
Deployment and Configuration of
Component-based Distributed

Applications Specification

Working Draft

This document represents the adopted specification, ptc/03-07-08, with resolutions to issues 5953, 5954, 5955, 5956,
5957, 5958, 5959, 5960, 5961, 5962, 5963, 5964, 5965, 5967, 5983, 5984, 5985, 5986, 6024, 6025, 6026, 6037, 6038,
6041, 6042, 6045, 6046, 6047, 6048, 6051, 6053, 6270, 6383, 6384, 6385, 6386, 6787, 6388 and 6392 applied.

It updates the adopted specification, ptc/03-07-08, with resolutions to issues 5953, 5954, 5955, 5956, 5957, 5958, 5959,
5960, 5961, 5962, 5963, 5964, 5983, 5984, 5985, 5986, 5993, 6024, 6037, 6038, 6041, 6042, 6044, 6046, 6048, 6051
and 6052 from the first vote.

It updates the working draft ptc/03-10-01 with resolutions to issues 5967, 6045, 6053, 6270, 6383, 6384, 6385, 6386,
6387 and 6388 from the second vote.

It updates the working draft ptc/03-12-02 with resolutions to issues 5965, 6025, 6026, 6047 and 6392 from the third
vote.

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2002-2003, Fraunhofer FOKUS
Copyright © 2002-2003, Mercury Computer Systems, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

© OMG Working Draft

Contents

1 Introduction . 1

1.1 Component-Based Applications . 1

1.2 The Target Environment . 2

1.3 The Deployment Process . 2
1.3.1 Preconditions for the Process of Deployment . 2
1.3.2 Installation . 3
1.3.3 Configuration. 3
1.3.4 Planning . 3
1.3.5 Preparation. 3
1.3.6 Launch . 4
1.3.7 All at Once, or Step by Step . 4

1.4 Relationship to the MDA. 4

2 Scope . 5

3 Conformance . 7

3.1 Summary of optional versus mandatory interfaces . 7

3.2 Proposed conformance points . 7

3.3 Changes or extensions required to adopted OMG specifications . 7

3.4 Complete IDL definitions . 7

4 References . 9

4.1 Normative References . 9

4.2 Non-Normative References . 10

5 Terms and Definitions . 11

6 Platform Independent Model . 13

6.1 Table of Contents. 13
6.1.1 Model Overview . 13
6.1.2 Class Overview . 13

6.2 Segmentation of the Model . 14
6.2.1 Dimension #1: Data Models vs. Management (or Runtime) Models. 14
6.2.2 Dimension #2: Component Software vs. Target vs. Execution. 15
Deployment and Configuration of Component-based Distributed Applications v

Working Draft © OMG

6.2.3 Summary of Model Segmentation Dimensions . 16

6.3 Model Diagram Conventions . 17

6.4 Component Data Model . 20
6.4.1 Component Data Model Overview . 21
6.4.2 PackageConfiguration. 22
6.4.3 ComponentPackageDescription . 23
6.4.4 PackagedComponentImplementation . 25
6.4.5 ComponentImplementationDescription . 26
6.4.6 ComponentAssemblyDescription . 27
6.4.7 SubcomponentInstantiationDescription . 29
6.4.8 ComponentPackageReference . 30
6.4.9 AssemblyConnectionDescription . 31
6.4.10 SubcomponentPortEndpoint . 32
6.4.11 AssemblyPropertyMapping . 33
6.4.12 SubcomponentPropertyReference . 34
6.4.13 MonolithicImplementationDescription. 34
6.4.14 NamedImplementationArtifact . 35
6.4.15 ImplementationArtifactDescription . 36
6.4.16 ComponentInterfaceDescription . 38
6.4.17 ComponentPortDescription . 39
6.4.18 ComponentPropertyDescription . 40
6.4.19 Capability . 41

6.5 Component Management Model . 42
6.5.1 RepositoryManager. 42

6.6 Target Data Model . 43
6.6.1 Domain . 44
6.6.2 Node . 45
6.6.3 Interconnect . 46
6.6.4 Bridge . 47
6.6.5 Resource . 48
6.6.6 SharedResource . 49

6.7 Target Management Model. 49
6.7.1 TargetManager . 50
6.7.2 DomainUpdateKind . 51

6.8 Execution Data Model . 51
6.8.1 DeploymentPlan . 52
6.8.2 ArtifactDeploymentDescription . 54
6.8.3 MonolithicDeploymentDescription . 55
6.8.4 InstanceDeploymentDescription. 57
6.8.5 PlanConnectionDescription . 58
6.8.6 PlanSubcomponentPortEndpoint . 59
6.8.7 PlanPropertyMapping . 60
6.8.8 PlanSubcomponentPropertyReference . 61

6.9 Execution Management Model . 61
vi Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6.9.1 Execution Management Model Overview. 62
6.9.2 ExecutionManager. 63
6.9.3 NodeManager . 64
6.9.4 ApplicationManager . 66
6.9.5 DomainApplicationManager . 67
6.9.6 NodeApplicationManager . 68
6.9.7 Application . 69
6.9.8 DomainApplication . 70
6.9.9 NodeApplication . 70
6.9.10 Logger . 71
6.9.11 Connection. 71
6.9.12 Endpoint. 72

6.10 Common Elements . 72
6.10.1 ImplementationDependency . 72
6.10.2 ComponentExternalPortEndpoint . 73
6.10.3 ExternalReferenceEndpoint. 73
6.10.4 RequirementSatisfier . 74
6.10.5 SatisfierProperty . 75
6.10.6 SatisfierPropertyKind . 76
6.10.7 Requirement. 77
6.10.8 Property . 78
6.10.9 DataType . 78
6.10.10 Any . 79

6.11 Exceptions . 79
6.11.1 PackageError . 79
6.11.2 NameExists . 80
6.11.3 NoSuchName. 80
6.11.4 LastConfiguration . 81
6.11.5 ResourceNotAvailable. 82
6.11.6 PlanError . 82
6.11.7 StartError . 83
6.11.8 StopError . 84
6.11.9 InvalidProperty . 84
6.11.10 InvalidConnection . 85
6.11.11 InvalidReference . 85

6.12 Relations to Other Standards . 86
6.12.1 Component. 86
6.12.2 ImplementationArtifact . 87

7 Actor . 89

7.1 Development Actors Overview . 89

7.2 Specifier. 90

7.3 Developer. 90

7.4 Assembler . 91
Deployment and Configuration of Component-based Distributed Applications vii

Working Draft © OMG

7.5 Packager . 91

7.6 Domain Administrator . 92

7.7 Deployment Actors Overview . 92

7.8 Repository Administrator . 93

7.9 Planner . 93
7.9.1 Finding Valid Deployments . 93
7.9.2 Matching Selection Requirements . 95
7.9.3 Matching Implementation Requirements . 95
7.9.4 Matching Connection Requirements . 95
7.9.5 Matching a Resource against a Requirement . 96

7.10 Executor . 96

8 UML Profile for D&C Tool Support . 99

8.1 Structure of the Profile . 99

8.2 Package Components . 101

8.3 Package Targets . 109

9 PSM for CCM. 115

9.1 Introduction. 115

9.2 Definition of Meta-Concepts . 116
9.2.1 Component . 116
9.2.2 ImplementationArtifact. 117
9.2.3 Package . 117

9.3 PIM to PSM for CCM Transformation. 117
9.3.1 ComponentInterfaceDescription . 117
9.3.2 PlanSubcomponentPortEndpoint . 118
9.3.3 Application . 118
9.3.4 RepositoryManager. 119
9.3.5 SatisfierProperty . 119

9.4 PSM for CCM to PSM for CCM for IDL Transformation . 119
9.4.1 Generic Transformation Rules . 119
9.4.2 Special Transformation Rules. 121
9.4.3 Sequence of String . 121
9.4.4 Sequence of unsigned long . 121
9.4.5 Endpoint . 121
9.4.6 DataType. 122
9.4.7 Any . 122
9.4.8 Primitive Types. 122
9.4.9 Mapping to IDL . 122
viii Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9.5 PSM for CCM to PSM for CCM for XML Transformation . 122
9.5.1 Generic Transformation Rules. 122
9.5.2 Special Transformation Rules . 123
9.5.3 ToplevelPackageDescription . 123
9.5.4 Any . 123
9.5.5 DataType . 124
9.5.6 DataValue . 126
9.5.7 Others. 127
9.5.8 Transformation Exceptions and Extensions . 127
9.5.9 Interpretation of Relative References . 128
9.5.10 Mapping to XML. 129

9.6 Miscellaneous . 129
9.6.1 Entry Points . 129
9.6.2 Homes . 130
9.6.3 Valuetype Factories . 130
9.6.4 Discovery and Initialization. 130
9.6.5 Location . 131
9.6.6 Segmentation . 132

9.7 Impact on the CCM Specification . 132

9.8 Migration Issues. 132
9.8.1 Component Implementations. 132
9.8.2 Component and Assembly Packages and Metadata . 132
9.8.3 Component Deployment Systems . 133

9.9 Metadata Vocabulary. 133
9.9.1 Implementation Selection Requirements. 133
9.9.2 Monolithic Implementation Resource Requirements . 133

10 Mapping to XML Schema . 135

A IDL for CCM . 137

B XML Schema for CCM . 149
Deployment and Configuration of Component-based Distributed Applications ix

Working Draft © OMG

x Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

1 Introduction 1 Introduction
1 Introduction
"A component represents a modular part of a system that encapsulates its contents and whose manifestation is re-
placeable within its environment. A component defines its behavior in terms of provided and required interfaces.
Larger pieces of a system's functionality may be assembled by reusing components as parts in an encompassing
component or assembly of components, and wiring together their required and provided ports." [UML2S]

In short, the idea of component-based development is to divide an application into small reusable components
that can be connected to other components via ports, or, speaking the other way around, to compose applications
by reusing and interconnecting existing components. An important idea is recursion, that an assembly — a set of
interconnected components — can be seen as a component in itself, and therefore be reused the same way: an as-
sembly always “implements” a specific component interface. Within an assembly, connections must be made be-
tween its subcomponents, and arrangements must be made for the assembly's external ports — ports of the
component interface that the assembly is implementing — to delegate their behavior to subcomponent ports.

In order to instantiate, or deploy, a component-based application, instances of each subcomponent must first be
created, then interconnected and configured. This specification deals with the deployment and configuration of
component-based applications onto distributed systems, anticipating that subcomponents might be distributed
among a set of independent, interconnected nodes called domain.

In this specification, an “application” is nothing special; an application is just a component that is assumed to be
independently useful. As before, this component can be implemented directly (by a monolithic implementation),
or it can be implemented by an assembly, where the implementations for its subcomponents can again be either
monolithic or assemblies. Ultimately, any application can be decomposed into components that have monolithic
implementations. At deployment time, decisions must be made about which implementations to deploy (execute)
where.

1.1 Component-Based Applications
In this specification, software components can have implementations that are either:

● compiled code (called monolithic implementations) or

● assemblies of other components (assembly implementations, providing a recursive definition)

An assembly is defined as a set of components and interconnections that implement a component. There is no
special “top level assembly,” since assemblies are simply a method of specifying component implementations. To
actually execute a component whose implementation is an assembly of lower level components, there must even-
tually be monolithic implementations at the “leaves” of the hierarchical implementation.

This definition of assembly means that the “application being deployed” is in fact a component. Its interface is
defined as any component interface is defined. There is no special distinguished interface for “components that
can be deployed as applications.” Launching a component-based application results in an object that satisfies the
interface of the component interface of the “application.” Thus this specification has no need to treat the “thing
being deployed” differently than a component, and enables implementation alternatives to be either monolithic
compiled code artifacts or a hierarchical description of other components. This also means that any implementa-
tion, whether monolithic or assembly based, is reusable inside a larger application, without being touched.

A component package is a set of metadata and compiled code modules that contains implementations of a com-
ponent interface. The implementations in a package can be a mix of monolithic and assembly implementations,
with either or both present at any level of the hierarchy. Thus the creator of a component-based application pro-
duces a component package whose top level component interface represents the interface of the application.
Deployment and Configuration of Component-based Distributed Applications 1

Working Draft © OMG

1.2 The Target Environment 1 Introduction
Assemblies can consist of subcomponents whose implementations are inside the same package of software, or
they can reference component packages that must exist in the environment outside the package containing the as-
sembly. This not only allows packages from different vendors to be used together, but also allows dependent
packages to be replaced without changing the other package or its configuration. No on-line update functionality
is implied here.

To support heterogeneous systems, a package can contain more than one implementation, so that there is a choice
at deployment time to find the implementation that best matches the target environment. For example, a package
might contain implementations of the same component for Windows, Linux or Java.

Monolithic component implementations express requirements that must be fulfilled by properties of the system
on which they will be executed, e.g. the CPU type, or available hardware. The requirements of an assembly
based implementation are implied by the requirements of its subcomponents, plus additional requirements on the
connections between them.

1.2 The Target Environment
The target environment is termed a domain. Domains are composed of nodes, interconnects and bridges. Nodes
have computational capabilities and are a target for executing component implementations; this definition en-
compasses personal computers as well as SMP systems, DSPs or FPGAs. Interconnects provide a direct shared
connection between nodes, e.g. representing an ethernet cable or a RapidIO fabric. Bridges route between inter-
connects, representing both routers and switches.

Nodes, interconnects and bridges have resources that define their features, resources and capacities. For a node,
this might be the operating system type, memory or available special hardware; an interconnect might describe
its bandwidth as a resource. The platform independent model does not define types of resources, it just introduc-
es the concept. Platform specific models or domain profiles may list concrete types of resources that are relevant
to the platform or the domain.

An important aspect of the target environment is that the software that supports component execution on a par-
ticular node, must be able to be implemented independently of the deployment service as a whole. This interop-
erability boundary allows those interested in or knowledgeable of specific types of nodes to implement
deployment support for those nodes without touching the overall deployment system for the target environment.

1.3 The Deployment Process
The model in this specification is based on a process definition of deployment. The process starts after the soft-
ware is developed, packaged and published by a software provider, and is acquired by the software owner, who
deploys it. We call the owner at this point the deployer.

1.3.1 Preconditions for the Process of Deployment

Prior to deployment, the software has been packaged according to this specification, by the producer of the soft-
ware, such that the metadata describing the software, and the binary compiled code artifacts, are combined into a
package.

The package is published and somehow made available to the deployer, e.g. via a CDROM or web URL at an
FTP site.

There is a target environment, consisting of a distributed system infrastructure (computers, networks, services),
on which the software will ultimately run. There is a repository, which, at a minimum, is a staging area where the
packaged software is captured prior to decisions about how it will run in the target environment.
2 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

1 Introduction 1.3.2 Installation
1.3.2 Installation

We define installation as the act of taking the published software package and bringing it into a component soft-
ware repository under the deployer’s control, but the location (computer, file system, database) of this repository
is not necessarily related to where the software will actually execute. It is a staging area where various policies
of the deployer, such as security authentication, can be applied to the software prior to activities related to exe-
cution of the software. In the process defined here, installation is not related to moving software to the computers
on which it will actually execute. Repositories do not necessarily need to be persistent, and they do not necessar-
ily need to store or copy the software or metadata. Deep copy and shallow copy of the software are both support-
ed under this specification.

1.3.3 Configuration

When the software is “in-house”, in a repository, it can be functionally configured as to various default configu-
ration options for later execution. An example would be: when this spreadsheet runs, the background color
should be blue. Various configurations of a software package could be created. Configuration is not intended to
capture the deployment decisions as to which implementation will be used or where the parts of the application
will execute, but only functional configuration.

1.3.4 Planning

Planning how and where the software will run in the target environment is an activity that takes the requirements
of the software to be deployed, along with the resources of the target environment on which the software will be
executed, and decides which implementation and how and where the software will be run in that environment.
We take care to separate this decision making step from actually acting on the decisions since there are important
use cases for “advanced planning” that have no immediate effect on the target environment.

Advanced planning also allows for faster ultimate execution since all decisions can be made in advance (in cases
where resource availability is not changing). Advanced planning can be done with an offline tool does not inter-
act with the actual runtime environment at all, but merely “keeps score” of how it is using up the resources
known to be in the target environment. Of course there are also important use cases for “just-in-time” planning,
where execution follows immediately after making planning decisions based on current dynamic resource avail-
ability in the target environment.

Planning results in a deployment plan specific to both the software being deployed and the target environment
being deployed on.

1.3.5 Preparation

Given that we define planning as deciding how and where the software will run, we define preparation as per-
forming work in the target environment to be ready to execute the software, such as moving binary files to the
specific computers in the target environment on which the software will execute. This work is reusable if the
software is executed more than once based on the same plan. Doing this work in advance reduces the startup time
when the software is actually run. Just like planning, preparation can be done “just in time”, as part of an auto-
mated scenario where the entire process happens at once.
Deployment and Configuration of Component-based Distributed Applications 3

Working Draft © OMG

1.3.6 Launch 1 Introduction
1.3.6 Launch

Launching the application brings the application to an executing state, taking all resources that are known to be
required based on the metadata in the packages. Component-based applications are launched by instantiating
components, as planned, on nodes in the target environment. Launching includes interconnecting and configuring
component instances, as well as starting execution. In this executing state, the application runs until it completes
or is terminated via the same infrastructure that launched it.

1.3.7 All at Once, or Step by Step

This process model supports use cases where various combinations of these steps are done at different times us-
ing different tools. Of course there is the completely monolithic and automated case where a single deployment
tool takes a web URL for a component package and executes it.

1.4 Relationship to the MDA
This specification is compliant with the Model Driven Architecture (MDA) defined by the OMG. It is composed
of four main levels of models:

● A D&C Platform Independent Model (PIM), which constitutes the core of the specification. The D&C
PIM defines the set of concepts and classes that are relevant for the implementation of the
specification.
The D&C PIM is explicitly independent of distributed component middleware technology (e.g.
CORBA or J2EE), information formatting technology (e.g. XML DTD and XML), and programming
languages (e.g. C++ and Java). Mappings to CORBA and XML are possible at the PSM level.

● A D&C UML profile designed to enhance the D&C PIM’s readability and to facilitate the PIM-to-
PSM mapping.

● A set of D&C Platform Specific Models which constitute realizations of the D&C PIM on concrete
platforms. A required CCM PSM constitutes an integral part of this specification.
A PIM-to-PSM mapping is explicitly defined for each PSM.

● A D&C Tool-Support Profile. This profile is closely related to the D&C PIM. The D&C PIM, in
effect, defines the abstract syntax of a language for specifying the deployment and configuration of
distributed components. The D&C Tool Support Profile defines, in effect, a concrete, UML-based
syntax for this language. This concrete syntax can be employed using generic UML tools. The use of
these stereotypes enables the automatic generation of D&C classes and descriptors from Deployment
and Configuration UML models.

Based on the current requirements of the D&C RFP, there is no need to extend the UML metamodel at the M2
level. The use of profiles and stereotypes is sufficient to support the concepts defined in the D&C specification.

While not an explicit part of the current specification, it is also possible that different profiles of the D&C spec-
ification will be defined to satisfy the needs of different application domains, e.g. a D&C profile for web-based
systems and a D&C profile for embedded systems. Because of the compatibility of the current D&C specification
with the MOF 1.4, D&C profiles can be defined using the profiling mechanisms provided by UML. Such profiles
would, most likely, extend the profiles defined in this specification.
4 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

2 Scope 2 Scope
2 Scope

Note – Issue 6025

This specification defines metadata and interfaces to facilitate the deployment and configuration of component-
based applications into heterogeneous distributed target systems.

The specification defines:

● Metadata to describe component-based applications and their requirements (Component Data Model)
and interfaces to store, browse and retrieve such metadata (Component Management Model).

● Metadata to describe heterogeneous distributed target systems and their capabilities (Target Data
Model) and interfaces to collect and retrieve such metadata (Target Management Model).

● Metadata to describe a specific deployment of an application into a distributed target system
(Execution Data Model) and interfaces to execute deployments (Execution Management Model).

● A deployment process which includes installation, configuration, planning, preparation and launch of
the distributed application.

● A specialization of said metadata and interfaces for the CORBA Components platform.
Deployment and Configuration of Component-based Distributed Applications 5

Working Draft © OMG

2 Scope 2 Scope
6 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

3 Conformance 3 Conformance
3 Conformance
3.1 Summary of optional versus mandatory interfaces
All interfaces are mandatory within the compliance points. The interfaces are RepositoryManager, TargetMan-
ager, ExecutionManager, NodeManager, ApplicationManager, and Application.

3.2 Proposed conformance points
In general, the PIM suggests and enables several independent compliance points to enable different vendor im-
plementations or user replacement of implementations. These are:

● RepositoryManager
Rationale is that this function can be standalone, and implementations can offer a wide range of
persistence, database, security, file system or web functionality.

● TargetManager
Rationale is that this function can be standalone for independent offline planning or fully dynamic at
runtime. Both could coexist.

● NodeManager
Rationale is that this function is related to the node OS, ORB, development system etc., and there
would likely be multiple vendors’ implementations in a given distributed system. it should be a
modest effort for a node platform supplier to implement this without the rest of the deployment
system.

● ExecutionManager
This is the core of the deployment system.

The PSMs define their own specific compliance points. For the CCM PSM, all 4 are defined.

In chapter 8, the UML Profile for D&C Tool Support, suggests a further set of conformance points for tools:

● Modeling Tools that can create a well formed conformant M0 model of the PIM for CCM

● Forward Engineering Tools that can generate well formed XML, based on the XML schema for the
PSM for CCM, of conformant M0 models.

3.3 Changes or extensions required to adopted OMG specifications
As intended, the CCM PSM replaces the “Packaging and Deployment” (and associated IDL) and “XML DTDs”
chapters of CCM 3.0. The implications of this change are discussed in the migration subsection of the CCM PSM
section.

3.4 Complete IDL definitions

Note – Issue 6045

Note that IDL definitions for the CCM PSM are generated based on the normative rules described in chapter 9.
The resulting IDL is included in the non-normative appendix A.
Deployment and Configuration of Component-based Distributed Applications 7

Working Draft © OMG

3.4 Complete IDL definitions 3 Conformance
8 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

4 References 4 References
4 References

Note – Issue 5962: Added references. Issue 6385: remove MIME reference.

4.1 Normative References

[CCM] Object Management Group, “CORBA Components,” version 3.0. Adopted specification. June
2002.
http://www.omg.org/cgi-bin/doc?formal/02-06-65

[HTTP] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, RFC
2616: “Hypertext Transfer Protocol -- HTTP/1.1.” June 1999.
http://www.ietf.org/rfc/rfc2616.txt

[MOF1] Object Management Group, “Meta Object Facility Speicification,” version 1.4. Adopted
specification. April 2002.
http://www.omg.org/cgi-bin/doc?formal/02-04-03

[UML1] Object Management Group, “Unified Modeling Language Specification,” version 1.5.
Adopted specification. March 2003.
http://www.omg.org/cgi-bin/doc?formal/03-03-01

[UPC] Object Management Group, “UML™ Profile for CORBA™ Specification,” version 1.0.
Adopted specification. April 2002.
http://www.omg.org/cgi-bin/doc?formal/02-04-01

[URI] T. Berners-Lee, R. Fielding, L. Masinter, RFC 2396: “Uniform Resource Identifiers (URI):
Generic Syntax.” August 1998.
http://www.ietf.org/rfc/rfc2396.txt

[URN] R. Moats, RFC 2141: “URN Syntax.” May 1997.
http://www.ietf.org/rfc/rfc2141.txt

[XMI] Object Management Group, “XML Metadata Interchange (XMI),” version 2.0. Adopted
specification. May 2003.
http://www.omg.org/cgi-bin/doc?formal/03-05-02

[XML] World Wide Web Consortium (W3C), “Extensible Markup Language (XML),” version 1.0
(second edition). W3C Recommendation, October 6, 2000.
http://www.w3.org/TR/REC-xml

[XSD] World Wide Web Consortium (W3C), “XML Schema Part 1: Structures.” W3C
Recommendation, May 2, 2001.
http://www.w3.org/TR/xmlschema-1/
World Wide Web Consortium (W3C), “XML Schema Part 2: Datatypes.” W3C
Recommendation, May 2, 2001.
http://www.w3.org/2001/xmlschema-2/
Deployment and Configuration of Component-based Distributed Applications 9

http://www.omg.org/cgi-bin/doc?formal/02-06-65
http://www.ietf.org/rfc/rfc2616.txt
http://www.omg.org/cgi-bin/doc?formal/02-04-03
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?formal/02-04-01
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2141.txt
http://www.omg.org/cgi-bin/doc?formal/03-05-02
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

Working Draft © OMG

4.2 Non-Normative References 4 References
[ZIP] Pkware, Inc., “.ZIP File Format Specification,” version 5.2. June 2, 2003.
http://www.pkware.com/products/enterprise/white_papers/appnote.txt

4.2 Non-Normative References

[MOF2] Adaptive, Ceira Technologies, Inc., Compuware Corporation, Data Access Technologies,
Inc., DSTC, Gentleware, Hewlett-Packard, International Business Machines, IONA,
MetaMatrix, Softeam, SUN, Telelogic AB, Unisys, “Meta Object Facility (MOF) 2.0 Core
Proposal.” Recommended for adoption. April 2003.
http://www.omg.org/cgi-bin/doc?ad/03-04-07

[UML2I] U2 Partners, “Unified Modeling Language: Infrastructure,” version 2.0. Recommended for
adoption. January 2003.
http://www.omg.org/cgi-bin/doc?ad/03-01-01

[UML2S] U2 Partners, “Unified Modeling Language: Superstructure,” version 2.0. Recommended for
adoption. April 2003.
http://www.omg.org/cgi-bin/doc?ad/03-04-01

[UMLQOS] I-Logix Inc., Open-IT, THALES, “UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms.” Revised submission. May 4, 2003.
http://www.omg.org/cgi-bin/doc?realtime/03-05-02
10 Deployment and Configuration of Component-based Distributed Applications

http://www.pkware.com/products/enterprise/white_papers/appnote.txt
http://www.omg.org/cgi-bin/doc?ad/03-04-07
http://www.omg.org/cgi-bin/doc?ad/03-01-01
http://www.omg.org/cgi-bin/doc?ad/03-04-01
http://www.omg.org/cgi-bin/doc?realtime/03-05-02

© OMG Working Draft

5 Terms and Definitions 5 Terms and Definitions
5 Terms and Definitions

Note – Issue 6026

Terms marked with a reference in square brackets, e.g., [UML2S], are copied verbatim from the referenced spec-
ification. They are compiled here to provide a concise source of all relevant definitions.

5.1 Artifact [UML2S]

A physical piece of information that is used or produced by a deployment process. Examples of artifacts include
models, source files, scripts, and binary executable files. An artifact may constitute the implementation of a de-
ployable component.

5.2 Bridge
A resource that provides connectivity between interconnects, supplying an indirect communication path between
nodes.

5.3 Capability
A feature offered by a component implementation.

5.4 Component [UML2S]

A modular part of a system that encapsulates its contents and whose manifestation is replaceable within its envi-
ronment. A component defines its behavior in terms of provided and required interfaces. As such, a component
serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics).

5.5 Component Assembly
An implementation of a specific component interface using a set of interconnected components and a mapping of
the implemented component interface's features to these subcomponents.

5.6 Component Implementation
An abstract class that contains the attributes and associations that are common to both a Monolithic Implementa-
tion and a Component Assembly.

5.7 Component Interface
A named set of provided and required interfaces that characterize the behavior of a component.

5.8 Component Package
A set of alternative implementations of a component interface contained in a set of artifacts and compiled code
modules. (Has a set of component implementations, and each of these implementations is equally valid.)

5.9 Configuration
A set of default run-time application options used to customize non-deployment related application features. (See
section 1.3.3 for further information.)
Deployment and Configuration of Component-based Distributed Applications 11

Working Draft © OMG

5.10 Deployment Plan 5 Terms and Definitions
5.10 Deployment Plan
A mapping of a configured application into a domain, this includes mapping monolithic implementations to
nodes, connections to interconnects and bridges, and requirements to resources. Output of Planning, input to
Preparation.

5.11 Domain
A target environment composed of independent nodes, interconnects, bridges and resources.

5.12 Installation
The act of taking a published software package and bringing it into a repository. (See section 1.3.2 for further in-
formation.)

5.13 Interconnect
A target used for the deployment of connections between components.

5.14 Interface [UML2S]

A named set of operations that characterize the behavior of an element.

5.15 Implementation Artifact
A artifact used or produced as a result of an implementation. These are commonly constituted as partial compo-
nent implementations or monolithic implementations (usually "executable code").

5.16 Launch
The process of instantiating components on nodes in the target environment according to a deployment plan.
Launching includes interconnecting and configuring component instances, as well as starting execution. (See sec-
tion 1.3.6 for further details.)

5.17 Metadata
Information that characterizes data, Metadata are used to provide documentation for data products. In essence,
metadata answer who, what, when, where, why, and how about every facet of the data that are being document-
ed.

5.18 Monolithic Implementation
An indivisible implementation of a specific component interface using one or more deployable implementation
artifacts.

5.19 Node [UML2S]

A run-time computational resource which generally has at least memory and often processing capability. Run-
time implementation objects and components may reside on nodes.

5.20 Planning
The process of taking the requirements of the component package to be deployed and the resources of the target
environment (where the software will be executed), and deciding which implementation and how and where the
software will be run in that environment. (See section 1.3.4 for further information.)
12 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

5 Terms and Definitions 5.21 Preparation
5.21 Preparation
The process of performing work in the target environment to be ready to launch the software, such as moving bi-
nary files to the specific nodes in the target environment on which the software will execute. See section 1.3.5
for further information.

5.22 Repository
A facility for storing metadata, and implementations.

5.23 Requirement
A feature requested by component implementations. Monolithic implementation requirements must be satisfied
by node resources. Assembly subcomponent requirements must be satisfied by component implementation capa-
bilities. Assembly connection requirements must be satisfied by interconnect and bridge resources.

5.24 Resource
A feature offered by a node, interconnect or bridge.

5.25 Shared Resource
A feature shared between two or more nodes. Either node can host monolithic implementations with a require-
ment that is satisfied by a shared resource.
Deployment and Configuration of Component-based Distributed Applications 13

Working Draft © OMG

5.25 Shared Resource 5 Terms and Definitions
14 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6 Platform Independent Model
6 Platform Independent Model
6.1 Table of Contents
This table of contents is to allow easy navigation of the model.

6.1.1 Model Overview

Component Data Model . Page 20
Component Management Model . Page 45
Target Data Model . Page 46
Target Management Model . Page 53
Execution Data Model . Page 55
Execution Management Model . Page 68
Common Elements . Page 79
Exceptions . Page 86

6.1.2 Class Overview

Any . Page 86
ArtifactDeploymentDescription. Page 58
Application . Page 76
ApplicationManager . Page 73
AssemblyConnectionDescription . Page 32
AssemblyPropertyMapping . Page 34
Bridge . Page 51
Capability . Page 42
ComponentAssemblyDescription . Page 29
ComponentExternalPortEndpoint . Page 80
ComponentInterfaceDescription . Page 39
ComponentImplementationDescription . Page 27
ComponentPackageDescription . Page 25
ComponentPackageReference . Page 31
ComponentPortDescription. Page 40
ComponentPropertyDescription . Page 41
Connection . Page 78
ConnectionResourceDeploymentDescription Page 68
DataType . Page 85
DeploymentPlan . Page 56
Domain . Page 48
DomainApplication. Page 77
DomainApplicationManager . Page 74
DomainUpdateKind . Page 55
Endpoint . Page 79
ExecutionManager . Page 70
ExternalReferenceEndpoint. Page 80
ImplementationArtifactDescription . Page 38
ImplementationDependency . Page 79
ImplementationRequirement . Page 43
InstanceDeploymentDescription . Page 61
Deployment and Configuration of Component-based Distributed Applications 13

Working Draft © OMG

6.2 Segmentation of the Model 6 Platform Independent Model
InstanceResourceDeploymentDescription . Page 67
Interconnect . Page 50
Logger . Page 78
MonolithicDeploymentDescription . Page 60
MonolithicImplementationDescription . Page 36
NamedImplementationArtifact . Page 37
Node . Page 49
NodeApplication . Page 77
NodeApplicationManager. Page 75
NodeManager . Page 71
PackageConfiguration . Page 23
PackagedComponentImplementation . Page 26
PlanConnectionDescription. Page 62
PlanPropertyMapping. Page 65
PlanSubcomponentPortEndpoint . Page 64
PlanSubcomponentPropertyReference . Page 66
Property. Page 85
RepositoryManager . Page 45
Requirement . Page 84
RequirementSatisfier . Page 81
Resource . Page 52
ResourceDeploymentDescription . Page 66
SatisfierProperty. Page 82
SatisfierPropertyKind. Page 83
SharedResource . Page 53
SubcomponentInstantiationDescription . Page 30
SubcomponentPortEndpoint . Page 33
SubcomponentPropertyReference . Page 35
TargetManager . Page 54

6.2 Segmentation of the Model
The Platform Independent Model (PIM) is segmented in two dimensions. This breaks down the overall model in
a modular way such that interdependencies and complexity are minimized. The breakdown effectively creates six
top level diagrams with a modest number of “external” dependencies between diagrams. The dependencies and
relationships between these model segments are depicted on separate diagrams at the end of the model.

6.2.1 Dimension #1: Data Models vs. Management (or Runtime) Models.

This distinction is between a model of descriptive information, vs. the model of runtime entities that process, cre-
ate, provide or store that information. In general, data models can be used to generate XML Schemas for storing
and interchanging the data, and also to generate IDL data (or value) types and structures for the purpose of using
the modeled data as parameters in the runtime interfaces. We use the word “management” in the sense of an ac-
tive runtime entity that is dealing with (managing) the data. In general, data models are “leaves” in that they do
not have intrinsic dependencies on the management/runtime models, whereas it is common for the runtime mod-
els to refer to the data models to describe parameter types in the interfaces.

In the PSMs, the IDL data structures and/or XML Schemas can be generated from the data models based on
rules.
14 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.2.2 Dimension #2: Component Software vs. Target vs. Execution
6.2.2 Dimension #2: Component Software vs. Target vs. Execution

In creating this PIM for the D&C of components, it is useful to segment the model elements according to the de-
ployment process defined above. This should allow the different segments to be isolated according to usage
(“need to know”) by actors, and then introduce (minimal) linkages or relationships between the elements as re-
quired in the different segments. This segmentation is roughly based on the process of deployment. It partitions
the model with reduced/minimized interdependencies.

6.2.2.1 Component Software — output of the development, packaging, publishing processes

Component software models are about packaged component software, created by the component software devel-
opment process, mostly independent of the specific target system(s) on which it will be deployed, although some
requirements of the target are obviously included (compiled binary types, OS, etc.). Component software (all the
packaged metadata and compiled code artifacts) is installed in a repository, configured and used for deployment
planning. It exists independent of any specific target system since the planning process (and the results of the
planning process) is the bridge between this information and the ultimate execution on the target.

6.2.2.2 Target Environment — where the software will run

Target models are about the computing resource environment in which a component-based application will be ex-
ecuted. There is static basic configuration information as well as dynamic resource (and availability) information.
This is the basic “platform” on which component based applications are run, including the:

● nodes where software artifacts are loaded and used to instantiate components, and

● interconnects among nodes, to which inter-component software connections are mapped, to allow the
instantiated components to intercommunicate, and

● bridges among interconnects. While interconnects provide a direct connection between nodes, bridges
provide a routing capability between interconnects.

Interconnects are like networks or busses that multiple nodes could be attached to, and similarly, a node might be
attached to multiple interconnects (like a multi-homing network host). Nodes, interconnects and bridges are col-
lected into a domain, representing a particular target environment.

6.2.2.3 Execution — how the software is prepared to run, and executed based on its configuration

Execution models result from using component software models and target models to then express how compo-
nent based applications will be run on a target. After creating and acquiring software, and after defining and us-
ing target information, there is planning and execution. Execution data models capture the results of planning —
how the software will execute in the target environment (which implementations, running where). Execution
management models use this planning information to actually prepare and launch applications. This execution
happens at two levels: the whole application executing in the target environment, and the parts of the application
that run on each node.
Deployment and Configuration of Component-based Distributed Applications 15

Working Draft © OMG

6.2.3 Summary of Model Segmentation Dimensions 6 Platform Independent Model

 for

ol
 the
kage,
g

or the

ing to
kage
n.
L

ry
s so

er
odel

 (in
line

es. A
vided
hen
odel.
nged

if not
 plan
 Thus
lan in

rence
tion,
6.2.3 Summary of Model Segmentation Dimensions

Below is a table that summarizes the Data vs. Management/Runtime dimension as well as the Component Soft-
ware vs. Target vs. Execution dimension. Thus the result of this segmentation can be thought of as 6 different
“pages” of the model. The table below (which is not normative) summarizes the segments that are described in
the next sections. PIM and PSM distinctions are weak in this summary.

Note – Issue 6037

Table 1: D&C Model Segmentation Summary
Data Model
In PSMs, can
generate XML
Schemas and IDL
data definitions

Management/Runtime Model
Can imply interface IDL that may use data IDL
derived from Data model. “Manager” applied to
class names for consistency.

Deployment Process Usage
How/when are the models used in the
deployment process. “Tool” is used here
the client that performs and controls the
process.

Component
Software

Component Data
Model of
deployable
component
software, including
descriptors for
packages,
interfaces,
configurations,
assemblies and
implementations.
The top-level
element is the
Package-
Configuration.

Component Management Model:
The RepositoryManager interface, which
manages descriptive information about
Component Software. Key operations include:
◆ Install Package from URL into Repository,

with name and label
◆ Configure package, with name and label
◆ Retrieve package configuration info by name

or top level interface UUID
Repository parses Component Software XML,
and may be trivial in-memory (with data in IDL
form only), file system based, database based.
Repository can store data in persistent-IDL,
XML, or private form. XML parsing can be
early or late.

The software is produced and packaged
according to this data model, and made
available to the deployer. Installation to
supplies URL/location of the package to
RepositoryManager, which stores the pac
possibly parsing, validating, authenticatin
etc., and creates a default configuration f
package in the repository.
Configuration tool stores settings referr
a package, optionally after retrieving pac
information for config property validatio
Planning tool retrieves information in ID
data form for decision making. Reposito
provides URL/location of binary artifact
that plan need not reference repository.

Target Target Data
Model of the target
domain, including
nodes,
interconnects,
bridges and
resources. The top
level collection of
this information is
the Domain.

Target Management Model:
The TargetManager interface manages Domain
information, either offline (simply parsed from
private XML) or online. It needs to allow for
efficient static vs. dynamic information. Key
methods:
◆ Get base info (to allow planning tool to do

preprocessing/caching of static data).
◆ Get current info (to plan based on dynamic

resource information).
◆ Commit resources (to commit resources that

are used up in the plan).

Target configuration tools can provide us
interfaces to build and emit target data m
XML.
Planning tool obtains target information
IDL data form) and creates plans. An on
TargetManager would know and supply
dynamic information collected from nod
TargetManager would initially read pro
target description from XML files, and t
provide the information using the data m
The TargetManager can be told about cha
or new domain elements at run time.

Execution Execution Data
Model of decisions
configuring and
connecting and
locating component
software on a
target.
This is the
DeploymentPlan.

Execution Management Model:
The ExecutionManager is the runtime entity for
execution of component software on the target
according to the plan. Key methods:
◆ Prepare for execution, using plan, returning

“factory” reference (Application Manager)
◆ Launch based on factory, returning

Application reference.
◆ Lifecycle control, using Application ref
NodeManager performs the subset of execution
on each node.

Preparation tool may parse plan XML (
bundled with planning tool), and deliver
in IDL-data form to Execution Manager.
an all-in-one tool would only have the p
memory.
Launch tools simply use the factory refe
(Application Manager) to launch applica
possibly managing the lifecycle.
16 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.3 Model Diagram Conventions
The table above introduces the main elements of the platform independent model for deployment and configura-
tion. The first column lists the three top-level data elements PackageConfiguration, Domain and
DeploymentPlan. The second column lists the three top-level management interfaces, RepositoryManager,
TargetManager and ExecutionManager/NodeManager. Each of these classes is elaborated in the upcoming sec-
tions. The third column lists use cases that are supported by this model: Installation, Configuration, Planning,
Preparation and Launch. Use cases imply actors that enact them: an Administrator enacts Installation and Config-
uration, a Planner does the Planning, and an Executor enacts Preparation and Launch.

While the component, target and execution models are self-contained and passive, actors are the glue between
them. Actors actively interface with the various management models and exchange information using the various
data models. All behavior of deployment and configuration is defined by actors, as elaborated in the next chapter.

6.3 Model Diagram Conventions

Note – Issue 5983

This specification uses UML diagrams [UML1] to show classes and their relationships. All classes are part of the
Deployment and Configuration package, which contains the Component, Target, Execution, Common and Excep-
tion subpackages.

The Deployment and Configuration package is restricted to the MOF 1.4 subset of UML [MOF1]. Some non-
normative diagrams from other packages are shown for explanatory purposes.

If, in a UML diagram, a class's attribute and operation compartments are suppressed, then this class is elaborated
elsewhere. In this case, the diagram might also not show all of the class' associations. However, if a class is
shown to have only an attribute or an operation compartment, then this signifies that the not-shown compartment
is empty. I.e. if a class is shown with an attribute but no operation compartment, then the class does not have any
operations.

Note – Issue 5954

Figure 6-1 – Deployment and Configuration Model Package Structure

Deployment and Configuration
<<metamodel>>

(from Logical View)

Common

Component ExecutionTarget

Exception
Deployment and Configuration of Component-based Distributed Applications 17

Working Draft © OMG

6.3 Model Diagram Conventions 6 Platform Independent Model
The name of an AssociationEnd is suppressed in a diagram if and only if the AssociationEnd is not a reference-
dEnd for any Reference. Therefore, if the name of an AssociationEnd is present, then the class at the otherEnd of
the association contains a Reference with this AssociationEnd as its referencedEnd.

If the name of an AssociationEnd is suppressed, the name of the AssociationEnd's type, but with a lowercase
character, is used as the AssociationEnd's name. (This is the same implicit rule as in OCL.)

Association names are suppressed in diagrams, default names are used throughout the model. For unidirectional
associations (where exactly one AssociationEnd is navigable), the name of the class at the source (non-navigable)
end plus an underscore plus the name of the navigable end is used as the name of the association. For bidirection-
al associations, the concatenation of the class names at both ends, in alphabetical order, with an underscore inbe-
tween, is used as the name of the association. (The model does not contain associations with two non-navigable
AssociationEnds.)

Unless otherwise mentioned, the multiplicity on the near end of navigable associations is zero to many, and the
multiplicity on the near end of compositions is one to one.

Note – Issue 5953

This specification uses the notation of placing the multiplicity in square brackets after the type, as in “label:
String [1].” If the multiplicity is omitted from an attribute, parameter or return value, the default of exactly one
[1] is used.

Standard attributes are used as needed on classes for readability and identity purposes. The standard attribute
names are

● label: A human-readable label that is not evaluated by the deployment system. It can be used to
annotate classes with a user-defined string. Content is optional.

Note – Issue 6047

● UUID: A globally unique identifier (of type String) that is a URN [URI] (defined as a URI whose
purpose is identity, not access (which is a URL)). The value must be an "absolute URI" with a URI
scheme that allows hierarchical URIs. If two entities having such an attribute have identical UUIDs,
then the deployment system can assume they are functionally identical and interchangeable, with
identical contents. This enables the deployment system to cache information based on this UUID
attribute, and know that a previously cached/processed entity can be used if it had the same UUID
value. The value of this attribute is optional; if it is missing or the empty string, it is interpreted as
meaning that the object is transient, the UUID value will be considered unequal to any other UUID
value (including another empty string), and thus the object will never be considered the same as any
other object, thus precluding any caching or any aliasing. This optionality is convenient in many
development scenarios (e.g. recompile with no change in metadata) and provides certain advice to the
implementation, but is generally unsuitable for true deployed, configuration-managed, production
versions of such objects. Implementations of this specification may have options that insist on the
existence of UUID values, but this is not necessary for compliance. Human readable URI schemes are
recommended, but not mandatory.

Note – Issue 6047

● name: Names are both human-readable and machine-readable. Names are mandatory, and they must be
unique within their container or context. For example, in the case of a Node, the Node’s name must
be unique within the Domain. Furthermore, entities with the "name" attribute are contained by entities
that have either "name" attributes or "UUID" attributes, and thus there is a "virtual" URN for each
18 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.3 Model Diagram Conventions
entity, with a "name" attribute formed by tracing the containment relationship upwards until a
"UUID" attribute exists and forming an absolute and hierarchical URN from the UUID and the
"name" attributes as path components according to [URI].

Note – Issues 6053, 6047

● location: references an entity outside of the model. The location attribute is of type String, its
value(s) must comply to the URI syntax [URI]. The value represents a URL, which is a URI whose
purpose is access, not identity (which is a URN). Multiple alternative locations to the same entity may
be supplied since the multiplicity is “1..*”; applications can then choose any of these equivalent
locations to access the entity (e.g. choosing a local file URI over a http reference). The contents
accessed are identical, although the actual locations (e.g. servers or file systems) may in fact be
different. One of the values must use the “http” scheme, which is the only protocol that is required
to be supported.

● specificType: identifies the most specific type of an interface. Components or ports with equal
specificType are type equivalent. The specificType attribute is of type String; consequently, string
comparison is used to compare them. PSMs define the format.

● supportedType: identifies all types that an interface can support. The type of this attribute is a
sequence of Strings. A component or port can satisfy a requirement on any of the types listed among
the supported types. The supportedType attribute includes the most specific type (from the
specificType attribute) and all directly or indirectly inherited types in no particular order.

Note – Issue 6047

● A string formatted as a relative URI [URI] that identifies an element in the Component Data Model,
along with the containing elements. Each top level PackageConfiguration (directly retrieved from a
repository) is represented by an empty segment followed by a segment containing the URL
(appropriately escaped) of the repository followed by a segment containing the installationName of
the PackageConfiguration. All other segments represent "name" attributes of contained model
elements. This supports complete navigation to model elements that were chosen from multiple
repositories used by the planner, without requiring any collaboration with the planner.

Note – Issue 5967

Several classes contain a set of informational properties. These properties can be used by tools to annotate model
elements with non-functional information (e.g. authorship, license, digital signature). The names of informational
properties shall be valid URIs. PSMs may define a set of well-known informational properties (by identifying
their URI and a corresponding property type).

To enhance readability, in the PIM below we annotate classes with stereotypes that define two orthogonal dimen-
sions to the class structure and relationships in the model. The first follows the Data Model vs. Manage-
ment/Runtime Model dimension in the segmentation discussion above. We will use the «Description» and
«Manager» stereotypes to make this distinction.

In general, «Description» classes generate data structures and schema, and «Manager» classes generate runtime
interfaces.

The second annotation dimension is to identify, for «Description» classes, the actor in the development process
for which this class a work product. These stereotypes are essentially an annotation that highlights authorship
(and inherits from «Description», without introducing extra relationship detail in the diagrams).
Deployment and Configuration of Component-based Distributed Applications 19

Working Draft © OMG

6.4 Component Data Model 6 Platform Independent Model
Although these development actors are defined in detail later, we will briefly introduce them here:

● The «Specifier» specifies the interface and functional contract for components’ implementations.

● The «Implementer» creates concrete (monolithic, coded) implementations of components including
their metadata.

● The «Packager» creates packages (bundles) of component implementations.

● The «Planner» makes decisions about deployment based on target capabilities and component
requirements.

● The «DomainAdministrator» prepares information about the target environment.

The «Implementer» is in fact inherited by two derived stereotypes:

● The «Developer» creates monolithic (e.g., source coded/compiled) implementations.

● The «Assembler» creates assembly-based implementations of components.

Classes that are the work product of more than one actor are annotated with the generic «Description» stereo-
type. The creating actor can be inferred from context.

The «Exception» stereotype is used for exceptions that are raised by operations of management classes.

These stereotypes are represented by the “profile” diagram:

6.4 Component Data Model
The following classes are part of the Component Data Model. They are placed in the Component subpackage of
the Deployment and Configuration package.

Figure 6-2 – Stereotypes used for class annotations

Class
(f ro m Core)

<<metaclass>>
Manager

<<stereotype>>

Description
<<stereotype>>

Implementer
<<stereotype>>

<<stereotype>>

Specifier
<<stereotype>>

Developer
<<stereotype>>

Packager
<<stereotype>>

Planner
<<stereoty pe>>

DomainAdministrator
<<stereotype>>

Assembler
<<stereotype>>

Exception
<<stereoty pe>><<stereotype>><<stereotype>>
20 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.1 Component Data Model Overview
AssemblyConnectionDescription . Page 32
AssemblyPropertyMapping . Page 34
Capability . Page 42
ComponentAssemblyDescription . Page 29
ComponentInterfaceDescription . Page 39
ComponentImplementationDescription . Page 27
ComponentPackageDescription . Page 25
ComponentPackageReference . Page 31
ComponentPortDescription. Page 40
ComponentPropertyDescription . Page 41
ImplementationArtifactDescription . Page 38
ImplementationRequirement . Page 43
MonolithicImplementationDescription . Page 36
NamedImplementationArtifact. Page 37
PackageConfiguration . Page 23
PackagedComponentImplementation. Page 26
SubcomponentInstantiationDescription. Page 30
SubcomponentPortEndpoint . Page 33
SubcomponentPropertyReference . Page 35

6.4.1 Component Data Model Overview

A component has an interface composed of operations, attributes and ports that may be connected to other com-
ponents. A component may have a concrete (monolithic) implementation contained in an artifact (e.g., an execut-
able file or library), or it may be recursively implemented by an assembly: a set of interconnected sub-
components.
Deployment and Configuration of Component-based Distributed Applications 21

Working Draft © OMG

6.4.1 Component Data Model Overview 6 Platform Independent Model
A component package contains multiple implementations of the same component. This allows distribution of a
set of implementations with different properties (e.g., for different operating systems) or different hierarchies, to
be distributed in a single package. Packages are installed into a repository, where they may be configured (e.g.,
overriding default property values) prior to deployment.

The above is an overview of the Component Data Model and represents the information about installed and con-
figured packages provided by the RepositoryManager. Details about each class will be presented in the follow-
ing sections.

Figure 6-3 – Component Data Model Overview

{sam e int erface or
base type}

{xor}

{xor}

PackageConfiguration
<<Description>> 0..1

+specializedConfig

0..1

ComponentA ssem bly Des cription
<<Assembler>>

ComponentP ackageDescription
<<Packager>>

1..*1..*0..1+basePackage 0..1

ComponentInterfaceDescription
<<Specifier>>1

+real izes

1

ComponentImplementationDescription
<<Im plementer>>

0..1
+assemblyImpl

0..1

1..*

+implementation

1..*

1

+implements

1

MonolithicImplementationDescription
<<Developer>>

0..1
+monolithicImpl

0..1

ImplementationArtifactDescription
<<Developer>> *

+dependsOn

*

1..*+primaryArtifact 1..*
22 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.2 PackageConfiguration
6.4.2 PackageConfiguration

6.4.2.1 Description

Note – Issue 6047

A PackageConfiguration describes one configuration of a component package. It either directly contains and
specializes another PackageConfiguration, directly contains and configures another
ComponentPackageDescription, or indirectly specializes another PackageConfiguration that is identified by a
ComponentPackageReference. A PackageConfiguration has a UUID, a label, properties and selection require-
ments. Configuration properties are used to configure the application's properties; their names and types must
match the component's external properties. Selection requirements are used to influence deployment decisions by
matching them against implementation capabilities in the ComponentImplementationDescription. A
PackageConfiguration can be standalone work product which captures all the information necessary to plan for,
and run, a component based application. It thus can be completely monolithic (containing all the metadata de-
scriptions for a complete implementation hierarchy) or simply a request to run some previously installed compo-
nent software in a particular way.

6.4.2.2 Attributes

Note – Issue 6047

● UUID: String [0..1] A unique identifier for this PackageConfiguration.

Note – Issue 5963

● label: String [0..1] An optional human-readable label.

6.4.2.3 Associations

● specializedConfig: PackageConfiguration [0..1]
Links to a PackageConfiguration that is specialized by this
PackageConfiguration.

● basePackage: ComponentPackageDescription [0..1]
Links to a ComponentPackageDescription that this PackageConfiguration
is based on.

{xor}

ComponentPackageDescription
<<Packager>>

Requirement
(from Common)

<<Description>>
Property

(from Common)

<<Description>>

ComponentPackageReference
<<As sembler>>

PackageConfiguration
<<Desc ription>>

label : String [0..1]
UUID : String [0..1]

0..1

+specializedConfig

0..1

0..1
+basePackage

0..1

*
+selectRequirement

* *

+configProperty

*

0..1
+referenc e

0..1
Deployment and Configuration of Component-based Distributed Applications 23

Working Draft © OMG

6.4.2 PackageConfiguration 6 Platform Independent Model
Note – Issue 6047

● reference: ComponentPackageReference [0..1]
Indirectly references another package configuration that this
PackageConfiguration is configuring.

● selectRequirement: Requirement [*]
During planning, selection requirements in a PackageConfiguration are
matched against capabilities in the ComponentImplementationDescription.

● configProperty: Property [*] Properties to configure the application component with. Overrides default val-
ues in the ComponentPackageDescription.

6.4.2.4 Constraints

A PackageConfiguration must either specialize another PackageConfiguration or be based on a
ComponentPackageDescription, but not both.

context PackageConfiguration inv:
self.basePackage->size() = 1 xor
self.specializedConfig->size() = 1

The name must be unique in the repository.

context PackageConfiguration inv:
PackageConfiguration.allInstances->forAll (p1, p2 |

p1.name = p2.name implies p1 = p2)

6.4.2.5 Semantics

A PackageConfiguration that specializes another PackageConfiguration extends and overrides the base config-
uration’s selection requirements and configuration properties. The complete set of selection requirements and
configuration properties is the sum of all selection requirements and configuration properties, respectively, in the
chain of PackageConfiguration instances, with duplicates removed.
24 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.3 ComponentPackageDescription
6.4.3 ComponentPackageDescription

6.4.3.1 Description

A ComponentPackageDescription describes multiple alternative implementations of the same component inter-
face. It references the interface description for the component and contains a number of configuration properties
to configure the running components (which may override implementation-defined properties and which may be
overridden by a PackageConfiguration). These configuration properties enable the packager to define default
values for a component's properties regardless of which implementation for that component is chosen at deploy-
ment (planning) time.

6.4.3.2 Attributes

Note – Issue 5963

● label: String [0..1] An optional human-readable label for the package.
● UUID: String [0..1] An optional unique identifier for this package.

6.4.3.3 Associations

● realizes: ComponentInterfaceDescription [1]
A ComponentPackageDescription describes implementations that realize a
certain component interface.

Note – Issue 5964

● implementation: PackagedComponentImplementation [1..*]
The alternative implementations for this component.

● configProperty: Property [*] These configuration properties are used to configure the component once in-
stantiated. This allows the definition of configuration properties in a package re-
gardless of which implementation is chosen.

Note – Issue 5967

● infoProperty: Property [*] Non-functional annotation properties.

ComponentInterfaceDescription
<<Specifier>>

PackagedComponentImplementation
<<Packager>>ComponentPackageDescription

<<Packager>>

label : String [0..1]
UUID : String [0..1]

1

+realizes

1

1..*

+im plementat ion

1..*

Property
(f rom Common)

<<Description>>

*
+configProperty

* *
+infoProperty
*

Deployment and Configuration of Component-based Distributed Applications 25

Working Draft © OMG

6.4.4 PackagedComponentImplementation 6 Platform Independent Model
6.4.3.4 Constraints

All implementations referenced by this ComponentPackageDescription must implement the same interface as
realized by the package, or a derived interface.

context ComponentPackageDescription inv:
self.implementation.referencedImplementation->forAll (

implements.supportedType->includes (self.realizes.primaryType))

If the UUID attribute is not the empty string, then it must contain a unique identifier for the package; packages
with the same non-empty UUID must be identical.

context ComponentPackageDescription inv:
self.UUID <> “” implies

ComponentPackageDescription.allInstances->forAll (p |
p.UUID = self.UUID implies p = self)

The names assigned to implementations must be unique within this package.

context ComponentPackageDescription inv:
implementation->forAll (i1, i2 | i1.name = i2.name implies i1=i2)

6.4.3.5 Semantics

Configuration properties can be overridden in a PackageConfiguration. All implementations in the package are
considered equally suitable for deployment, pending compatibility between implementation artifact requirements
and node resources, and selection properties required by a PackageConfiguration.

Note – Issue 5964

6.4.4 PackagedComponentImplementation

6.4.4.1 Description

PackagedComponentImplementation is used by the ComponentPackageDescription to assign names to alter-
native ComponentImplementationDescription elements within that package. This information can be used to
identify elements within the Component Data Model using a “path name” from the top level package downwards.

6.4.4.2 Attributes

● name: String The name assigned to this implementation.

PackagedComponentImplementation
<<Packager>>

name : String

ComponentImplem entationDescription
<<Implementer>>

1
+referencedImplementation

1

26 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.5 ComponentImplementationDescription
6.4.4.3 Associations

● referencedImplementation: ComponentImplementationDescription [1]
The implementation that is referenced by this package.

6.4.4.4 Constraints

No constraints.

6.4.4.5 Semantics

No semantics.

6.4.5 ComponentImplementationDescription

6.4.5.1 Description

A ComponentImplementationDescription describes a specific implementation of a component interface. This
implementation can be either assembly based or monolithic. The ComponentImplementationDescription may
contain configuration properties that are used to configure each component instance (“default values”). Imple-
mentations may be tagged with user-defined capabilities. Administrators can then select among implementations
using selection requirements in a PackageConfiguration; Assemblers can place requirements on implementa-
tions in a SubcomponentInstantiationDescription.

6.4.5.2 Attributes

Note – Issue 5963

● label: String [0..1] An optional human-readable label for the implementation.
● UUID: String [0..1] An optional unique identifier for this implementation.

6.4.5.3 Associations

● implements: ComponentInterfaceDescription [1]
The component interface implemented by this implementation.

● assemblyImpl: ComponentAssemblyDescription [0..1]
In case of an assembly based implementation, this describes the assembly.

{xor}

ComponentAssemblyDescription
<<Assembler>>

Monoli th icImplementationDescript ion
<<Developer>>

ComponentInterfaceDescription
<<Specifier>>

Capability
<<Implementer>>

ImplementationDependency
(from Common)

<<Description>>

ComponentImplementationDescription
<<Implementer>>

label : String [0..1]
UUID : String [0..1]

0..1
+as semblyImpl

0..1 0..1
+monolithicImpl

0..1

1

+implements

1

*

+capability

*

*

+dependsOn

*

Property
(from Common)

<<Description>>
*

+configP ropert y
*

*
+infoProperty

*

Deployment and Configuration of Component-based Distributed Applications 27

Working Draft © OMG

6.4.5 ComponentImplementationDescription 6 Platform Independent Model
● monolithicImpl: MonolithicImplementationDescription [0..1]
In case of a monolithic implementation, this describes the monolithic imple-
mentation.

● configProperty: Property [*] These are implementation specific configuration properties that are used to con-
figure the component once instantiated.

Note – Issue 5967

● infoProperty: Property [*] Non-functional annotation properties.
● capability: Capability [*] These are tags that a PackageConfiguration can match against to discriminate

between implementations.

Note – Issue 5955

● dependsOn: ImplementationDependency [*]
Expresses a dependency on other packages; implementations of the referenced
interfaces must be deployed in the target environment before this implementa-
tion can be deployed.

6.4.5.4 Constraints

An implementation is either assembly based or monolithic, consequently there must be either a
ComponentAssemblyDescription or a MonolithicImplementationDescription, but not both.

context ComponentImplementationDescription inv:
self.assemblyImpl.size() = 1 xor
self.monolithicImpl.size() = 1

If the UUID attribute is not the empty string, then it must contain a unique identifier for the implementation; im-
plementations with the same non-empty UUID must be identical.

context ComponentImplementationDescription inv:
self.UUID <> “” implies

ComponentImplementationDescription.allInstances->forAll (i |
i.UUID = self.UUID implies i = self)

6.4.5.5 Semantics

Configuration properties can be overridden in a ComponentPackageDescription or in a
PackageConfiguration.
28 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.6 ComponentAssemblyDescription
6.4.6 ComponentAssemblyDescription

6.4.6.1 Description

In the case of an assembly based implementation, the ComponentAssemblyDescription contains information
about sub-component instances (SubcomponentInstantiationDescription), connections among ports
(AssemblyConnectionDescription), and about the mapping of the assembly's properties (i.e. of the component
that the assembly is implementing) to properties of its subcomponents.

6.4.6.2 Attributes

No attributes.

6.4.6.3 Associations

● instance: SubcomponentInstantiationDescription [1..*]
Describes instances of subcomponents.

● connection: AssemblyConnectionDescription [*]
Describes connections between ports.

● externalProperty: AssemblyPropertyMapping [*]
Maps the external properties of the component that is implemented by the as-
sembly to properties of subcomponent instances.

6.4.6.4 Constraints

Note – Issue 5964

The elements within this ComponentAssemblyDescription (SubcomponentInstantiationDescription,
AssemblyConnectionDescription and AssemblyPropertyMapping) must have unique names within this con-
text.

context ComponentAssemblyDescription:
let elements = Set {self.instance, self.connection,
 self.externalProperty}
elements->forAll (e1, e2 | e1.name = e2.name implies e1 = e2}

AssemblyConnectionDescription
<<Assembler>>

ComponentAssemblyDescription
<<Assembler>>

*+connect ion *
SubcomponentInstantiat ionDescription

<<Ass embler>>
1..*

+instance
1..*

1..*1..*

As semblyP ropert yMapping
<<Assembler>>

*+externalProperty *

1..*1..*
Deployment and Configuration of Component-based Distributed Applications 29

Working Draft © OMG

6.4.7 SubcomponentInstantiationDescription 6 Platform Independent Model
6.4.6.5 Semantics

An assembly is composed of components and itself implements a component, as implied by the
ComponentImplementationDescription that this ComponentAssemblyDescription is contained in. The com-
ponent being implemented by the assembly is referred to as the “external component” of the assembly. Connec-
tions exist among the subcomponents’ ports and the external component’s ports, similar to a wiring diagram in
circuit design, where a circuit is designed by wiring chips among themselves and wiring them to external pins.

6.4.7 SubcomponentInstantiationDescription

6.4.7.1 Description

In an assembly based implementation, the SubcomponentInstantiationDescription describes one instance of a
sub-component.

The SubcomponentInstantiationDescription links to a package that provides implementations for the sub-com-
ponent that is to be instantiated. There is either a link to a ComponentPackageDescription in case a package re-
cursively contains packages for its sub-components, or there is a link to a ComponentPackageReference that
contains the requiredType of a component interface. Users of the Component Data Model will have to contact a
repository (possibly via a search path) in order to find a package that implements this interface.

6.4.7.2 Attributes

Note – Issue 5964

● name: String Identifies this subcomponent instance within the assembly.

6.4.7.3 Associations

● package: ComponentPackageDescription [0..1]
Describes a package that provides an implementation for this subcomponent in-
stance.

● reference: ComponentPackageReference [0..1]
References an outside package that provides an implementation for this sub-
component instance.

● configProperty: Property [*] Configuration properties that are used to configure the subcomponent instance
when the assembly is instantiated.

Note – Issue 5960

{xor}

ComponentP ackageDescription
<<Packager>>

ComponentPackageReference
<<Assembler>>

Requirement
(from Common)

<<Description>>

Property
(from Common)

<<Description>>SubcomponentInstantiationDescription
<<Assembler>>

name : String

0..1
+package

0..10..1
+reference

0..1

*
+selectRequirement

*

*

+configProperty

*

30 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.8 ComponentPackageReference
● selectRequirement: Requirement [*]
Expresses selection requirements on the implementation that will be chosen for
the subcomponent. During planning, these selection requirements are matched
against implementation capabilities in the
ComponentImplementationDescription elements that are part of the refer-
enced package.

6.4.7.4 Constraints

There can be either a package or a reference, but not both.

context SubcomponentInstantiationDescription inv:
self.reference->size() = 1 xor
self.package->size() = 1

6.4.7.5 Semantics

The planner will consider the implementations in the package that is either contained or referenced and select the
implementation that is used to instantiate the subcomponent based on compatibility and preferences. Configura-
tion properties for subcomponents are final, they can only be overridden if mapped to an external port of the
component that this assembly is implementing. A SubcomponentInstantiationDescription does not have any
deployment requirements of its own, since a specific implementation for the subcomponent will be selected by
the planner.

6.4.8 ComponentPackageReference

6.4.8.1 Description

Note – Issue 6047

Indirectly references a package to be found in a repository. The reference is accomplished by using a combina-
tion of the requiredUUID, requiredName, and requiredType attributes. All are optional although one must be
present. All that are present must be satisfied. The requiredName refers to the name under which the package was
installed into a repository. The three attributes satisfy a variety of reference patterns similar to those found in
DLL or shared library systems.

6.4.8.2 Attributes

Note – Issue 6047

● requiredUUID: String [0..1] The reference is to an installed PackageConfiguration with this specified
identity.

● requiredName: String [0..1] The reference is to an installed PackageConfiguration installed under the
specified name.

● requiredType: String [0..1] The reference is to an installed PackageConfiguration that ultimately refer-
ences a ComponentPackageDescription that implements the specified type.

ComponentPackageReference
<<Ass embler>>

requi redUUID : String [0..1]
requi redName : String [0..1]
requi redType : St ring [0..1]
Deployment and Configuration of Component-based Distributed Applications 31

Working Draft © OMG

6.4.9 AssemblyConnectionDescription 6 Platform Independent Model
6.4.8.3 Associations

No associations.

6.4.8.4 Constraints

At least one of the attributes must be present:

context ComponentPackageReference:
 Set{self.requiredUUID, self.requiredName, self.requiredType} >= 1

6.4.8.5 Semantics

The planner will search one or more repositories for package configurations that satisfy all requirements.

6.4.9 AssemblyConnectionDescription

6.4.9.1 Description

An AssemblyConnectionDescription element describes a connection that is to be made among ports within an
assembly. A connection can be thought of as a single path in a circuit wiring diagram with multiple endpoints. In
this analogy, a signal that is sent onto the path is received by all receiving endpoints. There are three different
types of endpoints, the most obvious being the SubcomponentPortEndpoint, which reflects a connection to the
port of a subcomponent within the assembly. The ComponentExternalPortEndpoint reflects a connection to an
external port of the component that is implemented by the assembly. The ExternalReferenceEndpoint reflects a
connection to a location outside the assembly by URL (e.g., using a corbaname reference).

Some deployment requirements may be associated with the connection information; these requirements must be
satisfied by the interconnect(s) in the target model over which the connection is routed at deployment time.
PSMs and domain specific profiles will define a vocabulary for deployment requirements.

Note – Issue 6388

6.4.9.2 Attributes

Note – Issue 5964

● name: String Identifies this connection within the assembly.

ComponentExternalPortEndpoint
(from Common)

<<Description>>
ExternalReferenceE ndpoint

(from Common)

<<Desc ription>>

Requirement
(from Common)

<<Description>>

SubcomponentPortEndpoint
<<Assembler>>

AssemblyConnectionDescript ion
<<Assembler>>

name : String

*
+ex ternalEndpoint

* *
+ex ternalReference

*

*

+deployRequirem ent

*

*
+internalEndpoint

*

32 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.10 SubcomponentPortEndpoint
6.4.9.3 Associations

● deployRequirement: Requirement [*]
These connection requirements must be satisfied by the interconnects over
which the connection is routed.

● internalEndpoint: SubcomponentPortEndpoint [*]
Identifies a port of a component within the assembly as an endpoint of this con-
nection.

● externalEndpoint: ComponentExternalPortEndpoint [*]
Identifies a port of the component that is implemented by the assembly as an
endpoint of this connection.

● externalReference: ExternalReferenceEndpoint [*]
Identifies a location outside the assembly as an endpoint of this connection.

6.4.9.4 Constraints

The number of endpoints to a connection must be at least two.

context AssemblyConnectionDescription inv:
Set{self.externalEndpoint,
 self.internalEndpoint,
 self.externalReference}->size() >= 2

6.4.9.5 Semantics

At assembly design time, the compatibility of the endpoints can be verified based on the information known
about the endpoints, e.g., appropriate user, provider, multiplex semantics. At planning time, compatibility of the
connection’s requirements with the resources of the interconnects that the connection is routed over will be veri-
fied. At execution time, connections between the endpoints will be established.

Note – Issue 5986: moved ComponentExternalPortEndpoint to 6.10.2.

6.4.10 SubcomponentPortEndpoint

6.4.10.1 Description

Identifies a port of a component within the assembly as an endpoint of the connection described by the
AssemblyConnectionDescription that this element is contained in.

SubcomponentPortEndpoint
<<As sembler> >

portName : String

Subcomponent Instantiat ionDescription
<<As sembler> >

1+instance 1
Deployment and Configuration of Component-based Distributed Applications 33

Working Draft © OMG

6.4.11 AssemblyPropertyMapping 6 Platform Independent Model
6.4.10.2 Attributes

● portName: String The name of the port of the associated subcomponent instance that is to be an
endpoint of this connection.

6.4.10.3 Associations

● instance: SubcomponentInstantiationDescription [1]
The associated subcomponent instance.

6.4.10.4 Constraints

The port name must be valid for the referenced component.

context SubcomponentPortEndpoint inv:
self.instance.package->size() = 1 implies
 self.instance.package.interface.port.exists (name = self.portName)

If the SubcomponentInstantiationDescription references a package instead of containing it (i.e. if it contains a
ComponentPackageReference), then the constraint cannot be expressed within the repository but must be
checked by the Planner.

6.4.10.5 Semantics

See above.

Note – Issue 5986: moved ExternalReferenceEndpoint to 6.10.3.

6.4.11 AssemblyPropertyMapping

6.4.11.1 Description

AssemblyPropertyMapping is part of the ComponentAssemblyDescription. It identifies a property of the ex-
ternal component and the subcomponents' properties that it delegates to.

AssemblyPropertyMapping
<<Assembler>>

name : String
externalName : String

SubcomponentInstantiationDescription
<<Assembler>>

SubcomponentPropertyReference
<<Assembler>>

propertyName : String

1..*+delegatesTo 1..*

1+instance 1
34 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.12 SubcomponentPropertyReference
6.4.11.2 Attributes

Note – Issue 5964

● name: String Identifies this property mapping within the assembly.
● externalName: String The name of a property of the external component.

6.4.11.3 Associations

● delegatesTo: SubcomponentPropertyReference [1..*]
References ports of subcomponents within the assembly that the property is del-
egated (or propagated) to.

6.4.11.4 Constraints

The externalName must match the name of a property of the external component.

6.4.11.5 Semantics

If the component’s property is configured, the configuration value will be delegated (propagated) to the specified
subcomponent ports in the assembly.

6.4.12 SubcomponentPropertyReference

6.4.12.1 Description

Identifies a property of a component within the assembly or deployment plan that an property of the external
component delegates to.

6.4.12.2 Attributes

● propertyName: String The name of the property of that subcomponent instance that the external prop-
erty is delegated to.

6.4.12.3 Associations

● instance: SubcomponentInstantiationDescription [1]
The associated subcomponent instance.

6.4.12.4 Constraints

The propertyName must match the name of a property of the referenced subcomponent.

6.4.12.5 Semantics

No semantics.
Deployment and Configuration of Component-based Distributed Applications 35

Working Draft © OMG

6.4.13 MonolithicImplementationDescription 6 Platform Independent Model
6.4.13 MonolithicImplementationDescription

6.4.13.1 Description

In the case of a monolithic implementation, the MonolithicImplementationDescription describes the artifacts
that are involved in this implementation. It references primary implementation artifacts (that may then depend on
other supporting implementation artifacts). There may be some requirements associated with the monolithic im-
plementation that are matched against node resources during deployment. The author of the implementation may
associate some execution parameter properties with the implementation as hints to the target environment about
the instantiation of the component (e.g., search path settings, environment variables). Some execution parameters
may also relate to primary artifacts (e.g., entry points).

6.4.13.2 Attributes

No attributes.

6.4.13.3 Associations

● execParameter: Property [*] Execution parameters that are passed to the target environment.

Note – Issue 6392

● deployRequirement: ImplementationRequirement [*]
Requirements that are matched against node resources during planning.

Note – Issue 5964

● primaryArtifact: NamedImplementationArtifact [1..*]
The primary implementation artifacts.

6.4.13.4 Constraints

The names assigned to primary artifacts must be unique within this context.

context MonolithicImplementationDescription:
primaryArtifact->forAll (a1, a2 | a1.name = a2.name implies a1 = a2)

Property
(from Common)

<<Description>>

NamedImplementationArtifact
<<Developer>>

Monoli thicImplem entationDescript ion
<<Developer>>

*
+execParameter

*

1..*
+primaryArtifact
1..*

Im plementationRequirement
<<Developer>>

*
+deployRequirement

*

36 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.14 NamedImplementationArtifact
6.4.13.5 Semantics

Execution parameters are evaluated by the target environment and may include hints about how to instantiate a
component from the implementation artifacts.

Note – Issue 5964

6.4.14 NamedImplementationArtifact

6.4.14.1 Description

NamedImplementationArtifact is used by MonolithicImplementationDescription and
ImplementationArtifactDescription to assign names to primary artifacts and dependee artifacts, respectively.
This information can be used to identify implementation artifacts within the Component Data Model using a
“path name” from the top level package downwards.

6.4.14.2 Attributes

● name: String The name assigned to this implementation artifact.

6.4.14.3 Associations

● referencedArtifact: ImplementationArtifactDescription [1]
The named implementation artifact.

6.4.14.4 Constraints

No constraints.

6.4.14.5 Semantics

No semantics.

NamedImplementationArtifact
<<Developer>>

name : String

ImplementationArtifactDescription
<<Developer>>

1
+referencedArtifact
1

Deployment and Configuration of Component-based Distributed Applications 37

Working Draft © OMG

6.4.15 ImplementationArtifactDescription 6 Platform Independent Model
6.4.15 ImplementationArtifactDescription

6.4.15.1 Description

Note – Issue 5956, 5963, 5964, 5967, 6053: Updated diagram.

The ImplementationArtifactDescription describes an implementation artifact that is associated with a monolith-
ic component implementation. It contains an reference to the location of the implementation artifact and may re-
fer to other ImplementationArtifactDescription elements that this implementation artifact depends on (e.g.,
shared libraries or support files). The ImplementationArtifactDescription may contain deployment requirements
that must be matched by a node's resources during deployment. The ImplementationArtifactDescription also
contains execution parameters that are relevant to the target node's infrastructure (e.g., command line parame-
ters).

6.4.15.2 Attributes

Note – Issue 5963

● label: String [0..1] An optional human-readable label.
● UUID: String [0..1] An optional unique identifier for this artifact.

Note – Issue 6053

● location: String [1..*] The location of the implementation artifact.

6.4.15.3 Associations

Note – Issue 5964

● dependsOn: NamedImplementationArtifact [*]
References other ImplementationArtifactDescription elements for imple-
mentation artifacts that this implementation artifact depends on, assigning
names to each.

● execParameter: Property [*] Execution parameters with hints to the target environment about the execution
of this implementation artifact.

Note – Issue 5967

● infoProperty: Property [*] Non-functional annotation properties.
● deployRequirement: Requirement [*]

Requirements that are matched against node resources.

Requirement
(from Common)

<<Description>>

NamedImplementationArtifact
<<Developer>>

ImplementationArtifactDescription
<<Developer>>

label : String [0..1]
UUID : String [0..1]
location : String [1..*]

*
+deployRequirement
*

*

+dependsOn

*

Property
(from Common)

<<Des cription>>

*
+execParam eter

*

*

+infoProperty

*

38 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.16 ComponentInterfaceDescription
6.4.15.4 Constraints

If the UUID field is non-empty, then it must contain a unique identifier for the artifact; artifacts with the same
non-empty UUID must be identical.

context ImplementationArtifactDescription inv:
self.UUID <> “” implies

ImplementationArtifactDescription.allInstances->forAll (i |
i.UUID = self.UUID implies i = self)

Note – Issue 5964

The names assigned to dependee artifacts must be unique within this context.

context ImplementationArtifactDescription:
dependsOn->forAll (a1, a2 | a1.name = a2.name implies a1 = a2)

6.4.15.5 Semantics

All dependent implementation artifacts have to be installed on (or available to) a node before a component can
be instantiated from them.

Note – Issue 5956: Moved ImplementationArtifact to section 6.12.

6.4.16 ComponentInterfaceDescription

6.4.16.1 Description

ComponentInterfaceDescription describes a component’s interface. This information can be used by e.g. an as-
sembly tool to verify interface compatibility. The component interface is identified by a unique identifier. A
component has properties and ports.

6.4.16.2 Attributes

Note – Issue 5963

● label: String [0..1] An optional human-readable label for this interface.
● UUID: String [0..1] An optional unique identifier for this interface.
● specificType: String The most specific type supported by this component interface.

ComponentPortDescription
<<Spec ifier> >

ComponentPropertyDescription
<<Specifier>>

ComponentInterfaceDescription
<<Specifier>>

label : String [0..1]
UUID : String [0..1]
specificType : String
supportedType : String [1..*]

*
+port

* *
+property

*

Property
(from Common)

<<Description>>
*

+configProperty
*

*

+infoProperty

*

Deployment and Configuration of Component-based Distributed Applications 39

Working Draft © OMG

6.4.17 ComponentPortDescription 6 Platform Independent Model
● supportedType: String [1..*]
Component interface types supported by this interface (e.g., by inheritance).

6.4.16.3 Associations

● port: ComponentPortDescription [*]
Describes the ports of this component interface.

● property: ComponentPropertyDescription [*]
Identifies the configurable properties of a component interface.

● configProperty: Property [*] Optional default values for properties.

Note – Issue 5967

● infoProperty: Property [*] Non-functional annotation properties.

6.4.16.4 Constraints

The supported types must include the specific type.

context ComponentInterfaceDescription inv:
self.supportedType->includes (self.specificType)

If the UUID field is non-empty, then it must contain a unique identifier for the interface; interfaces with the same
non-empty UUID must be identical.

context ComponentInterfaceDescription inv:
self.UUID <> “” implies

ComponentInterfaceDescription.allInstances->forAll (i |
i.UUID = self.UUID implies i = self)

6.4.16.5 Semantics

Default configuration values can be overridden by assemblies, implementations, packages or package configura-
tions.

6.4.17 ComponentPortDescription

6.4.17.1 Description

ComponentPortDescription describes a port within a component interface. Tools can use this information to
e.g. verify port compatibility in connections.

ComponentPortDescription
<<Specifier>>

name : String
specificType : String
supportedType : String [1..*]
provider : Boolean
exclusiveProvider : Boolean
exclusiveUser : Boolean
optional : Boolean
40 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.18 ComponentPropertyDescription
6.4.17.2 Attributes

● name: String The name of the port.
● specificType: String The most specific type supported by the port.
● supportedType: String [1..*]

All types supported by this port, including the specific and inherited types. All
of the types listed in this attribute are acceptable for a connection.

● provider: Boolean Identifies whether the port acts in the role of provider or user, for any connec-
tion attached to it.

● exclusiveProvider: Boolean If set to true, then this port expects that there is at most one provider on the con-
nection that it is an endpoint to.

● exclusiveUser: Boolean If set to true, then this port expects that there is at most one user on the connec-
tion that it is an endpoint to.

● optional: Boolean Identifies whether connecting this port is optional or mandatory.

6.4.17.3 Associations

No associations.

6.4.17.4 Constraints

The supported types must include the specific type.

context ComponentPortDescription inv:
self.supportedType->includes (self.specificType)

6.4.17.5 Semantics

Ports that are endpoints of a connection must support the same type (protocol). Endpoints to a connection can act
in the role of either provide or user. For user or provider ports, if exclusiveProvider is true, then the connection
may not have more than one provider port as an endpoint; if exclusiveUser is true, then at most one user port
may be an endpoint. For both provider and user ports, if optional is true, then it is not mandatory to use this port
as an endpoint to any connection. Thus any implementations would have to function when there was no connec-
tion.

6.4.18 ComponentPropertyDescription

6.4.18.1 Description

ComponentPropertyDescription describes a component property.

ComponentPropertyDescription
<<Specifier>>

name : String

DataType

1+type 1
Deployment and Configuration of Component-based Distributed Applications 41

Working Draft © OMG

6.4.19 Capability 6 Platform Independent Model
6.4.18.2 Attributes

● name: String The name of the property.

6.4.18.3 Associations

● type: DataType [1] The data type of this property.

6.4.18.4 Constraints

No constraints.

6.4.18.5 Semantics

If this property is configured, the value must conform to the type.

6.4.19 Capability

6.4.19.1 Description

Capability is used within the ComponentImplementationDescription to describe an implementation’s capabili-
ties, which are matched against selection requirements in SubcomponentInstantiationDescription or
PackageConfiguration. It extends the RequirementSatisfier class, but does not add any attributes or associa-
tions.

6.4.19.2 Attributes

No additional attributes.

6.4.19.3 Associations

No additional associations.

6.4.19.4 Constraints

Capabilities are not consumable. SatisfierProperty elements that are part of Capability cannot use the
“Quantity” or “Capacity”SatisfierPropertyKind kinds.

SatisfierProperty
<<Description>>

RequirementSatisfier
<<Description>>

name : String
resourceType : Sequence (String)

*+property *

Capability
<<Description>>
42 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.4.20 ImplementationRequirement
Note – Issue 5984

context Capability inv:
self.property->forAll (

kind <> SatisfierPropertyKind::Quantity and
kind <> SatisfierPropertyKind::Capacity)

6.4.19.5 Semantics

Same as for RequirementSatisfier.

6.4.20 ImplementationRequirement

Note – Issue 6392

6.4.20.1 Description

The ImplementationRequirement class specializes the Requirement class with additional attributes which are
needed to express how an implementation instance will actually use a resource. This information is ultimately
needed by the container to “hook up” the implementation to the resources granted to it. In particular, this enables
a component implementation to connect or delegate some of its ports to a resource.

6.4.20.2 Attributes

● resourcePort: String [0..1] When the resource granted to satisfy this requirement is itself a component, and
thus the resource value is a component reference, and the component instance
needs to use a particular port of the granted resource, this attribute specifies the
name of the port of the resource component.

● componentPort: String [0..1] When the resource itself actually acts as a component port of the implementa-
tion (essentially delegating the port to the resource), this attribute specifies the
name of the port of the component that is being delegated.

● resourceUsage: ResourceUsageKind [0..1]
How the resource granted to satisfy this requirement will be used by the con-
tainer and/or instance. If this attribute is missing, “None” is assumed as default
value.

Requirement
(f rom Co mmo n)

<<Description>>

resourceType : String
name : String

ImplementationRequirement
<<Developer>>

resourceUsage : ResourceUsageKind [0..1]
resourcePort : String [0..1]
componentPort : String [0..1]

ResourceUsageKind
None
Instanc eUsesResource
ResourceUsesInstance
PortUsesResource
ResourceUsesPort

<<enumeration>>
Deployment and Configuration of Component-based Distributed Applications 43

Working Draft © OMG

6.4.20 ImplementationRequirement 6 Platform Independent Model
6.4.20.3 Associations

None.

6.4.20.4 Constraints

If the value of the resourceUsage attribute is “InstanceUsesResource,” the componentPort attribute must be ab-
sent.

context ImplementationRequirement:
 self.resourceUsage = “InstanceUsesResource” implies
 self.componentPort->size() = 0

If the value of the resourceUsage attribute is “ResourceUsesInstance,” the componentPort attribute must be ab-
sent, and the resourcePort attribute must be present.

context ImplementationRequirement:
 self.resourceUsage = “ResourceUsesInstance” implies
 self.componentPort->size() = 0 and
 self.resourcePort->size() = 1

If the value of the resourceUsage attribute is “PortUsesResource,” the componentPort attribute must be present.

context ImplementationRequirement:
 self.resourceUsage = “PortUsesResource” implies
 self.componentPort->size() = 1

If the value of the resourceUsage attribute is “ResourceUsesPort,” the componentPort attribute must be present,
and the resourcePort attribute must be absent.

context ImplementationRequirement:
 self.resourceUsage = “ResourceUsesPort” implies
 self.componentPort->size() = 1 and
 self.resourcePort->size() = 1

6.4.20.5 Semantics

The choices for the resourceUsage attribute are:

● InstanceUsesResource: The resource value is given to the instance when it is created. If the
resourcePort attribute is present, it indicates that the resource value must be a component reference,
and that the port reference obtained from that component reference, using that attribute, should be
given to the instance as the value of the resource.

● ResourceUsesInstance: The instance provides a reference for use by the resource (i.e., a callback
from the resource to the instance). The resource value is a component reference. Thus the
resourcePort attribute indicates which “uses” port of the resource should use the reference provided
by the instance. The instance constructor provides a reference associated with the requirement, to
provide to the resource to enable the “callback.”
44 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.5 Component Management Model
● PortUsesResource: The resource value is used as one of the (provided) ports of the component
instance (rather than by the instance itself). The componentPort attribute indicates which of the
instance’s component ports is being provided by (or delegated to) the resource. The resourcePort
attribute, if present, indicates that the resource value is a component that provides the reference at one
of its ports. Otherwise, the resource value is used directly as the instance’s provided port reference.

● ResourceUsesPort: The resource value uses the component port indicated by the componentPort
attribute, rather than the instance itself implementing that port. Thus the implementation is delegating
its “uses” port to the resource. The resource value is a component reference, and the specified port of
the resource uses the component port.

● None: The resource is not directly used by the instance.

6.5 Component Management Model
The RepositoryManager class is placed in the Component subpackage of the Deployment and Configuration
package.

6.5.1 RepositoryManager

6.5.1.1 Description

Note – Issue 6047

A RepositoryManager manages component data. It maintains a collection of PackageConfiguration elements.
Package installation results in a PackageConfiguration existing in the repository under an installer-assigned
name. PackageConfiguration elements can be installed by value (with the caller supplying the actual data struc-
ture) or by location (with the caller supplying a URL). PackageConfiguration elements themselves have UUIDs
and labels, assigned by the creator of the PackageConfiguration. Installation names are are unique within a re-
pository. The RepositoryManager can provide a list of the names of all PackageConfiguration elements or all
that support a given component type. It can retrieve PackageConfiguration elements by name or UUID. A
PackageConfiguration in the repository can directly contain a ComponentPackageDescription or have indirect
references to another PackageConfiguration, either in the same repository or in other repositories in the plan-
ner's search path. PackageConfiguration elements in the repository can be replaced or removed.

6.5.1.2 Operations

Note – Issue 6047

PackageConfiguration
<<Description>>

RepositoryManager
<<Manager>>

installPackage()
createPackage()
findPackageByName()
findPackageByUUID()
findNamesByType()
getAllNames()
getAllTypes()
deletePackage()

*+package *
Deployment and Configuration of Component-based Distributed Applications 45

Working Draft © OMG

6.6 Target Data Model 6 Platform Independent Model
● installPackage (installationName: String, location: String)
Installs a package in the repository, under the given installation name. Raises
the NameExists exception if a configuration by this name already exists. Raises
the PackageError exception if an internal error is detected in the package.

Note – Issue 5961, 6047

● createPackage (installationName: String, package: PackageConfiguration,
baseLocation: String, replace: Boolean)
Installs a PackageConfiguration in the repository, assigning a given name.
Relative URIs in the location or idlFile attributes are interpreted according
to the baseLocation. If the replace parameter is true, replace any existing
PackageConfiguration with the same name, otherwise raise the NameExists
exception if a configuration by this name already exists. Raises the
PackageError exception if an internal error is detected in the package.

● findPackageByName (name: String): PackageConfiguration
Locates a PackageConfiguration by name. Raises the NoSuchName excep-
tion if the name does not exist.

● findPackageByUUID (name: String): PackageConfiguration
Locates a PackageConfiguration by UUID. Raises the NoSuchName excep-
tion if no package with this UUID exists in the repository.

● getAllNames (): String [*]
Returns a list of all package configuration names.

● findNamesByType (type: String): String [*]
Finds all configurations of packages that support the given interface type. Re-
turns a sequence of names.

● getAllTypes (): String [*]
Returns a sequence of all interface types for which packages are available.

Note – Issue 6047: remove createConfiguration, updateConfiguration, update deletePackage

● deletePackage (name: String)
Deletes the PackageConfiguration that is referenced by name. Raises the
NoSuchName exception if the name does not exist.

6.5.1.3 Associations

● package: PackageConfiguration [*]
A RepositoryManager manages a number of package configurations.

6.5.1.4 Constraints

No constraints.

6.5.1.5 Semantics

No additional semantics.

6.6 Target Data Model
The following classes are part of the Target Data Model. They are placed in the Target subpackage of the De-
ployment and Configuration package.
46 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.6 Target Data Model
Bridge . Page 51
Domain . Page 48
Interconnect . Page 50
Node . Page 49
Resource. Page 52
SharedResource . Page 53

The Target Model describes and manages information about the domain into which applications can be deployed.
A domain is a set of interconnected nodes with bridges routing between interconnects. Shared resources are log-
ically contained in the domain itself.

The top-level entity of target information is the Domain. A Domain is composed of Node, Interconnect, Bridge
and SharedResource elements. Nodes have computational capabilities and are targets for the execution of com-
ponent instances. Nodes may have resources and be associated with shared resources. While resources belong to
the node, a shared resource may be shared between nodes. Artifact requirements must be satisfied by the resourc-
es and shared resources of the node that it is to be installed on.

Interconnects provide direct connections among nodes. They have resources but no shared resources. Intercon-
nects are targets for the deployment of connections between components. Connection requirements must be sat-
isfied by the interconnect's resources. Bridges route between interconnects and therefore provide indirect
connections between nodes. Connections use some combination of the resources of interconnects and bridges to
accomplish the communication between connected ports of instances.

The above is an overview of the Target Data Model. Details about each class in the Target Data Model will be
presented in the following sections.

Figure 6-4 – Target Data Model Overview

SharedResource
<<DomainAdministrator>>

Node
<<DomainAdministrator>>

*

1..*

+sharedResource*

+node
1..*

Interconnect
<<DomainAdministrator>>

1..*
*+connect

1..* +connection
*

Resource
<<DomainAdministrator>>

*

+resource

**

+resource

*

Bridge
<<DomainAdminist rator>>*

1..* +connect ion
*+connect

1..*

*

+resource

*

Domain
<<DomainAdministrator>>

UUID : String [0..1]
label : St ring [0. .1]

*

+sharedResource

*

* +interconnect*1..*
+node
1..* *

+bridge
*

Property
(from Common)

<<Description>>

*
+infoProperty

*

Deployment and Configuration of Component-based Distributed Applications 47

Working Draft © OMG

6.6.1 Domain 6 Platform Independent Model
6.6.1 Domain

6.6.1.1 Description

The Domain is the container that wraps information about its Node, Interconnect, Bridge, and SharedResource
elements. It represents the entire target environment.

6.6.1.2 Attributes

Note – Issue 5963

● label: String [0..1] An optional human-readable label for the domain.
● UUID: String [0..1] An optional unique identifier for this domain.

6.6.1.3 Associations

● node: Node [1..*] Node elements that belong to the domain.
● interconnect: Interconnect [*] Interconnect elements that provide direct connections between nodes.
● bridge: Bridge [*] Bridge elements route between interconnects and therefore provide indirect

connections between nodes.
● sharedResource: SharedResource [*]

Shared resources that belong to the domain.

Note – Issue 5967

● infoProperty: Property [*] Non-functional annotation properties.

6.6.1.4 Constraints

The top-level elements in a domain all have name attributes. These names must be unique within the domain.

context Domain inv:
let elements = Set {self.node, self.interconnect,
 self.bridge, self.sharedResource}
elements->forAll (e1, e2 | e1.name = e2.name implies e1 = e2)

6.6.1.5 Semantics

No additional semantics.
48 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.6.2 Node
6.6.2 Node

6.6.2.1 Description

Nodes are connected to zero or more interconnects that enable components that are instantiated on this node to
communicate with components on other nodes. Nodes may own resources and may have access to shared re-
sources that are shared between nodes.

6.6.2.2 Attributes

● name: String The node’s name.

Note – Issue 5963

● label: String [0..1] An optional human readable label for the node.

6.6.2.3 Associations

● connection: Interconnect [*] A node may be connected to interconnects.
● resource: Resource [*] A node may have resources.
● sharedResource: SharedResource [*]

A node may have access to shared resources.

6.6.2.4 Constraints

The name of the Node must be unique within the Domain (see above).

6.6.2.5 Semantics

A node’s resources and shared resources are matched against implementation requirements.

SharedResource
<<DomainAdministrator>>

Interconnect
<<DomainAdministrator>>Node

<<DomainAdministrator>>

name : String
label : String [0..1]

*

1..*

+sharedResource*

+node
1..*

1..*
*+connect

1..* +connect ion
*

Resource
<<DomainAdministrator>>

*
+resource

*

Deployment and Configuration of Component-based Distributed Applications 49

Working Draft © OMG

6.6.3 Interconnect 6 Platform Independent Model
6.6.3 Interconnect

6.6.3.1 Description

An Interconnect provides a shared direct connection between one or more nodes. It has resources, but no shared
resources. Resources are matched against a connection's requirements (from the
AssemblyConnectionDescription) at deployment time.

An Interconnect that is attached to only a single node can be used to describe the loopback connection. A loop-
back connection is implicit; components can always be interconnected locally. Sometimes, it may be useful or
necessary to describe the type(s) of available loopback connections (e.g., “shared memory”), or their resources or
capabilities (e.g., latency).

6.6.3.2 Attributes

● name: String The interconnect’s name.

Note – Issue 5963

● label: String [0..1] An optional human-readable label for the interconnect.

6.6.3.3 Associations

● connect: Node [1..*] The nodes that this interconnect provides a connection in between.
● connection: Bridge [*] The bridges that provide connectivity to other interconnects.
● resource: Resource [*] Interconnects have resources.

6.6.3.4 Constraints

The name must be unique within the domain (see above).

6.6.3.5 Semantics

An interconnect’s resources are matched against connection requirements.

Node
<<DomainAdministrator>>

Resource
<<DomainAdminist rator>>

Bridge
<<DomainAdministrator>>Interconnect

<<DomainAdminist rator>>

name : String
label : String [0..1]

1..*
*+connect

1..* +connection
*

*
+resource

*

*
1..* +connection

*+connect

1..*
50 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.6.4 Bridge
6.6.4 Bridge

6.6.4.1 Description

A Bridge exists between interconnects to describe an indirect communication path between nodes. If a connec-
tion is to be deployed between components that are instantiated on nodes that are not directly connected, there-
fore requiring bridging, the connection's requirements must be satisfied by the resources of each interconnect and
bridge in between.

6.6.4.2 Attributes

● name: String The bridge’s name.

Note – Issue 5963

● label: String [0..1] An optional human-readable label for this bridge.

6.6.4.3 Associations

● connect: Interconnect [1..*] The interconnects that this bridge provides connectivity between.
● resource: Resource [*] Bridges have resources.

6.6.4.4 Constraints

The name must be unique within the domain (see above).

6.6.4.5 Semantics

A bridge’s resources are matched against connection requirements.

Interconnect
<<DomainAdministrator>> Bridge

<<Dom ainAdministrator>>

name : String
label : String [0..1]

*
1..* +connection

*+connect

1..*

Resource
<<Dom ainAdministrator>>

*
+resource

*

Deployment and Configuration of Component-based Distributed Applications 51

Working Draft © OMG

6.6.5 Resource 6 Platform Independent Model
6.6.5 Resource

6.6.5.1 Description

Resource elements express Node, Interconnect and Bridge features within the target environment. They are
matched against implementation requirements at planning time. Resource extends the RequirementSatisfier
class, but does not add any attributes or associations.

6.6.5.2 Attributes

No additional attributes.

6.6.5.3 Associations

No additional associations.

6.6.5.4 Constraints

The name of a resource must be unique within the container.

6.6.5.5 Semantics

Same as for RequirementSatisfier.

Res ource
<<DomainAdministrator>>

SatisfierProperty
<<Description>>

RequirementSatisfier
<<Description>>

name : String
resourceType : Sequence (String)

*+property *
52 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.6.6 SharedResource
6.6.6 SharedResource

6.6.6.1 Description

Shared resources are resources that are shared between nodes. They are semantically equivalent to “normal” re-
sources; however, the planner must make sure that a shared resource is not exhausted by using it from multiple
nodes in parallel.

6.6.6.2 Attributes

No additional attributes.

6.6.6.3 Associations

● nodes: Node [1..*] The nodes that have access to this SharedResource.

6.6.6.4 Constraints

The name of the SharedResource must be unique within the domain (see above).

6.6.6.5 Semantics

Same as for Resource and for RequirementSatisfier.

6.7 Target Management Model
The TargetManager and DomainUpdateKind classes are placed in the Target subpackage of the Deployment and
Configuration package.

SharedResource
<<DomainAdministrator>>

Resource
<<DomainAdministrator>>

Node
<<DomainAdministrator>>

*

1..*

+sharedResource*

+node
1..*
Deployment and Configuration of Component-based Distributed Applications 53

Working Draft © OMG

6.7.1 TargetManager 6 Platform Independent Model
6.7.1 TargetManager

6.7.1.1 Description

The TargetManager provides information about the Domain using the Target Data Model and tracks resource
usage within the domain. Note that this specification limits the features of the TargetManager to those related to
deployment. While domains and nodes may have properties, exposing an interface to configure them is out of the
scope of this specification.

6.7.1.2 Operations

● getAllResources (): Domain
Returns static information about the domain, with resources at their full capac-
ity.

● getAvailableResources (): Domain
Returns online information about the domain; resources will reflect their re-
maining capacity.

● commitResources (plan: DeploymentPlan)
Commits resources that are used by the instantiation of an application from a
deployment plan. Raises the ResourceNotAvailable exception if one of the re-
quirements cannot be satisfied. Raises the PlanError exception if the plan can-
not be processed due to an inconsistency.

● releaseResources (plan: DeploymentPlan)
Releases resources that are used by the instantiation of an application from a de-
ployment plan. Raises the PlanError exception if the plan cannot be processed
due to an inconsistency.

● updateDomain (elements: String [1..*], domainSubset: Domain, updateKind: DomainUpdateKind)
Updates Domain information within the TargetManager. The elements param-
eter identifies the names of nodes, interconnects, bridges and shared resources
to be updated. The domainSubset contains information about the elements and
their associations. The updateKind identifies whether the elements are to be
added, deleted or updated.

6.7.1.3 Associations

● managedInformation: Domain [1]
A TargetManager manages information about a single Domain.

Domain
<<Domain Administrator>>

TargetManager
<<Manager>>

getAllResources()
getAvailableResources()
commitResources()
releaseResources()
updateDomain()

1

1

+managedInformation1

+informationManager 1
54 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.7.2 DomainUpdateKind
6.7.1.4 Constraints

No constraints

6.7.1.5 Semantics

Resources are centrally managed by the TargetManager, it is assumed that the TargetManager has complete
knowledge of available resources. This implies worst-case resource allocation (implementations may not use any
more resources than declared), and that resources may not be used by processes outside of this specification.

Planning for deployment can happen “online” or “offline.” In the online case, the planner considers the presently
available resources that are returned from getAvailableResources. In offline planning, the planner considers all
available resources in order to plan for an application that is to be deployed into an “empty” target environment.

It may be necessary to serialize access to resource information and planning using means beyond the scope of
this specification, in order to avoid race conditions in online planning – otherwise resources might be committed
elsewhere while planning, or multiple plans might end up competing for the same resources.

6.7.2 DomainUpdateKind

6.7.2.1 Description

The DomainUpdateKind is an enumeration used as a parameter to the updateDomain operation of the
TargetManager to describe how Domain information is to be updated.

6.7.2.2 Attributes

No attributes.

6.7.2.3 Associations

No associations.

6.7.2.4 Constraints

No constraints.

6.7.2.5 Semantics

If the Add kind is used, then information about nodes, interconnects, bridges and shared resources is added to the
Domain. In case of Delete, information is removed. In case of UpdateAll, existing information about the full ca-
pacity of resources is updated. In case of UpdateAvailable, information about the available capacity of resources
is updated.

6.8 Execution Data Model
The following classes are part of the Execution Data Model. They are placed in the Execution subpackage of the
Deployment and Configuration package.

DomainUpdateKind
<<enumeration>>

Add
Delete
UpdateAll
UpdateAvailable
Deployment and Configuration of Component-based Distributed Applications 55

Working Draft © OMG

6.8.1 DeploymentPlan 6 Platform Independent Model
ArtifactDeploymentDescription . Page 58
ComponentInterfaceDescription . Page 39
ComponentExternalPortEndpoint . Page 80
ConnectionResourceDeploymentDescription Page 68
DeploymentPlan . Page 56
ExternalReferenceEndpoint . Page 80
InstanceDeploymentDescription . Page 61
InstanceResourceDeploymentDescription . Page 67
MonolithicDeploymentDescription . Page 60
PlanConnectionDescription. Page 62
PlanPropertyMapping. Page 65
PlanSubcomponentPortEndpoint . Page 64
PlanSubcomponentPropertyReference . Page 66
ResourceDeploymentDescription . Page 66

Before deployment can occur, decisions must be made about the implementations to select (if multiple imple-
mentations exist in a package) and where to deploy each monolithic component implementation. All information
about an application's deployment is collected in a DeploymentPlan. This plan can be used transiently (i.e., ex-
ecuted right away), or it may be stored to avoid the overhead of planning in the future. The DeploymentPlan can
be used by an ExecutionManager to create a specific factory object for the application. A DeploymentPlan is
“standalone” in that it does not necessarily refer to a repository, only to artifacts, which, depending on the imple-
mentation, may or may not reside in the repository.

Details about each class in the Execution Data Model will be presented in the following sections.

6.8.1 DeploymentPlan

6.8.1.1 Description

The DeploymentPlan contains information about artifacts that are part of the deployment
(ArtifactDeploymentDescription), how to create component instances from artifacts
(MonolithicDeploymentDescription), and where to instantiate them (InstanceDeploymentDescription). It then
contains information about connections between them (AssemblyConnectionDescription) and about the map-
ping of external properties. It finally contains information about the component interface that is realized by the

PlanConnectionDescript ion
<<Planner>>

PlanPropertyMapping
<<Planner>>

ImplementationDependenc y
(from Common)

<<Description>>

InstanceDeploymentDescription
<<Planner>>

**

1.. *1.. *

MonolithicDeploymentDescription
<<Planner>>

1
+implementation

1

Arti factDeploymentDescription
<<Planner>>

1.. *+artifact 1.. *

ComponentInterfaceDescription
(from Compone...

<<Specifier>>

DeploymentPlan
<<Planner>>

label : String [0..1]

*
+connection

*

*

+artifact

*

*
+im plementation

*

*
+instance

*

*
+externalProperty

*

1
+realizes

1 *
+dependsOn
*

Property
(from Common)

<<Description>>

*
+infoProperty
*

56 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.8.1 DeploymentPlan
application. The DeploymentPlan is analogous to the ComponentAssemblyDescription in the Component Data
Model. In fact, the DeploymentPlan can be seen as a flattened assembly (without recursion). In the plan, all as-
semblies have been recursively replaced by their white-box representation, and concrete implementations have
been chosen for each subcomponent. All that remains are the leaf nodes, i.e. components that have a monolithic
implementation.

To avoid redundancy, a Planner can compare the identity of artifacts and component implementations for identity
(using their UUID attributes) and then share ArtifactDeploymentDescription and
MonolithicDeploymentDescription elements.

6.8.1.2 Attributes

Note – Issue 5963

● label: String [0..1] Users may optionally assign a human readable label to a DeploymentPlan.

Note – Issue 6047

● UUID: String [0..1] A unique identifier for this DeploymentPlan.

6.8.1.3 Associations

● artifact: ArtifactDeploymentDescription [*]
Implementation artifacts related to the deployment.

● implementation: MonolithicDeploymentDescription
Component implementations used in the deployment.

● instance: InstanceDeploymentDescription [*]
Component instances that are to be created.

● connection: PlanConnectionDescription [*]
Connections that are to be made between the component instances, the applica-
tion’s external ports, or external locations.

● externalProperty: PlanPropertyMapping [*]
Maps the application’s external properties to properties of component instances.

● realizes: ComponentInterfaceDescription [1]
The component interface implemented by the application.

Note – Issue 5955

● dependsOn: ImplementationDependency [*]
Implementations of these interfaces must be executing in the target environment
before deploying this plan is possible. Copied from the
ComponentImplementationDescription element.

Note – Issue 5967

● infoProperty: Property [*] Non-functional annotation properties.

6.8.1.4 Constraints

Note – Issue 5957

The top-level elements in a DeploymentPlan all have name attributes. These names must be unique within the
plan.
Deployment and Configuration of Component-based Distributed Applications 57

Working Draft © OMG

6.8.2 ArtifactDeploymentDescription 6 Platform Independent Model
context DeploymentPlan inv:
let elements = Set {self.artifact, self.implementation,
 self.instance, self.connection,
 self.externalProperty}
elements.forAll (e1, e2 | e1.name = e2.name implies e1 = e2)

6.8.1.5 Semantics

The DeploymentPlan is a self-contained piece of information that contains all necessary data about the deploy-
ment of an application to a specific target environment.

The deployment engine that is part of the ExecutionManager or ApplicationManager traverses the instances; for
each instance, it determines the implementation and its artifacts, which need to be installed on a target node prior
to component instantiation. All artifacts used in this process are marked. The deployment engine then traverses
the artifacts and processes all “leftover” ArtifactDeploymentDescription elements; these may be additional arti-
facts included by the Planner to take care of special conditions in the target environment.

The deployment engine then proceeds to create the component instances and interconnects them.

The interface information is used so that the application can present this interface to the user. (This is detailed by
platform specific models.) Default values for properties (the configProperty elements of the
ComponentInterfaceDescription) are not needed in the plan and ignored by the deployment engine; a Planner
may decide not to copy them into the plan.

6.8.2 ArtifactDeploymentDescription

6.8.2.1 Description

Note – Issue 6392

ArtifactDeploymentDescription describes an artifact that is to be deployed as part of the plan. It mirrors the
ImplementationArtifactDescription from the component data model. To avoid redundancy, this element can be
shared among InstanceDeploymentDescription elements, should component instances use the same artifact
more than once, either on the same node, or if the artifact has no node-specific resource requirements. A Planner
can compare artifacts for identity using the UUID attribute of the ImplementationArtifactDescription element.
ArtifactDeploymentDescription describes the installation of a single implementation artifact on a node as part of
component instantiation. It contains an URL pointing to the ImplementationArtifact. Execution parameters and
deployment requirements are copied from the ImplementationArtifactDescription.

Requirement
(from Common)

<<Description>>
Property

(from Common)

<<Description>>

Arti factDeploym entDes cription
<<Planner>>

name : String
location : String [1..*]
node : String
source : String [*]

*
+deployRequirement
**

+execParameter
*

ResourceDeploymentDescription
<<Planner>>

*
+deployedResource

*

58 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.8.2 ArtifactDeploymentDescription
6.8.2.2 Attributes

Note – Issues 5957, 6053

● name: String A unique identifier for this element of the DeploymentPlan.
● location: String [1..*] The location where the artifact can be loaded from. Copied from the

ImplementationArtifactDescription.
● node: String The name of the node where the artifact is to be installed. If blank, the node is

implied by the InstanceDeploymentDescription parent.
● source: String [*] Identifies the ImplementationArtifactDescription elements that caused this

artifact to be part of the deployment.

6.8.2.3 Associations

● execParameter: Property [*] Execution parameters, copied from the ImplementationArtifactDescription.
● deployRequirement: Requirement [*]

Deployment requirements, copied from the
ImplementationArtifactDescription.

Note – Issue 6392

● deployedResource: ResourceDeploymentDescription [*]
The resources chosen to satisfy the requirements of the implementation as spec-
ified in the ImplementationArtifactDescription.

6.8.2.4 Constraints

No constraints.

6.8.2.5 Semantics

The deployment requirements carry information about the resources used by this implementation artifact, so that
they can be committed by the TargetManager (presumably via the ExecutionManager).

Usually, the node attribute is the empty string, so that artifacts will be deployed on the node where a component
is to be instantiated as implied by the InstanceDeploymentDescription. The attributed is included here for the
exotic case that special artifacts need to be installed in the target environment. In that case, the Planner would
add ArtifactDeploymentDescription elements to the plan that are unrelated to component instances.

Note – Issue 5957, 5964

A Planner may compose a human readable value for the source attribute by combining the name attributes from
PackageConfiguration, PackagedComponentImplementation, SubcomponentInstantiationDescription and
NamedImplementationArtifact elements, describing a “path” of the artifact’s origins in the Component Data
Model. The source attribute may have more than one element, since ArtifactDeploymentDescription elements
may be shared among instance deployments, if the same implementation artifact is part of multiple component
implementations. In case of an error, a user can use this information to track the problem.

A Planner must generate a name that is unique among the top-level elements in a DeploymentPlan.
Deployment and Configuration of Component-based Distributed Applications 59

Working Draft © OMG

6.8.3 MonolithicDeploymentDescription 6 Platform Independent Model
6.8.3 MonolithicDeploymentDescription

6.8.3.1 Description

Note – Issue 6388, 6392

MonolithicDeploymentDescription describes the deployment of a component as part of the plan. It mirrors the
MonolithicImplementationDescription from the component data model. If the same component instance is de-
ployed more than once, either on the same node, or using only artifacts with no node-specific resource require-
ments, a MonolithicDeploymentDescription can be shared by multiple InstanceDeploymentDescription
elements. A Planner can compare monolithic implementations for identity using the UUID attribute of the
ComponentImplementationDescription. The MonolithicDeploymentDescription references
ArtifactDeploymentDescription elements for all artifacts that are part of the deployment. The execution param-
eters and deployment requirements are copied from the MonolithicImplementationDescription.

6.8.3.2 Attributes

Note – Issue 5957

● name: String A unique identifier for this element of the DeploymentPlan.
● source: String [*] Identifies the MonolithicImplementationDescription elements that caused

this component to be part of the deployment.

6.8.3.3 Associations

● artifact: ArtifactDeploymentDescription [*]
The implementation artifacts that are part of this monolithic component imple-
mentation.

● execParameter: Property [*] Execution parameters, copied from the
MonolithicImplementationDescription.

● deployRequirement: Requirement [*]
Deployment requirements, copied from the
MonolithicImplementationDescription.

6.8.3.4 Constraints

No constraints.

ArtifactDeploymentDescription
<<Planner>>

Property
(from Common)

<<Description>>

Requirement
(f rom Common)

<<Desc ription>>

MonolithicDeploymentDescription
<<Planner>>

name : String
source : String [*]

1..*
+artifact
1..*

{ordered}

*

+execParameter

*

*
+deployRequirement

*

60 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.8.4 InstanceDeploymentDescription
6.8.3.5 Semantics

The artifacts referenced here represent a depth-first traversal of the primary artifacts from the
MonolithicImplementationDescription and their dependency. A depth-first traversal ensures that all dependees
can be installed before the dependent artifacts.

Note – Issue 5957, 5964

A Planner may compose a human readable value for the source attribute by combining the name attributes from
PackageConfiguration, PackagedComponentImplementation and SubcomponentInstantiationDescription
elements, describing a “path” of the component implementation’s origins in the Component Data Model. The
source attribute may have more than one element, since MonolithicImplementationDescription elements may
be shared among instance deployments, if the same component implementation is deployed more than once. In
case of an error, a user can use this information to track the problem.

A Planner must generate a name that is unique among the top-level elements in a DeploymentPlan.

6.8.4 InstanceDeploymentDescription

6.8.4.1 Description

InstanceDeploymentDescription contains the information that is necessary in order to deploy a single compo-
nent instance. It references a MonolithicDeploymentDescription and includes the name of the node where the
component is to be instantiated. It then contains properties that are used to configure the component instance.

6.8.4.2 Attributes

Note – Issue 5957

● name: String A unique identifier for this element of the DeploymentPlan.
● node: String The name of the node where the component is to be instantiated.
● source: String Identifies the MonolithicImplementationDescription element that caused this

component to be part of the deployment.

6.8.4.3 Associations

● implementation: MonolithicDeploymentDescription [1]
The component that is to be instantiated.

● configProperty: Property [*] Properties to configure the component instance after instantiation.

Note – Issue 6392

Property
(from Common)

<<Des cription>>

MonolithicDeploymentDescription
<<Planner>>

InstanceDeploymentDescription
<<Planner>>

name : String
node : String
source : String [*]

*

+configProperty

*

1
+implementation
1

InstanceResourceDeploymentDescription
<<Planner>>

*

+deployedResource

* *
+deployedSharedResource

*

Deployment and Configuration of Component-based Distributed Applications 61

Working Draft © OMG

6.8.5 PlanConnectionDescription 6 Platform Independent Model
● deployedResource: InstanceResourceDeploymentDescription [*]
The resources chosen to satisfy the requirements of the implementation as spec-
ified in the MonolithicImplementationDescription, which were satisfied by a
node’s own (not shared) resources.

● deployedSharedResource: InstanceResourceDeploymentDescription [*]
The resources chosen to satisfy the requirements of the implementation as spec-
ified in the MonolithicImplementationDescription, which were satisfied by
shared resources that are available to the node.

6.8.4.4 Constraints

No constraints.

6.8.4.5 Semantics

Note – Issue 5957, 5964

A Planner may compose a human readable value for the source attribute by combining the name attributes from
PackageConfiguration, PackagedComponentImplementation and SubcomponentInstantiationDescription
elements, describing a “path” of the instance’s origins in the Component Data Model. In case of an error, a user
can use this information to track the problem.

A Planner must generate a name that is unique among the top-level elements in a DeploymentPlan.

6.8.5 PlanConnectionDescription

6.8.5.1 Description

The PlanConnectionDescription describes a connection that is to be made among ports within the application
that is being deployed. It is analogous to the AssemblyConnectionDescription that describes a connection with-
in an assembly. The ComponentExternalPortEndpoint and ExternalReferenceEndpoint elements are reused
from the Component Data Model.

ComponentExternalPortEndpoint
(from Common)

<<Description>>

PlanSubcomponentPortEndpoint
<<Planner>> ExternalReferenceEndpoint

(from Common)

<<Description>>

Requirement
(from Common)

<<Description>>PlanConnectionDescription
<<Planner>>

name : String
source : String [*]

*
+externalEndpoint

* *+internalEndpoint *
*

+externalReference
*

*

+deployRequirement

*

ConnectionResourceDeploymentDescription
<<Planner>>

*
+deployedResource

*

62 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.8.5 PlanConnectionDescription
6.8.5.2 Attributes

Note – Issue 5957

● name: String A unique identifier for this element of the DeploymentPlan.
● source: String [*] Identifies the AssemblyConnectionDescription elements that were combined

into this PlanConnectionDescription.

6.8.5.3 Associations

● deployRequirement: Requirement [*]
Connection requirements; the sum of all deployment requirements of all
AssemblyConnectionDescription elements that are involved in this connec-
tion.

● externalEndpoint: ComponentExternalPortEndpoint [*]
Identifies a port of the component that is implemented by the application as an
endpoint of this connection.

● internalEndpoint: PlanSubcomponentPortEndpoint [*]
Identifies a port of a component within the application as an endpoint of this
connection.

● externalReference: ExternalReferenceEndpoint [*]
Identifies a location outside the application as an endpoint of this connection.

Note – Issue 6392

● deployedResource: ConnectionResourceDeploymentDescription [*]
The resources chosen to satisfy the requirements of the connection as specified
in the AssemblyConnectionDescription.

6.8.5.4 Constraints

The number of endpoints must be larger than one.

6.8.5.5 Semantics

During application launch, a connection between all endpoints will be established.

Note – Issue 5957, 5964

A Planner may compose a human readable value for the source attribute by combining the name attributes from
PackageConfiguration, PackagedComponentImplementation, SubcomponentInstantiationDescription and
AssemblyConnectionDescription elements, describing a “path” of the connection’s origins in the Component
Data Model. The source attribute may have more than one element, since a connection in the “flattened” plan
might be a combination of multiple connection segments on different levels of the assembly hierarchy. In case of
an error, a user can use this information to track the problem.

A Planner must generate a name that is unique among the top-level elements in a DeploymentPlan.
Deployment and Configuration of Component-based Distributed Applications 63

Working Draft © OMG

6.8.6 PlanSubcomponentPortEndpoint 6 Platform Independent Model
6.8.6 PlanSubcomponentPortEndpoint

6.8.6.1 Description

Identifies a port of a component within the application as an endpoint of the connection described by the
PlanConnectionDescription that this element is contained in.

6.8.6.2 Attributes

● portName: String The name of the port of the associated component instance that is to be an end-
point of this connection.

● provider: String Identifies whether the port is a provider or user port.

6.8.6.3 Associations

● instance: InstanceDeploymentDescription [1]
The associated component instance.

6.8.6.4 Constraints

The port name must be valid for the referenced component.

6.8.6.5 Semantics

See above.

PlanSubcomponentPortEndpoint
<<Planner>>

portName : String
provider : Boolean

InstanceDeploym entDescription
<<Planner>>

1+instanc e 1
64 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.8.7 PlanPropertyMapping
6.8.7 PlanPropertyMapping

6.8.7.1 Description

PlanPropertyMapping is part of the DeploymentPlan. It identifies a property of the component that this appli-
cation is implementing and the subcomponents' properties that it delegates to.

6.8.7.2 Attributes

Note – Issue 5957

● name: String A unique identifier for this element of the DeploymentPlan.
● source: String [*] Identifies the AssemblyPropertyMapping elements that were combined into

this PlanPropertyMapping.
● externalName: String The name of a property of the component that the application is implementing.

6.8.7.3 Associations

● delegatesTo: PlanSubcomponentPropertyReference [1..*]
References ports of subcomponents within the application that the property is
delegated (or propagated) to.

6.8.7.4 Constraints

The externalName must match the name of a property of the component that the assembly is implementing.

6.8.7.5 Semantics

Note – Issue 5957, 5964

A Planner may compose a human readable value for the source attribute by combining the name attributes from
PackageConfiguration, PackagedComponentImplementation, SubcomponentInstantiationDescription and
AssemblyPropertyMapping elements, describing a “path” of the mapping’s origins in the Component Data
Model. The source attribute may have more than one element, since a mapping in the “flattened” plan might be
a combination of multiple mapping “segments” on different levels of the assembly hierarchy. In case of an error,
a user can use this information to track the problem.

PlanPropertyMapping
<<Planner>>

name : St ring
s ource : St ring [*]
externalNam e : S tring

InstanceDeploym entDescription
<<Planner>>

PlanSubcomponentPropertyReference
<<Planner>>

propertyName : String

1..*+delegates To 1..*

1+instance 1
Deployment and Configuration of Component-based Distributed Applications 65

Working Draft © OMG

6.8.8 PlanSubcomponentPropertyReference 6 Platform Independent Model
A Planner must generate a name that is unique among the top-level elements in a DeploymentPlan.

6.8.8 PlanSubcomponentPropertyReference

6.8.8.1 Description

Identifies a property of a subcomponent within the deployment plan that an external property of the component
that the application implements delegates to.

6.8.8.2 Attributes

● propertyName: String The name of the property of the associated component instance that the external
property is delegated to.

6.8.8.3 Associations

● instance: InstanceDeploymentDescription [1]
The associated component instance.

6.8.8.4 Constraints

The propertyName must match the name of a property of the associated component.

6.8.8.5 Semantics

No semantics.

6.8.9 ResourceDeploymentDescription

Note – Issue 6392

6.8.9.1 Description

ResourceDeploymentDescription contains information about how a requirement of a monolithic implementa-
tion instance, artifact or connection was satisfied by indicating the requirement, the resource, and how the re-
source will be used to satisfy the requirement.

InstanceResourceDeploymentDescription
<<Planner>>

resourceUsage : ResourceUsageKind
ConnectionResourceDeploym entDesc ription

targetNam e : St ring

<<Planner>>

ResourceDeploymentDescription
<<Planner>>

requi rementName : String
resourceNam e : St ring

Any
(from Common)

<<Description>>

1

+resourceValue

1

66 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.8.10 InstanceResourceDeploymentDescription
6.8.9.2 Attributes

● requirementName: String The name of the requirement being satisfied. This is not a model association
with the Requirement class because that information does not necessarily need
to be in the plan. This attribute will enable the node, container and/or implemen-
tation instance to know which resource was used to satisfy each of its specified
requirements.

● resourceName: String The name of the target domain entity’s resource chosen to satisfy the require-
ment.

6.8.9.3 Associations

● resourceValue: Any [1] The aspect of the resource actually allocated, if any, of the appropriate type of
the resource’s SatisfierPropertyKind attribute. For Quantity, it is the ordinal
allocated. For Allocation, it is the allocated capacity, for Selection, it is the
matched string. For others, it is the value of the matched property.

6.8.9.4 Constraints

None.

6.8.9.5 Semantics

None.

6.8.10 InstanceResourceDeploymentDescription

Note – Issue 6392

6.8.10.1 Description

InstanceResourceDeploymentDescription specializes ResourceDeploymentDescription to describe resources
allocated for instances. Associated with and contained by an InstanceDeploymentDescription.

6.8.10.2 Attributes

● resourceUsage: ResourceUsageKind
How the resource will be used to satisfied the requirement (copied from the
original ImplementationRequirement).

6.8.10.3 Associations

None.

6.8.10.4 Constraints

None.

6.8.10.5 Semantics

None.
Deployment and Configuration of Component-based Distributed Applications 67

Working Draft © OMG

6.8.11 ConnectionResourceDeploymentDescription 6 Platform Independent Model
6.8.11 ConnectionResourceDeploymentDescription

Note – Issue 6392

6.8.11.1 Description

ConnectionResourceDeploymentDescription specializes ResourceDeploymentDescription to describe re-
sources allocated for connections. Associated with and contained by a PlanConnectionDescription.

6.8.11.2 Attributes

● targetName: String The name of the target domain entity from which the resource was allocated
(i.e., the name of a Node, Interconnect or Bridge), to provide scope for the re-
quirementName. This attribute is required because connections may traverse
multiple bridges and interconnects.

6.8.11.3 Associations

None.

6.8.11.4 Constraints

None.

6.8.11.5 Semantics

None.

6.9 Execution Management Model
The following classes are part of the Execution Management Model. They are placed in the Execution subpack-
age of the Deployment and Configuration package.

Application . Page 76
ApplicationManager . Page 73
Connection . Page 78
DomainApplication . Page 77
DomainApplicationManager . Page 74
Endpoint . Page 79
ExecutionManager . Page 70
Logger . Page 78
NodeApplication . Page 77
NodeApplicationManager. Page 75
NodeManager . Page 71
68 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.9.1 Execution Management Model Overview
6.9.1 Execution Management Model Overview

After planning, application execution happens in two phases, in a total of three steps. The first phase is the prep-
aration of the plan for execution using the preparePlan operation of the ExecutionManager, resulting in an
ApplicationManager factory object, which can be used to put the plan into action, potentially more than once.
The second phase, launching the application, is divided into two steps. The first step of launching is calling the
startLaunch operation on the ApplicationManager. This causes the Application to be executed, but not to be
started yet. The second step of launching is calling the finishLaunch operation on the Application. The reason
for splitting application launch into two steps is launch-time configuration and interconnection. The first step re-
turns references to ports that are provided by the application, the second step supplies references to ports that are
used by the application.

Application execution involves the “domain” level and the “node” level. On the domain level, the
ExecutionManager manages the execution of an application into the domain. The ExecutionManager separates
the “global” application into “local” sub-applications that execute within a node. This essentially creates “virtual
components” to run entirely within a node, including intra-node connections. The deployment of virtual compo-
nents onto a node can be described the same way as the deployment of the original application, using a
DeploymentPlan, with the limitation that all component instances will be located on the same node.

The ExecutionManager creates deployment plans for virtual components to run on each node, so that the com-
plete application is covered. It then passes each DeploymentPlan to the NodeManager that is responsible for in-
stantiating components on that node.

Just as the DeploymentPlan structure is the same for the deployment of both the global application and the local
applications, the interfaces for managing them, ApplicationManager and Application, are the same. To keep the
semantics separate, global and local versions of both interfaces are introduced with the Domain and Node prefix-
es. During launch and shutdown, global DomainApplicationManager and DomainApplication instances delegate
management to the local, node-specific NodeApplicationManager and NodeApplication managers with the
same interface.

Figure 6-5 – Execution Management Model Overview

Logger
<<Manager>>

TargetManager
<<Manager>>

ExecutionManager
<<Manager>>

0..10..1

11

NodeManager
<<Manager>>

**

DomainApplicationManager
<<Manager>>

**

DomainApplication
<<Manager>>

**

NodeApplicationManager
<<Manager>>

*

+subAppMgr

*

**

NodeApplication
<<Manager>>

*

+s ubApp

*

**
Deployment and Configuration of Component-based Distributed Applications 69

Working Draft © OMG

6.9.2 ExecutionManager 6 Platform Independent Model
The separation between ExecutionManager and NodeManager serves the purpose of creating a vendor bound-
ary. It uncouples deployment (implemented by the vendor of the deployment engine) from the execution of com-
ponents (implemented by the vendor of the hardware or development environment). This allows hardware
vendors to supply a node-specific NodeManager, NodeApplicationManager and NodeApplication implementa-
tions that can then interact with any deployment engine.

6.9.2 ExecutionManager

6.9.2.1 Description

The ExecutionManager manages the execution of applications from a DeploymentPlan. It has knowledge of
NodeManager instances that manage nodes within the domain, and will delegate execution of component in-
stances to relevant NodeManager instances as described by the plan. The ExecutionManager is also associated
with a TargetManager for resource management, and, optionally, a centralized logging facility.

Application execution is initiated by preparing a DeploymentPlan using the preparePlan operation. This creates
a new DomainApplicationManager that can later be used to launch one or more application instances.

6.9.2.2 Operations

● preparePlan (plan: DeploymentPlan, commitResources: Boolean): DomainApplicationManager
Creates an application manager (factory) from a deployment plan. If
commitResources is true, then resources used by the plan will be committed. If
false, then it is assumed that resources were already committed by an online
planner. Raises the ResourceNotAvailable exception if commitResources is
true, if early resource allocation is used, and one of the requested resources is
not available. Raises the StartError exception if a deployment-related error oc-
curs during preparation. Raises the PlanError exception if there is a problem
with the plan.

● destroyManager (manager: DomainApplicationManager)
Terminates an application manager and free all associated resources. All run-
ning applications are terminated as well. Raises the StopError exception if a
problem occurs terminating or unpreparing any application. Raises the
InvalidReference exception if the manager is unknown.

● getManagers (): DomainApplicationManager [*]
Returns a list of all active application managers.

6.9.2.3 Associations

● domainApplicationManager: DomainApplicationManager [*]
An ExecutionManager instantiates DomainApplicationManager instances.

Logger
<<Manager>>

NodeManager
<<Manager>>

TargetManager
<<Manager>>

DomainApplicationManager
<<Manager>>

ExecutionManager
<<Manager>>

prepareP lan()
getM anagers()
des troyManager() **

0..10..1
11

**
70 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.9.3 NodeManager
● targetManager: TargetManager [1]
The TargetManager that will be used for resource commitments.

● logger: Logger [0..1] An optional logging faciltiy.
● nodeManager: NodeManager [*] NodeManager references for all nodes that are part of the domain.

6.9.2.4 Constraints

No constraints.

6.9.2.5 Semantics

The semantics of preparation are undefined. Preparation usually involves the distribution of artifacts to the nodes.
However, implementations might decide to delay this distribution until application launch — or they might, on
the other hand, preload artifacts into memory so that launch can happen as fast as possible.

It is also undefined whether resource commitment (in case the commitResources parameter to the preparePlan
operation is true) happens at preparation or launch time. Implementations should document their behavior in this
respect.

The preparePlan operation takes the deployment plan and prepares “virtual components” with the subset of the
application that is to be executed on each node. The ExecutionManager then contacts the NodeManager instanc-
es that are responsible for each node, and passes their piece of the application to their preparePlan operation, us-
ing the same DeploymentPlan format. This results in a “global” level DomainApplicationManager that holds
references to “local,” node-specific NodeApplicationManager instances for each piece of the application.

The destroyManager operation releases all resources that were allocated during preparation and launch.

6.9.3 NodeManager

6.9.3.1 Description

The NodeManager is responsible for managing a partial applications that is limited to its node. It mirrors the
ExecutionManager, but is limited to one node only.

6.9.3.2 Operations

● joinDomain (domainSubset: Domain, manager: TargetManager, log: Logger)
Informs the NodeManager that it is now part of a Domain. The domainSubset
contains the resource availability information that is currently known within the
domain. manager is a reference to the TargetManager to (optionally) send do-
main updates to. log is an abstract (PSM defined) class to send log messages to.

TargetManager
<<Manager>>

Logger
<<Manager>>

NodeApplicationManager
<<Manager>>

NodeManager
<<Manager>>

joinDomain()
leaveDomain()
preparePlan()
destroyManager()

11

0..10..1

**
Deployment and Configuration of Component-based Distributed Applications 71

Working Draft © OMG

6.9.3 NodeManager 6 Platform Independent Model
● leaveDomain () Informs the NodeManager that it is being removed from the domain, e.g. be-
cause of domain shutdown.

● preparePlan (plan: DeploymentPlan): NodeApplicationManager
Prepares a partial application. The part of the application that is to be executed
on this node is expressed as a DeploymentPlan that implements a “virtual com-
ponent” with the subcomponents, connections, external ports and properties.
Raises the StartError exception if a deployment-related error occurs during
preparation. Raises the PlanError exception if there is a problem with the plan.

● destroyManager (manager: NodeApplicationManager)
Terminates a NodeApplicationManager and frees all associated resources. All
running applications are terminated. Raises the StopError exception if an error
occurs during termination. Raises the InvalidReference exception if the man-
ager reference is unknown.

6.9.3.3 Associations

● targetManager: TargetManager [1]
The TargetManager that Domain updates are sent to if necessary. This is the
reference passed as a parameter to the joinDomain operation.

● logger: Logger [0..1] The Logger to send log messages to. If the NodeManager wants to produce log
messages, it keeps the reference passed as a parameter to the joinDomain oper-
ation.

● nodeApplicationManager: NodeApplicationManager [*]
The node-specific application managers instantiated by this NodeManager via
the preparePlan operation.

6.9.3.4 Constraints

No constraints.

6.9.3.5 Semantics

The joinDomain operation is called by the ExecutionManager at startup time or when it is informed of a new
node via the updateDomain operation. Both the joinDomain and leaveDomain operations are called by the
ExecutionManager on user request to add or remove nodes from a domain.

If the joinDomain operation is called, the NodeManager may optionally examine the domainSubset, and send an
update message to the TargetManager if discrepancies are found.

The semantics of the leaveDomain operation are undefined. A NodeManager might shutdown or reset. In partic-
ular, the effect on running applications is also undefined. Behavior of a NodeManager implementation should be
well documented. A NodeManager should not log any messages after returning from the leaveDomain operation.

The preparePlan operation and destroyApplication operations are called by the ExecutionManager as a result
of a user demand for application preparation or destruction. The DeploymentPlan that is passed to the
preparePlan operation describes a virtual component that is composed of all subcomponents and connections that
are to be made within the node, plus mappings for connections and properties that external to that node.
72 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.9.4 ApplicationManager
6.9.4 ApplicationManager

6.9.4.1 Description

An ApplicationManager is used to first launch and later to terminate an application according to a concrete
DeploymentPlan. ApplicationManager is an abstract class that is specialized by the
DomainApplicationManager, which handles deployment of a “global” application, and the
NodeApplicationManager, which handles deployment of a locality constrained application onto a single node.

6.9.4.2 Operations

● startLaunch (configProperty: Property [*], out providedReference: Connection [*]): Application
Executes the application, but does not start it yet. Users can optionally provide
launch-time configuration properties to override properties that are part of the
plan. A handle to the application is returned, as well as connections for the com-
ponent’s external provider ports. Raises the InvalidProperty exception if a con-
figuration property is invalid. Raises the StartError exception if an error occurs
during launching. Raises the ResourceNotAvailable exception if the
commitResources parameter to the prepare operation of the
ExecutionManager was true, if late resource allocation is used, and one of the
requested resources is not available.

● destroyApplication (app: Application)
Terminates a running application. Raises the StopError exception if an error
occurs during termination. Raises the InvalidReference exception if the applic-
tion reference is unknown.

DeploymentPlan
<<Planner>>

Application
<<Manager>>

ApplicationManager
startLaunch()
destroyApplication()

<<Manager>>
11

*+runningApp *

TargetManager
<<Manager>>

DomainApplicat ionManager
getAppl ic ations()
getPlan()

<<Manager>>

11

NodeApplicationManager
<<Manager> >

*

+subAppMgr

*

Deployment and Configuration of Component-based Distributed Applications 73

Working Draft © OMG

6.9.5 DomainApplicationManager 6 Platform Independent Model
6.9.4.3 Associations

● runningApp: Application [*] The applications that were launched but not terminated yet.
● deploymentPlan: DeploymentPlan [1]

The DeploymentPlan that this ApplicationManager is based on, a copy of the
plan that was passed to the preparePlan operation of the ExecutionManager
or NodeManager.

Note – Issue 6038

6.9.4.4 Constraints

Depending on the plan and whether it was based on static or online resource data, launching multiple applica-
tions from the same ApplicationManager in parallel might fail because of resource constraints.

6.9.4.5 Semantics

The behavior of an ApplicationManager is different depending on whether it is used as a
DomainApplicationManager on the “global” level (if instantiated from an ExecutionManager) or a
NodeApplicationManager on the “local” level (if instantiated from a NodeManager). Implementations for these
two cases are usually separate. An ExecutionManager implementation has access to
DomainApplicationManager and DomainApplication implementations, a NodeManager has access to
NodeApplicationManager and NodeApplication implementations.

6.9.5 DomainApplicationManager

6.9.5.1 Description

The DomainApplicationManager is responsible for deploying an application on the domain level, i.e. across
nodes. It specializes the ApplicationManager interface.

6.9.5.2 Operations

● getApplications (): Application [*]
Returns a list of all applications that have been launched from this
ApplicationManager and that are still executing.

● getPlan (): DeploymentPlan Returns the DeploymentPlan associated with this ApplicationManager.

6.9.5.3 Associations

● subAppMgr: NodeApplicationManager [*]
The manager for the pieces of the application that run on each node.

● targetManager: TargetManager [1]
The TargetManager that is used to commit resources if necessary.

6.9.5.4 Constraints

The targets of the runingApp association (inherited from ApplicationManager) are instances of
DomainApplication.
74 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.9.6 NodeApplicationManager
6.9.5.5 Semantics

A DomainApplicationManager has references to node-specific NodeApplicationManager elements as created
by the preparePlan operation of the ExecutionManager. The startLaunch operation then calls startLaunch on
the NodeApplicationManager instances, passing the relevant properties and collecting the returned connections
as determined by the separation of the “global” DeploymentPlan into node-specific plans. The same applies to
the destroyApplication operation.

6.9.6 NodeApplicationManager

6.9.6.1 Description

The NodeApplicationManager is responsible for deploying an locality constrained application onto a node. It
specializes the ApplicationManager interface.

6.9.6.2 Operations

No additional operations.

6.9.6.3 Associations

No additional associations.

6.9.6.4 Constraints

The targets of the runingApp association (inherited from ApplicationManager) are instances of
NodeApplication.

The associated DeploymentPlan (inherited from ApplicationManager) only contains instance deployments onto
the node that is represented by the NodeManager parent.

6.9.6.5 Semantics

A NodeApplicationManager is responsible for executing and terminating component instances on the node that
it is part of (as defined by the NodeManager parent, usually but not necessarily implying co-location).
Deployment and Configuration of Component-based Distributed Applications 75

Working Draft © OMG

6.9.7 Application 6 Platform Independent Model
6.9.7 Application

6.9.7.1 Description

Application is an abstract class represents a running application. The Application class may be mapped to differ-
ent classes in a platform specific models, potentially allowing navigation to an application’s ports, configuration
or introspection at runtime. Application is specialized by DomainApplication, which represents a “global” appli-
cation (i.e. across nodes), and NodeApplication, which represents a locality constrained application that is run-
ning on a single node.

6.9.7.2 Operations

● finishLaunch (providedReference: Connection [*], start: Boolean)
The second step in launching an application. External references may be pro-
vided to connect to the component’s external user ports. If the start parameter is
true, the application is started as well. Raises the InvalidConnection if one of
the provided references is invalid. Raises the StartError exception if launching
or starting the application fails.

● start () Starts the application. Raises the StartError exception if starting the application
fails.

6.9.7.3 Associations

No associations.

6.9.7.4 Constraints

No constraints.

6.9.7.5 Semantics

The finishLaunch operation must be called in order to complete the component’s configuration.

If clients want to start multiple applications simultaneously, they can set the start parameter of the finishLaunch
operation to false and then call the start operation separately. If clients want to avoid the additional round-trip,
they can set the start parameter of the finishLaunch operation to true; in that case, the start operation needs not
be called.

The behavior of an Application is different depending on whether it is used on a “global” level (if its parent is a
DomainApplicationManager) or on a “local” level (if its parent is a NodeApplicationManager). Implementa-
tions for these two cases are usually separate. A DomainApplicationManager only creates DomainApplication
instances, a NodeApplicationManager only creates NodeApplication instances.

Application
<<Manager>>

finishLaunch()
start()

DomainApplication
<<Manager>>

NodeApplication
<<Manager>>

*

+subApp

*

76 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.9.8 DomainApplication
A node-specific Application represents running component instances on the node that it is part of (as defined by
the NodeManager parent, usually but not necessarily implying co-location).

6.9.8 DomainApplication

6.9.8.1 Description

A DomainApplication represents a “global” application that was deployed across nodes. It has the same interface
as Application, but has different semantics.

6.9.8.2 Operations

No additional operations.

6.9.8.3 Associations

● subApp: NodeApplication [*] The pieces of the application that run on each node.

6.9.8.4 Constraints

No constraints.

6.9.8.5 Semantics

A “global” DomainApplication has references to node-specific NodeApplication elements as created by the
startLaunch operation of the DomainApplicationManager. The finishLaunch operation then calls
finishLaunch on the node-specific NodeApplication instances, passing the relevant connections as determined
by the separation of the “global” DeploymentPlan into node-specific plans. The same applies to the
destroyApplication operation.

6.9.9 NodeApplication

6.9.9.1 Description

NodeApplication represents a piece of an application that is executing within a single domain.

6.9.9.2 Operations

No additional operations.

6.9.9.3 Associations

No additional associations.

6.9.9.4 Constraints

No constraints.

6.9.9.5 Semantics

NodeApplication has the same semantics as the Application base class. It interconnects and starts the piece of
the application that is being launched on the node that is represented by the NodeManager parent.
Deployment and Configuration of Component-based Distributed Applications 77

Working Draft © OMG

6.9.10 Logger 6 Platform Independent Model
6.9.10 Logger

6.9.10.1 Operations

No operations.

6.9.10.2 Associations

No associations.

6.9.10.3 Constraints

No constraints.

6.9.10.4 Semantics

Logger is an abstract runtime class to facilitate logging within the domain. It has to be mapped to a concrete type
by platform specific models.

6.9.11 Connection

6.9.11.1 Description

A Connection is used to describe connections from or to a component port at runtime.

6.9.11.2 Attributes

● name: String The name of the component’s port.

6.9.11.3 Associations

● endpoint: Endpoint [*] The endpoints that are part of the connection.

6.9.11.4 Constraints

No constraints.

6.9.11.5 Semantics

No additional semantics.

Logger
<<Manager>>

Endpoint
<<Description>>

Connection
<<Description>>

name : String

*+endpoint *
78 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.9.12 Endpoint
6.9.12 Endpoint

6.9.12.1 Attributes

No attributes.

6.9.12.2 Associations

No associations.

6.9.12.3 Constraints

No constraints.

6.9.12.4 Semantics

Endpoint is an abstract class that contains the “address” of an endpoint. This class needs to be mapped into a
concrete platform specific type.

6.10 Common Elements
This section contains common model elements that are shared between multiple segments. They are placed in the
Common subpackage of the Deployment and Configuration package.

Note – Issue 5955

6.10.1 ImplementationDependency

6.10.1.1 Description

Expresses a dependency that an implementation has on the target environment. Before this implementation can
be deployed, an application of the required type must exist (it must have finished launching) in the target envi-
ronment.

6.10.1.2 Attributes

● requiredType: String The interface type of which an application must exist.

6.10.1.3 Associations

No associations.

6.10.1.4 Constraints

No constraints.

Im plementationDependency
<<Description>>

requiredType : String
Deployment and Configuration of Component-based Distributed Applications 79

Working Draft © OMG

6.10.2 ComponentExternalPortEndpoint 6 Platform Independent Model
6.10.1.5 Semantics

When launching an application, the ExecutionManager and DomainApplicationManager verify that applica-
tions of the required type are already executing.

Note – Issue 5986. moved here from Component Data Model.

6.10.2 ComponentExternalPortEndpoint

6.10.2.1 Description

Identifies a port of the external component as an endpoint of the connection described by the
AssemblyConnectionDescription that this element is contained in.

6.10.2.2 Attributes

● portName: String The name of the port of the external component.

6.10.2.3 Associations

No associations.

6.10.2.4 Constraints

No constraints.

6.10.2.5 Semantics

See above.

Note – Issue 5986: moved here from Component Data Model.

6.10.3 ExternalReferenceEndpoint

6.10.3.1 Description

Identifies a location outside the assembly as an endpoint of the connection described by an
AssemblyConnectionDescription.

Com ponentExternal PortEndpoint
<<Description>>

portNam e : String

ExternalReferenceEndpoint
<<Description>>

location : String
80 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.10.4 RequirementSatisfier
6.10.3.2 Attributes

● location: String References a port outside of the assembly that is to be an endpoint of this con-
nection, which is resolved at execution time.

6.10.3.3 Associations

No associations.

6.10.3.4 Constraints

No constraints.

6.10.3.5 Semantics

The location is to be an endpoint to this connection in the assembly. Whether the endpoint is a provider or user
port is implied by the URL, and its type is assumed to be compatible with the connection.

6.10.4 RequirementSatisfier

6.10.4.1 Description

RequirementSatisfier describes a resource or capability that can satisfy a requirement.

6.10.4.2 Attributes

● name: String An optional name for the requirement satisfier.
● resourceType: String [1..*] The resource types that can be satisfied by this satisfier.

6.10.4.3 Associations

● property: SatisfierProperty [*] Properties associated with this satisfier.

6.10.4.4 Constraints

There must be at least one element in the resourceType sequence attribute.

context RequirementSatisfier inv:
self.resourceType->size() >= 1

SatisfierProperty
<<Description>>

RequirementSatisfier
<<Description>>

name : String
resourceType : String [1..*]

*
+property
*

Deployment and Configuration of Component-based Distributed Applications 81

Working Draft © OMG

6.10.5 SatisfierProperty 6 Platform Independent Model
6.10.4.5 Semantics

The type of a Requirement is must match one of the elements in the resourceType attribute. The requirement’s
properties will then be matched against the satisfier’s properties.

6.10.5 SatisfierProperty

6.10.5.1 Description

Note – Issue 5958: Updated diagram. Removed “kind” association, added “kind” attribute.

Describes a specific property of a Resource or SharedResource. It contains a SatisfierPropertyKind that clas-
sifies the SatisfierProperty and has implications on the type of the value and the comparison between the
SatisfierProperty and a required Property.

6.10.5.2 Attributes

● name: String The name of the property.
● kind: SatisfierPropertyKind The kind of the property.

6.10.5.3 Associations

● value: Any [1] The value of the property.

6.10.5.4 Semantics

SatisfierProperty elements are matched against the Property elements within a Requirement at planning time.
They describe attributes and capacities of hardware or software. The name attribute of the SatisfierProperty must
match the name attribute of the Property it is compared against. Matching the values will be discussed as part of
the SatisfierPropertyKind semantics. The type of the value may be fully or partially implied by the kind.

Any
<<Description>>

SatisfierProperty
<<Description>>

name : String
kind : SatisfierPropertyKind

1
+value
1

82 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.10.6 SatisfierPropertyKind
6.10.6 SatisfierPropertyKind

6.10.6.1 Description

Classifies a SatisfierProperty. Each SatisfierPropertyKind identifies a specific way to match requirements
against resources. The kind of SatisfierPropertyKind implies the types of the values contained in
SatisfierProperty and Property, and the algorithm to check their compatibility.

6.10.6.2 Attributes

No attributes.

6.10.6.3 Associations

No associations.

6.10.6.4 Semantics

The value of this enumeration implies how to check for compatibility between a required property and a re-
source’s property, and how to keep track of capacities. In the following text, “property” refers to the property el-
ement of the SatisfierProperty, and “requirement” refers to the property element of the Requirement. Both must
have matching names.
● Quantity This property exists in a certain quantity, but its capacity is not considered. The

value of the property is of integer type. The value of the requirement is ignored,
but each time this property is used, the quantity is decreased by one until zero.
To match the requirement, the property must have a value of at least one. Ex-
ample: a sound card with 4 output channels.

● Capacity This property has a certain capacity that can be consumed. The value of the
property and the requirement property are both of numerical type. The value of
the requirement is subtracted from the value of the property. To match the re-
quirement, the property must have a value that equals or exceeds the value of
the requirement. Example: memory size.

● Minimum The property describes a capability with a lower bound. The value of the prop-
erty and the requirement are both of a type that supports ordering. To match, the
value of the requirement must equal or exceed the value of the property. Exam-
ple: latency – e.g. the resource can guarantee 30ms latency, the property re-
quires at least 40ms.

● Maximum The property describes a capability with an upper bound. The value of the prop-
erty and the requirement are both of a type that supports ordering. To match, the
value of the requirement must be equal or lesser than the value of the property.
Example: CPU speed – e.g. the property has 700MHz, and there is a require-
ment on at least 500MHz.

SatisfierP ropertyKind
<<enumeration>>

Quantity
Capacity
Minimum
Maximum
Attribute
Selection
Deployment and Configuration of Component-based Distributed Applications 83

Working Draft © OMG

6.10.7 Requirement 6 Platform Independent Model
● Attribute The value of the property and the requirement are both of a type that supports
equality comparison. To match, the requirement must compare equal to the
property. Example: OS type.

● Selection The type of the property is a sequence of a type that supports equality compar-
ison, the requirement is a single value of the same type. To match, the value of
the requirement must compare equal to one element of the property values.

Platforms have to specify concrete types to be used for the comparison of the Minimum, Maximum, Attribute and
Selection kinds, and define how to order and compare them.

Domains have to define resource types, their properties, and the kinds to use for each property.

The Quantity and Attribute kinds are redundant, but included here to account for these common use cases.
(Quantity is equivalent to a Capacity that is required in amounts of one, and Attribute is a subset of
Selection.)

The above list of resource kinds is expected to cover the most common use cases. Platform specific models and
domain specific profiles are allowed to add more kinds if necessary.

6.10.7 Requirement

6.10.7.1 Description

Requirement is used in the MonolithicImplementationDescription, ImplementationArtifactDescription and the
AssemblyConnectionDescription to express that the implementation artifact or connection has requirements
that must be fulfilled by resources in the target environment. The resource type must match the type of a re-
source.

6.10.7.2 Attributes

Note – Issue 6392

● name: String The name of this requirement, used in the DeploymentPlan to link resources to
the requirements they are intended to satisfy.

● resourceType: String Identifies the resource type.

6.10.7.3 Associations

● properties: Property [*] Properties associated with the resource.

6.10.7.4 Constraints

No constraints.

Requirement
<<Descript ion>>

resourceType : String
name : String

Propert y
<<Descript ion>>

*
+property
*

84 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.10.8 Property
6.10.7.5 Semantics

No semantics.

6.10.8 Property

6.10.8.1 Description

A Property has a name and a value. It is used to carry named and values in various places.

6.10.8.2 Attributes

● name: String The name of the property.

6.10.8.3 Associations

● value: Any [1] Contains the value.

6.10.8.4 Constraints

No constraints.

6.10.8.5 Semantics

No semantics.

6.10.9 DataType

6.10.9.1 Attributes

No attributes.

6.10.9.2 Associations

No associations.

6.10.9.3 Constraints

No constraints.

Property
<<Description>>

name : String

Any
<<Description>>

1+value 1

DataType
<<Description>>
Deployment and Configuration of Component-based Distributed Applications 85

Working Draft © OMG

6.10.10 Any 6 Platform Independent Model
6.10.9.4 Semantics

DataType is an abstract class that describes a data type. This class needs to be mapped into a concrete platform
specific type.

6.10.10 Any

6.10.10.1 Attributes

No attributes.

6.10.10.2 Associations

No associations.

6.10.10.3 Constraints

No constraints.

6.10.10.4 Semantics

Any is an abstract class that contains a typed value. This class needs to be mapped into a concrete platform spe-
cific type.

6.11 Exceptions
All exceptions are placed in the Exception subpackage of the Deployment and Configuration package.

6.11.1 PackageError

6.11.1.1 Description

The PackageError exception is raised by the installPackage operation of the RepositoryManager if an internal
error is detected in the package. (Potential reasons include the non-existence of a referenced file, or unresolved
subcomponent references in an assembly.)

6.11.1.2 Attributes

Note – Issue 5957

● source: String Identifies a location in the package where the error occured.
● reason: String A human-readable description of the problem.

6.11.1.3 Associations

No associations.

Any
<<Description>>

PackageError
<<Except ion>>

source : String
reason : String
86 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.11.2 NameExists
6.11.1.4 Constraints

No constraints.

6.11.1.5 Semantics

Note – Issue 5957, 5964

The RepositoryManager implementation should compose a human readable value for the source attribute from
the name attributes of elements in the hierarchy defined by the PackagedComponentImplementation,
SubcomponentInstantiationDescription, AssemblyConnectionDescription, AssemblyPropertyMapping and
NamedImplementationArtifact elements so that a user can locate the problem as precisely as possible.

6.11.2 NameExists

Description

The NameExists exception is raised by the installPackage and createConfiguration operations of the
RepositoryManager if a PackageConfiguration with the to-be-created name already exists in the repository.

6.11.2.1 Attributes

No attributes.

6.11.2.2 Associations

No associations.

6.11.2.3 Constraints

No constraints.

6.11.2.4 Semantics

No semantics.

6.11.3 NoSuchName

6.11.3.1 Description

The NoSuchName exception is raised by the findConfigurationByLabel, createConfiguration,
updateConfiguration and deleteConfiguration operations of the RepositoryManager if there is no
PackageConfiguration with the requested name in the repository.

NameExists
<<Except ion>>

NoSuchName
<<Except ion>>
Deployment and Configuration of Component-based Distributed Applications 87

Working Draft © OMG

6.11.4 ResourceNotAvailable 6 Platform Independent Model
6.11.3.2 Attributes

No attributes.

6.11.3.3 Associations

No associations.

6.11.3.4 Constraints

No constraints.

6.11.3.5 Semantics

No semantics.

Note – Issue 6047

6.11.4 ResourceNotAvailable

6.11.4.1 Description

The ResourceNotAvailable exception is raised by the commitResources operation of the TargetManager, by the
preparePlan operation of the ExecutionManager or by the startLaunch operation of the ApplicationManager if
a resource required by the plan is not available.

6.11.4.2 Attributes

Note – Issue 5957

● name: String Identifies the element in the plan whose resource requirement could not be sat-
isfied.

● resourceType: String The type of resource that was requested using a Requirement element.
● propertyName: String The name of the property that could not be satisfied.
● elementName: String Identifies a Node, Interconnect or Bridge within the Domain.
● resourceName: String The name of a Resource or SharedResource within the Node, Interconnect

or Bridge that was considered for matching the requirement.

6.11.4.3 Associations

No associations.

6.11.4.4 Constraints

No constraints.

ResourceNotAvailable
<<Exception>>

nam e : String
resourceType : String
propertyNam e : String
elem entNam e : String
resourceNam e : String
88 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.11.5 PlanError
6.11.4.5 Semantics

The name, resourceType and propertyName uniquely identify a requirement in the plan. The elementName,
resourceName and propertyName uniquely identify a requirement satisfier in the domain that failed to match the
requirement. Note that resourceName can be the empty string if no RequirementSatisfier was found to match the
resourceType.

6.11.5 PlanError

6.11.5.1 Description

The PlanError exception is raised by the preparePlan operation of the ExecutionManager if an inconsistency is
detected in the plan. (E.g. an unresolved reference to a non-existent component instance.)

6.11.5.2 Attributes

Note – Issue 5957

● name: String Identifies an element of the DeploymentPlan where the error occured.
● reason: String A human-readable reason that describes the error.

6.11.5.3 Associations

No associations.

6.11.5.4 Constraints

No constraints.

6.11.5.5 Semantics

This exception indicates that the plan is erroneous or inconsistent, i.e. the error is unrelated to the actual deploy-
ment.

6.11.6 StartError

6.11.6.1 Description

The StartError exception is raised if a problem occurred during deployment, either during preparation by the
preparePlan operation of the ExecutionManager or during launch by the startLaunch operation of the
ApplicationManager.

PlanError
<<Except ion>>

name : String
reason : String

St art Error
<<Except ion>>

name : String
reason : String
Deployment and Configuration of Component-based Distributed Applications 89

Working Draft © OMG

6.11.7 StopError 6 Platform Independent Model
6.11.6.2 Attributes

Note – Issue 5957

● name: String Identifies an element of the DeploymentPlan where the error occured.
● reason: String A human-readable reason that describes the error.

6.11.6.3 Associations

No associations.

6.11.6.4 Constraints

No constraints.

6.11.6.5 Semantics

Potential reasons include the inability to upload an artifact to a node or a failure during component instantiation.

6.11.7 StopError

6.11.7.1 Description

The StopError exception is raised if a problem occurred while terminating an application, either during the
terminate operation of the ApplicationManager or during the destroyManager operation of the
ExecutionManager.

6.11.7.2 Attributes

Note – Issue 5957

● name: String Identifies an element of the DeploymentPlan where the error occured.
● reason: String A human-readable reason that describes the error.

6.11.7.3 Associations

No associations.

6.11.7.4 Constraints

No constraints.

6.11.7.5 Semantics

This exception is raised if the problem is related to the “undeployment.” Potential reasons include the failure to
stop a component instance.

StopError
<<Except ion>>

name : String
reason : String
90 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.11.8 InvalidProperty
6.11.8 InvalidProperty

6.11.8.1 Description

6.11.8.2 Attributes

● name: String The name of the property among the configProperty elements that caused the
problem.

● reason: String A human-readable reason that describes the error.

6.11.8.3 Associations

No associations.

6.11.8.4 Constraints

No constraints.

6.11.8.5 Semantics

The InvalidProperty exception is raised if an invalid property is passed to the startLaunch operation of the
ApplicationManager. The problem can be that either the name does not match any of the component’s proper-
ties, or a type mismatch.

6.11.9 InvalidConnection

6.11.9.1 Description

6.11.9.2 Attributes

● name: String The name of the property among the configProperty elements that caused the
problem.

● reason: String A human-readable reason that describes the error.

6.11.9.3 Associations

No associations.

6.11.9.4 Constraints

No constraints.

InvalidProperty
name : String
reason : String

<<Except ion>>

InvalidConnection
name : String
reason : String

<<Except ion>>
Deployment and Configuration of Component-based Distributed Applications 91

Working Draft © OMG

6.11.10 InvalidReference 6 Platform Independent Model
6.11.9.5 Semantics

The InvalidConnection exception is raised if an invalid connection is passed to the finishLaunch operation of
the Application. The problem can be that the name does not match any of the component’s ports, a type mis-
match, or a direction mismatch (i.e. an attempt to connect a provider port to another provider port).

6.11.10 InvalidReference

6.11.10.1 Description

6.11.10.2 Attributes

No attributes.

6.11.10.3 Associations

No associations.

6.11.10.4 Constraints

No constraints.

6.11.10.5 Semantics

The InvalidReference exception is raised by the destroyManager operations of the ExecutionManager and
NodeManager and the destroyApplication operation of the ApplicationManager if the ApplicationManager or
Application reference is not known in this context. This may be because the reference was created by a different
context, or because of prior destruction.

6.12 Relations to Other Standards

Note – Issue 5956

This section relates some classes in this platform independent model to classes from other packages. This section
is explanatory and non-normative.

Both for Artifact and Component, the relation to the UML 2 Partners submission to the UML 2 RFP is weak; in
both cases, it is through a dependency relationship (ImplementationArtifact is only referenced by a dependency
with the «describes» stereotype from ImplementationArtifactDescription). Artifact and Component will there-
fore not show up in any code that is generated from the model.

Since UML 2 is not an adopted standard yet, and since neither Artifact nor Component exist in UML 1.4, the
dependencies might need to be updated or removed in sync with future iterations of UML 2 submissions. Be-
cause of the weak dependencies, changes in UML 2 do not have any impact on the models this document.

InvalidReference
<<Except ion>>
92 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

6 Platform Independent Model 6.12.1 Component
6.12.1 Component

ComponentInterfaceDescription describes the features of a Component that are relevant to the deployment
process, such as property names and types and port names and types.

Note – Issue 5956

6.12.2 ImplementationArtifact

An ImplementationArtifact is a (potentially complete) piece of a concrete component implementation. An
ImplementationArtifact is opaque to the deployment process and can only be evaluated in the context of a target
environment (e.g., for execution). The ImplementationArtifactDescription captures the properties of an
ImplementationArtifact that are relevant to the deployment process.

The dependency relationship between ImplementationArtifactDescription elements reflects the dependency be-
tween implementation artifacts (e.g., executables depending on shared libraries) in the data model.

ImplementationArtifact is a specialization of the Artifact class in the UML 2 Partners submission to the UML 2
RFP. It adds a self-relationship to describe dependencies between Artifact instances.

Com ponentInterfaceDescription
(f rom Component)

<<Specifi er>>

Com ponent
(f rom UML2 (UML 2 P))

<<describes>>

Im plementationArti fact Descript ion
(from Component)

<<Developer>> *

+dependsOn

*

ImplementationArtifact
<<Developer>>

*

+dependsOn

*

<<describes>>

Artifact
(from UML2 (UML 2 P))
Deployment and Configuration of Component-based Distributed Applications 93

Working Draft © OMG

6.12.2 ImplementationArtifact 6 Platform Independent Model
94 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

7 Actor 7 Actor
7 Actor
The previous chapter defined the platform independent model for deployment and configuration. The data mod-
els are used by the management interfaces for data interchange, but all model elements are passive entities. Ac-
tors manipulate the data, are clients to the interfaces and enact the various phases of deployment. Usually, part of
the actor will be implemented in software tools, aiding a (human) user in development and deployment of an ap-
plication.

All actors defined by this specification are abstract. Some behavior is regulated, e.g. how data is to be processed
by them, but the implementation of actors is left undefined. Some implementations of this specification might
combine all actors into a single GUI, others could provide separate scripts. Some actors might be implicit parts
of derived actors, others might be split across multiple sub-actors. While the deployment system described by the
PIM requires actors acting as clients to perform the work of deployment and configuration, the descriptions in
this section are not normative, but rather express the expected usage of the capabilities offered by the PIM. In
particular, run time errors can be expected if this anticipated actor behavior is not followed. Since any bundling
or communication or modularity between actors is completely undefined, constraints cannot be described that in-
sist on the behavior described in this section.

There are three categories for actors, development, target and deployment, mirroring the model segmentation pre-
sented earlier. Actors in the first category are concerned with the various phases of implementing a component,
starting with an interface design and eventually creating a component package. Actors in the deployment catego-
ry take existing component packages, and deploy them into a target environment in order to create running appli-
cations. The only actor in the target category is the Domain Administrator.

7.1 Development Actors Overview
The development of a component implementation involves the roles of Specifier, Developer, Assembler and
Packager. The Specifier creates an interface specification. Developers create a monolithic implementation of that
specification, or an Assembler creates an assembly based implementation from existing subcomponents. The
Packager then wraps up one or more implementations of the component interface into a component package.

This process is circular, as component packages and/or interface specifications of subcomponents are inputs to
the Assembler.

The above paragraph implies a bottom-up approach to component development, but that is not necessarily true,
the flow of information can be reversed. An Implementer or Assembler can also work “downwards” from an ex-
isting component package in order to add new implementations to the package. An Assembler might then involve
the Specifier in defining interface specifications for subcomponents.
Deployment and Configuration of Component-based Distributed Applications 89

Working Draft © OMG

7.2 Specifier 7 Actor
7.2 Specifier

The Specifier creates an interface specification and generates a ComponentInterfaceDescription to describe the
component interface, including its ports. Specifiers usually create other documents as well, such as PSM-specific
interface descriptions (e.g. IDL files), behavioral models and system specifications, but the
ComponentInterfaceDescription is the only piece that is captured in this model.

7.3 Developer

The Developer creates a monolithic implementation that satisfies a specific component interface. The Developer
reads the Specifier’s ComponentInterfaceDescription and creates an implementation contained in one or more
implementation artifacts. For each ImplementationArtifact, the Developer then creates a matching
ImplementationArtifactDescription that describes the artifact and its requirements on the target environment.
The Developer then describes the component implementation as a whole by creating one
MonolithicImplementationDescription and one ComponentImplementationDescription element.

Speci fier

ComponentInterfaceDescription
<<Specifier>>

<<create>>

ComponentInterfaceDescription
<<Specifier>>

Developer

1+implements 1

ComponentImplementat ionDesc ription
<<Implementer>>

MonolithicImplementationDescription
<<Developer>>

0..1

+monolithicImpl

0..1

ImplementationArtifactDescription
<<Developer>>

1
+primaryArtifact

1

Im plementationArti fact
<<Developer>>

<<describes>>

1

<<create>>

1

<<create>>

1..*<<create>>

1.. *

<<create>>

Creates a monolithic
implementation of a
component interface.
90 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

7 Actor 7.4 Assembler
7.4 Assembler

The Assembler creates an assembly based implementation of a specific component interface, using existing com-
ponents as building blocks. The Assembler uses either interface descriptions for subcomponents from
ComponentInterfaceDescription elements (expecting implementations for such interfaces to exist in the reposi-
tory associated with the target domain) or concrete implementations for subcomponents from a
ComponentPackageDescription (which implies an interface description). The Assembler configures subcompo-
nents, interconnects them, and maps external ports and properties to ports and properties of subcomponents. The
Assembler then creates a ComponentAssemblyDescription element to describe the assembly and a
ComponentImplementationDescription to describe this component implementation.

7.5 Packager

The Packager wraps multiple implementations of the same component interface into a component package. The
ComponentInterfaceDescription and one or more ComponentImplementationDescription elements are input
to the packaging process. The Packager ensures that the implementations’ component interfaces are compatible
with the desired interface. The Packager then creates a ComponentPackageDescription, potentially assigning
default values to properties. The Packager then creates a component package that wraps all relevant descriptors
and implementation artifacts. This component package is then distributed to Repository Administrators.

ComponentImplementationDescription
<<Im plementer>>

ComponentAssemblyDescription
<<As sembler>>

0..1

+assemblyImpl

0..1

ComponentInterfaceDesc ription
<<Specifier>>

ComponentPackageDescription
<<Packager>>

Assembler

11+implements
*

+subcomponentInterfaces
* *

+subcomponentPackages

*

at least one

<<create>>
<<create>>

Creates an assembly
based implementation
from existing
components.

ComponentPack age
<<Packager>>

ComponentPackageDescription
<<Packager>> <<des cribes>>

ComponentInterfaceDescription
<<Specifier>>

1
+realizes

1

ComponentImplementationDescription
<<Implementer>>1

+implements

1

Pack ager

<<create>>
<<create>>

1
+interface

1 1..*

+implementation

1..*

Wraps one or more
implementations
into a package.
Deployment and Configuration of Component-based Distributed Applications 91

Working Draft © OMG

7.6 Domain Administrator 7 Actor
7.6 Domain Administrator

The Domain Administrator describes the local target environment and all its resources by creating a Domain el-
ement and then initializing a TargetManager with that information.

Note – In the future, the Domain Administrator role could be refined. Ideally, hardware provid-
ers would deliver descriptions for all pieces of a domain: nodes, interconnects, bridges, hard-
ware devices etc. The Domain Administrator would then collect that information and create a
specific domain configuration. For the moment, it is safe to assume that the job of describing a
domain’s resources ends up with the Domain Administrator.

7.7 Deployment Actors Overview

The overview diagram above shows the three actors that are involved in the deployment of an application, the
Repository Administrator, the Planner and the Executor. The Repository Administrator receives component pack-
ages from the Packager and installs them in the local repository using the RepositoryManager interface. The
Planner matches an implementation’s requirements against available resources and creates a specific
DeploymentPlan. The Executor uses the DeploymentPlan and contacts the ExecutionManager in order to exe-
cute the deployment and to instantiate the application. More detail is provided in the upcoming sections.

Domain
Administrator

Dom ain
<<Domain Administrator>>

<<create>>

ComponentPack age
<<Packager>>

Repository
Administrator

1+package 1

Repository Manager
<<Manager>>

1+repository 1

PackageConfiguration
<<Description>>

*+package *
Domain

<<Domain Administrator>>

TargetManager
<<Manager>>

1
1
1
1

Planner
*

+searchPath

*

1

+applic ation

1 1

+resourceData

1

1
+res ourceDataProvider

1

DeploymentPlan
<<Planner>>

<<create>>

ExecutionManager
<<Manager>>

Executor

1+uses 1 1
+targetEnvironment

1

Installs and configures
package in repository.

Plans deployment of application based on
resourceData from resourceDataProvider.
Resolves packages using searchPath.
Produces compatible plan.

Uses plan. E xecutes it in the
targetEnvironment. (Involves
preparat ion and launch.)
92 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

7 Actor 7.8 Repository Administrator
Note – Issue 5965

A proprietary implementation of the deployment system could merge planning and execution functionality in a
single actor, immediately executing components, based on online planning, by directly using the NodeManager
interface, without creating a DeploymentPlan. Such an implementation would not expose the
ExecutionManager interface but could still use off the shelf implementations of the other compliance points.

7.8 Repository Administrator
The Repository Administrator installs a component package into a repository, and then configures the component
packages within the repository.

The Repository Administrator has access to a component package via URL, and to a RepositoryManager via
reference. The Repository Administrator calls the installPackage operation of the RepositoryManager, passing
the URL of the component package. A user may provide a label for the new PackageConfiguration.

After installing a package in the repository, the configuration for that package may optionally be updated, or new
configurations can be created. In order to update or create a configuration, the user provides configuration and
selection properties, and the Repository Administrator can then use the createConfiguration or
updateConfiguration operation of the RepositoryManager to effect the update or creation of a
PackageConfiguration.

7.9 Planner
The Planner supports planning the deployment of an application.

The Planner has access to a specific PackageConfiguration via a repository reference and a name: the Planner
uses the findConfigurationByName operation of the RepositoryManager to retrieve the description of the appli-
cation that is to be deployed. A user might provide zero or more references to RepositoryManager instances as
a search path to resolve ComponentPackageReference references in the component package. To resolve such a
reference, the Planner passes the specificType from the ComponentPackageReference to the findLabelsByUID
operation of each RepositoryManager in the search path and selects an appropriate configuration among all
available configurations using implementation defined means. The Planner then retrieves resource data from a
TargetManager using either the getAllResources or getAvailableResources operation. From this information,
the Planner produces a DeploymentPlan that details a valid deployment of the application into the domain.

The Planner selects a valid DeploymentPlan using implementation defined means. Usually, there will be many
possibilities to deploy an application into a domain, some of them equivalent – e.g. permutations of distributing
component instances among homogeneous nodes, – some of them can be considered better than others – e.g. dis-
tributing computation-intensive component instances across multiple nodes rather than executing them on a sin-
gle node. Selecting plans that are more appropriate than others in a given context is a quality of implementation
issue, possibly influenced by user input and feedback.

A valid DeploymentPlan describes a deployment of an application using concrete implementations that match
requested selection properties, and an assignment of these implementations to nodes so that node and intercon-
nection resources match or exceed the requirements of component and connection instances that are deployed on
them.

7.9.1 Finding Valid Deployments

To find a valid deployment, the Planner may have to consider all potential decompositions of an application, and
all potential distributions. One possible algorithm is to consider a decision tree where inner nodes mark selec-
tions of specific implementations within a component package. The leaves of the tree then represent decomposi-
Deployment and Configuration of Component-based Distributed Applications 93

Working Draft © OMG

7.9.1 Finding Valid Deployments 7 Actor
tions of the application into monolithic implementations. For each decomposition, the Planner then has to
consider all possibilities for distributing component instances among all nodes until a valid deployment is found.
Pseudo code for this algorithm follows.

1. Initialize a “decision queue” with the top-level package that is to be deployed. This queue will
contain packages for which we still have to decide on an implementation. Recurse into the algorithm,
initializing it with the one-element decision queue, starting at step 2. If the recursion fails, there is no
valid deployment.

2. Remove the first element from the queue, which identifies a ComponentPackageDescription.

3. For each concrete implementation in the package, go to step 4 to find a valid deployment. If that fails,
backtrack.

4. Match the capabilities of this ComponentImplementationDescription against the relevant selection
requirements (see below). On the top level, i.e. for the implementations of the top-level component,
selection requirements are found in the PackageConfiguration. On other levels, i.e. for
implementations of subcomponents in an assembly, the selection requirements are found in the
SubcomponentInstantiationDescription. If they are not compatible, return to step 3 and continue
iterating over other implementations in this package.

5. If the implementation is assembly-based, then add the packages that provide implementations for its
subcomponents to the decision queue.

6. If the decision queue is not empty, then the application is not fully decomposed yet. Recurse to step
2. If recursion fails, return to step 3.

7. If the decision queue is empty, then the application has been fully decomposed into monolithic
implementations by the decisions made in step 3. The Planner now has to consider potential
instantiations.

8. Iterate over all permutations of assigning component instances to nodes. For each permutation, go to
step 9 to see whether it identifies a valid deployment. If that fails, backtrack.

9. For each component instance, consider the node it has been assigned to. Match the requirements
defined by its monolithic implementation against the node’s resources (see below). If that fails, return
to step 8 to consider other permutations.

10. For each connection between component instances, match its connection requirements against the
interconnect and bridge resources that provide the connection between the nodes that the component
instances have been assigned to (see below). If there is no path between the nodes, or if the
interconnects and bridges are not capable of hosting the connection, return to step 8.

11. Otherwise, the deployment is valid.

This specification does not impose any requirements on the Planner implementation. The algorithm above is de-
signed to find a valid deployment if one exists. It has been included for informative purposes and is not norma-
tive. Obviously, there are many techniques for narrowing the search space and for considering more likely
implementations and permutations first, but still, the number of possibilities might be too large to be practical.
Planners are not required to traverse the full search space – that’s a quality of implementation issue. Planners are
also free to either stop after finding a first valid deployment or to continue searching and to select among valid
deployments – possibly with user feedback.

Steps 4, 9 and 10, the matching of selection properties and the matching of requirements against resources, are
defined in the following sections.
94 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

7 Actor 7.9.2 Matching Selection Requirements
Note – Steps 2, 3 and 5 assume that in order to find a concrete implementation for a component,
only a single package is considered. However, Planner implementations might consider multiple
packages when resolving ComponentPackageReference elements. Again, this is implementa-
tion specific.

7.9.2 Matching Selection Requirements

Both PackageConfiguration and SubcomponentInstantiationDescription define selection requirements that
are matched against implementation capabilities in the ComponentImplementationDescription for all imple-
mentations in the referenced ComponentPackageDescription.

For each Requirement, the Planner checks whether the ComponentImplementationDescription has a
Capability whose resourceType attribute includes the resourceType attribute of the Requirement. If not, then
the implementation cannot satisfy the requirements.

The Requirement is then matched against the Resource as described below.

7.9.3 Matching Implementation Requirements

A component instance’s requirements are defined as the sum of all deployment requirements in its
MonolithicImplementationDescription, the ImplementationArtifactDescription of its primary artifacts and all
directly or indirectly dependent ImplementationArtifactDescription elements (excluding duplicates). The “sum”
of all requirements is the concatenation of all Requirement elements into a single list.

For each Requirement, the Planner checks whether the Node has a Resource (or SharedResource – resources
and shared resources are treated the same) whose resourceType attribute includes the resourceType attribute of
the Requirement. If not, then the Node is not capable of hosting the component implementation.

The Requirement is then matched against the Resource as described below.

7.9.4 Matching Connection Requirements

Connection requirements are described as part of an assembly in the deployRequirement attribute of the
AssemblyConnectionDescription. Connections between two component ports can be made up of multiple seg-
ments if the two components belong to different assemblies, e.g. two segments to connect the components to ex-
ternal ports of their respective assemblies, and another segment to connect the two components (that are
implemented by the assemblies) in the assembly-based implementation of a supercomponent. In that case, the re-
quirements for the connection is the sum of all deployment properties of all its segments. The “sum” of all re-
quirements is the concatenation of all Requirement elements into a single list.

Note – Considering point-to-point connections between two ports is the worst-case scenario. In
some domains, if a connection has more than two endpoints, part or all of the communication
path could be shared – e.g. if events are broadcast using UDP. Planners that are aware of this
situation can account for capacities appropriately.

Connection requirements must be matched against the resources of the interconnects and bridges that the connec-
tion is routed over, as defined by the communication path between the nodes that the components that are the
endpoints to the connection are instantiated on.

Note – This specification assumes that a single communication path is implied by its two end-
points.
Deployment and Configuration of Component-based Distributed Applications 95

Working Draft © OMG

7.9.5 Matching a Resource against a Requirement 7 Actor
For each Requirement, the Planner checks whether all Interconnect and Bridge elements in the communication
path have a Resource whose resourceType attribute includes the resourceType attribute of the Requirement. If
not, then routing the connection is not possible.

The Requirement is then matched against all these Resource elements as described below. If any match fails,
then routing the connection is not possible.

7.9.5 Matching a Resource against a Requirement

For every Property that is part of the Requirement, there must be a SatisfierProperty among the property ele-
ments of the Resource whose name attribute equals the name attribute of the requirement’s property. If there is
no SatisfierProperty of matching name, then the Resource cannot satisfy the Requirement.

Each Property is then matched against the SatisfierProperty according to the rules set forth for the kind of
SatisfierProperty, as described in the documentation for SatisfierPropertyKind, to determine if the Resource
meets this specific requirement.

The Resource meets the Requirement if and only if the above test succeeds for all Property elements that are
part of the Requirement.

7.10 Executor
The Executor supports preparation of a DeploymentPlan and the launch of the application, possibly, but not nec-
essarily, in a single step.

For preparation, the Executor reads the DeploymentPlan and passes it to the preparePlan operation of the
ExecutionManager. The Executor stores the DomainApplicationManager reference that is returned.

To launch an application, the Executor remembers the DomainApplicationManager reference that was the result
of preparation, and calls the startLaunch operation, passing configuration properties if desired. The
DomainApplicationManager returns a DomainApplication reference and the connections that are provided by
the application on external ports.

The Executor then calls the finishLaunch operation on the DomainApplication, passing connections to the ap-
plication’s external ports if desired.
96 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

7 Actor 7.10 Executor
The Executor can either set the start parameter to the finishLaunch operation to true in order to start the
DomainApplication, or it can later call the start operation separately.

The above figure shows the sequence of events that are exchanged between the Executor and the deployment
system as well as events within the domain.

Figure 7-6 – Executor in Action

 : Executor : TargetManager

 : Do ma inA ppl icat ion Ma nage r

 : DomainApplication

 : NodeMa nager

 :
NodeAppl icati onManager

 : No deApp licati on

 : ExecutionManager

preparePlan(DeploymentPlan, Boolean)

preparePl an(Dep loymentPlan)

cal led for e ach
no de in the
plan

startL aunch(Seque nce(Prope rty), Seq uence(Conne ction))

startLaunch(Sequence(Property), Sequence(Connection))

commitResources(DeploymentPlan)

finishLaunch(Sequence(ProvidedReference), Boolean)

cal led for each
node in the
plan

finishLaunch(Connection, Boolean)

cal led for each
node in the
plan

Appl ication is
now running

de stro yApp licati on(Appl i catio n)

destroyAppl ication(NodeAppl ication)

releaseResources(DeploymentPlan)

destroyMa nage r(Domai nApp li cat ionM an ag...

destroyManager(NodeAppl icationManager)
Deployment and Configuration of Component-based Distributed Applications 97

Working Draft © OMG

7.10 Executor 7 Actor
98 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8 UML Profile for D&C Tool Support
8 UML Profile for D&C Tool Support
This section defines the UML Profile for D&C Tool Support. This profile is defined to satisfy optional require-
ment B of the RFP:

“Proposals may define textual or graphical notation(s) for the description of software and hardware infrastruc-
tures of distributed execution environments as well as to express configuration and deployment constraints for
components or assemblies of components. If a proposal does so, it must define the relationship between the mod-
els provided by it and the notation(s) defined.”

The main objectives of the UML Profile for D&C Tool Support are:

● to define the notation necessary to support the component-based application development process and
target environment description, as described in chapter 2

● to enable the automatic generation of D&C descriptors from component assembly and target models.

The UML Profile for D&C Tool Support provides tool vendors with the foundation they need to develop UML
tools that support the deployment and configuration of component-based distributed applications. The current
D&C specification is composed of three main parts: Component, Target, and Deployment. This profile addresses
the first two. The description of the deployment infrastructure is outside the scope of the current UML Profile for
D&C Tool Support, and will need to be addressed seperately. Currently UML allows deployment planners to de-
fine an explicit deployment plan by statically associating component with nodes.

The concepts and notation defined by this profile allows application developers to use UML to completely model
the configuration of components, the assembly of components from other components, and the target environ-
ments into which components can be deployed.

The development of tools to support the D&C specification, based on the UML Profile for D&C Tool Support,
offers many important advantages:

● enables the integration of model validation techniques that will allow eliminating errors at the
application design stage

● eliminates errors in the production of descriptors

● makes the component and target models independent of the specific format of the descriptors, which
allow changing the format without having to change the models

● enables the integation with existing UML-based MDA tools

8.1 Structure of the Profile
The UML Profile for D&C Tool Support is defined using the profiles mechanism defined in UML 2.0.

The UML Profile for D&C Tool Support is composed of a set of stereotypes that are defined as extensions of
UML 2.0 metaclasses. In particular, the D&C Profile for Tool Support extends metaclasses defined in the UML
2.0 Component, Composite Structures, and Deployment packages. The dependencies between the D&C Profile
for Tool Support and UML 2.0 packages is illustrated in Figure 8-7 –.
Deployment and Configuration of Component-based Distributed Applications 99

Working Draft © OMG

8.1 Structure of the Profile 8 UML Profile for D&C Tool Support
Figure 8-7 – Dependencies between the UML Profile for D&C Tool Support and UML 2.0 packages

The set of stereotypes that compose the UML Profile for D&C Tool Support are grouped in two disctinct pack-
ages: Component and Target. The Component package defines the set of stereotypes that are used to model a
component-based distributed application. The Target package defines the set of stereotypes that are used to mod-
el a distributed deployment target.

The content of these packages is defined in the next two sections (Section 8.2 and Section 8.3). The dependen-
cies between the Component and Target packages and the UML 2.0 packages are illustrated in Figure 8-8 –.

Figure 8-8 – Dependencies between the Component and Target packages and UML 2.0 packages

UM LPro fi leFo rD&C
T oo lSupport

Dep loym ents
(from UM L)

Com pon ents
(f rom UM L)

Com posi teS tructu res
(from UM L)

Com ponen ts T arge t

Com ponen ts
(from UM L)

Com p osi t eS tructu res
(f rom UM L)

Dep loym en ts
(f rom UM L)
100 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8.2 Package Components
8.2 Package Components
The Component package defines the set of stereotypes that are used to model a component-based distributed ap-
plication. The list of stereotypes currently defined in the Component package includes: Component, Componen-
tAssembly, Connection, Port, and Artifact.

This section defines the set of stereotypes contained in the package Components.

Figure 8-9 – Components package

Figure 8-10 – Component implementation relationships

MonolithicImplementation
<<stereotype>>

Component
(from BasicComponents)

<<metaclass>>

DnCComponents
(from UMLProfileForDnCToolSupport)

Port
<<stereotype>>

Port
(from Ports)

<<metaclass>>
Class

(from Kernel)

<<metaclass>>

<<extension>> <<extensi on>>

Connector
(from BasicComponents)

<<metacl ass>>

Class
(from Str ucturedClasses)

<<metacl ass>>

{required} {required}

PropertyConnector
<<stereotype>>

Property
<<stereotype>>

Property
(from InternalStructures)

<<extension>><<extension>>

ComponentImplementation
<<stereotype>>

Class
(from Kernel)

<<metacl ass>>

<<extensi on>>

Component
<<stereotype>>

<<extension>>

ComponentAssembly
<<stereotype>>

<<extension>>

ExternalReference
<<metaclass>>

PortConnector
<<stereotype>>

<<extension>>

Connectabl eElement
(from InternalStructures)

<<metaclass>>

<<extension>>

ComponentAssembly
<<stereotype>>

Component
<<stereotype>>

0..*

1..*

+assembly

0..*

+containedComponent
1..*

{complete}

MonolithicImplementation
<<stereotype>>

ComponentImplementation
<<stereotype>>

0..*+implementedComponent
+implementation

0..* Property
<<stereotype>>

0..*
+configProperty

0..*
Deployment and Configuration of Component-based Distributed Applications 101

Working Draft © OMG

8.2.1 Capability 8 UML Profile for D&C Tool Support
Figure 8-11 – ComponentAssembly Stereotype

8.2.1 Capability

8.2.1.1 Description

Capability is used to describe an implementation’s capabilities, which are matched against selection require-
ments.

8.2.1.2 Attributes

● name: String An optional name for the requirement satisfier.
● resourceType: Sequence(String) The resource types that can be satisfied by this satisfier.

8.2.1.3 Associations

No associations

8.2.2 Component (Stereotype)

8.2.2.1 Description

The Component metaclass extends the UML Component metaclass (from UML2.0::Components). In UML 2.0, a
component is defined in terms of its set of ports and has references to its realizations.

The Component stereotype is defined as “required”, which means that every instance of the Component meta-
class must be associated with an instance of the Component stereotype.

Port
<<stereotype>>

ComponentAssembly
<<stereotyp e>>

1..*
+/ExternalPort

1..*

PropertyConnector
<<stereotype>>

0..*
+ownedPropertyConnector

0..*

{On e o f th e conn ected
Pro perti es must be a Pro perty
of the Compon entAssembly}

Component
<<stereotype>>

1..*
+ownedPort

1..*

1.. *
0..*

+contai nedCom ponen t 1.. *
0..*

Property
<<stereotype>>

0.. *+/assemb lyProp erty 0.. * 0..*+configProperty0..*

2..*
+con nected Pro perty

2..*+co nnector

Compo nent Implementatio n
<<stereotype>>

0..*
+implementation

0..*
+implementedComponent

PortConnector
<<stereotype>>

2..*

+conn ect edPo rt

2..*

+connector

0.. *
+ownedPortConnector

0.. *

ExternalReference
<<metaclass>>0..*0..*

+externalReference

{A PortConector connects two or more
ConnectableElements, which are either of
type Port or ExternalReference.
Also, at least one of the
ConnectableElements must be of ty...
102 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8.2.3 ComponentAssembly (Stereotype)
8.2.2.2 Attributes

● label: String An optional human-readable label for the component.
● UUID: String An optional unique identifier for this component.

8.2.2.3 Associations

● implementation: ComponentImplementation [0..*]
References the Classifiers of which the Component is an abstraction, i.e. that re-
alize its behavior. This association renames the “realization” association owned
by Component (from UML2.0::Components::Component).

● configProperty: Property [*] Contains the set of configurable properties of the component. These configura-
tion properties are used to configure the component once instantiated. This al-
lows the definition of configuration properties in a package regardless of which
implementation is chosen. configProperty is a subset of the ownedAttribute as-
sociation of Component (inherithed from UML2.0::CompositeStructures::In-
ternalStructures::StructuredClassifier).

● ownedPort: Port [*] Contains the set of ports of the component.These configuration properties are
used to configure the component once instantiated. This allows the definition of
configuration properties in a package regardless of which implementation is
chosen. ownedPort is a renaming of the ownedPort association of Component
(inherithed from UML2.0::CompositeStructures::Ports::EncapsulatedClassifi-
er).

Note – Definition. Component (from UML2.0::Components): A component represents a modu-
lar part of a system that encapsulates its contents and whose manifestation is replaceable within
its environment. A component defines its behavior in terms of provided and required interfaces.
As such, a component serves as a type, whose conformance is defined by these provided and re-
quired interfaces (encompassing both their static as well as dynamic semantics). One compo-
nent may therefore be substituted by another only if the two are type conformant. Larger pieces
of a system's functionality may be assembled by reusing components as parts in an encompass-
ing component or assembly of components, and wiring together their required and provided in-
terfaces. A component is modeled throughout the development life cycle and successively
refined into deployment and run-time. A component may be manifest by one or more artifacts,
and in turn, that artifact may be deployed to its execution environment. A deployment specifi-
cation may define values that parameterize the component’s execution.

8.2.3 ComponentAssembly (Stereotype)

8.2.3.1 Description

In spite of the fact that UML 2.0 allows for the recursive definition of components in terms of subcomponents
(based on the fact that a UML 2.0 Component is a specialization of UML2.0::StructuredClass::Class), the con-
cept of component assembly is not explicitely defined in UML 2.0. The ComponentAssembly stereotype specil-
izes the UML 2.0 Class metaclass from StructuredClasses (UML2.0::CompositeStructures::StructuredClasses). It
is a subclass of the ComponentImplementation stereotype.
Deployment and Configuration of Component-based Distributed Applications 103

Working Draft © OMG

8.2.4 ComponentImplementation (Stereotype) 8 UML Profile for D&C Tool Support
A ComponentAssembly is a classifier whose behavior is fully described by the collaboration of a set of compo-
nents. A ComponentAssembly is defined in terms of a set of components (subcomponents) and the set of connec-
tions that connect components.

A ComponentAssembly is defined as an implementation of a Component.

A ComponentAssembly also has a two derived attributes: ports, that contains the set of external ports of the as-
sembly implements, and properties, that contains the set of properties of the assembly. These two attributes are
derived from the component the assembly implements. The ports and properties of the implemented component
must be allocated to ports and properties of sub-components contained in the ComponentAssembly.

8.2.3.2 Attributes

No additional attributes.

8.2.3.3 Associations

● /assemblyProperty: Property [0..*]Contains the set of properties of the assembly. This association is derived from
the Component the assembly implements.

● /externalPort: Port [0..*] Contains the set of external ports of the assembly. This association is derived
from the Component the assembly implements.

● containedComponent: Component [1..*]
Describes the set of Components contained in the ComponentAssembly (i.e.
subcomponents). This association is a subset of the “role” association owned by
the StructuredClassifier (UML2.0::CompositeStructures::InternalStruc-
tures::StructuredClassifier).

● ownedPortConnector: PortConnector [*]
Describes the set of PortConnectors owned by the ComponentAssembly. This
association is a subset of the ownedConnector association owned by
UML2.0::CompositeStructures::InternalStructures::StructuredClassifier

● ownedPropertyConnector: PropertyConnector [*]
Maps the external properties of the component that is implemented by the as-
sembly to properties of subcomponent instances. Describes the set of Property-
Connectors owned by the ComponentAssembly. This association is a subset of
the ownedConnector association owned by UML2.0::CompositeStructures::In-
ternalStructures::StructuredClassifier

8.2.4 ComponentImplementation (Stereotype)

8.2.4.1 Description

Note – Issue 6041

The ComponentImplementation stereotype is an extension of the UML 2.0 Class metaclass (from UML2.0::Ker-
nel). A ComponentImplementation is an abstract class that contains the attributes and associations that are com-
mon to the different types of component implementations (MonolithicImplementation and ComponentAssembly).
104 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8.2.5 ExternalReference (Stereotype)
A ComponentImplementation describes a specific implementation of a component interface. This implementation
can be either assembly based or monolithic. The ComponentImplementation may contain configuration proper-
ties that are used to configure each component instance (“default values”). Implementations may be tagged with
user-defined capabilities. Administrators can then select among implementations using selection requirements;
Assemblers can place requirements on implementations.

8.2.4.2 Attributes

Note – Issue 6042

● capacity: Sequence(Capacity) Tags that can be used to discriminate between implementations.

8.2.4.3 Associations

● deployRequirement: Requirement [1..*]
Requirements that are matched against node resources at deployment time.

8.2.5 ExternalReference (Stereotype)

8.2.5.1 Description

The ExternalReference stereotype is an extension of the UML 2.0 ConnectableElement metaclass (from
UML2.0::CompositeStructures::InternalStructures). It dentifies a location outside the assembly as an endpoint of
a PortConnector. Whether the endpoint is a provider or user port is implied by the URL, and its type is assumed
to be compatible with the connection.

8.2.5.2 Attributes

● location: URL References a port outside of the assembly that is to be an endpoint of this con-
nection, which is resolved at execution time.

8.2.5.3 Associations

No associations.

8.2.6 PortConnector (Stereotype)

8.2.6.1 Description

The PortConnector stereotype is an extension of the UML 2.0 Connector metaclass (from UML2.0::Compo-
nents::BasicComponents). A PortConnector connects a set of compatible ports.

8.2.6.2 Attributes

● label: String Optionally identifies this connection within its assembly. May be used or gen-
erated by visual design tools.
Deployment and Configuration of Component-based Distributed Applications 105

Working Draft © OMG

8.2.7 PropertyConnector (Stereotype) 8 UML Profile for D&C Tool Support
8.2.6.3 Associations

● connectedPort: Port [1..*] The set of Ports connected by the PortConnector. This association is a subset of
the “end” association owned by UML2.0::CompositeStructures::InternalStruc-
tures::Connector.

● externalReference: externalReference [*]
The set of ExternalReferences connected by the PortConnector. This associa-
tion is a subset of the “end” association owned by UML2.0::CompositeStruc-
tures::InternalStructures::Connector.

8.2.6.4 Constraints

● A PortConector connects two or more ConnectableElements, which are either of type Port or ExternalReference.
● Also, at least one of the ConnectableElements must be of type Port.

Note – Definition. Connector (from UML2.0::Components::BasicComponents): The connector
concept is extended in the Components package to include interface based constraints and nota-
tion. A delegation connector is a connector that links the external contract of a component (as
specified by its ports) to the internal realization of that behavior by the component’s parts. It
represents the forwarding of signals (operation requests and events) : a signal that arrives at a
port that has a delegation connector to a part or to another port will be passed on to that target
for handling. An assembly connector is a connector between two components that defines that
one component provides the services that another component requires. An assembly connector
is a connector that is defined from a required interface or port to a provided interface or port.

Note – One of the issues in the D&C is that a single connector can at the same time connect
ports of peer components in an assembly and ports of internal components to external ports, i.e.
delegation ports. So according to the UML 2.0 spec, we have connectors that have both a dele-
gation connector capability and an assembly connector capability. The D&C concept of Port-
Connector is based on the ECAD (circuit design, netlist) model. It fully expresses the idea that
a set of ports can be connected together just like a "signal" (say "the reset signal") can be con-
nected to many "pins" of the components (chips) of a circuit. This allows the expression of
connections that are point to point (one provider and one user) as well as those with multiple
users (line many clients for one server, many event producers for one consumer), multiple pro-
viders (like a multicast channel), or multiple of both (like a multicast event channel with multi-
ple listeners). Also, in network systems, you want to talk about a flow that represents the
traffic between a set of users and providers so you can plan, manager, and configure it as a
whole. If the only means of expression is point to point connections, there is no way to talk
about the aggregate "connection". This "richness" has been used in network, circuit, and chip
design systems for decades.

8.2.7 PropertyConnector (Stereotype)

8.2.7.1 Description

The PropertyConnector stereotype is an extension of the UML 2.0 Connector metaclass (from UML2.0::Compo-
nents::BasicComponents). A PropertyConnector connects properties of a ComponentAssembly to properties of
sub-Components.
106 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8.2.8 MonolithicImplementation (Stereotype)
8.2.7.2 Attributes

● label: String Optionally identifies this connection within its assembly. May be used or gen-
erated by visual design tools.

8.2.7.3 Associations

● connectedProperty: Property [2..*] The set of Properties connected by the PropertyConnector. This association is a
subset of the “end” association owned by UML2.0::CompositeStructures::Inter-
nalStructures::Connector.

8.2.7.4 Constraints

● One of the connected Properties must be a Property of the ComponentAssembly.

8.2.8 MonolithicImplementation (Stereotype)

8.2.8.1 Description

The MonolothicImplementation stereotype is an extension of the UML 2.0 Class metaclass (from UML2.0::Ker-
nel). It is a subclass of the ComponentImplementation stereotype. A MonolithicImplementation is a class that
contains the implementation of a component.

8.2.8.2 Attributes

● deployRequirement: Requirement [1..*]
Requirements that are matched against node resources at deployment time.

8.2.8.3 Associations

No additional associations.

8.2.9 Port (Stereotype)

8.2.9.1 Description

The Port stereotype is an extension of the UML 2.0 Port metaclass (from UML2.0::CompositeStructure::Ports).

The Port stereotype is defined as “required”, which means that every instance of the Port metaclass must be as-
sociated with an instance of the Port stereotype.

8.2.9.2 Attributes

● name: String The name of the port.
● UID: String The primary type of the port.
● supportedType: Sequence(String) All types supported by this port, including the primary and inherited types. All

of the types listed in this attribute are acceptable for a connection.
Deployment and Configuration of Component-based Distributed Applications 107

Working Draft © OMG

8.2.10 Property (Stereotype) 8 UML Profile for D&C Tool Support
● provider: Boolean Identifies whether the port acts in the role of provider or user, for any connec-
tion attached to it.

● exclusiveProvider: Boolean If set to true, then this port expects that there is at most one provider on the con-
nection that it is an endpoint to.

● exclusiveUser: Boolean If set to true, then this port expects that there is at most one user on the connec-
tion that it is an endpoint to.

● optional: Boolean Identifies whether connecting this port is optional or mandatory.

8.2.9.3 Associations

No additional associations.

Note – Restriction. In UML 2.0, a Port can be associated with both required and provided inter-
faces. In this D&C specification, a Port is restricted to be associated with either required inter-
faces (user Port) or provided interfaces (provider Port). An OCL constraint could be added to
formally express this restriction.

8.2.10 Property (Stereotype)

8.2.10.1 Description

The Property stereotype is an extension of the UML 2.0 Property metaclass (from UML2.0::CompositeStruc-
tures::InternalStructures). A Property has a name and a typed value. It is used to carry named and typed values in
various places. In the context of D&C, components have configuration properties.

8.2.10.2 Attributes

No additional attributes.

8.2.10.3 Associations

No additional associations.

8.2.11 Requirement

8.2.11.1 Description

Requirements are used to express the fact that an implementation artifact or connection has requirements that
must be fulfilled by resources in the target environment. The resource type must match the type of a resource.

8.2.11.2 Attributes

● resourceType: String Identifies the resource type.
108 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8.3 Package Targets
8.2.11.3 Associations

● properties: Property [*] Properties associated with the resource.

8.3 Package Targets
The Target package defines the set of stereotypes that are used to model a distributed deployment target. The list
of stereotypes currently defined includes: Bridge, CommunicationPath, Domain, Interconnect, Node, Resource,
and SharedResource.

This section defines the set of stereotypes contained in the package Targets.

Figure 8-12 – Targets package

DnCTarget
(f rom UMLProf ileForDnCToolSupport)

Domain
<<stereotype>>

Node
(from Nodes)

<<metaclass>>
CommunicationPath

(from Nodes)

<<metacl ass>>

{required}{required}

Class
(from StructuredClasses)

<<metaclass>>

<<extension>>

Node
<<ste reo type>>

<<extension>>

Resource
<<stereotype>>

SharedResource
<<stereotype>>

CommunicationPath
<<stereotype>>

<<extension>>

Bridge
<<stereotype>>

Interconnect
<<stereo type>>

{all ends of a Bridge are
typed by Interconnects}

AssociationClass
(from AssociationClasses)

<<metaclass>>

<<extension>><<extension>>

{all ends of an Interconnect are
typed by either Node or Bridge}

Class
(from Kernel)

<<metaclass>>

<<extension>> <<extension>>
Deployment and Configuration of Component-based Distributed Applications 109

Working Draft © OMG

8.3.1 Bridge (Stereotype) 8 UML Profile for D&C Tool Support
Figure 8-13 – Domain stereotype definition

8.3.1 Bridge (Stereotype)

8.3.1.1 Description

The Bridge stereotype extends the UML 2.0 AssociationClass metaclass (from UML2.0::AssociationClasses). A
Bridge is a special type of association that connects two or more interconnects.

A Bridge exists between Interconnects to describe an indirect communication path between nodes. If a connec-
tion is to be deployed between components that are instantiated on nodes that are not directly connected, there-
fore requiring bridging, the connection's requirements must be satisfied by the resources of each interconnect and
bridge in between.

8.3.1.2 Attributes

● name: String The bridge’s name.
● label: String An optional human-readable label for this bridge.

8.3.1.3 Associations

● interconnect: Interconnect [1..*] The Interconnects that this Bridge provides connectivity to.
● ownedResource: Resource [*] Set of Resources owned by the Bridge.
● communicationPath: CommunicationPath [1]

Reference the CommunicationPath the Interconnect belongs to.

0..*{Interconnect cannot be
associated with Resources of
type SharedResource}

{A Resource is exclusively
owned by either a Node,
an Interconnect, or a
bridge}

Communi cationPath
<<stereotype>>

Interconnect
<<stereotype>>

1..*

+communicationPath

+interconnect
1..*

Domain
<<stereotype>>

0..*

0..*

+containedCommunicati onPath
0..*

+containingDomain
0..*

SharedResource
<<stereotype>>

0..*

0..*

+domainResource
0..*

+conta ini ngDomain
0..*

Node
<<stereotype>>

1..*
0..*+/connectedNode

1..* +/communi cationPath
0..*

1..*

0..*

+connectedNode
1..*

+nodeConnector 0..*

1..*

0..*

+contained Node
1..*

+containingDomain
0..*

0..*
0..*+availableSharedResource

0..* +resourceUser
0..*

{A SharedRsource can only be
associ ated with Nodes, not
Interconnect}

Bridge
<<stereotype>>

0..*

+communicationPath

+bridge

0..*1..*

0..*

+interconnect
1..*

+bridge
Resource

<<stereotype>>
0..* 0..1

+ownedResource
0..*

+resourceOwner

0..1

0..*

0..1

+ownedResource
0..*

+resourceOwner
0..1

0..*0..*
+ownedResource

+resourceOwner
110 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8.3.2 CommunicationPath (Stereotype)
8.3.1.4 Constraints

The name must be unique within the domain.

8.3.2 CommunicationPath (Stereotype)

8.3.2.1 Description

The CommunicationPath stereotype extends the UML 2.0 CommunicationPath metaclass (from UML2.0::De-
ployments::Nodes). A CommunicationPath connects two or more Nodes (as opposed to only two nodes for UML
2.0 Node). A CommunicationPath may be composed of one or more Interconnects and zero or more Bridges.

8.3.2.2 Attributes

No additional attributes.

8.3.2.3 Associations

● interconnect: Interconnect [1..*] Set of Interconnect contained in the CommunicationPath.
● bridge: Bridge [*] Set of Bridges contained in the CommunicationPath.
● /connectedNode: Node [*] Set of Nodes that uses the sharedResource. This association is derived from the

Interconnect::connectedNode association.

8.3.3 Domain (Stereotype)

8.3.3.1 Description

The Domain stereotype extends the UML 2.0 Class metaclass (from UML2.0::CompositeStructures::Structured-
Classes). A Domain is defined as a set of Nodes, CommunicationPaths, and SharedResources. In a Domain,
Nodes are connected using CommunicationPaths. It represents the entire target environment.

8.3.3.2 Attributes

● label: String An optional human-readable label for the domain.
● UUID: String An optional unique identifier for this domain.

8.3.3.3 Associations

● containedNode: Node [1..*] Node elements that belong to the domain.
● containedCommunicationPath: CommunicationPath [*]

CommunicationPaths that provide connections between nodes.
● domainResource: SharedResource [*]

Shared resources that belong to the domain.

8.3.3.4 Constraints

● The top-level elements in a domain all have name attributes. These names must be unique within the domain.
Deployment and Configuration of Component-based Distributed Applications 111

Working Draft © OMG

8.3.4 Interconnect (Stereotype) 8 UML Profile for D&C Tool Support
8.3.4 Interconnect (Stereotype)

8.3.4.1 Description

The Interconnect stereotype extends the UML 2.0 AssociationClass metaclass (from UML2.0::AssociationClass-
es). It establishes connection between a set of Nodes and Bridges.

An Interconnect provides a shared direct connection between one or more nodes. It can have resources, but no
shared resources. Resources are matched against a connection's requirements at deployment time.

An Interconnect that is attached to only a single node can be used to describe the loopback connection. A loop-
back connection is implicit; components can always be interconnected locally. Sometimes, it may be useful or
necessary to describe the type(s) of available loopback connections (e.g. “shared memory”), or their resources or
capabilities (e.g. latency).

8.3.4.2 Attributes

● name: String The interconnect’s name.
● label: String An optional human-readable label for the interconnect.

8.3.4.3 Associations

● connectedNode: Node [1..*] Set of nodes that the Interconnect is connected to.
● bridge: Bridge [*] The bridges that provide connectivity to other interconnects.
● ownedResource: Resource [*] Set of Resources owned by the Interconnect.
● communicationPath: CommunicationPath [1]

Reference the CommunicationPath the Interconnect belongs to.

8.3.4.4 Constraints

● The name must be unique within the domain

8.3.5 Node (Stereotype)

8.3.5.1 Description

The Node stereotype extends the UML 2.0 Node metaclass (from UML2.0::Deployments::Nodes).

Nodes are connected to zero or more CommunicationPaths that enable components that are instantiated on this
node to communicate with components on other nodes. Nodes may own resources and may have access to shared
resources that are shared between nodes.

8.3.5.2 Attributes

● name: String The node’s name.
● label: String An optional human readable label for the node.

8.3.5.3 Associations

● nodeConnector: Interconnect [*] Set of Interconnect to which the node is connected.
112 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

8 UML Profile for D&C Tool Support 8.3.6 Resource (Stereotype)
● /communicationPath: CommunicationPath [*]
Set of CommunicationPath to which the node is connected. This association is
derived from the Interconnect::communicationPath association.

● ownedResource: Resource [*] Set of resources owned by the Node.
● availableSharedResource: SharedResource [*]

Set of SharedResources that the Node has access to.

8.3.5.4 Constraints

● The name of the Node must be unique within the Domain (see above).

8.3.6 Resource (Stereotype)

8.3.6.1 Description

The Resources stereotype extends the UML 2.0 Class metaclass (from UML2.0::Kernel).

Resource represent features within the target environment. They are matched against implementation require-
ments at deployment planning time.

8.3.6.2 Attributes

● name: String An optional name for the requirement satisfier.
● resourceType: Sequence(String) The resource types that can be satisfied by this resource.

8.3.6.3 Associations

No additional associations.

8.3.6.4 Constraints

● The name of a Resource must be unique within the container.
● A Resource is exclusively owned by either a Node, an Interconnect, or a bridge.

8.3.7 SharedResource (Stereotype)

8.3.7.1 Description

The SharedResources stereotype extends the UML 2.0 Class metaclass (from UML2.0::Kernel). It is a specializa-
tion of the Resource stereotype.

Shared resources are resources that are shared between nodes. They are semantically equivalent to “normal” re-
sources; however, the planner must make sure that a shared resource is not exhausted by using it from multiple
nodes in parallel.

8.3.7.2 Attributes

No additional attributes.
Deployment and Configuration of Component-based Distributed Applications 113

Working Draft © OMG

8.3.7 SharedResource (Stereotype) 8 UML Profile for D&C Tool Support
8.3.7.3 Associations

● resourceUser: Node [1..*] Set of nodes that have access to the SharedResource.

8.3.7.4 Constraints

● The name of the SharedResource must be unique within the domain.
● A SharedRsource is a type of Resource that can only be associated with Nodes.
114 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9 PSM for CCM
9 PSM for CCM
9.1 Introduction
This chapter describes the mapping of the platform-independent model for Deployment and Configuration to the
CORBA Component Model platform [CCM]. It is intended to be a replacement for the Packaging and Deploy-
ment chapter of the CCM specification in CORBA 3.0 as well as the XML DTD chapter (chapters 6 and 7 of
[CCM]). Issues of migration and compatibility to this previous CCM deployment specification are addressed in
section 9.8, “Migration Issues” on page 132.

The D&C data models are used in two different ways, first for persistent storage and distribution of information,
and second for representing data at runtime. For persistent storage and distribution, the data models are mapped
to XML schemas [XSD], so that information can be stored in XML files [XML] according to the model. We fre-
quently use the term (and stereotype) description for the classes that define the data model. We use the term “de-
scriptor” to refer to the XML file that contains the data. For runtime, the data models are mapped to IDL data
structures.

The management classes are runtime entities and mapped to IDL interfaces only.

This section does not include XML schema and IDL files, since both are generated according to rules. However,
these files are supplied with this specification to show the results of this rule-based file generation. The rules that
will be used to auto-generate these files from the platform independent model use stereotype classes and associ-
ations appropriately and then use rules set forth in the UML profile for CORBA.

This chapter defines three transformations and two mappings.

Figure 9-14 – Model Transformations and Mappings for CCM

PSM for CCM

PSM for CCM for
IDL

PSM for CCM for
XML

(T1)

(T2) (T3)

(M1) (M2)

Platform
Independent Model

XML SchemaIDL
Deployment and Configuration of Component-based Distributed Applications 115

Working Draft © OMG

9.2 Definition of Meta-Concepts 9 PSM for CCM
Note – Issue 5985

The first transformation, T1 (PIM to PSM for CCM), takes the platform-independent model, and refines it into a
platform specific model for CCM. In this PSM for CCM, the abstract meta-concepts are concretized, and also
some other classes are aligned with the CORBA Component Model.

The second transformation T2 (PSM for CCM to PSM for IDL) takes the PSM for CCM and transforms it into a
PSM for CCM for IDL that can be used to generate concrete IDL from the model. The third transformation T3
(PSM for CCM to PSM for CCM for XML) creates a PSM for CCM for XML that can be used to generate con-
crete XML schemas.

The motivation for transformations T2 and T3 is to transform the PIM into PSMs so that generic, rule-based
mappings M1 and M2 can be used. (Note that some classes have different representations in IDL and XML, for
example the Any class, prohibiting IDL and XML schema generation from the same model.) The motivation for
transformation T1 is that some CCM specific transformations are necessary that are independent of the mapping
to IDL or XML.

Note – Issue 5959

The M1 mapping is realized using the UML Profile for CORBA [UPC], the M2 mapping is realized using the
XML Metadata Interchange (XMI) Version 2 [XMI] specification, chapter 2, “XML Schema Production.”

9.2 Definition of Meta-Concepts
This section provides a concrete definition for the classes that are abstract in the PIM. This section is unrelated
to the transformations, which will be described in the following sections.

9.2.1 Component

The abstraction of Component in the PIM is mapped to both components and homes for the CCM platform.
Components in CCM have an interface, attributes and ports. Homes do not have ports, but an interface and at-
tributes. Both components and homes have explicitly “supported” interfaces in addition to the “equivalent” inter-
face, that inherits all supported interfaces, and includes attributes and explicit operations in the component and
home interface definitions.

Viewing homes as a kind of component allows this specification’s model to deploy homes (by themselves or as
part of an assembly). Applications or other components in an assembly can then use the home to create compo-
nent instances at runtime. This supports the full feature set of CCM, without requiring explicit home implemen-
tations.

If a CCM home or component supports an interface, their ComponentInterfaceDescription has a special port
named “supports” that can be used in connections for any of the “supported” interfaces. If, in an assembly, a
connection is to be provided by any of the component’s or home’s supported interfaces, then the port name of the
ComponentExternalPortEndpoint or SubcomponentPortEndpoint class is “supports.” For CCM homes, this
port also provides their equivalent interface. The “supports” port for CCM components does not provide the
equivalent interface, since this would be problematic for assembly implementations of components. Home imple-
mentations are always monolithic. (Note that in CCM 3.0, assemblies did not allow connections to a component’s
equivalent interface either.)

Configuration properties of components, as described by the ComponentPropertyDescription class, are at-
tributes in the component or home interface or any inherited component or home interface, but not in any sup-
ported interface.
116 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.2.2 ImplementationArtifact
Note – The “supports” magic name has been chosen because it reflects the supported interface.
Because it is an IDL keyword, it has little likelihood of conflicting with other port names.

9.2.2 ImplementationArtifact

The meta-concept of ImplementationArtifact is mapped to a file accessible by URL. This PSM still treats files
as opaque. Agreement between the author of an implementation and the NodeManager over the contents of an
implementation artifact is assumed. This agreement, or “contract,” is expressed in terms of execution parameters
and an implementation’s dependencies on resources provided by the node.

9.2.3 Package

The meta-concept of a package is mapped to a ZIP file [ZIP] accessible by URI [URI], that includes implemen-
tation artifacts and descriptors. Packages have the “.cpk” extension and must contain a single Toplevel Package
Descriptor containing a ToplevelPackageDescription element with the magic name “package.tpd.”

Note – Issue 5985

9.3 PIM to PSM for CCM Transformation
This section defines transformation T1 (as described in the introduction for this chapter). It takes the platform-in-
dependent model from chapter 6 and aligns classes with the CORBA Component Model. This involves changes
to attributes, associations and semantics of some classes. All classes from the PIM that are not refined here are
imported into the PSM for CCM without change.

9.3.1 ComponentInterfaceDescription

Note – Issue 5958: Update diagram. Removed “kind” association, added “kind” attribute.

The ComponentInterfaceDescription and ComponentPortDescription classes are augmented to support CCM.

Note – Issue 5963: make idlFile attribute optional. Issue 6053: changed multiplicity of “idlFile”
attribute.

CCMComponentPortKind
<<enumeration>>

Facet
Simplex Rec eptacle
MultiplexRecept acle
EventEm it ter
EventPublisher
EventCons umer

ComponentPortDescription
<<Specifier>>

name : String
specificType : String
supportedType : S tring [1..*]
provider : Boolean
exclusiveProvider : Boolean
exclusiveUser : Boolean
optional : Boolean
kind : CCMCom ponentPortKind

Property
(from Comm...

<<Description>>

ComponentPropertyDescription
(from Component)

<<Specifier>>

ComponentInterfaceDescription
<<Specifier>>

label : String [0..1]
UUID : String [0..1]
specificType : String
supportedType : String [1..*]
idlFile : String [*]

*+port *

*
+configProperty

*

*
+property

*

Deployment and Configuration of Component-based Distributed Applications 117

Working Draft © OMG

9.3.2 PlanSubcomponentPortEndpoint 9 PSM for CCM
The idlFile attribute is added to the ComponentInterfaceDescription. The idlFile attribute, if present, con-
tains alternative URIs that reference an IDL file containing the component’s (or home’s) interface definition. The
IDL file is not used within the deployment infrastructure; it may be included in a package for convenience. Since
deployable applications have a component interface, some tools that deploy and execute such applications might
need the IDL to interact with the ports of the application’s component interface.

The kind attribute is added to the ComponentPortDescription class and specifies the concrete port kind that is
used. This information is required by the NodeManager and by assembly tools. In CCM, EventConsumer and
Facet ports are considered providers, the other ports are users.

Repository Id strings are used to identify interface types, i.e. for the specificType and supportedType attributes.

For Facet ports, supportedType lists the Repository Id of the provided interface and any of its base interfaces
that the developer (or tool) chooses to expose for connections. For receptacles, supportedType lists the Reposito-
ry Id of the accepted interface. For EventEmitter and EventPublisher ports, supportedType lists the Repository
Id of the accepted consumer interface. For EventConsumer ports, supportedType lists the Repository Id of the
consumer interface and any of its base interfaces that the developer (or tool) chooses to expose for connections.

If the component or home supports one or more interfaces, this will be reflected by a
ComponentPortDescription element of kind Facet with the magic name “supports.” The specificType at-
tribute is left empty, the supportedType attribute lists the Repository Id of any of its supported interfaces and
base interfaces that the developer wants to expose for connections.

Initially, a ComponentInterfaceDescription can be generated from a component’s or home’s IDL description
with a defined set of configuration properties (from attributes) and default values for the exclusiveProvider,
exclusiveUser and optional attributes. If desired, a user can then adjust these three attributes for each port and
also add configuration property default values to the ComponentInterfaceDescription by adding Property ele-
ments to the configProperties list.

9.3.2 PlanSubcomponentPortEndpoint

Note – Issue 5958: Updated diagram. Removed “kind” association, added “kind” attribute.

The kind attribute augments the provider attribute in the PlanSubcomponentPortEndpoint class and specifies
the concrete port kind that is used. This information is required by the various managers in the Execution Man-
agement Model. The provider attribute still indicates a port which provides an object reference.

9.3.3 Application

The start operation on the Application class performs the configuration_complete operation in all component
instances that are part of the application.

CCM ComponentP ortK ind
<<enumeration>>

Facet
SimplexReceptacle
MultiplexReceptacle
EventEmitter
EventPublisher
EventConsumer

Inst anceDeploymentDescript ion
(from Execution)

<<Planner>>

PlanSubcomponentPortEndpoint
<<Planner>>

portName : St ring
provider : Boolean
kind : CCMComponentPortKind

1+instance 1
118 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.3.4 RepositoryManager
9.3.4 RepositoryManager

When artifact files are included in the package (as opposed to referenced via URL outside the package), the
RepositoryManager must make its own copy of these artifacts during the installPackage operation. It must
substitute an URL that references this copy of the artifact in the location attribute of
ImplementationArtifactDescription elements delivered via its interface.

9.3.5 SatisfierProperty

This PSM has to define concrete types that are implied on the value of a SatisfierProperty by the
SatisfierPropertyKind, and on the value of the Property that is matched against the satisfier.

● For the Quantity kind, the value of the SatisfierProperty is of type unsigned long. The value of the
Property is ignored.

● For the Capacity kind, the value of the SatisfierProperty is of type unsigned long or double. The
value of the Property must be of the same type.

● For the Maximum and Minimum kinds, the value of the SatisfierProperty is of type long or double. The
value of the Property must be of the same type.

● For the Attribute kind, the value of the SatisfierProperty is of type long, double, string, or an
enumeration type. In the case of long, double or string, the value of the Property must be of the same
type. If the value of the SatisfierProperty is of enumeration type, the value of the Property is of type
string, containing the enumeration value that must compare equal to the SatisfierProperty value.

● For the Selection kind, the value of the SatisfierProperty is a sequence of type long, double,
string, or an enumeration type. The same rules as for the Attribute kind apply.

Note – Issue 5985

9.4 PSM for CCM to PSM for CCM for IDL Transformation
This section defines transformation T2 (as described in the introduction). It transforms the PSM for CCM into a
PSM for CCM for IDL that can be used to generate concrete IDL using a rule-based mapping. Classes from the
PSM for CCM are transformed to match the UML Profile for CORBA. Its rules are then used to generate con-
crete IDL.

The first subsection describes generic mapping rules that are applied to all classes that are part of the PSM for
CCM. The second subsection defines special transformation rules for the classes that are abstract in the PIM.

All classes in the PSM for CCM for IDL are placed in the Deployment package, so that all resulting IDL struc-
tures and interfaces will be part of the Deployment IDL module.

9.4.1 Generic Transformation Rules

The mapping to IDL is accomplished using the rules set forth in the UML Profile for CORBA. To apply these
rules, the stereotypes used in the platform-independent model are mapped to stereotypes for which a mapping is
defined in the profile. The «Description» stereotype and all that inherit from it are mapped to the
«CORBAStruct» stereotype; these classes are therefore mapped to CORBA structures. The «Exception» stereo-
type is mapped to the «CORBAException» stereotype; such classes become CORBA exceptions. The
Deployment and Configuration of Component-based Distributed Applications 119

Working Draft © OMG

9.4.1 Generic Transformation Rules 9 PSM for CCM
«Enumeration» stereotype is mapped to the «CORBAEnum» stereotype in order to become enum types in IDL.
The «Manager» stereotype is mapped to the «CORBAInterface» stereotype so that these classes become CORBA
interfaces.

Note – Issue 6051

To avoid redundancy and circular graphs, non-composite associations between classes with a common owner are
expressed by an ordinal attribute at the source (navigating) end, with the name of the attribute being the role
name plus the suffix “Ref,” and the type “unsigned long.” The value of this attribute is the index of the target
element in its container, with the index of the first element being 0 (zero). To enable the usage of an index, the
composition of the target element in its container is qualified with the “ordered” constraint.

Note – Issue 5953

Wherever the multiplicity of an attribute, parameter or return value is not exactly one (but 0..1, 1..* or *), a new
class is introduced to represent a sequence of the type of the attribute, parameter or return value. The sequence
class has the «CORBASequence» stereotype, and its name is the english plural of the name of the type. The se-
quence class has a composition association with the element class that is navigable from the sequence to the ele-
ment. The composition is qualified with the index of the sequence. The attribute, parameter or return value is
then replaced with an attribute, parameter or return value, respectively, with the same name as before, but with
the type being the newly introduced sequence class and the exactly one (1..1) multiplicity.

A similar rule is applied to all navigable association or composition ends whose multiplicity is not exactly one
(but 0..1, 1..* or *): a new class is introduced to represent a sequence of the class at the navigable end; this se-
quence class is defined as describe above. The original association or composition end is then replaced with a
navigable association or composition end, with the same role name as before, at the new sequence class, with a
multiplicity of exactly one (1..1). According to the rules in the UML Profile for CORBA, these associations and
compositions will then map to a structure member in IDL, its type being a named sequence of the referenced
type.

Excepted from the two rules above are attributes, parameters, return values or navigable association or composi-
tion ends where the type is String, unsigned long or Endpoint. Instead of defining new sequence types, the ex-
isting types in the CORBA package are being used; see below.

Note that in combination, these rules map non-composite associations between classes with a common owner and
a multiplicity other than 1 to sequence of “unsigned long” type.

Note – Issue 5963

Another exception from the rule above are attributes of type String with the 0..1 (zero or one) multiplicity. In this
case, the multiplicity is updated to 1..1 (exactly one). If the value is missing in an XML representation of the
model, the empty string is used as default value.

The inheritance relationships of classes with the «Description» stereotype (SharedResource, Resource and
Capability) classes are removed; all attributes and associations of the base class are attached to the derived class.

Associations of classes with the «Manager» stereotype are removed from the PSM for CCM for IDL.
120 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.4.2 Special Transformation Rules
9.4.2 Special Transformation Rules

9.4.3 Sequence of String

A type representing a sequence of strings already exists in the CORBA package and can be re-used. Wherever the
String type is used with a multiplicity other than exactly one, it is mapped to the StringSeq class from the COR-
BA package as shown above. It then maps to the CORBA::StringSeq type in IDL (from the orb.idl file).

9.4.4 Sequence of unsigned long

Note – Editorial

A type representing a sequence of the unsigned long type already exists in the CORBA package and can be re-
used. Wherever the unsigned long type is used with a multiplicity other than exactly one, it is mapped to the
ULongSeq class from the CORBA package as shown above. It then maps to the CORBA::ULongSeq type in IDL
(from the orb.idl file). Sequences of the unsigned long type occur when a non-composite association between
classes with a common owner with a multiplicity other than one occurs, according to the generic rule above.

9.4.5 Endpoint

The abstract Endpoint class is mapped to the Object class from the CORBA package. It will therefore map to the
Object type in IDL.

Note – Issue 6048: removed special mapping for sequence of Endpoint

string
(from CORBA)

<<CORBAPrimitive>>

StringSeq
(from CORBA)

<<CORBAS equence>>

1

index : long {*}

1

index : long {*}

unsigned long
(from CORBA)

<<CORBA Primitive>>

ULongSeq
(from CORBA)

<<CORBASequence>>

1

index : long {*}

1

index : long {*}

Obj ect
(f rom CORBA)

<<CORBAInterface>>
Deployment and Configuration of Component-based Distributed Applications 121

Working Draft © OMG

9.4.6 DataType 9 PSM for CCM
9.4.6 DataType

The abstract DataType class is mapped to the typecode class from the CORBAProfile package. It then maps to
the TypeCode type in IDL.

9.4.7 Any

The abstract Any class is mapped to the any class from the CORBAProfile package. It will then map to the any
type in IDL.

9.4.8 Primitive Types

The UML data types String, Integer and Boolean are mapped to the classes string, long and boolean in the
CORBAProfile package, respectively. They will then map to the string, long and boolean types in IDL, respec-
tively.

9.4.9 Mapping to IDL

After applying the transformations defined in this section, IDL is generated by applying the rules set forth in the
UML Profile for CORBA specification [UPC].

Note – Insert reference. Put IDL into Appendix and cross-link here.

Note – Issues 5985, 5959

9.5 PSM for CCM to PSM for CCM for XML Transformation
This section defines transformation T3 (as described in the introduction). It transforms the PSM for CCM into a
PSM for CCM for XML that can be used to generate a concrete XML schema using the mapping rules described
in chapter 2, “XML Schema Production” of the XML Metadata Interchange (XMI) Version 2 [XMI] specifica-
tion.

9.5.1 Generic Transformation Rules

Note – Issues 5959, 6384

Data model elements, annotated with the «Description» or «enumeration» stereotype (or a stereotype that inher-
its from it), are used to generate an XML schema for representing metadata in XML documents for distribution,
interchange or persistence. The only normative use of such XML-based metadata in this specification is for in-
stalling component packages using the RepositoryManager’s installPackage operation.

typecode
(f ro m CORBAProfi le)

<<CORBAP rimitive>>

any
(f rom CORBAProf ile)

<<CORBAPrim itive>>
122 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.5.2 Special Transformation Rules
Management model elements, annotated with the «Manager» or «Exception» stereotype, are not part of the PSM
for CCM for XML, they are mapped to IDL only.

All classes in the PSM for CCM for XML are annotated with the “org.omg.xmi.contentType” tag set to the val-
ue “complex.”

All attributes are annotated with the “org.omg.xmi.element” tag set to “true.”

All packages are annotated with the “org.omg.xmi.nsURI” tag set to “http://www.omg.org/Deployment” and the
“org.omg.xmi.nsPrefix” tag set to the value “Deployment.”

9.5.2 Special Transformation Rules

9.5.3 ToplevelPackageDescription

Note – Issue 6047

The ToplevelPackageDescription is introduced to point to the PackageConfiguration element for the top-level
component package in a package.

The motivation for this element is that a package may include component packages for sub-components. A selec-
tion mechanism is necessary to distinguish the top-level component package. This is accomplished by including
a single Toplevel Package Descriptor with the magic name “package.tpd” into the package.

9.5.4 Any

An Any instance describes a typed value. It is mapped to a class that contains a DataType and a DataValue,
which are elaborated below.

Note – Issue 5959: deleted note

PackageConfiguration
(f ro m Com po nent)

<<Description>>

ToplevelPackageDescription

1
+package
1

DataValueDataType

Any

1
+value

11
+type

1

Deployment and Configuration of Component-based Distributed Applications 123

Working Draft © OMG

9.5.5 DataType 9 PSM for CCM
9.5.5 DataType

A DataType instance describes a type. It is mapped to a hierarchical structure as shown above, describing avail-
able types in IDL.

Note – Issues 6024, 6386

The DataType class contains a kind field that indicates the IDL type described by a DataType instance. The kind
is of the enumeration type CORBA::TCKind, as defined in section 4.11 of the CORBA specification.

If the kind is tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean,
tk_char, tk_octet, tk_any, tk_TypeCode, tk_longlong, tk_ulonglong, tk_longdouble or tk_wchar, the
DataType element does not contain any other elements.

If the kind is tk_string or tk_wstring, then the DataType may optionally contain a BoundedStringType ele-
ment indicating the upper bound for the string length. If the DataType does not contain a BoundedStringType,
an unbounded string is assumed.

DataValue

St ructType
name : String [0..1]
typeId : String

StructMemberType
name : String

*
+member

*

{ordered}

SequenceType
bound : Integer [0..1]

ArrayType
length : Integer [1..*]

EnumType
name : String [0..1]
typeId : String
member : String [1..*]

ValueType
name : String [0..1]
typeId : String
modifier : Integer

ValueMemberType
name : String
visibility : Integer

*
+mem ber

*

{ordered}

UnionType
name : String [0..1]
typeId : String

UnionMemberType
name : String

*
+mem ber

*
{ordered}

0..1

+default

0..1

*
+label

*

Al iasType
name : String [0..1]
typeId : String

ObjrefType
name : String [0..1]
typeId : String

FixedType
digits : Integer
scale : Integer

BoundedStringType
bound : Integer

DataType
kind : CORBA: :TCKind

0..1
+struct

0..1

1
+type
1

0..1
+value
0..1

0..1
+sequence

0..1

1
+elementType

1

0..1
+array
0..1

1
+elementType

1

0..1
+enum

0..1

0..1
+baseType

0..1

1
+type
1

0..1
+union

0..1 1
+discriminatorType

1

1
+type

1

0.. 1
+alias

0.. 1
1
+contentType
1

0..1
+objref
0..1

0..1
+fixed

0..1
1

+boundedSt ring
1

A DataType instanc e contains at mos t one element,
as discriminated by the value of the kind at tribute.
124 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.5.5 DataType
If the kind is tk_objref, tk_component or tk_home, then the DataType may optionally contain an ObjrefType el-
ement describing the object reference's type (using its Repository Id). If the DataType does not contain an
ObjrefType element, then an untyped object reference (Repository Id "IDL:omg.org/CORBA/Object:1.0") is as-
sumed.

If the kind is tk_struct or tk_except, then the DataType contains a StructType element, which in turn describes
a list of struct members.

If the kind is tk_union, then the DataType contains a UnionType element. UnionType contains the type of the
descriminator and a number of typed elements, one of which may be the default member. Each member may be
identified with multiple case labels. No label is associated with the default member.

If the kind is tk_enum, then the DataType contains an EnumType element describing the enumeration values.

If the kind is tk_sequence, then the DataType contains a SequenceType element. Its optional bound attribute in-
dicates the sequence's upper bound. If the bound attribute is absent, the sequence is unbounded.

If the kind is tk_array, then the DataType contains an ArrayType element. Its length attribute indicates the
length of the array. For multi-dimensional arrays, the multiplicity of the length attribute is greather than one, and
the most significant dimension is listed first ("left to right" in IDL).

If the kind is tk_alias or tk_value_box, then the DataType contains an AliasType element.

If the kind is tk_fixed, then the DataType contains a FixedType element.

If the kind is tk_value, then the DataType contains a ValueType element. ValueType contains the type code of
the concrete base type, if any, a type modifier (with values as defined by CORBA::ValueModifier), and a number
of members. Each member has a name, type and visibility (with values as defined by CORBA::Visibility).

In StructType, ValueType and EnumType, the name attribute contains the name of the struct, valuetype or
enum IDL type, and the typeId attribute contains its Repository Id.

Note – Issue 6024: deleted note
Deployment and Configuration of Component-based Distributed Applications 125

Working Draft © OMG

9.5.6 DataValue 9 PSM for CCM
9.5.6 DataValue

Note – Issues 6024, 6387

The DataValue class describes a value. It is mapped to a hierarchichal structure as above, fully describing a value
that can be described by an IDL type. A DataValue cannot exist by itself, it needs a matching DataType to de-
scribe its structure (see the Any class).

If the type's kind is tk_null or tk_void, DataValue is empty.

If the type's kind is tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean, tk_octet,
tk_string, tk_longlong, tk_ulonglong, or tk_longdouble, DataValue contains a single short, long, ushort,
ulong, float, double, boolean, octet, string, longlong, ulonglong or longdouble attribute, respectively. If the
type's kind is tk_wstring, then DataValue also contains a string element.

If the type's kind is tk_char or tk_wchar, the DataValue contains a string attribute containing a string of length
1.

If the type's kind is tk_enum, the DataValue contains the enumeration value in the enum attribute.

If the type's kind is tk_objref, tk_component or tk_home, the DataValue contains a stringified object reference
in the objref attribute.

If the type's kind is tk_fixed, the DataValue contains a fixed attribute holding a fixed-point decimal literal.

for tk _sequenc e and t k_array, if
content type is not primitive

for tk_struct and
tk_value

for tk_union
for
tk_value_box

DataType

Any

NamedValue
name : String

DataValue
short : xsd:short [*]
long : xsd:int [*]
ushort : xsd:unsignedShort [*]
ulong : xsd:unsignedInt [*]
float : xsd:float [*]
double : xsd:double [*]
boolean : xsd:boolean [*]
octet : xsd:unsignedByte [*]
opaque : xsd:base64Binary [0..1]
objref : String [*]
enum : String [*]
string : String [*]
longlong : xsd:long [*]
ulonglong : xsd:unsignedLong [*]
longdouble : xsd:double [*]
fixed : String [*]

1+value 1
0..1

+typecode
0..1

0..1
+any

0..1 *
+member

*

*

+element

*

0..1
+discriminator
0..1 0..1

+boxedValue
0..10..1

+value

0..1

for tk_TypeCode

for tk_any

A DataValue instance contains at most
one kind of attribute or element, as implied
by the kind attribute of an associated
DataType instance.
126 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.5.7 Others
If the type's kind is tk_sequence or tk_array, and the sequence's or array's element type is equivalent to (i.e. not
considering aliased types) tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double, tk_boolean,
tk_octet, tk_objref, tk_enum, tk_string, tk_longlong, tk_longlong, tk_ulonglong, tk_longdouble,
tk_wstring, tk_fixed, tk_component or tk_home, then the respective attribute has a multiplicity equal to the
length of the sequence or array. In the case of multi-dimensional arrays, the least significant dimension is enu-
merated first.

If the type's kind is tk_sequence or tk_array, and the sequence's or array's element type is equivalent to tk_char
or tk_wchar, then the DataValue contains a single string attribute. Each character in this string is used as an el-
ement of the sequence or array.

If the type's kind is tk_sequence or tk_array, and the sequence's or array's element type is equivalent to
tk_octet, then the DataValue contains a single opaque attribute.

If the type's kind is tk_sequence or tk_array, and the sequence's or array's element is not of the types enumerat-
ed above, then the DataValue contains the elements of the sequence or array as DataType elements, using the
element association.

If the type's kind is tk_TypeCode or tk_any, the DataValue contains a DataType or Any element, respectively.

If the type's kind is tk_struct or tk_value, the DataValue contains a NamedValue for each member of the struc-
ture or valuetype.

If the type's kind is tk_union, the DataValue contains a single DataValue as the union's discriminator, and zero
or one DataValue elements, using the value association, as the member of the union.

If the type's kind is tk_value_box, the DataValue contains zero or one DataValue elements using the boxedValue
association. If the boxedValue element is missing, a null value is implied.

9.5.7 Others

The PackageConfiguration, DomainUpdateKind, Connection and Endpoint classes are used by the runtime
models only and are not part of the PSM for XML.

9.5.8 Transformation Exceptions and Extensions

Note – Issues 5959, 6383

Metadata for a component package is usually spread out across several XML files, which are called descriptors.
Certain associations are expected to be expressed by links within the same document, others are expected to link
across documents. XMI takes care of both patterns by way of “proxies,” which do not contain nested elements
but a link attribute (either “href” or “xlink:href”) referencing the target element by URI. A schema produced
using the XMI rules for schema production allows proxies to appear anywhere.

Composition associations in UML express that the class at the composite end (the containing class) owns and
contains the class at the part end (the contained class). It is typical, in XML documents, for instances of con-
tained classes to be embedded within the instance of the containing class. However, it is also possible to store
contained instances by themselves in a separate file by using a proxy (using "href" or "xlink:href") to reference
the contained instance in a separate file. Since the multiplicity on the composite end of a composite association
is always one to one in this specification, contained instances can only have a single such proxy reference.
Deployment and Configuration of Component-based Distributed Applications 127

Working Draft © OMG

9.5.8 Transformation Exceptions and Extensions 9 PSM for CCM
For non-composite associations between classes with a common owner (composite end of composition), the def-
inition of the class at the source end of the association must contain a proxy linking to the element at the target
end of the association. The definition of the class at the source end cannot contain the definition of the element
at the target end, because it is owned by the common owner, and its identity cannot be duplicated.

Non-composite associations between classes that do not have a common owner are usually expressed by the ele-
ment definining the class at the source end containing a proxy that links to an external document. Direct contain-
ment is possible but may result in duplicated data.

While tools can decide to either combine information into a single XML document or to place information into
arbitrary files, using XMI proxies to link to that information, it is expected that some model elements usually ap-
pear as the outermost document element of a standalone XML file. These commonly used descriptors are as-
signed descriptive terms and standard file extensions.

● A Component Package Descriptor contains a ComponentPackageDescription document element; it
has the “.cpd” file extension.

● A Component Implementation Descriptor contains a ComponentImplementationDescription
document element; it has the “.cid” file extension.

● An Implementation Artifact Descriptor contains an ImplementationArtifactDescription document
element; it has the “.iad” file extension.

● A Component Interface Descriptor contains a ComponentInterfaceDescription document element; it
has the “.ccd” (CORBA Component Descriptor) file extension.

● A Domain Descriptor contains a Domain document element; it has the “.cdd” (Component Domain
Descriptor) file extension.

● A Deployment Plan Descriptor contains a DeploymentPlan document element; it has the “.cdp”
(Component Deployment Plan) file extension.

Note – Issue 6047

● A Package Configuration Descriptor contains a PackageConfiguration document element; it has the
“.pcd” file extension.

● A Toplevel Package Descriptor contains a ToplevelPackageDescription document element; it has
the “package.tpd” file name.

● Package files use the “.cpk” extension.

Spreading information across files according to these patterns allow better reuse, for example by extracting an
implementation from a package.

Proxies follow the linking semantics specified by XMI [XMI]. If a URI reference [URI] does not contain a frag-
ment identifier (the “#id_value” part), then the target of the reference is the outermost document element of an
descriptor file. If the link attribute of a ComponentPackageDescription proxy that is part of a
SubcomponentInstantiationDescription element does not contain a fragment identifier, then the referenced file
can be either a Component Package Descriptor or a package (i.e. a ZIP file with the “.cpk” extension containing
the package).
128 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.5.9 Interpretation of Relative References
9.5.9 Interpretation of Relative References

Note – Issue 5959

URI references [URI] are used by proxies and appear in the location attribute of the
ImplementationArtifactDescription and ArtifactDeploymentDescription classes and the idlFile attribute of
the ComponentInterfaceDescription class.

XML documents that are part of a Component Package can use relative-path references (i.e. URIs that do not be-
gin with a scheme name or a slash character) to reference documents and other artifacts within the same package.

The interpretation of relative URIs that are not relative-path references (i.e. network-path references that start
with two slash characters, or absolute-path references that start with a single slash character), the interpretation
of relative-path references that reference documents outside the package (by way of “..” path segments), and the
interpretation of relative-path references in documents that are not contained in a Component Package (e.g. a De-
ployment Plan Descriptor) is implementation-specific. (Note: this allows XML processors to supply arbitrary
Base URIs that do not necessarily relate to any file system but that must expose the Component Package’s hier-
archical structure.)

9.5.10 Mapping to XML

Note – Issue 5959

After applying the transformations defined in this section, an XML schema is generated by applying the rules set
forth in the XML Metadata Interchange specification, chapter 2, “XML Schema Production.” [XMI]

Note – Put schema into Appendix and cross-link here.

Note – Issue 5959: Deleted “Mapping Discussion”

9.6 Miscellaneous

9.6.1 Entry Points

CCM’s Packaging and Deployment chapter in CORBA 3.0 [CCM] defines a home factory entry point that en-
ables a container to create a user-defined home using a user-defined factory.

This specification defines the interaction between an implementation artifact and the execution manager as im-
plementation-dependent, in order to not restrict the forms that an implementation artifact might have – execut-
able files, loadable libraries, source files or scripts, for example.

However, to ensure source code compatibility in the common case without restricting implementation choice, en-
try points are defined here if the language is C++ and the implementation artifact is a shared library, or if the lan-
guage is Java and the implementation artifact is a class file. In these two cases, there must be a specific execution
parameter associated with the Monolithic Implementation Description.

If the instance to be deployed is a component, then the name of the execution parameter shall be “component
factory.” The parameter is of type String, and its name is the name of an entry point that has no parameters and
that returns a pointer of type Components::EnterpriseComponent.
Deployment and Configuration of Component-based Distributed Applications 129

Working Draft © OMG

9.6.2 Homes 9 PSM for CCM
If the instance to be deployed is a home, then the name of the execution parameter shall be “home factory.” The
parameter is of type String, and its name is the name of an entry point that has no parameters and that returns a
pointer of type Components::HomeExecutorBase.

For backwards compatibility, it is recommended that the name of the entry point should be the name of the com-
ponent or home, prefixed with “create_” (e.g. “create_Account” for an Account component).

If the language is C++, then the entry points shall be qualified as ‘extern "C"’.

These well-defined entry points ensure that the user code for the entry point does not need to be changed when
building components for different target environments. These definitions do not enable interoperability between
containers and DLLs (even assuming the same compiler and ORB), thus additional interfaces are still required
that are specific to container implementations. This implies that, as in CCM 3.0, component and home imple-
mentation DLLs are specific to the container implementation (and the code generation tools). Since there was
and is no normative interoperability interfaces within a node, thus further implies that there is no vendor segmen-
tation boundary within a node at all.

9.6.2 Homes

Note that this specification does not depend on the existence of homes; using the entry points defined above, a
container is able to create component instances directly, without the need of creating a home first, and then using
it as a factory for the component instance.

This is no loss in comparison to the Packaging and Deployment chapter of CCM in CORBA 3.0. If a component
instance is to be deployed as part of an assembly, the container has no way of providing a user-defined home
with any parameters, and is therefore limited to keyless homes. However, a factory operation for the component
instance as defined above can do its job as well as the parameter-challenged create operation that is part of a
keyless home.

In contrast to the Packaging and Deployment chapter, this specification recognizes homes as instances that can be
deployed, and therefore enables the full range of home features.

9.6.3 Valuetype Factories

If an ImplementationArtifact contains valuetype factories, then its list of execution parameters shall include an
element with the name “valuetype factories” and of type ValuetypeFactoryList, which is defined as

module Deployment {
struct ValuetypeFactory {

string repid;
string valueentrypoint;
string factoryentrypoint;

};
typedef sequence<ValuetypeFactory>

ValuetypeFactoryList;
};

Each element of that sequence describes a valuetype factory that needs to be registered with the ORB in order to
demarshal user-defined valuetypes. The repid field specifies the Repository Id of the valuetype created by the
valuetype factory. The factoryentrypoint field specifies the name of an entry point that can be be used to create
an instance of the valuetype factory. If valueentrypoint is not the empty string, it specifies an entry point that
can be used to create an instance of the valuetype.
130 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.6.4 Discovery and Initialization
If the language is C++, then the entry points shall be qualified as ‘extern "C"’.

9.6.4 Discovery and Initialization

The ExecutionManager must be able to find the NodeManager instances for all nodes in the Domain, so that it
is able to deploy applications according to deployment plans that are based on the current contents of the Target
Data Model. This is accomplished using the Naming Service.

● The user of the deployment system creates a naming context for a domain. Note that a naming context
is expressible by a URL representation (e.g. a “corbaname:“ reference).

● Implementations of the ExecutionManager interface must accept the address of the naming context
as a configuration parameter, and use it to publish its own reference with the name
“ExecutionManager” and the empty string as the id in that context.

● Implementations of the TargetManager interface must accept the address of the naming context as a
configuration parameter, and use it to publish its own reference with the name “TargetManager” and
the empty string as the id in that context.

● Implementations of the NodeManager interface must accept the address of the naming context as a
configuration parameter, and use it to publish their own reference with the node’s name as the name
and the id “NodeManager.” The node’s name must match the name attribute of the node in the Target
Data Model.

Upon startup, the ExecutionManager finds the TargetManager in the Naming Service, and accesses the current
Domain information. Based on the Node elements that are contained in the Domain, the ExecutionManager then
calls the joinDomain operation of each NodeManager.

An ExecutionManager may offer functionality to “add” new nodes to the domain, or to remove nodes from the
domain. In that case, the ExecutionManager looks up a NodeManager with a user-provided name in the Naming
Service and then calls its joinDomain or leaveDomain operation, respectively. In addition, an ExecutionManager
may offer to scan the Naming Service context for previously unregistered nodes, calling the joinDomain opera-
tion on each associated NodeManager.

Note that there is no direct relationship between domains and repositories. Therefore, implementations of the
RepositoryManager interface are not registered in the Naming Service.

9.6.5 Location

URI references [URI] are handled by the RepositoryManager and NodeManager interfaces: the
RepositoryManager receives URLs to packages as a parameter to the installPackage operation and must gen-
erate URLs pointing to itself in ImplementationArtifactDescription elements. The NodeManager receives
URLs as attributes of the ArtifactDeploymentDescription elements that are part of the DeploymentPlan.

Both RepositoryManager and NodeManager shall be able to interpret URLs according to the http scheme. Ad-
ditional schemes may optionally be supported.

Note – This requires RepositoryManager implementations to include both an http server and
an http client [HTTP]. NodeManager need to implement http clients only, in order to down-
load implementation artifacts from the repository.

Note – Issue 6053
Deployment and Configuration of Component-based Distributed Applications 131

Working Draft © OMG

9.6.6 Segmentation 9 PSM for CCM
The RepositoryManager must supply a “http” URI as part of the location attribute in the
ImplementationArtifactDescription elements. A RepositoryManager may optionally include other alternative
locations to provide TargetManager implementations with a choice of transports to use for downloading arti-
facts.

9.6.6 Segmentation

This specification obsoletes CCM’s idea of component segmentation. In the original CCM, assemblies provided
just a single level of decomposition. Segments then offered a second level to split the implementation of a com-
ponent into several independent pieces of code. This specification allows composition and decomposition on any
level, and therefore the ability to add another level of decomposition on the lowest level is redundant. However,
no parts of this specification inhibit a component author from using this feature of the CCM Implementation
Framework.

9.7 Impact on the CCM Specification
This specification is intended to replace the Packaging and Deployment chapter and the XML DTD chapter of
CCM 3.0 [CCM].

Note – The Packaging and Deployment chapter of CCM 3.0, in its Component Deployment sec-
tion, defines interfaces that are involved in the deployment of components onto nodes. Similar
interfaces might be useful in implementing the NodeManager, however, this specification does
not prescribe any such node-level interfaces.

The potential ability to create component instances without homes requires that the get_ccm_home operation in
the CCMObject interface is allowed to return a nil object reference.

9.8 Migration Issues
This section deals with the issues of migrating from the Packaging and Deployment model that exists in CCM
3.0 [CCM] to the deployment model presented in this specification.

9.8.1 Component Implementations

The portable parts of CCM component implementation source code remains untouched. The generated code to
enable interactions with the containers may change, requiring recompilation and linking. The non-portable hand
written code in some implementations which was written assuming a particular container implementation would
likely have to change — similar to porting the component to a different CCM system.

9.8.2 Component and Assembly Packages and Metadata

The metadata is changed to be based on XML schemas, and the basic models are different. Many lower level el-
ements are not different, and it is expected that meta-data transformation (forward migration) will be able to be
automated in the common cases where all the features used are supported.

This specification is kept simple in anticipation that broad (and necessarily complex) software packaging and dis-
tribution standards do not exist, and the W3C OSD specification (by Microsoft and Marinba in 1997) referenced
by the original CCM specification did not become a standard. Future RFPs may want to consider mappings from
such comprehensive standards into this simpler model that focuses on CCM applications.

The component data model stays within the scope of deployment and configuration and does not bring forward
all the metadata aspects in the previous CCM specification that were not relevant to deployment and configura-
tion. Furthermore, much of the metadata for informing containers of the requirements of component instances
132 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

9 PSM for CCM 9.8.3 Component Deployment Systems
was not defined as part of an intervendor boundary. Thus this specification assumes the use of two “private”
channels of information between the development tools (and code generation) and the runtime environment (No-
deManager). These are the resource requirements of the MonolithicImplementationDescription and the execPa-
rameters of the InplementationArtifactDescription. The submitters believe standardizing this metadata should be
part of a true effort at vendor segmentation between CCM development tools and CCM runtime environments
(assuming the same compiler and ORB), which does not exist and was not the mandate of this RFP.

Beyond the necessity of validating configuration and connection among components, the one other metadata in-
teroperability issue is to standardize the vocabulary for selection criteria, which is interoperation between users
and implementers of component software. This is currently deferred due to the concurrence of the other specifi-
cation for this language with this specification (see below).

9.8.3 Component Deployment Systems

Deployment systems need to be changed to support this specification. Most aspects of container implementations
should be reusable.

9.9 Metadata Vocabulary

9.9.1 Implementation Selection Requirements

Selection requirements, part of both the PackageConfiguration and SubcomponentInstantiationDescription
classes, express requirements that are meant to drive the selection among alternative implementations. The user
of an implementation (creator of a package configuration or an assembly) is requesting services to be satisfied by
a component implementation. The mechanism defined in this specification requires agreement of the vocabulary
of these services on both sides, but there is no interoperable vocabulary defined. The currently active RFP enti-
tled “UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
[UMLQoS] should result in, among other things, “a Definition of Individual QoS Characteristics,” which should
provide an appropriate vocabulary to drive this mechanism.

When this QoS-driven vocabulary is connected to the CCM PSM, some other component metadata requirements,
such as “humanlanguage” may also be added to the selection criteria language.

9.9.2 Monolithic Implementation Resource Requirements

As mentioned above, this vocabulary is a private communication channel between development tools and the No-
deManager, since no other interoperability boundary exists between these two. Obviously some standardization
could be easily done, based on previous CCM-defined metadata such as container supported persistence, transac-
tions, and POA policies. If this limited scoping is not accepted by the Task Force, data model classes containing
this type of information can easily be added to support both a defined resource vocabulary and even a separate
container-services vocabulary for information that would never be part of a “resource finding” matching process
with the target nodes, but needs to be conveyed to the runtime environment for component instances.
Deployment and Configuration of Component-based Distributed Applications 133

Working Draft © OMG

9.9.2 Monolithic Implementation Resource Requirements 9 PSM for CCM
134 Deployment and Configuration of Component-based Distributed Applications

© OMG ptc/2003-07-08

10 Mapping to XML Schema 10 Mapping to XML Schema
10 Mapping to XML Schema

Note – Issue 5959: removed
Deployment and Configuration of Component-based Distributed Applications 135

ptc/2003-07-08 © OMG

10 Mapping to XML Schema 10 Mapping to XML Schema
136 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

A IDL for CCM A IDL for CCM
A IDL for CCM
Chapter 9 describes the process to generate concrete IDL from the platform independent model, by using the
rules defined by the UML Profile for CORBA [UPC] on a transformation of the original PIM. With these rules,
chapter 9 contains the normative definition.

This chapter contains IDL that has been produced from the PIM using these rules. It is non-normative, so in the
case of discrepancies, chapter 9 is relevant.

Note – Replaced with rule-based generated code.

#include <orb.idl>

module Deployment {

 enum SatisfierPropertyKind {
 Quantity,
 Capacity,
 Minimum,
 Maximum,
 _Attribute,
 Selection
 };

 struct SatisfierProperty {
 string name;
 SatisfierPropertyKind kind;
 any value;
 };

 typedef sequence < SatisfierProperty > SatisfierProperties;

 struct SharedResource {
 string name;
 ::CORBA::StringSeq resourceType;
 ::CORBA::ULongSeq nodeRef;
 SatisfierProperties property;
 };

 typedef sequence < SharedResource > SharedResources;

 struct Resource {
 string name;
 ::CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };

 typedef sequence < Resource > Resources;

 struct Node {
Deployment and Configuration of Component-based Distributed Applications 137

Working Draft © OMG

A IDL for CCM A IDL for CCM
 string name;
 string label;
 ::CORBA::ULongSeq sharedResourceRef;
 ::CORBA::ULongSeq connectionRef;
 Resources resource;
 };

 typedef sequence < Node > Nodes;

 struct Interconnect {
 string name;
 string label;
 ::CORBA::ULongSeq connectionRef;
 ::CORBA::ULongSeq connectRef;
 Resources resource;
 };

 typedef sequence < Interconnect > Interconnects;

 struct Bridge {
 string name;
 string label;
 ::CORBA::ULongSeq connectRef;
 Resources resource;
 };

 typedef sequence < Bridge > Bridges;

 struct Property {
 string name;
 any value;
 };

 typedef sequence < Property > Properties;

 struct Domain {
 string UUID;
 string label;
 SharedResources sharedResource;
 Nodes node;
 Interconnects interconnect;
 Bridges bridge;
 Properties infoProperty;
 };

 enum CCMComponentPortKind {
 Facet,
 SimplexReceptacle,
 MultiplexReceptacle,
 EventEmitter,
 EventPublisher,
138 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

A IDL for CCM A IDL for CCM
 EventConsumer
 };

 struct ComponentPortDescription {
 string name;
 string specificType;
 ::CORBA::StringSeq supportedType;
 boolean provider;
 boolean exclusiveProvider;
 boolean exclusiveUser;
 boolean optional;
 CCMComponentPortKind kind;
 };

 typedef sequence < ComponentPortDescription > ComponentPortDescriptions;

 struct ComponentPropertyDescription {
 string name;
 CORBA::TypeCode type;
 };

 typedef sequence < ComponentPropertyDescription >
ComponentPropertyDescriptions;

 struct ComponentInterfaceDescription {
 string label;
 string UUID;
 string specificType;
 ::CORBA::StringSeq supportedType;
 ::CORBA::StringSeq idlFile;
 Properties configProperty;
 ComponentPortDescriptions port;
 ComponentPropertyDescriptions property;
 Properties infoProperty;
 };

 struct Requirement {
 string resourceType;
 string name;
 Properties property;
 };

 typedef sequence < Requirement > Requirements;

 struct MonolithicDeploymentDescription {
 string name;
 ::CORBA::StringSeq source;
 ::CORBA::ULongSeq artifactRef;
 Properties execParameter;
 Requirements deployRequirement;
 };
Deployment and Configuration of Component-based Distributed Applications 139

Working Draft © OMG

A IDL for CCM A IDL for CCM
 typedef sequence < MonolithicDeploymentDescription >
MonolithicDeploymentDescriptions;

 enum ResourceUsageKind {
 None,
 InstanceUsesResource,
 ResourceUsesInstance,
 PortUsesResource,
 ResourceUsesPort
 };

 struct InstanceResourceDeploymentDescription {
 ResourceUsageKind resourceUsage;
 string requirementName;
 string resourceName;
 any resourceValue;
 };

 typedef sequence < InstanceResourceDeploymentDescription >
InstanceResourceDeploymentDescriptions;

 struct InstanceDeploymentDescription {
 string name;
 string node;
 ::CORBA::StringSeq source;
 unsigned long implementationRef;
 Properties configProperty;
 InstanceResourceDeploymentDescriptions deployedResource;
 InstanceResourceDeploymentDescriptions deployedSharedResource;
 };

 typedef sequence < InstanceDeploymentDescription >
InstanceDeploymentDescriptions;

 struct ComponentExternalPortEndpoint {
 string portName;
 };

 typedef sequence < ComponentExternalPortEndpoint >
ComponentExternalPortEndpoints;

 struct PlanSubcomponentPortEndpoint {
 string portName;
 boolean provider;
 CCMComponentPortKind kind;
 unsigned long instanceRef;
 };

 typedef sequence < PlanSubcomponentPortEndpoint >
PlanSubcomponentPortEndpoints;
140 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

A IDL for CCM A IDL for CCM
 struct ExternalReferenceEndpoint {
 string location;
 };

 typedef sequence < ExternalReferenceEndpoint >
ExternalReferenceEndpoints;

 struct ConnectionResourceDeploymentDescription {
 string targetName;
 string requirementName;
 string resourceName;
 any resourceValue;
 };

 typedef sequence < ConnectionResourceDeploymentDescription >
ConnectionResourceDeploymentDescriptions;

 struct PlanConnectionDescription {
 string name;
 ::CORBA::StringSeq source;
 Requirements deployRequirement;
 ComponentExternalPortEndpoints externalEndpoint;
 PlanSubcomponentPortEndpoints internalEndpoint;
 ExternalReferenceEndpoints externalReference;
 ConnectionResourceDeploymentDescriptions deployedResource;
 };

 typedef sequence < PlanConnectionDescription >
PlanConnectionDescriptions;

 struct PlanSubcomponentPropertyReference {
 string propertyName;
 unsigned long instanceRef;
 };

 typedef sequence < PlanSubcomponentPropertyReference >
PlanSubcomponentPropertyReferences;

 struct PlanPropertyMapping {
 string name;
 ::CORBA::StringSeq source;
 string externalName;
 PlanSubcomponentPropertyReferences delegatesTo;
 };

 typedef sequence < PlanPropertyMapping > PlanPropertyMappings;

 struct ImplementationDependency {
 string requiredType;
 };
Deployment and Configuration of Component-based Distributed Applications 141

Working Draft © OMG

A IDL for CCM A IDL for CCM
 typedef sequence < ImplementationDependency > ImplementationDependencies;

 struct ResourceDeploymentDescription {
 string requirementName;
 string resourceName;
 any resourceValue;
 };

 typedef sequence < ResourceDeploymentDescription >
ResourceDeploymentDescriptions;

 struct ArtifactDeploymentDescription {
 string name;
 ::CORBA::StringSeq location;
 string node;
 ::CORBA::StringSeq source;
 Properties execParameter;
 Requirements deployRequirement;
 ResourceDeploymentDescriptions deployedResource;
 };

 typedef sequence < ArtifactDeploymentDescription >
ArtifactDeploymentDescriptions;

 struct DeploymentPlan {
 string label;
 ComponentInterfaceDescription realizes;
 MonolithicDeploymentDescriptions implementation;
 InstanceDeploymentDescriptions instance;
 PlanConnectionDescriptions connection;
 PlanPropertyMappings externalProperty;
 ImplementationDependencies dependsOn;
 ArtifactDeploymentDescriptions artifact;
 Properties infoProperty;
 };

 exception ResourceNotAvailable {
 string name;
 string resourceType;
 string propertyName;
 string elementName;
 string resourceName;
 };

 exception PlanError {
 string name;
 string reason;
 };

 enum DomainUpdateKind {
142 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

A IDL for CCM A IDL for CCM
 Add,
 Delete,
 UpdateAll,
 UpdateAvailable
 };

 interface TargetManager {
 Domain getAllResources ();
 Domain getAvailableResources ();
 void commitResources (in DeploymentPlan plan)
 raises (ResourceNotAvailable, PlanError);
 void releaseResources (in DeploymentPlan argname);
 void updateDomain (in ::CORBA::StringSeq elements, in Domain
domainSubset, in DomainUpdateKind updateKind);
 };

 typedef sequence < Object > Endpoints;

 struct Connection {
 string name;
 Endpoints endpoint;
 };

 typedef sequence < Connection > Connections;

 exception StartError {
 string name;
 string reason;
 };

 exception InvalidConnection {
 string name;
 string reason;
 };

 interface Application {
 void finishLaunch (in Connections providedReference, in boolean start)
 raises (StartError, InvalidConnection);
 void start ()
 raises (StartError);
 };

 exception InvalidProperty {
 string name;
 string reason;
 };

 exception StopError {
 string name;
 string reason;
 };
Deployment and Configuration of Component-based Distributed Applications 143

Working Draft © OMG

A IDL for CCM A IDL for CCM
 interface ApplicationManager {
 Application startLaunch (in Properties configProperty, out Connections
providedReference, in boolean start)
 raises (ResourceNotAvailable, StartError, InvalidProperty);
 void destroyApplication (in Application app)
 raises (StopError);
 };

 typedef sequence < Application > Applications;

 interface DomainApplicationManager :
 ApplicationManager
 {
 Applications getApplications ();
 DeploymentPlan getPlan ();
 };

 typedef sequence < DomainApplicationManager > DomainApplicationManagers;

 interface ExecutionManager {
 DomainApplicationManager preparePlan (in DeploymentPlan plan, in boolean
commitResources)
 raises (ResourceNotAvailable, PlanError, StartError);
 DomainApplicationManagers getManagers ();
 void destroyManager (in DomainApplicationManager manager)
 raises (StopError);
 };

 interface Logger {
 };

 interface NodeApplicationManager :
 ApplicationManager
 {
 };

 interface NodeManager {
 void joinDomain (in Domain domain, in TargetManager manager, in Logger
log);
 void leaveDomain ();
 NodeApplicationManager preparePlan (in DeploymentPlan plan)
 raises (StartError, PlanError);
 void destroyManager (in NodeApplicationManager appManager)
 raises (StopError);
 };

 interface NodeApplication :
 Application
 {
 };
144 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

A IDL for CCM A IDL for CCM
 interface DomainApplication :
 Application
 {
 };

 exception NameExists {
 };

 exception PackageError {
 string source;
 string reason;
 };

 exception NoSuchName {
 };

 exception LastConfiguration {
 };

 exception InvalidReference {
 };

 struct PackageConfiguration;

 typedef sequence < PackageConfiguration > PackageConfigurations;

 struct ComponentPackageDescription;

 typedef sequence < ComponentPackageDescription >
ComponentPackageDescriptions;

 struct ComponentPackageReference {
 string requiredUUID;
 string requiredName;
 string requiredType;
 };

 typedef sequence < ComponentPackageReference >
ComponentPackageReferences;

 struct SubcomponentInstantiationDescription {
 string name;
 ComponentPackageDescriptions package;
 Properties configProperty;
 Requirements selectRequirement;
 ComponentPackageReferences reference;
 };

 typedef sequence < SubcomponentInstantiationDescription >
SubcomponentInstantiationDescriptions;
Deployment and Configuration of Component-based Distributed Applications 145

Working Draft © OMG

A IDL for CCM A IDL for CCM
 struct SubcomponentPortEndpoint {
 string portName;
 unsigned long instanceRef;
 };

 typedef sequence < SubcomponentPortEndpoint > SubcomponentPortEndpoints;

 struct AssemblyConnectionDescription {
 string name;
 Requirements deployRequirement;
 ComponentExternalPortEndpoints externalEndpoint;
 SubcomponentPortEndpoints internalEndpoint;
 ExternalReferenceEndpoints externalReference;
 };

 typedef sequence < AssemblyConnectionDescription >
AssemblyConnectionDescriptions;

 struct SubcomponentPropertyReference {
 string propertyName;
 unsigned long instanceRef;
 };

 typedef sequence < SubcomponentPropertyReference >
SubcomponentPropertyReferences;

 struct AssemblyPropertyMapping {
 string name;
 string externalName;
 SubcomponentPropertyReferences delegatesTo;
 };

 typedef sequence < AssemblyPropertyMapping > AssemblyPropertyMappings;

 struct ComponentAssemblyDescription {
 SubcomponentInstantiationDescriptions instance;
 AssemblyConnectionDescriptions connection;
 AssemblyPropertyMappings externalProperty;
 };

 typedef sequence < ComponentAssemblyDescription >
ComponentAssemblyDescriptions;

 struct NamedImplementationArtifact;

 typedef sequence < NamedImplementationArtifact >
NamedImplementationArtifacts;

 struct ImplementationArtifactDescription {
 string label;
146 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

A IDL for CCM A IDL for CCM
 string UUID;
 ::CORBA::StringSeq location;
 Properties execParameter;
 Requirements deployRequirement;
 NamedImplementationArtifacts dependsOn;
 Properties infoProperty;
 };

 struct NamedImplementationArtifact {
 string name;
 ImplementationArtifactDescription referencedArtifact;
 };

 typedef sequence < ResourceUsageKind > ResourceUsageKinds;

 struct ImplementationRequirement {
 ResourceUsageKinds resourceUsage;
 string resourcePort;
 string componentPort;
 string resourceType;
 string name;
 Properties property;
 };

 typedef sequence < ImplementationRequirement >
ImplementationRequirements;

 struct MonolithicImplementationDescription {
 Properties execParameter;
 NamedImplementationArtifacts primaryArtifact;
 ImplementationRequirements deployRequirement;
 };

 typedef sequence < MonolithicImplementationDescription >
MonolithicImplementationDescriptions;

 struct Capability {
 string name;
 ::CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };

 typedef sequence < Capability > Capabilities;

 struct ComponentImplementationDescription {
 string label;
 string UUID;
 ComponentInterfaceDescription implements;
 ComponentAssemblyDescriptions assemblyImpl;
 MonolithicImplementationDescriptions monolithicImpl;
 Properties configProperty;
Deployment and Configuration of Component-based Distributed Applications 147

Working Draft © OMG

A IDL for CCM A IDL for CCM
 Capabilities capability;
 ImplementationDependencies dependsOn;
 Properties infoProperty;
 };

 struct PackagedComponentImplementation {
 string name;
 ComponentImplementationDescription referencedImplementation;
 };

 typedef sequence < PackagedComponentImplementation >
PackagedComponentImplementations;

 struct ComponentPackageDescription {
 string label;
 string UUID;
 ComponentInterfaceDescription realizes;
 Properties configProperty;
 PackagedComponentImplementations implementation;
 Properties infoProperty;
 };

 struct PackageConfiguration {
 string label;
 string UUID;
 PackageConfigurations specializedConfig;
 ComponentPackageDescriptions basePackage;
 ComponentPackageReferences reference;
 Requirements selectRequirement;
 Properties configProperty;
 };

 interface RepositoryManager {
 void installPackage (in string installationName, in string location)
 raises (NameExists, PackageError);
 void createPackage (in string installationName, in PackageConfiguration
package, in string baseLocation, in boolean replace)
 raises (NameExists, PackageError);
 PackageConfiguration findPackageByName (in string name)
 raises (NoSuchName);
 PackageConfiguration findPackageByUUID (in string UUID)
 raises (NoSuchName);
 ::CORBA::StringSeq findNamesByType (in string type);
 ::CORBA::StringSeq getAllNames ();
 ::CORBA::StringSeq getAllTypes ();
 void deletePackage (in string installationName)
 raises (NoSuchName);
 };

 struct RequirementSatisfier {
148 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

A IDL for CCM A IDL for CCM
 string name;
 ::CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };
};
Deployment and Configuration of Component-based Distributed Applications 149

Working Draft © OMG

A IDL for CCM A IDL for CCM
150 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
B XML Schema for CCM

Note – Issue 5959

Chapter 9 describes the process to generate concrete IDL from the platform independent model, by using the
rules defined by the XML Metadata Interchange (XMI) version 2 [XMI] specification on a transformation of the
original PIM. With these rules, chapter 9 and [XMI] contain the normative definition.

This chapter contains the XML schema that has been produced from the PIM using these rules. It is non-norma-
tive, so in the case of discrepancies, chapter 9 and [XMI] are relevant.

<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:Deployment="http://www.omg.org/Deployment"
 targetNamespace="http://www.omg.org/Deployment"
 >
 <xsd:import namespace="http://www.omg.org/XMI"/>
 <xsd:complexType name="Any">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element name="value" type="Deployment:DataValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Any" type="Deployment:Any"/>
 <xsd:complexType name="DataType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="kind" type="Deployment:TCKind"/>
 <xsd:element name="enum" type="Deployment:EnumType"/>
 <xsd:element name="objref" type="Deployment:ObjrefType"/>
 <xsd:element name="boundedString"
type="Deployment:BoundedStringType"/>
 <xsd:element name="fixed" type="Deployment:FixedType"/>
 <xsd:element name="array" type="Deployment:ArrayType"/>
 <xsd:element name="sequence" type="Deployment:SequenceType"/>
 <xsd:element name="alias" type="Deployment:AliasType"/>
 <xsd:element name="struct" type="Deployment:StructType"/>
 <xsd:element name="value" type="Deployment:ValueType"/>
 <xsd:element name="union" type="Deployment:UnionType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="DataType" type="Deployment:DataType"/>
 <xsd:complexType name="DataValue">
Deployment and Configuration of Component-based Distributed Applications 149

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="short" type="xsd:short"/>
 <xsd:element name="long" type="xsd:int"/>
 <xsd:element name="ushort" type="xsd:unsignedShort"/>
 <xsd:element name="ulong" type="xsd:unsignedInt"/>
 <xsd:element name="float" type="xsd:float"/>
 <xsd:element name="double" type="xsd:double"/>
 <xsd:element name="boolean" type="xsd:boolean"/>
 <xsd:element name="octet" type="xsd:unsignedByte"/>
 <xsd:element name="opaque" type="xsd:base64Binary"/>
 <xsd:element name="objref" type="xsd:string"/>
 <xsd:element name="enum" type="xsd:string"/>
 <xsd:element name="string" type="xsd:string"/>
 <xsd:element name="longlong" type="xsd:long"/>
 <xsd:element name="ulonglong" type="xsd:unsignedLong"/>
 <xsd:element name="longdouble" type="xsd:double"/>
 <xsd:element name="fixed" type="xsd:string"/>
 <xsd:element name="any" type="Deployment:Any"/>
 <xsd:element name="typecode" type="Deployment:DataType"/>
 <xsd:element name="element" type="Deployment:DataValue"/>
 <xsd:element name="discriminator" type="Deployment:DataValue"/>
 <xsd:element name="value" type="Deployment:DataValue"/>
 <xsd:element name="boxedValue" type="Deployment:DataValue"/>
 <xsd:element name="member" type="Deployment:NamedValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="DataValue" type="Deployment:DataValue"/>
 <xsd:complexType name="EnumType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="member" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="EnumType" type="Deployment:EnumType"/>
 <xsd:complexType name="ObjrefType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ObjrefType" type="Deployment:ObjrefType"/>
150 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 <xsd:complexType name="BoundedStringType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bound" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="BoundedStringType"
type="Deployment:BoundedStringType"/>
 <xsd:complexType name="FixedType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="digits" type="xsd:string"/>
 <xsd:element name="scale" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="FixedType" type="Deployment:FixedType"/>
 <xsd:complexType name="ArrayType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="length" type="xsd:string"/>
 <xsd:element name="elementType" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ArrayType" type="Deployment:ArrayType"/>
 <xsd:complexType name="SequenceType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bound" type="xsd:string"/>
 <xsd:element name="elementType" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SequenceType" type="Deployment:SequenceType"/>
 <xsd:complexType name="AliasType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="elementType" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="AliasType" type="Deployment:AliasType"/>
Deployment and Configuration of Component-based Distributed Applications 151

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
 <xsd:complexType name="StructType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="member" type="Deployment:StructMemberType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="StructType" type="Deployment:StructType"/>
 <xsd:complexType name="StructMemberType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="StructMemberType" type="Deployment:StructMemberType"/>
 <xsd:complexType name="ValueType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="modifier" type="xsd:string"/>
 <xsd:element name="baseType" type="Deployment:DataType"/>
 <xsd:element name="member" type="Deployment:ValueMemberType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ValueType" type="Deployment:ValueType"/>
 <xsd:complexType name="ValueMemberType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="visibility" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ValueMemberType" type="Deployment:ValueMemberType"/>
 <xsd:complexType name="UnionType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="typeId" type="xsd:string"/>
 <xsd:element name="default" type="Deployment:UnionMemberType"/>
 <xsd:element name="discriminatorType" type="Deployment:DataType"/>
152 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 <xsd:element name="member" type="Deployment:UnionMemberType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="UnionType" type="Deployment:UnionType"/>
 <xsd:complexType name="UnionMemberType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element name="label" type="Deployment:DataValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="UnionMemberType" type="Deployment:UnionMemberType"/>
 <xsd:complexType name="NamedValue">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="value" type="Deployment:DataValue"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="NamedValue" type="Deployment:NamedValue"/>
 <xsd:complexType name="Bridge">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="connect" type="Deployment:Interconnect"/>
 <xsd:element name="resource" type="Deployment:Resource"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Bridge" type="Deployment:Bridge"/>
 <xsd:complexType name="Interconnect">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="connection" type="Deployment:Bridge"/>
 <xsd:element name="connect" type="Deployment:Node"/>
 <xsd:element name="resource" type="Deployment:Resource"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
Deployment and Configuration of Component-based Distributed Applications 153

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
 </xsd:complexType>
 <xsd:element name="Interconnect" type="Deployment:Interconnect"/>
 <xsd:complexType name="Node">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="connection" type="Deployment:Interconnect"/>
 <xsd:element name="sharedResource" type="Deployment:SharedResource"/>
 <xsd:element name="resource" type="Deployment:Resource"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Node" type="Deployment:Node"/>
 <xsd:complexType name="Resource">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Resource" type="Deployment:Resource"/>
 <xsd:complexType name="SharedResource">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="node" type="Deployment:Node"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SharedResource" type="Deployment:SharedResource"/>
 <xsd:complexType name="Domain">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="sharedResource" type="Deployment:SharedResource"/>
 <xsd:element name="node" type="Deployment:Node"/>
 <xsd:element name="interconnect" type="Deployment:Interconnect"/>
 <xsd:element name="bridge" type="Deployment:Bridge"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
154 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 </xsd:complexType>
 <xsd:element name="Domain" type="Deployment:Domain"/>
 <xsd:complexType name="PlanPropertyMapping">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="externalName" type="xsd:string"/>
 <xsd:element name="delegatesTo"
type="Deployment:PlanSubcomponentPropertyReference"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanPropertyMapping"
type="Deployment:PlanPropertyMapping"/>
 <xsd:complexType name="PlanSubcomponentPropertyReference">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="propertyName" type="xsd:string"/>
 <xsd:element name="instance"
type="Deployment:InstanceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanSubcomponentPropertyReference"
type="Deployment:PlanSubcomponentPropertyReference"/>
 <xsd:complexType name="PlanSubcomponentPortEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="portName" type="xsd:string"/>
 <xsd:element name="provider" type="xsd:string"/>
 <xsd:element name="kind" type="Deployment:CCMComponentPortKind"/>
 <xsd:element name="instance"
type="Deployment:InstanceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanSubcomponentPortEndpoint"
type="Deployment:PlanSubcomponentPortEndpoint"/>
 <xsd:complexType name="PlanConnectionDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element name="externalEndpoint"
type="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:element name="internalEndpoint"
type="Deployment:PlanSubcomponentPortEndpoint"/>
Deployment and Configuration of Component-based Distributed Applications 155

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
 <xsd:element name="externalReference"
type="Deployment:ExternalReferenceEndpoint"/>
 <xsd:element name="deployedResource"
type="Deployment:ConnectionResourceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PlanConnectionDescription"
type="Deployment:PlanConnectionDescription"/>
 <xsd:complexType name="InstanceDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="node" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="implementation"
type="Deployment:MonolithicDeploymentDescription"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="deployedResource"
type="Deployment:InstanceResourceDeploymentDescription"/>
 <xsd:element name="deployedSharedResource"
type="Deployment:InstanceResourceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="InstanceDeploymentDescription"
type="Deployment:InstanceDeploymentDescription"/>
 <xsd:complexType name="MonolithicDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
 <xsd:element name="artifact"
type="Deployment:ArtifactDeploymentDescription"/>
 <xsd:element name="execParameter" type="Deployment:Property"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="MonolithicDeploymentDescription"
type="Deployment:MonolithicDeploymentDescription"/>
 <xsd:complexType name="ArtifactDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="node" type="xsd:string"/>
 <xsd:element name="source" type="xsd:string"/>
156 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 <xsd:element name="execParameter" type="Deployment:Property"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element name="deployedResource"
type="Deployment:ResourceDeploymentDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ArtifactDeploymentDescription"
type="Deployment:ArtifactDeploymentDescription"/>
 <xsd:complexType name="DeploymentPlan">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="realizes"
type="Deployment:ComponentInterfaceDescription"/>
 <xsd:element name="implementation"
type="Deployment:MonolithicDeploymentDescription"/>
 <xsd:element name="instance"
type="Deployment:InstanceDeploymentDescription"/>
 <xsd:element name="connection"
type="Deployment:PlanConnectionDescription"/>
 <xsd:element name="externalProperty"
type="Deployment:PlanPropertyMapping"/>
 <xsd:element name="dependsOn"
type="Deployment:ImplementationDependency"/>
 <xsd:element name="artifact"
type="Deployment:ArtifactDeploymentDescription"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="DeploymentPlan" type="Deployment:DeploymentPlan"/>
 <xsd:complexType name="ResourceDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="requirementName" type="xsd:string"/>
 <xsd:element name="resourceName" type="xsd:string"/>
 <xsd:element name="resourceValue" type="Deployment:Any"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ResourceDeploymentDescription"
type="Deployment:ResourceDeploymentDescription"/>
 <xsd:complexType name="InstanceResourceDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="resourceUsage"
type="Deployment:ResourceUsageKind"/>
Deployment and Configuration of Component-based Distributed Applications 157

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
 <xsd:element name="requirementName" type="xsd:string"/>
 <xsd:element name="resourceName" type="xsd:string"/>
 <xsd:element name="resourceValue" type="Deployment:Any"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="InstanceResourceDeploymentDescription"
type="Deployment:InstanceResourceDeploymentDescription"/>
 <xsd:complexType name="ConnectionResourceDeploymentDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="targetName" type="xsd:string"/>
 <xsd:element name="requirementName" type="xsd:string"/>
 <xsd:element name="resourceName" type="xsd:string"/>
 <xsd:element name="resourceValue" type="Deployment:Any"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ConnectionResourceDeploymentDescription"
type="Deployment:ConnectionResourceDeploymentDescription"/>
 <xsd:complexType name="Capability">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Capability" type="Deployment:Capability"/>
 <xsd:complexType name="ComponentPropertyDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="type" type="Deployment:DataType"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPropertyDescription"
type="Deployment:ComponentPropertyDescription"/>
 <xsd:complexType name="ComponentPortDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="specificType" type="xsd:string"/>
 <xsd:element name="supportedType" type="xsd:string"/>
 <xsd:element name="provider" type="xsd:string"/>
158 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 <xsd:element name="exclusiveProvider" type="xsd:string"/>
 <xsd:element name="exclusiveUser" type="xsd:string"/>
 <xsd:element name="optional" type="xsd:string"/>
 <xsd:element name="kind" type="Deployment:CCMComponentPortKind"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPortDescription"
type="Deployment:ComponentPortDescription"/>
 <xsd:complexType name="ComponentInterfaceDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="specificType" type="xsd:string"/>
 <xsd:element name="supportedType" type="xsd:string"/>
 <xsd:element name="idlFile" type="xsd:string"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="port" type="Deployment:ComponentPortDescription"/>
 <xsd:element name="property"
type="Deployment:ComponentPropertyDescription"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentInterfaceDescription"
type="Deployment:ComponentInterfaceDescription"/>
 <xsd:complexType name="ImplementationArtifactDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="execParameter" type="Deployment:Property"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
 <xsd:element name="dependsOn"
type="Deployment:NamedImplementationArtifact"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ImplementationArtifactDescription"
type="Deployment:ImplementationArtifactDescription"/>
 <xsd:complexType name="MonolithicImplementationDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="execParameter" type="Deployment:Property"/>
 <xsd:element name="primaryArtifact"
Deployment and Configuration of Component-based Distributed Applications 159

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
type="Deployment:NamedImplementationArtifact"/>
 <xsd:element name="deployRequirement"
type="Deployment:ImplementationRequirement"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="MonolithicImplementationDescription"
type="Deployment:MonolithicImplementationDescription"/>
 <xsd:complexType name="AssemblyPropertyMapping">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="externalName" type="xsd:string"/>
 <xsd:element name="delegatesTo"
type="Deployment:SubcomponentPropertyReference"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="AssemblyPropertyMapping"
type="Deployment:AssemblyPropertyMapping"/>
 <xsd:complexType name="SubcomponentPropertyReference">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="propertyName" type="xsd:string"/>
 <xsd:element name="instance"
type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SubcomponentPropertyReference"
type="Deployment:SubcomponentPropertyReference"/>
 <xsd:complexType name="SubcomponentPortEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="portName" type="xsd:string"/>
 <xsd:element name="instance"
type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SubcomponentPortEndpoint"
type="Deployment:SubcomponentPortEndpoint"/>
 <xsd:complexType name="AssemblyConnectionDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="deployRequirement" type="Deployment:Requirement"/>
160 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 <xsd:element name="externalEndpoint"
type="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:element name="internalEndpoint"
type="Deployment:SubcomponentPortEndpoint"/>
 <xsd:element name="externalReference"
type="Deployment:ExternalReferenceEndpoint"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="AssemblyConnectionDescription"
type="Deployment:AssemblyConnectionDescription"/>
 <xsd:complexType name="SubcomponentInstantiationDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="package"
type="Deployment:ComponentPackageDescription"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="selectRequirement" type="Deployment:Requirement"/>
 <xsd:element name="reference"
type="Deployment:ComponentPackageReference"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SubcomponentInstantiationDescription"
type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:complexType name="ComponentAssemblyDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="instance"
type="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element name="connection"
type="Deployment:AssemblyConnectionDescription"/>
 <xsd:element name="externalProperty"
type="Deployment:AssemblyPropertyMapping"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentAssemblyDescription"
type="Deployment:ComponentAssemblyDescription"/>
 <xsd:complexType name="ComponentImplementationDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="implements"
type="Deployment:ComponentInterfaceDescription"/>
 <xsd:element name="assemblyImpl"
Deployment and Configuration of Component-based Distributed Applications 161

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
type="Deployment:ComponentAssemblyDescription"/>
 <xsd:element name="monolithicImpl"
type="Deployment:MonolithicImplementationDescription"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="capability" type="Deployment:Capability"/>
 <xsd:element name="dependsOn"
type="Deployment:ImplementationDependency"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentImplementationDescription"
type="Deployment:ComponentImplementationDescription"/>
 <xsd:complexType name="ComponentPackageReference">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="requiredUUID" type="xsd:string"/>
 <xsd:element name="requiredName" type="xsd:string"/>
 <xsd:element name="requiredType" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPackageReference"
type="Deployment:ComponentPackageReference"/>
 <xsd:complexType name="ComponentPackageDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="realizes"
type="Deployment:ComponentInterfaceDescription"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element name="implementation"
type="Deployment:PackagedComponentImplementation"/>
 <xsd:element name="infoProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentPackageDescription"
type="Deployment:ComponentPackageDescription"/>
 <xsd:complexType name="PackageConfiguration">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="label" type="xsd:string"/>
 <xsd:element name="UUID" type="xsd:string"/>
 <xsd:element name="specializedConfig"
type="Deployment:PackageConfiguration"/>
 <xsd:element name="basePackage"
162 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
type="Deployment:ComponentPackageDescription"/>
 <xsd:element name="reference"
type="Deployment:ComponentPackageReference"/>
 <xsd:element name="selectRequirement" type="Deployment:Requirement"/>
 <xsd:element name="configProperty" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PackageConfiguration"
type="Deployment:PackageConfiguration"/>
 <xsd:complexType name="PackagedComponentImplementation">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="referencedImplementation"
type="Deployment:ComponentImplementationDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="PackagedComponentImplementation"
type="Deployment:PackagedComponentImplementation"/>
 <xsd:complexType name="NamedImplementationArtifact">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="referencedArtifact"
type="Deployment:ImplementationArtifactDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="NamedImplementationArtifact"
type="Deployment:NamedImplementationArtifact"/>
 <xsd:complexType name="ImplementationRequirement">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="resourceUsage"
type="Deployment:ResourceUsageKind"/>
 <xsd:element name="resourcePort" type="xsd:string"/>
 <xsd:element name="componentPort" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ImplementationRequirement"
Deployment and Configuration of Component-based Distributed Applications 163

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
type="Deployment:ImplementationRequirement"/>
 <xsd:complexType name="RequirementSatisfier">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:SatisfierProperty"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="RequirementSatisfier"
type="Deployment:RequirementSatisfier"/>
 <xsd:complexType name="SatisfierProperty">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="kind" type="Deployment:SatisfierPropertyKind"/>
 <xsd:element name="value" type="Deployment:Any"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="SatisfierProperty"
type="Deployment:SatisfierProperty"/>
 <xsd:complexType name="Requirement">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="resourceType" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="property" type="Deployment:Property"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Requirement" type="Deployment:Requirement"/>
 <xsd:complexType name="Property">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="value" type="Deployment:Any"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Property" type="Deployment:Property"/>
 <xsd:complexType name="ExternalReferenceEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
164 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ExternalReferenceEndpoint"
type="Deployment:ExternalReferenceEndpoint"/>
 <xsd:complexType name="ComponentExternalPortEndpoint">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="portName" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ComponentExternalPortEndpoint"
type="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:complexType name="ImplementationDependency">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="requiredType" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ImplementationDependency"
type="Deployment:ImplementationDependency"/>
 <xsd:complexType name="TopLevelPackageDescription">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="package" type="Deployment:PackageConfiguration"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="TopLevelPackageDescription"
type="Deployment:TopLevelPackageDescription"/>
 <xsd:simpleType name="TCKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="tk_null"/>
 <xsd:enumeration value="tk_void"/>
 <xsd:enumeration value="tk_short"/>
 <xsd:enumeration value="tk_long"/>
 <xsd:enumeration value="tk_ushort"/>
 <xsd:enumeration value="tk_ulong"/>
 <xsd:enumeration value="tk_float"/>
 <xsd:enumeration value="tk_double"/>
 <xsd:enumeration value="tk_boolean"/>
 <xsd:enumeration value="tk_char"/>
 <xsd:enumeration value="tk_octet"/>
 <xsd:enumeration value="tk_any"/>
 <xsd:enumeration value="tk_TypeCode"/>
 <xsd:enumeration value="tk_Principal"/>
Deployment and Configuration of Component-based Distributed Applications 165

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
 <xsd:enumeration value="tk_objref"/>
 <xsd:enumeration value="tk_struct"/>
 <xsd:enumeration value="tk_union"/>
 <xsd:enumeration value="tk_enum"/>
 <xsd:enumeration value="tk_string"/>
 <xsd:enumeration value="tk_sequence"/>
 <xsd:enumeration value="tk_array"/>
 <xsd:enumeration value="tk_alias"/>
 <xsd:enumeration value="tk_except"/>
 <xsd:enumeration value="tk_longlong"/>
 <xsd:enumeration value="tk_ulonglong"/>
 <xsd:enumeration value="tk_longdouble"/>
 <xsd:enumeration value="tk_wchar"/>
 <xsd:enumeration value="tk_wstring"/>
 <xsd:enumeration value="tk_wfixed"/>
 <xsd:enumeration value="tk_value"/>
 <xsd:enumeration value="tk_value_box"/>
 <xsd:enumeration value="tk_native"/>
 <xsd:enumeration value="tk_abstract_interface"/>
 <xsd:enumeration value="tk_local_interface"/>
 <xsd:enumeration value="tk_component"/>
 <xsd:enumeration value="tk_home"/>
 <xsd:enumeration value="tk_event"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="ResourceUsageKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="None"/>
 <xsd:enumeration value="InstanceUsesResource"/>
 <xsd:enumeration value="ResourceUsesInstance"/>
 <xsd:enumeration value="PortUsesResource"/>
 <xsd:enumeration value="ResourceUsesPort"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="CCMComponentPortKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Facet"/>
 <xsd:enumeration value="SimplexReceptacle"/>
 <xsd:enumeration value="MultiplexReceptacle"/>
 <xsd:enumeration value="EventEmitter"/>
 <xsd:enumeration value="EventPublisher"/>
 <xsd:enumeration value="EventConsumer"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="SatisfierPropertyKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Quantity"/>
 <xsd:enumeration value="Capacity"/>
 <xsd:enumeration value="Minimum"/>
 <xsd:enumeration value="Maximum"/>
 <xsd:enumeration value="Attribute"/>
166 Deployment and Configuration of Component-based Distributed Applications

© OMG Working Draft

B XML Schema for CCM B XML Schema for CCM
 <xsd:enumeration value="Selection"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="Deployment">
 <xsd:complexType>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="Deployment:Any"/>
 <xsd:element ref="Deployment:DataType"/>
 <xsd:element ref="Deployment:DataValue"/>
 <xsd:element ref="Deployment:EnumType"/>
 <xsd:element ref="Deployment:ObjrefType"/>
 <xsd:element ref="Deployment:BoundedStringType"/>
 <xsd:element ref="Deployment:FixedType"/>
 <xsd:element ref="Deployment:ArrayType"/>
 <xsd:element ref="Deployment:SequenceType"/>
 <xsd:element ref="Deployment:AliasType"/>
 <xsd:element ref="Deployment:StructType"/>
 <xsd:element ref="Deployment:StructMemberType"/>
 <xsd:element ref="Deployment:ValueType"/>
 <xsd:element ref="Deployment:ValueMemberType"/>
 <xsd:element ref="Deployment:UnionType"/>
 <xsd:element ref="Deployment:UnionMemberType"/>
 <xsd:element ref="Deployment:NamedValue"/>
 <xsd:element ref="Deployment:Bridge"/>
 <xsd:element ref="Deployment:Interconnect"/>
 <xsd:element ref="Deployment:Node"/>
 <xsd:element ref="Deployment:Resource"/>
 <xsd:element ref="Deployment:SharedResource"/>
 <xsd:element ref="Deployment:Domain"/>
 <xsd:element ref="Deployment:PlanPropertyMapping"/>
 <xsd:element ref="Deployment:PlanSubcomponentPropertyReference"/>
 <xsd:element ref="Deployment:PlanSubcomponentPortEndpoint"/>
 <xsd:element ref="Deployment:PlanConnectionDescription"/>
 <xsd:element ref="Deployment:InstanceDeploymentDescription"/>
 <xsd:element ref="Deployment:MonolithicDeploymentDescription"/>
 <xsd:element ref="Deployment:ArtifactDeploymentDescription"/>
 <xsd:element ref="Deployment:DeploymentPlan"/>
 <xsd:element ref="Deployment:ResourceDeploymentDescription"/>
 <xsd:element ref="Deployment:InstanceResourceDeploymentDescription"/>
 <xsd:element
ref="Deployment:ConnectionResourceDeploymentDescription"/>
 <xsd:element ref="Deployment:Capability"/>
 <xsd:element ref="Deployment:ComponentPropertyDescription"/>
 <xsd:element ref="Deployment:ComponentPortDescription"/>
 <xsd:element ref="Deployment:ComponentInterfaceDescription"/>
 <xsd:element ref="Deployment:ImplementationArtifactDescription"/>
 <xsd:element ref="Deployment:MonolithicImplementationDescription"/>
 <xsd:element ref="Deployment:AssemblyPropertyMapping"/>
 <xsd:element ref="Deployment:SubcomponentPropertyReference"/>
 <xsd:element ref="Deployment:SubcomponentPortEndpoint"/>
 <xsd:element ref="Deployment:AssemblyConnectionDescription"/>
Deployment and Configuration of Component-based Distributed Applications 167

Working Draft © OMG

B XML Schema for CCM B XML Schema for CCM
 <xsd:element ref="Deployment:SubcomponentInstantiationDescription"/>
 <xsd:element ref="Deployment:ComponentAssemblyDescription"/>
 <xsd:element ref="Deployment:ComponentImplementationDescription"/>
 <xsd:element ref="Deployment:ComponentPackageReference"/>
 <xsd:element ref="Deployment:ComponentPackageDescription"/>
 <xsd:element ref="Deployment:PackageConfiguration"/>
 <xsd:element ref="Deployment:PackagedComponentImplementation"/>
 <xsd:element ref="Deployment:NamedImplementationArtifact"/>
 <xsd:element ref="Deployment:ImplementationRequirement"/>
 <xsd:element ref="Deployment:RequirementSatisfier"/>
 <xsd:element ref="Deployment:SatisfierProperty"/>
 <xsd:element ref="Deployment:Requirement"/>
 <xsd:element ref="Deployment:Property"/>
 <xsd:element ref="Deployment:ExternalReferenceEndpoint"/>
 <xsd:element ref="Deployment:ComponentExternalPortEndpoint"/>
 <xsd:element ref="Deployment:ImplementationDependency"/>
 <xsd:element ref="Deployment:TopLevelPackageDescription"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id" use="optional"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
168 Deployment and Configuration of Component-based Distributed Applications

	1 Introduction
	1.1 Component-Based Applications
	1.2 The Target Environment
	1.3 The Deployment Process
	1.3.1 Preconditions for the Process of Deployment
	1.3.2 Installation
	1.3.3 Configuration
	1.3.4 Planning
	1.3.5 Preparation
	1.3.6 Launch
	1.3.7 All at Once, or Step by Step

	1.4 Relationship to the MDA

	2 Scope
	3 Conformance
	3.1 Summary of optional versus mandatory interfaces
	3.2 Proposed conformance points
	3.3 Changes or extensions required to adopted OMG specifications
	3.4 Complete IDL definitions

	4 References
	4.1 Normative References
	4.2 Non-Normative References

	5 Terms and Definitions
	5.1 Artifact [UML2S]
	5.2 Bridge
	5.3 Capability
	5.4 Component [UML2S]
	5.5 Component Assembly
	5.6 Component Implementation
	5.7 Component Interface
	5.8 Component Package
	5.9 Configuration
	5.10 Deployment Plan
	5.11 Domain
	5.12 Installation
	5.13 Interconnect
	5.14 Interface [UML2S]
	5.15 Implementation Artifact
	5.16 Launch
	5.17 Metadata
	5.18 Monolithic Implementation
	5.19 Node [UML2S]
	5.20 Planning
	5.21 Preparation
	5.22 Repository
	5.23 Requirement
	5.24 Resource
	5.25 Shared Resource

	6 Platform Independent Model
	6.1 Table of Contents
	6.1.1 Model Overview
	6.1.2 Class Overview

	6.2 Segmentation of the Model
	6.2.1 Dimension #1: Data Models vs. Management (or Runtime) Models.
	6.2.2 Dimension #2: Component Software vs. Target vs. Execution
	6.2.3 Summary of Model Segmentation Dimensions

	6.3 Model Diagram Conventions
	6.4 Component Data Model
	6.4.1 Component Data Model Overview
	6.4.2 PackageConfiguration
	6.4.3 ComponentPackageDescription
	6.4.4 PackagedComponentImplementation
	6.4.5 ComponentImplementationDescription
	6.4.6 ComponentAssemblyDescription
	6.4.7 SubcomponentInstantiationDescription
	6.4.8 ComponentPackageReference
	6.4.9 AssemblyConnectionDescription
	6.4.10 SubcomponentPortEndpoint
	6.4.11 AssemblyPropertyMapping
	6.4.12 SubcomponentPropertyReference
	6.4.13 MonolithicImplementationDescription
	6.4.14 NamedImplementationArtifact
	6.4.15 ImplementationArtifactDescription
	6.4.16 ComponentInterfaceDescription
	6.4.17 ComponentPortDescription
	6.4.18 ComponentPropertyDescription
	6.4.19 Capability
	6.4.20 ImplementationRequirement

	6.5 Component Management Model
	6.5.1 RepositoryManager

	6.6 Target Data Model
	6.6.1 Domain
	6.6.2 Node
	6.6.3 Interconnect
	6.6.4 Bridge
	6.6.5 Resource
	6.6.6 SharedResource

	6.7 Target Management Model
	6.7.1 TargetManager
	6.7.2 DomainUpdateKind

	6.8 Execution Data Model
	6.8.1 DeploymentPlan
	6.8.2 ArtifactDeploymentDescription
	6.8.3 MonolithicDeploymentDescription
	6.8.4 InstanceDeploymentDescription
	6.8.5 PlanConnectionDescription
	6.8.6 PlanSubcomponentPortEndpoint
	6.8.7 PlanPropertyMapping
	6.8.8 PlanSubcomponentPropertyReference
	6.8.9 ResourceDeploymentDescription
	6.8.10 InstanceResourceDeploymentDescription
	6.8.11 ConnectionResourceDeploymentDescription

	6.9 Execution Management Model
	6.9.1 Execution Management Model Overview
	6.9.2 ExecutionManager
	6.9.3 NodeManager
	6.9.4 ApplicationManager
	6.9.5 DomainApplicationManager
	6.9.6 NodeApplicationManager
	6.9.7 Application
	6.9.8 DomainApplication
	6.9.9 NodeApplication
	6.9.10 Logger
	6.9.11 Connection
	6.9.12 Endpoint

	6.10 Common Elements
	6.10.1 ImplementationDependency
	6.10.2 ComponentExternalPortEndpoint
	6.10.3 ExternalReferenceEndpoint
	6.10.4 RequirementSatisfier
	6.10.5 SatisfierProperty
	6.10.6 SatisfierPropertyKind
	6.10.7 Requirement
	6.10.8 Property
	6.10.9 DataType
	6.10.10 Any

	6.11 Exceptions
	6.11.1 PackageError
	6.11.2 NameExists
	6.11.3 NoSuchName
	6.11.4 ResourceNotAvailable
	6.11.5 PlanError
	6.11.6 StartError
	6.11.7 StopError
	6.11.8 InvalidProperty
	6.11.9 InvalidConnection
	6.11.10 InvalidReference

	6.12 Relations to Other Standards
	6.12.1 Component
	6.12.2 ImplementationArtifact

	7 Actor
	7.1 Development Actors Overview
	7.2 Specifier
	7.3 Developer
	7.4 Assembler
	7.5 Packager
	7.6 Domain Administrator
	7.7 Deployment Actors Overview
	7.8 Repository Administrator
	7.9 Planner
	7.9.1 Finding Valid Deployments
	7.9.2 Matching Selection Requirements
	7.9.3 Matching Implementation Requirements
	7.9.4 Matching Connection Requirements
	7.9.5 Matching a Resource against a Requirement

	7.10 Executor

	8 UML Profile for D&C Tool Support
	8.1 Structure of the Profile
	8.2 Package Components
	8.2.1 Capability
	8.2.2 Component (Stereotype)
	8.2.3 ComponentAssembly (Stereotype)
	8.2.4 ComponentImplementation (Stereotype)
	8.2.5 ExternalReference (Stereotype)
	8.2.6 PortConnector (Stereotype)
	8.2.7 PropertyConnector (Stereotype)
	8.2.8 MonolithicImplementation (Stereotype)
	8.2.9 Port (Stereotype)
	8.2.10 Property (Stereotype)
	8.2.11 Requirement

	8.3 Package Targets
	8.3.1 Bridge (Stereotype)
	8.3.2 CommunicationPath (Stereotype)
	8.3.3 Domain (Stereotype)
	8.3.4 Interconnect (Stereotype)
	8.3.5 Node (Stereotype)
	8.3.6 Resource (Stereotype)
	8.3.7 SharedResource (Stereotype)

	9 PSM for CCM
	9.1 Introduction
	9.2 Definition of Meta-Concepts
	9.2.1 Component
	9.2.2 ImplementationArtifact
	9.2.3 Package

	9.3 PIM to PSM for CCM Transformation
	9.3.1 ComponentInterfaceDescription
	9.3.2 PlanSubcomponentPortEndpoint
	9.3.3 Application
	9.3.4 RepositoryManager
	9.3.5 SatisfierProperty

	9.4 PSM for CCM to PSM for CCM for IDL Transformation
	9.4.1 Generic Transformation Rules
	9.4.2 Special Transformation Rules
	9.4.3 Sequence of String
	9.4.4 Sequence of unsigned long
	9.4.5 Endpoint
	9.4.6 DataType
	9.4.7 Any
	9.4.8 Primitive Types
	9.4.9 Mapping to IDL

	9.5 PSM for CCM to PSM for CCM for XML Transformation
	9.5.1 Generic Transformation Rules
	9.5.2 Special Transformation Rules
	9.5.3 ToplevelPackageDescription
	9.5.4 Any
	9.5.5 DataType
	9.5.6 DataValue
	9.5.7 Others
	9.5.8 Transformation Exceptions and Extensions
	9.5.9 Interpretation of Relative References
	9.5.10 Mapping to XML

	9.6 Miscellaneous
	9.6.1 Entry Points
	9.6.2 Homes
	9.6.3 Valuetype Factories
	9.6.4 Discovery and Initialization
	9.6.5 Location
	9.6.6 Segmentation

	9.7 Impact on the CCM Specification
	9.8 Migration Issues
	9.8.1 Component Implementations
	9.8.2 Component and Assembly Packages and Metadata
	9.8.3 Component Deployment Systems

	9.9 Metadata Vocabulary
	9.9.1 Implementation Selection Requirements
	9.9.2 Monolithic Implementation Resource Requirements

	10 Mapping to XML Schema
	A IDL for CCM
	B XML Schema for CCM

