it may
be impossible to compile correctly due to defects in the C++ compiler. For example,
implementing objects using existing legacy code might be impossible if inheritance
from some global class were required, due to the invasive nature of the inheritance.

In some cases delegation can be used to solve this problem. Rather than inheriting
from a skeleton class, the implementation can be coded as required for the application,
and a wrapper object will delegate upcalls to that implementation. This section
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from Section 1.37.6,
“Inheritance-Based Interface Implementation,” on page 1-141 will again be used:

/I IDL
interface A

short op1();void op2(in long val);
|3

In addition to generating a skeleton class, the IDL compiler generates a delegating
class called atie. This class is partially opaque to the application programmer, though
like the skeleton, it provides a method corresponding to each OMG IDL operation. The
name of the generated tie class is the same as the generated skeleton class with the
addition that the string “_tie” is appended to the end of the name. For example:

/] C++
t enpl at e<cl ass T>
class POA Atie : public POA A
{
publi c:
3

An instance of this template class performs the task of delegation. When the template
isinstantiated with a class type that provides the operations of A, thenthe POA A ti e
class will delegate all operations to an instance of that implementation class. A
reference or pointer to the actual implementation object is passed to the appropriate tie
constructor when an instance of the tie class is created. When a request is invoked on
it, the tie servant will just delegate the request by calling the corresponding method in
the implementation object.

Il C++
t enpl at e<cl ass T>
class POA Atie : public POA A
{
publi c:
POA Atie(T& t)
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_ptr(&), _poa(PQA::_nil()), _rel(0) {}
POA Atie(T& t, POA ptr poa)
_ptr(é&t),
_poa(PQA:: duplicate(poa)), _rel(0) {}
POA Atie(T* tp, Boolean release = 1)
_ptr(tp), _poa(POA: : nil()), _rel(release) {}
POA Atie(T* tp, POA ptr poa,
Bool ean rel ease = 1)
_ptr(tp), _poa(POA : duplicate(poa)),
_rel(rel ease) {}
~POA A tie()
{
CORBA: : rel ease(_poa);
if (_rel) delete _ptr;

}

/1 tie-specific functions
T* tied object() { return _ptr; }
void tied object(T& obj)

{
if (_rel) delete ptr;
_ptr = &obj;
_rel = 0;
}
void tied object(T* obj, Boolean rel ease = 1)
{
if (_rel) delete ptr;
_ptr = obj;
_rel = rel ease;
}
Boolean _is owner() { return _rel; }
void is_owner(Boolean b) { _rel = b; }

/1 1 DL operations

Comment: | ssue 4265

Short opl()

return _ptr->opl();

Comment: I ssue 4265

voi d op2(Long val)

{
_ptr->op2(val);

}

/1 override ServantBase operations
POA ptr _default POA()
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{
if (ICORBA::is_nil(_poa)) {
return Portabl eServer:: PQA:: _duplicate(_poa);
} else {
/1 return root POA
}
}
private:
T _ptr,;

POA ptr _poa;
Bool ean _rel;

/1 copy and assignnment not all owed

POA A tie(const POA A tie&);

voi d operator=(const POA A tie&);
H

It is important to note that the tie example shown above contains sample
implementations for all of the required functions. A conforming implementation is free
to implement these operations as it seesfit, as long as they conform to the semanticsin
the paragraphs described below. A conforming implementation is also allowed to
include additional implementation-specific functionsif it wishes.

The T& constructors cause the tie servant to delegate all calls to the C++ object bound
to reference t . Ownership for the object referred to by t does not become the
responsibility of the tie servant.

The T* constructors cause the tie servant to delegate all calls to the C++ object pointed
toby t p. Ther el ease parameter dictates whether the tie takes on ownership of the
C++ object pointed to by t p; if r el ease is TRUE, the tie adopts the C++ object,
otherwise it does not. If the tie adopts the C++ object being delegated to, it will

del et e it when its own destructor is invoked, as shown above in the

~POA A tie() destructor.

The _tied_object () accessor function allows callers to access the C++ object
being delegated to. If the tie was constructed to take ownership of the C++ object
(rel ease was TRUE in the T* constructor), the caller of _t i ed_obj ect () should
never del et e the return value.

Thefirst _ti ed_obj ect () modifier function calls del et e on the current tied
object if the tie's release flag is TRUE, and then points to the new tie object passed in.
Thetie's release flag is set to FALSE. The second _t i ed_obj ect () modifier
function does the same, except that the final state of the tie's release flag is determined
by the value of the r el ease argument.

The i s_owner () accessor function returns TRUE if the tie owns the C++ object it
is delegating to, or FALSE if it does not. The _i s_owner () modifier function alows
the state of the tie's release flag to be changed. Thisis useful for ensuring that memory
leaks do not occur when transferring ownership of tied objects from one tie to another,
or when changing the tied object a tie delegates to.
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Comment:

For delegation-based implementations it is important to note that the servant is the tie
object, not the C++ object being delegated to by the tie object. This means that the tie
servant is used as the argument to those POA operations that require a Ser vant
argument. This also means that any operations that the POA calls on the servant, such
asServant Base: : _defaul t _POA(), are provided by the tie servant, as shown by
the example above. The value returned by _def aul t _POA() is supplied to the tie
constructor.

It is also important to note that by default, a delegation-based implementation (the
“tied” C++ instance) has no access to the _t hi s() function, which is available only
on the tie. One way for this access to be provided is by informing the delegation object
of its associated tie object. This way, the tie holds a pointer to the delegation object,
and vice-versa. However, this approach only works if the tie and the delegation object
have a one-to-one relationship. For a delegation object tied into multiple tie objects,
the object reference by which it was invoked can be obtained within the context of a
request invocation by calling

Port abl eServer:: Current::get_object id(), passingitsreturn value to
Port abl eServer:: PQA::id _to_reference(), and then narrowing the
returned object reference appropriately.

In the tie class shown above, all the operations are shown as being inline. In practice,
it is likely that they will be defined out of line, especialy for those functions that
override inherited virtual functions. Either approach is allowed by conforming
implementations.

The use of templates for tie classes allows the application developer to provide
specializations for some or all of the template’s member functions for a given
instantiation of the template. This allows the application to control how the tied object
isinvoked. For example, the POA_A ti e<T>:: op2() operation isnormally defined
as follows:

/] C++
t enpl at e<cl ass T>
voi d
I ssue 4265
POA A tie<T>::o0p2(Long val)
{
_ptr->op2(val);
}

This implementation assumes that the tied object supports an op2() operation with
the same signature. However, if the application wants to use legacy classes for tied
object types, it is unlikely they will support these capabilities. In that case, the
application can provide its own specialization. For example, if the application already
has a class named Foo that supports al og_val ue() function, the tie class op2()
function can be made to call it if the following specialization is provided:

/] C++
voi d
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PQOA A tie<Foo>::op2(Long val)
{

}

Portable specializations like the one shown above should not access tie class data
members directly, since the names of those data members are not standardized.

_tied_object()->log val ue(val);

For C++ implementations that do not support namespaces or the definition of template
classes inside other classes, tie template classes must be defined at global scope. For
these environments, the names of tie template classes shall be formed by “flattening”
the normal tie name, i.e., replacing all occurrences of “: : ” with “_". For example, in
such an environment the name of the tie template class for interface A::B::C would be
POA_A B Ctie.

1.38 Implementing Operations

1-148

Comment:

| ssue 4265

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. For example:

/I IDL

interface A

{
exception B {};
void f() raises(B);

¥
Il C++
class MYA . public virtual POA A
{
publi c:
void f();
s

Within a member function, the “this’ pointer refers to the implementation object’s data
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. For example:

/I DL
interface A
{
void f();
void g();
b
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Comment:

Il C++
class MyA : public virtual POA A

{
publi c:

| ssue 4265

void f();
void g()
private:
I ong x_;

voi d

?/yA::f()
this->x_ = 3;
this->g();

}

However, when a servant member function is invoked in this manner, it is being called
simply as a C++ member function, not as the implementation of an operation on a
CORBA object. In such a context, any information available via the POA_Cur r ent
object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

1.38.1 Skeleton Derivation From Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod: : A, the skeleton class
PQA _Mbd: : Aisderived from class Mod: : A. These systems therefore allow an object
reference for a servant to be implicitly obtained via normal C++ derived-to-base
conversion rules:

Il C++
M/ mpl OF A ny_a; /1 declare inmpl of A
A ptr a = &ny_a; /1 obtain its object reference

/1l by C++ derived-to-base
/'l conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _t hi s() on
the implementation object in order to implicitly register it if it has not yet been
registered, and to get its object reference:

Il C++
M/ mpl OF A ny_a; /1 declare inmpl of A
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Aptr a=ny_a. _this(); /] obtain its object
/'l reference

1.39 Mappingof DS to C++

1-150

The Common Object Request Broker Architecture (CORBA), Dynamic Skeleton
Interface chapter, DS: Language Mapping section contains general information about
mapping the Dynamic Skeleton Interface to programming languages.

This section contains the following information:

® Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++
® Mapping of the Portable Object Adapter’s Dynamic Implementation Routine to C++

1.39.1 Mapping of ServerRequest to C++

The Ser ver Request pseudo object maps to a C++ class in the CORBA namespace
that supports the following operations and signatures:

/] Ct++
cl ass Server Request
{

publi c:

const char* operation() const;

voi d argument s(NVLi st_ptr& paraneters);
Context _ptr ctx();

void set_result(const Any& val ue);

voi d set_exception(const Any& val ue);

b

Note that, as with the rest of the C++ mapping, ORB implementations are free to make
such operations virtual and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data passed
into skeletons by the ORB. That is, the DIR is not allowed to modify or change the
string returned by oper ati on(), in parameters in the NVLi st returned from

ar gunent s(), or the Cont ext returned by ct x() . Similarly, data allocated by the
DIR and handed to the ORB (the NVLi st parameters) are freed by the ORB rather
than by the DIR.

1.39.2 Handling Operation Parameters and Results

The Ser ver Request provides parameter values when the DIR invokes the

ar gunent s() operation. The NVLi st provided by the DIR to the ORB includes the
TypeCodes and direction Fl ags (inside NamedVal ues) for all parameters,
including out ones for the operation. This allows the ORB to verify that the correct
parameter types have been provided before filling their values in, but does not require
it to do so. It also relieves the ORB of all responsibility to consult an Interface
Repository, promoting high-performance implementations.
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The NVLi st provided to the ORB then becomes owned by the ORB. It becomes
deallocated after the DIR returns. This allows the DIR to pass the out values,
including the return side of inout values, to the ORB by modifying the NVLi st after
ar gunent s() hasbeen called. Therefore, if the DIR storesthe NVLi st _pt r into an
NVLi st _var, it should pass it to the ar gurrent s() function by invoking the
_retn() function on it, in order to force it to release ownership of its internal

NVLi st _ptr to the ORB.

1.39.3 Mapping of PortableServer Dynamic |mplementation Routine

In C++, DSI servants inherit from the standard Dynam cl npl enent at i on class.
This class inherits from the Ser vant Base class and is aso defined in the

Por t abl eSer ver namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that are members of classes that inherit from dynamic
skeleton classes.

Il C++
nanespace Port abl eServer
{
cl ass Dynamicl npl enmentation : public virtual ServantBase
{
publi c:
oject _ptr _this();
virtual void invoke(
Server Request _ptr request
) =0;
virtual Repositoryld
_primary_interface(
const Objectld& oid,
POA ptr poa

}

The _t hi s() function returns a CORBA: : Cbj ect _pt r for thetarget object. Unlike
_this() for static skeletons, its return type is not interface-specific because a DSI
servant may very well incarnate multiple CORBA objects of different types. If
Dynami cl npl ement ati on: : _t hi s() isinvoked outside of the context of a
request invocation on atarget object being served by the DSI servant, it raises the
PortableServer::WrongPolicy exception.

Thei nvoke() method receives requests issued to any CORBA object incarnated by
the DSI servant and performs the processing necessary to execute the request. Requests
for the standard object operations (_get i nterface, _is_a, and

_non_exi stent) do not call i nvoke(), but call the corresponding functions
defined in Ser vant Base instead.

The primary_interface() method receives an bj ect | d value and a
POA ptr asinput parameters and returns avalid Reposi t or yl d representing the
most-derived interface for that oi d.
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It is expected that thei nvoke() and _primary_interface() methods will be
invoked only by the POA in the context of serving a CORBA request. Invoking this
method in other circumstances may lead to unpredictable results.

1.40 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::Objectld type, as object identifiers. However, because C++
programmers will often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert strings to Obj ect | d and vice-
versa:

Il C++
nanespace Port abl eServer

{
char* Objectld to_string(const bjectld&);

WChar* (Objectld to wstring(const (bjectld&);

oj ectld* string to Objectld(const char*);
oj ectld* wstring to Objectld(const Whar*);

}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an Obj ect | d to a string would result in illegal charactersin the
string (such as a NUL), the first two functions throw the CORBA::BAD_PARAM
exception.

1.41 Mapping for PortableServer:: ServantManager

1-152

1.41.1 Mapping for Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In C++, Cookie maps to voi d*:

Il C++
nanespace Port abl eServer

{

cl ass ServantLocator {
typedef voi d* Cooki e;

}

For the C++ mapping of the PortableServer::ServantLocator::preinvoke()
operation, the Cookie parameter maps to a Cooki e&, while for the postinvoke()
operation, it is passed as a Cooki e.
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1.41.2 ServantManagers and Adapter Activators

Portable servants that implement the Por t abl eSer ver : : Adapt er Acti vat or,
the Port abl eSer ver: : Servant Acti vat or, or

Port abl eSer ver: : Servant Locat or interfaces are implemented just like any
other servant. They may use either the inheritance-based approach or the tie approach.

1.41.3 Server Sde Mapping for Abstract Interfaces

Comment:

The only circumstances under which an IDL compiler should generate C++ code for
abstract interfaces for the server side are when either an interface is derived from an
abstract interface, or when a valuetype supports an abstract interface indirectly through
one or more intermediate regular interface types. Abstract interfaces by themselves
cannot be directly implemented or instantiated by portable applications.

I ssue 3239

Because of this, standard C++ skeleton classes for abstract interfaces are not necessary.

1.42 C++ Definitionsfor CORBA

June 2003

This section provides a partial set of C++ definitions for the CORBA module. The
definitions appear within the C++ namespace named CORBA.

Il C++
nanespace CORBA { ... }

Any implementations shown here are merely sample implementations: they are not the
required definitions for these types. Furthermore, in some cases these types do not
define the complete interfaces of their IDL counterparts; if any type is missing one or
more operations, those operations are assumed to follow normal C++ mapping rules for
their signatures, parameter passing rules, memory management rules, etc.

1.42.1 Primitive Types

typedef unsi gned char Bool ean;
typedef unsi gned char Char;
typedef wchar _t WChar ;
typedef unsi gned char Cct et ;
typedef short Short;
typedef unsi gned short UsShort ;
typedef | ong Long;
typedef ... LonglLong;
typedef unsigned | ong ULong;
typedef ... ULongLong;
typedef fl oat Fl oat ;
typedef doubl e Doubl e;
typedef |ong doubl e LongDoubl e;
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typedef Bool ean& Bool ean_out ;
typedef Char & Char _out ;
typedef WChar & WChar _out ;
typedef Ccteté& Cct et _out;
typedef Shorté& Short _out;
typedef UShort & UShort _out;
typedef Long& Long_out;
typedef LonglLong& LonglLong_out ;
typedef ULong& ULong_out ;
typedef ULonglLong& ULonglLong_out ;
typedef Fl oat & Fl oat _out;
typedef Doubl e& Doubl e_out ;
typedef LongDoubl e& LongDoubl e_out ;

1.42.2 Sring_var and Sring_out Class

class String_var
{
publi c:

String_var();
String_var(char *p);
String_var(const char *p);
String_var(const String_var &s);
~String_var();

String_var &operator=(char *p);
String_var &operator=(const char *p);
String_var &operator=(const String_var &s);

Comment: I ssues 3796, 3797

operator char*&();

operator const char*() const;
const char* in() const;
char*& i nout ();

char*& out ();

char* _retn();

char &operator[](ULong i ndex);
char operator[](ULong index) const;

b

class String_out
{
publi c:
String out(char*& p);
String out(String_var& p);
String out(const String out& s);
String_outé& operator=(const String out& s);
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String_out& operator=(char* p);
String_out& operator=(const char* p)

operator char*&();
char*& ptr();

private:
/1 assignment from String_var disall owed
voi d operator=(const String_var&)

b

1.42.3 WString_var and WString_out

TheWst ri ng_var and WSt ri ng_out types areidentical to Stri ng_var and
String_out, respectively, except that they operate on wide string and wide character

types.

1.42.4 Fixed Class

cl ass Fi xed
{
publi c:

/] Constructors
Fi xed(int val = 0);
Fi xed(unsi gned val);
Fi xed(Long val);
Fi xed(ULong val);
Fi xed(LongLong val);
Fi xed( ULongLong val);
Fi xed( Doubl e val);
Fi xed( LongDoubl e val);
Fi xed(const Fi xed& val);
Fi xed(const char *);
~Fi xed();

/' Conversi ons

operat or LonglLong() const;

oper at or LongDoubl e() const;

Fi xed round(UShort scal e) const;

Fi xed truncate(UShort scal e) const;

Comment: I ssue 3944

char *to_string() const;

/1l Operators

Fi xed& operat or =(const Fi xed& val);
Fi xed& operat or +=(const Fi xed& val);
Fi xed& operator-=(const Fixed& val);
Fi xed& operator*=(const Fi xed& val);
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Fi xed& operator/=(const Fixed& val);

Fi xed& operator ++();

Fi xed operator++(int);

Fi xed& operator--();

Fi xed operator--(int);

Fi xed operator+() const;
Fi xed operator-() const;
Bool ean operator! () const;

/1 Ot her nenber functions
Ushort fixed_digits() const;
Ushort fixed_scal e() const;

b

i stream& operator>>(istream& i s, Fixe
ostream& oper at or <<(ostream& os, cons

Fi xed operator + (const Fixed& val1l,
Fi xed operator - (const Fixed& val1l,
Fi xed operator * (const Fixed& vall,
Fi xed operator / (const Fixed& val1l,

Bool ean operator > (const Fixed& vall
Bool ean operator < (const Fixed& vall
Bool ean operator >= (const Fi xed& val

Bool ean operator <= (const Fi xed& val
Bool ean operator == (const Fi xed& val
Bool ean operator != (const Fi xed& val

1.42.5 Any Class

cl ass Any

{
publi c:

Any();

d& val);

t Fixed& val);

const Fi xed& val 2);
const Fi xed& val 2);
const Fi xed& val 2);
const Fi xed& val 2);

, const
, const
1, const
1, const
1, const
1, const

Fi xed& val 2) ;
Fi xed& val 2);

Fi xed& val 2);
Fi xed& val 2);
Fi xed& val 2);
Fi xed& val 2);

Comment: Issue 1700

Any(const Any&);
~Any();

Any &oper at or =(const Any&)

/1 special types needed for boo
/1 and bounded string insertion

| ean, octet, char,

/1 these are suggested inplenentations only

struct from bool ean {

from bool ean(Bool ean b) : val (b) {}

Bool ean val ;
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s

struct fromoctet {
fromoctet(Cctet o) : val (o) {}
Cctet val;

b

struct fromchar {
fromchar(Char c) : val (c) {}
Char val ;

b

struct fromwchar ({
fromchar(Wchar c¢) : val(c) {}

WChar val ;
b
struct fromstring {
fromstring(char* s, ULong b,
Bool ean n = FALSE)
val (s), bound(b), nocopy(n) {}
fromstring(const char* s, ULong b)
val (const _cast<char*>(s)), bound(b),
nocopy(0) {}
char *val;
ULong bound;
Bool ean nocopy;
s
struct fromwstring {
fromwstring(Whar* s, ULong b,
Bool ean n = FALSE)
val (s), bound(b), nocopy(n) {}
fromwstring(const Wchar*, ULong b)
val (const cast <WChar*>(s)), bound(b),
nocopy(0) {}
WChar *val
ULong bound;
Bool ean nocopy;
s
struct fromfixed {
fromfixed(const Fixed& f, UShort d, UShort s)
val (f), digits(d), scale(s) {}
const Fi xed& val
UShort digits;
UShort scal e;

b

voi d oper at or <<=(from bool ean);
voi d operat or<<=(fromchar);
voi d operat or<<=(fromwchar);
voi d operator<<=(fromoctet);
voi d operator<<=(fromstring);
voi d operator<<=(fromwstring);
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voi d operator<<=(fromfixed);

/'l special types needed for bool ean, octet,
/'l char extraction
/1 these are suggested inplenentations only
struct to_bool ean {
to_bool ean(Bool ean &b) : ref(b) {}
Bool ean &ref;
H
struct to_char {
to_char(Char &c) : ref(c) {}
Char &ref;
b
struct to_wchar {
to_wchar (WChar &c) : ref(c) {}
WChar &ref;

b

struct to_octet {
to_octet(COctet &) : ref(o) {}
Cctet &ref;

H

struct to_object {
to_object(Cbject_out obj) : ref(obj) {}
oj ect _ptr &ref;

b

struct to_string {
to_string(const char *&s, ULong b)

val (s), bound(b) {}

const char *&val
ULong bound;

/1 the follow ng constructor is deprecated

to_string(char *&s, ULong b) : val(s), bound(b) {}
b
struct to_wstring {

to_wstring(const WChar *&s, ULong b)

val (s), bound(b) {}
const WChar *&val
ULong bound;

/1 the follow ng constructor is deprecated
to_wstring(Whar *&s, ULong b)
val (s), bound(b) {}
b
struct to_fixed {
to_fixed(Fixed& f, UShort d, UShort s)
val (f), digits(d), scale(s) {}
Fi xed& val
UShort digits;
UShort scal e;
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s
struct to_abstract base {
to_abstract _base(Abstract Base ptr& base)
ref (base) {}
Abstract Base ptré& ref;
s
struct to_value {
to_val ue(Val ueBase*& base) : ref(base) {}
Val ueBase*& ref;

b

Bool ean operat or >>=(to_bool ean) const;

Bool ean operator>>=(to_char) const;

Bool ean operator>>=(to_wchar) const;

Bool ean operator>>=(to_octet) const;

Bool ean oper at or >>=(t 0_obj ect) const;

Bool ean operator>>=(to_string) const;

Bool ean operator>>=(to_wstring) const;

Bool ean operator>>=(to_fixed) const;

Bool ean operator>>=(to_abstract base) const;
Bool ean operator>>=(to_val ue) const;

Comment: Issue 1700

TypeCode_ptr type() const;
void type(TypeCode_ptr);

private:
/1 these are hidden and should not be inplenmented
/1l so as to catch erroneous attenpts to insert
/1 or extract nultiple IDL types mapped to unsi gnhed
char
voi d oper at or <<=(unsi gned char);
Bool ean oper at or >>=(unsi gned char &) const;

b

voi d operat or<<=(Any&, Short);

voi d operat or<<=(Any&, UShort);

voi d operator<<=(Any&, Long);

voi d operat or<<=(Any&, ULong);

voi d operator<<=(Any&, Float);

voi d operat or<<=( Any&, Double);

voi d operat or<<=(Any&, LongLong);

voi d operat or<<=(Any&, ULonglLong);

voi d operat or<<=(Any&, LongDoubl e);

voi d operat or<<=(Any&, const Any&); /1 copying
voi d operator<<=(Any&, Any*); /'l non-copyi ng
voi d operat or<<=( Any&, const char*);
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voi d oper at or <<=( Any&,

Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean
Bool ean

1.42.6 Any var Class

oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const
oper at or >>=( const

cl ass Any_var

{
publ i

C:

Any_var ();
Any_var (Any *a);

Any_var (const Any_var &a);

~Any_var();

Any &,
Any &,
Any &,
Any &,
Any &,
Any &,
Any &,
Any &,
Any &,
Any &,
Any &,
Any &,

Short &) ;

const WChar*);

UShort &)

Long&) ;
ULong&) ;
Fl oat &)

Doubl e&)
LongLong&) ;
ULongLongé&) ;
LongDoubl e&) ;
const Any*&);
const char*&)
const WChar*&);

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();

const Any& in() const;
Any& inout ();
Any*& out ();

Any* retn();

/1 other conversion operators for

b

1.42.7 Exception Class

Il C++

cl ass Exception

{
publ i

Excepti on(const

Vi

Excepti on &oper at or=(const

Vi

C:

rtual ~Exception();

Exception &);

par anet er

Exception &);

rtual void raise() const =
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Comment:

I ssue 3381

virtual const char * _nane() const;
virtual const char * _rep_id() const;

pr ot ect ed:
Exception();
b

1.42.8 SystemException Class

Comment:

Il C++

enum Conpl eti onStatus { COVMPLETED YES, COVPLETED_NO,
COVPLETED_MAYBE };

cl ass SystenmException : public Exception

{

| ssue 2897

publi c:
~Syst enException();

ULong mi nor () const;
voi d m nor (ULong);

Conpl eti onSt at us conpl eted() const;
voi d conpl et ed( Conpl eti onSt at us) ;

virtual void _raise() const = 0;

static SystenException* _downcast (Exception*);
static const SystemkException* _downcast (
const Exception*
)
pr ot ect ed:
Syst enException();
Syst enExcepti on(const SystenmException &);
Syst enExcepti on(ULong minor, Conpl etionStatus status);
Syst enExcepti on &oper at or =(const SystenException &) ;

b

1.42.9 UserException Class

Comment:

Il C++
cl ass User Exception : public Exception

{

| ssue 2897
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publi c:
~User Exception();

virtual void _raise() const = 0;

static UserException* _downcast (Exception*);
static const UserException* _downcast (
const Exception*

)

pr ot ect ed:
User Exception();
User Excepti on(const User Exception &);
User Excepti on &operat or =(const User Exception &);

b

1.42.10 UnknownUser Exception Class

Il C++
cl ass UnknownUser Exception : public UserException
{

publi c:

Any &exception();

static UnknownUser Exception* _downcast (Exception*);
static const UnknownUser Exception* _downcast (

const Exception*
)

virtual void raise();
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1.42.11 release and is nil
Il CH+

nanespace CORBA {
void rel ease(Cbject_ptr);

voi d
voi d
voi d
voi d
voi d
voi d

rel ease( Envi ronnent _ptr);
rel ease(NanedVal ue_ptr);
rel ease(NVLi st_ptr);

rel ease(Request _ptr);

rel ease(Context_ptr);

rel ease( TypeCode_ptr);

void rel ease(POA ptr)

void rel ease(ORB ptr);

Bool ean is_nil (Cbject_ptr);
Bool ean is_nil (Environment _ptr);
Bool ean is_nil (NarmedVal ue_ptr);
Bool ean is_nil (NVList_ptr);
Bool ean is_nil (Request _ptr);
Bool ean is_nil (Context _ptr);
Bool ean is_nil (TypeCode_ptr);
Bool ean is_nil (POA ptr);
Boolean is_nil (ORB ptr);

1.42.12 Object Class
Il C++

cl ass Obj ect

{
publi c:

static Object _ptr _duplicate(Chject _ptr obj);
static Qoject _ptr _nil();
InterfaceDef ptr _get _interface();

Bool ean _is_a(const char* |ogical _type_ id);

Bool ean _non_exi stent();

Bool ean _is_equival ent (Cbj ect _ptr other_object);

ULong _hash(ULong maxi nmunj;

voi d

June 2003

_create_request(

Context _ptr ctx,

const char *operation,
NVLi st _ptr arg_list,
NanedVal ue_ptr result,
Request _out request,
Fl ags req_fl ags
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void _create_request(
Context _ptr ctx,
const char *operation,
NVLi st _ptr arg_list,
NanedVal ue_ptr result,
Excepti onLi st_ptr,
Cont ext Li st_ptr,
Request _out request,
Fl ags reqg_fI ags
)
Request _ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);
Domai nManager Li st* _get _domai n_managers();
oj ect _ptr _set_policy_overrides(
const PolicyList& policies,
Set Overri deType set _or_add
)
H

1.42.13 Environment Class

/1l C++
cl ass Environnent
{

publi c:

voi d exception(Exception*);
Excepti on *exception() const;
void clear();

static Environnent _ptr _duplicate(Environment_ptr ev);
static Environnment_ptr _nil();

b

1.42.14 NamedValue Class

/[l C++
cl ass NanedVal ue
{

publi c:

const char *nanme() const;
Any *val ue() const;
Fl ags flags() const;

static NanedVal ue_ptr _duplicate(NanedVval ue _ptr nv);
static NanedVal ue _ptr _nil();
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1.42.15 NVList Class

[/l C++
cl ass NVLi st
{

publi c:

ULong count () const;

NanedVal ue_ptr add(Fl ags);

NanedVal ue_ptr add_item(const char*, Flags);
NanedVal ue_ptr add_val ue(const char*, const Anyé&,

Fl ags) ;
NanedVal ue_ptr add_item consune(
char*,
Fl ags
)
NanedVal ue_ptr add_val ue_consumng(
char*,
Any *|
Fl ags
)

NanmedVal ue_ptr item ULong);
void renmove(ULong);

static NVList_ptr _duplicate(NVList_ptr nv);
static NVList_ptr _nil();

1.42.16 ExceptionList Class

Il C++
cl ass ExceptionLi st
{

publi c:

ULong count ();

voi d add(TypeCode ptr tc);

voi d add_consune(TypeCode ptr tc);
TypeCode ptr itenm(ULong index);
voi d renove(ULong i ndex);
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1.42.17 ContextList Class

cl ass Cont ext Li st

{
publi c:

ULong count ();
voi d add(const char* ctxt);
voi d add_consune(char* ctxt);
const char* itenmULong i ndex);
voi d renove(ULong i ndex);

H

1.42.18 Request Class

Il C++
cl ass Request
{

publi c:

oj ect _ptr target() const;
const char *operation() const;
NVLi st _ptr argunents();
NanedVal ue_ptr result();

Envi ronment _ptr env();
ExceptionLi st_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context _ptr);
Context _ptr ctx() const;

Any& add_in_arg();

Any& add_in_arg(const char* nane);
Any& add_i nout _arg();

Any& add_i nout _arg(const char* nane);
Any& add_out _arg();

Any& add_out _arg(const char* nane);
void set _return_type(TypeCode ptr tc);
Any& return_val ue();

voi d i nvoke();

voi d send_oneway();

voi d send_deferred();
voi d get _response();
Bool ean pol | _response();

static Request _ptr _duplicate(Request _ptr req);
static Request _ptr _nil();
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1.42.19 Context Class

[/l C++
cl ass Cont ext
{

publi c:

const char *context_nanme() const;
Context _ptr parent() const;

void create_child(const char*, Context_out);
voi d set_one_val ue(const char*, const Any&);
voi d set_val ues(NVLi st _ptr);

voi d del ete_val ues(const char*);
voi d get_val ues(const char*, Flags, const char*,
NVLi st _out);

static Context_ptr _duplicate(Context_ptr ctx);

static Context_ptr _nil();
b

1.42.20 TypeCode Class

Il C++
cl ass TypeCode
{
publi c:
cl ass Bounds : public UserException { ... };
class BadKind : public UserException { ... };

TCKi nd ki nd() const;

Bool ean equal (TypeCode_ptr) const;

Bool ean equi val ent (TypeCode_ptr) const;
TypeCode ptr get conpact _typecode() const;

const char* id() const;
const char* nanme() const;

ULong nmenber _count () const;
const char* nenber _nane(ULong index) const;

TypeCode ptr nenber _type(ULong i ndex) const;
Any *nenber | abel (ULong index) const;
TypeCode ptr discrimnator_type() const;
Long default_index() const;

ULong | ength() const;

TypeCode _ptr content type() const;
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b

1.42.21 ORB Class

Ushort fixed_digits() const;
Short fixed_scal e() const;

Visibility nember _visibility(ULong index) const;
Val uet ypeModi fier type_nodifier() const;
TypeCode_ptr concrete_base type() const;

static TypeCode _ptr _duplicate(TypeCode ptr tc);
static TypeCode_ptr _nil();

C++
cl ass ORB
publi c:

typedef sequence<Request_ptr> Request Seq;
char *object _to_string(Object _ptr);
oj ect _ptr string_to_object(const char*);
void create_list(Long, NVList_out);
void create_operation_Ilist(OperationDef_ptr,
NVLi st _out);
voi d create_naned_val ue( NamedVal ue_out);
void create_exception_Ilist(ExceptionList_out);
void create_context _|ist(ContextList_out);
voi d get _default_context (Context_out);
voi d create_environnent (Envi ronment _out);
void send_mul tipl e_requests_oneway(
const Request Seq&
)
void send_multipl e_requests_deferred(
const Request Seqg&
)
Bool ean pol | _next _response();
voi d get_next_response(Request _out);

/1 Obtaining initial object references
typedef char* Objectld;
class ObjectldList {...};
class InvalidNanme : public UserException {...};
oj ectldList *list_initial_services();
oj ect_ptr resolve_initial _references(
const char *identifier

)
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Bool ean wor k_pendi ng();

voi d performwork();

voi d shut down(Bool ean wait_for_conpl etion);
void run();

Bool ean get _service_information(
Servi ceType svc_type,
Servi cel nformati on_out svc_info

)
typedef char* Objectld;
class ObjectldList { ... };

oj ect _ptr resolve_initial _references(const char* id);
ojectldList* list _initial_services();

Policy ptr create_policy(
Pol i cyType type,
const Any& val
)

static ORB ptr _duplicate(ORB ptr orb);
static ORB ptr _nil();
s

1.42.22 ORB Initialization

Il C++
typedef char* ORBi d;
static ORB ptr ORB_ init(
int& argc,
char** argv,
const char* orb_identifier = ""

1.42.23 General T_out Types

Il C++
class T out
{

publi c:

T out(T*& p) : ptr_(p) { ptr_ =0; }
T out(T var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;
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T out(T out& p) : ptr_(p-ptr_) {}
T out & operator=(T_out& p) {

ptr_ = p.ptr_;

return *this;

}
T out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&) { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

/1 assignment from T_var not allowed
voi d operator=(const T varé&):

1.43 Alternative Mappings For C++ Dialects

1-170

1.43.1 Without Namespaces

If the target environment does not support the namespace construct but does support
nested classes, then a modul e should be mapped to a C++ class. If the environment does
not support nested classes, then the mapping for modules should be the same as for the
CORBA C mapping (concatenating identifiers using an underscore (“_") character asthe
separator). Note that module constants map to file-scope constants on systems that support
namespaces and class-scope constants on systems that map modules to classes.

1.43.2 Without Exception Handling

For those C++ environments that do not support real C++ exception handling, referred to
here as non-exception handling (non-EH) C++ environments, an Envi r onnent parame-
ter passed to each operation is used to convey exception information to the caller.

Asshown in Section 1.27, “Environment,” on page 1-112, the Envi r onnent class sup-
ports the ability to access and modify the Except i on it holds.

Asshown in Section 1.19, “Mapping for Exception Types,” on page 1-96, both user-
defined and system exceptions form an inheritance hierarchy that normally allow typesto
be caught either by their actual type or by a more general base type. When used in anon-
EH C++ environment, the narrowing functions provided by this hierarchy allow for exam-
ination and manipulation of exceptions:

/I IDL
interface A

{

exception Broken { ... };
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void op() raises(Broken);

b

Il C++
Envi ronnent ev;
A ptr obj = ...
obj ->op(ev);
if (Exception *exc = ev.exception()) {
if (A :Broken *b = A :Broken:: narrow(exc)) {
/1 deal with user exception
} else {
/1 must have been a system exception
Syst enException *se = SystenmException:: narrow exc);

}

Section 1.33, “ORB,” on page 1-124 specifiesthat Envi r onment must be created using
ORB: : creat e_envi r onment , but thisisoverly constraining for implementations
requiring an Envi r onnment to be passed as an argument to each method invocation. For
implementations that do not support real C++ exceptions, Envi r onnent may be allo-
cated as a static, automatic, or heap variable. For example, all of the following are legal
declarations on anon-EH C++ environment:

[l C++
Envi ronment gl obal _env; /1 gl obal
static Environnment static_env; /[l file static

class Myd ass

{

publi c:

private:

static Environnent class_env; /1l class static

b
void func()
{

Envi ronnent auto_env; /1 auto

Envi ronment *new_env = new Environnent;// heap
}

For ease of use, Envi r onnent parameters are passed by reference in non-EH environ-
ments:

/I DL
interface A

{

exception Broken { ... };
void op() raises(Broken);
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1.44 C++ Keywords

|3
Il C++
class A ...
{
public:
void op(Environment &);

b

For additional ease of usein non-EH environments, Envi r onnent should support copy
construction and assignment from other Envi r onnment objects. These additional fea-
tures are helpful for propagating exceptions from one Envi r onnent to another under
non-EH circumstances.

When an exception is “thrown” in anon-EH environment, object implementors and ORB
runtimes must ensure that all out and return pointers are returned to the caller as null
pointers. If non-initialized or “garbage” pointer values are returned, client application
code could experience runtime errors due to the assignment of bad pointersto T_var
types. WhenaT_var goesout of scope, it attemptstodel et e theT* giventoit; if this
pointer valueis garbage, aruntime error will almost certainly occur. Exceptionsin non-EH
environments need not support the virtual _r ai se() function, since the only useful
implementation of it in such an environment would be to abort the program.

Table 1-7 lists all C++ keywords from the 2 December 1996 Working Paper of the
ANSI (X3J16) C++ Language Standardization Committee.

Table1-7 C++ Keywords

and and_eq asm auto bitand bitor

bool break case catch char class
compl const const_cast continue default delete

do double dynamic_cast else enum explicit
export extern false float for friend

goto if inline int long mutable
namespace new not not_eq operator or

or_eq private protected public register reinterpret_cast
return short signed sizeof static static_cast
struct switch template this throw true

try typedef typeid typename union unsigned
using virtual void volatile wchar_t while

xor Xor_eq
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