
1

IPv6

The Next Generation Internet Protocol

Ing. Carlos Barcenilla / Universidad Tecnológica Nacional Facultad Regional La Plata
c.a.barcenilla@ieee.org

2

IPv6 IPv6 Motivations

! Address space depletion.

! Router table explosion.

! Other protocol constraints.

! Fragmentation Inefficiency
! Control (ICMP useless messages)
! Checksums

2

3

IPv6 Technical Criteria for IPng

! Scale
! Topological flexibility
! Performance
! Robust Service
! Straightforward transition
! Media independence
! Unreliable Datagram

Service
! Configuration,

Administration and
Operation

! Secure Operation

! Unique Naming
! Access and Documentation
! Multicast
! Extensibility
! Network Service
! Mobility
! Control Protocol
! Private Networks

4

IPv6 Address Space Depletion

! IPv4 Address = 32 bits.

! Class B addresses are exhausted.

! Short term solution: Supernetting of class C addresses.

! One network receives several contiguous class C addresses (8*n

class C networks).

! Requires CIDR.

! Long term solution: IPv6 Address = 128 bits

! Thousands of addresses per square meter of the earth’s surface.

3

5

IPv6 Router Table Explosion

! Routing requires tables which have grown unmanageably
large (more than 50000 entries at the core).

! To solve the problem under IPv4 a technique known as
Classless Interdomain Routing is being used (CIDR).

! IPv6 addressing is Classless by nature.

6

IPv6 Changes from IPv4

! Expanded addressing capabilities.

! Address size: 128 bits.

! Improved scalability of multicast (scope field).

! Anycast addresses.

! No more broadcast addresses.

! Header format.

! Some IPv4 fields were dropped or made optional.

! Improved support for extensions an options.

! Flow labeling (QoS/real-time).

! Authentication and privacy capabilities.

4

7

IPv6 IPv6 Terminology

! Node: A device that implements IPv6.
! Router: A node that forwards IPv6 packets not explicitly addressed to

itself.
! Host: any node that is not a router.
! Upper layer: a protocol layer immediately above IPv6 (e.g. TCP, UDP,

ICMP, OSPF and so on.)
! Link: A communication facility or medium over which nodes can

communicate at the link level (e.g. Ethernet, Token Ring, Frame Relay,
ATM and so on.)

! Neighbors: nodes attached to the same link.
! Interface: a node’s attachment to a link.
! Address: an IPv6-layer identifier for an interface or a set of interfaces.
! Packet: an IPv6 header plus payload.
! Link MTU: the maximum transmission unit (max. packet size in

octects) that can be conveyed over a link.
! Path MTU: The minimum link MTU of all the links in a path between a

source node and a destination node.

8

IPv6 IPv4 Header Format

Options

IP Destination Address

IP Source Address

IP Header ChecksumProtocolTime to Live

Fragment OffsetFlagsIdentification

Total LengthTOSIHLVer.

3116840

Removed in IPv6 Present in IPv6

5

9

IPv6 IPv6 Header Format

Destination Address

Source Address

Hop LimitNext HeaderPayload length

Flow LabelTraffic ClassVersion

!Next Header: 8-bit selector.
!Hop-Limit: 8-bit unsigned integer.
!Source Address: 128-bit address.
!Destination Address: 128-bit address.

!Version: 4-bit IP version number (6).
!Traffic Class: 8-bit traffic class field.
!Flow Label: 20-bit flow label.
!Payload Length: 16-bit unsigned integer.

10

IPv6 Extension Headers

Fragment of TCP
Header + Data

Fragment Header

Next Header =
TCP

Routing Header

Next Header =
Fragment

IPv6 header

Next Header =
Routing

TCP Header + Data

Routing Header

Next Header =
TCP

IPv6 header

Next Header =
Routing

TCP Header + Data

IPv6 header

Next Header =
TCP

6

11

IPv6 Extension Headers

! Extension headers are not examined or processed by any node along a
packet’s delivery path, until the packet reaches the node (or nodes in
case of multicast).

! The exception is the hop-by-hop header which carries info that must
be examined and processed by every node along the path, including
the source and destination nodes.

12

IPv6 Extension Headers

! Extension headers must be processed strictly in the order they appear
in the packet.

! If a node does not recognize a Next header value, it should discard the
packet and send an ICMP Parameter Problem message.

! Each extension header should occur at most once, except for the
destination options header which should occur at most twice.

7

13

IPv6 Extension Headers

! Hop-by-hop options.

! Routing.

! Fragment.

! Destination options.

! Authentication.

! Encapsulating security payload.

14

IPv6
Hop-by-Hop and Destination Options Headers:
Options

! The Hop-by-Hop Options header and the Destination Options header
carry a variable number of type-length-value (TLV) encoded “options”.

Option DataOpt Data LenOption Type

!Option Type: 8-bit identifier of the type of option.
!Opt Data Len: 8-bit unsigned integer.
!Option Data: Variable-length field.

! The sequence of options within a header must be processed strictly in
the order they appear in the header.

8

15

IPv6
Hop-by-Hop and Destination Options Headers:
Options

! For hop-by-hop and destination options headers.

! The two high order bits of option type means:
! 00 – Skip over this option.
! 01 – Discard the packet.
! 10 – Discard the packet and send an ICMP Parameter Problem message.
! 11 – Discard the packet and send an ICMP Parameter Problem message if the

destination address was not multicast.

! The third highest-order bit specifies whether or not the Option Data
can change en-route:
! 0 – Option Data does not change en-route.
! 1 – Option Data may change en-route.

! There are alignment restrictions.

16

IPv6 Hop-by-hop Options Header

! Carries additional information that must be examined by every node
along a packet’s delivery path.

Options

Hdr Ext LenNext Header

!Next Header: 8-bit selector.

!Hdr Ext Len: 8-bit unsigned integer (Length of the header not including the first 8 octets).

!Options: variable-length field (contains one or more TLV-encoded options, the length of
the complete header must be multiple of 8 octets long).

!The only options defined in RFC2460 are Pad1 and PadN (for alignment).

9

17

IPv6
Hop-by-hop Option
Router Alert Option

! Alerts transit routers to more closely examine the contents of an IP
datagram.

! It is useful for situations where a datagram addressed to a particular
destination contains information that may require special processing by
routers along the path.

!Option Type: 5, means that nodes not recognizing this option type should skip over it and
continue processing the header and that the option must not change en route.

!Opt Data Len: 2 bytes.

!Value:
! 0: Datagram contains a Multicast Listener Discovery message.
! 1: Datagram contains RSVP message.
! 2: Datagram contains an Active Networks message.

Value
Opt Data Len
00000010 (2)

Option Type
000 00101(5)

18

IPv6 Destination Options Header

! This header is used to carry optional information that need be
examined only by a packet’s destination node(s).

Options

Hdr Ext LenNext Header

!Next Header: 8-bit selector.

!Hdr Ext Len: 8-bit unsigned integer (Length of the header not including the first 8 octets).

!Options: variable-length field (contains one or more TLV-encoded options, the length of
the complete header must be multiple of 8 octets long).

!The only options defined in RFC2460 are Pad1 and PadN (for alignment).

10

19

IPv6 Routing Header

! Used by an IPv6 source to list one or more intermediate nodes to be
“visited” on the way to a packet’s destination.

type-specific data

Segments LeftRouting TypeHdr Ext LenNext Header

!Next Header: 8-bit selector.

!Hdr Ext Len: 8-bit unsigned integer (Length of the header not including the first 8 octects).

!Routing Type: 8-bit identifier of a particular Routing header variant.

!Segments Left: 8-bit unsigned integer. Number of route segments remaining.

!Type-specific data: Variable-length field, of format determined by the Routing Type, and of
length such that the complete Routing header is an integer multiple of 8 octects long.

20

IPv6 Type 0 Routing Header

Address[n]

Address[2]

Address[1]

Reserved

Segments LeftRouting Type=0Hdr Ext LenNext Header

!Routing Type: 0.

!Segments Left: 8-bit unsigned integer. Number of route segments remaining, I.e., number
of explicitly listed intermediate nodes still to be visited before reaching the final destination.

!Reserved: 32-bit reserved field. Initialized to zero for transmission; ignored on reception.

!Address[1..n]: Vector of 128-bit addresses, numbered 1 to n.

11

21

IPv6 Routing Header Example

S

D

Src Address = S
Dst Address = I1
Hdr Ext Len = 6

Segments Left = 3
Address[1] = I2
Address[2] = I3
Address[3] = D

I1

I2

I3

Src Address = S
Dst Address = I2
Hdr Ext Len = 6

Segments Left = 2
Address[1] = I1
Address[2] = I3
Address[3] = D

Src Address = S
Dst Address = I3
Hdr Ext Len = 6

Segments Left = 1
Address[1] = I1
Address[2] = I2
Address[3] = D

Src Address = S
Dst Address = D
Hdr Ext Len = 6

Segments Left = 0
Address[1] = I1
Address[2] = I2
Address[3] = I3

22

IPv6 Type 0 Routing Header Processing Algorithm

if Segments Left = 0 { process next header in the packet }
else {

n=Hdr Ext Len / 2 (number of addresses in the Routing Header)
Segments Left = Segments Left – 1
i = n - Segments Left (i: index of next address to be visited)
swap the Destination Address and Address[i]
if Hop Limit is <= 1 { send ICMP Time Exceeded}
else {

Hop Limit = Hop Limit – 1
resubmit the packet to the IPv6 module for transmission
to the new destination

}
}

! RFC2460 contains a more detailed algorithm.

12

23

IPv6 Fragmentation

! The original, unfragmented packet consists of two parts.

Fragmentable PartUnfragmentable Part

! The Unfragmentable Part consists of the IPv6 header plus any
extension headers that must be processed by nodes en route to the
destination.

! The Fragmentable Part consists of the rest of the packet.
! The Fragmentable Part of the original packet is divided into

fragments, each, except possibly the last one, being an integer
multiple of 8 octets long.

! Original packet:

last
fragment

second
fragmentfirst

fragmentUnfragmentable Part

24

IPv6 Fragmentation

! Fragment packets:

first fragmentFragment
Header

Unfragmentable
Part

second fragmentFragment
Header

Unfragmentable
Part

last fragmentFragment
Header

Unfragmentable
Part

º
º
º

! Each fragment packet is composed of:
! The Unfragmentable Part of the original packet.
! A Fragment header.
! The fragment itself.

! The lengths of the fragments must be chosen such that the resulting
fragment packets fit within the path MTU.

13

25

IPv6 Fragment Header

! Is used by a source to send a packet larger than the path MTU to its
destination. Unlike IPv4, fragmentation is only performed by source
nodes.

Identification

MResFragment OffsetReservedNext Header

!Next Header: 8-bit selector.

!Reserved: 8-bit reserved field.

!Fragment Offset: 13-bit unsigned integer. The offset, in 8-octect units, of the data
following this header, relative to the start of the Fragmentable Part of the original packet.

!Res: 2-bit reserved field.

!M flag: 1 = more fragments; 0 = last fragment.

!Identification: 32 bits. The Identification must be different than any other fragmented
packet sent recently with the same Source Address and Destination Address.

26

IPv6 Reassembly

! At the destination, fragment packets are reassembled into their
original, unfragmented form:

Fragmentable PartUnfragmentable Part

! An original packet is reassembled only from fragment packets that
have the same Source Address, Destination Address, and Fragment
Identification.

! The Unfragmentable Part of the reassembled packet consists of all
headers up to, but not including, the Fragment Header of the first
fragment packet.

! The Fragmentable Part of the reassembled packet is constructed from
the fragments following the Fragment headers in each of the
fragment packets.

14

27

IPv6 IPv4 vs. IPv6 Fragmentation and Reassembly

R1

A

MTU=1500 MTU=1280

B

MTU=1500

R2

R1

A

MTU=1500 MTU=1280

B

MTU=1500

R2

IHDATA (1400 bytes) IH
DATA

(700 bytes)

IH
DATA

(700 bytes)
FH

IH
DATA

(700 bytes)
IH

DATA
(700 bytes)

IH
DATA

(700 bytes)

IHDATA (1400 bytes) IHDATA (1400 bytes)

IHDATA (1400 bytes)

IH
DATA

(700 bytes)
FH IH

DATA
(700 bytes)

FH IH
DATA

(700 bytes)
FH IH

DATA
(700 bytes)

FH IH
DATA

(700 bytes)
FH

IHDATA (1400 bytes)

! IPv4:

! IPv6:

Path MTU = 1280

28

IPv6 Packet Size

! IPv6 requires that every link in the internet have an MTU of 1280
octets or greater.

! From each link to which a node is directly attached, the node must be
able to accept packets as large as that link’s MTU.

! It is strongly recommended that IPv6 nodes implement Path MTU
Discovery, in order to discover and take advantage of path MTUs
greater than 1280 octets.

! In order to send a packet larger than a path’s MTU, a node may use
the IPv6 Fragment header.

! A node must be able to accept a fragmented packet that, after
reassembly, is as large as 1500 octets.

15

29

IPv6 Flow Labels

! The 20-bit Flow Label in the IPv6 header may be used by a source to
label sequences of packets for which it requests special handling by
the IPv6 routers, such as non-default quality of service or “real-time”
service.

! This aspect of IPv6 is still experimental, and may change.

! A flow is a sequence of packets sent from a particular source to a
particular destination for which the source desires special handling by
the intervening routers.

! There may be multiple active flows from a source to a destination, as
well as traffic that is not associated with any flow.

! There is no requirement that all, or even most, packets belong to
flows.

30

IPv6 Traffic Classes

! The 8-bit Traffic Class field in the IPv6 header is available for use by
originating nodes and/or forwarding routers to identify and
distinguish between different classes or priorities of IPv6 packets
(e.g. “differentiated services”).

! General requirements:
! The service interface to the IPv6 service within a node must provide a

means for an upper-layer protocol to supply the value of the Traffic
Class bits.

! Nodes that support a specific use of the Traffic Class bits are permitted
to change the value of those bits in packets that they originate, forward,
or receive.

! An upper-layer protocol must not assume that the value of the Traffic-
Class bits in a received packet are the same as the value sent by the
packet’s source.

16

31

IPv6 Upper-Layer Checksums

! Any transport or other upper-layer protocol that includes the addresses
from the IP header in its checksum computation must be modified for use
over IPv6. The TCP/UDP “pseudo-header” for IPv6 is:

Next HeaderZero

Upper-Layer Packet Length

Destination Address

Source Address

32

IPv6 Upper-Layer Checksums

! If the IPv6 packet contains a Routing Header, the Destination Address
in the pseudo-header is that of the final destination.

! The Next Header in the pseudo-header identifies the upper-layer
protocol (e.g., 6 for TCP, or 17 for UDP).

! The Upper-Layer Packet Length in the pseudo-header is the length of
the upper-layer header and data.

! Unlike IPv4, when UDP packets are originated by an IPv6 node, the
UDP checksum is not optional.

! The IPv6 version of ICMP includes this pseudo-header in its checksum
computation.

17

33

IPv6 Maximum Packet Lifetime

! Unlike IPv4, IPv6 nodes are not required to enforce maximum packet
lifetime.

! That is the reason the IPv4 “Time to Live” field was renamed “Hop
Limit” in IPv6.

34

IPv6 Maximum Upper-Layer Payload Size

! When computing the maximum payload size for upper-layer data, an
upper-layer protocol must take into account the larger size of the IPv6
header relative to the IPv4 header.

! For example TCP MSS:

! IPv4: MSS = Max. Packet Size – 40
(20 octets for the minimum-length IPv4 header and 20 octets for the minimum-length

TCP header)

! IPv6: MSS = Max. Packet Size – 60
(40 octets for the minimum-length IPv6 header and 20 octets for the minimum-length

TCP header)

18

35

IPv6 Addressing Model

! IPv6 addresses of all types are assigned to interfaces, not nodes.

! All interfaces are required to have at least one link-local unicast
address.

! A single interface may be assigned multiple ipv6 addresses of any type
or scope.

! A subnet prefix is associated with one link. Multiple subnet prefixes
may be assigned to the same link.

! Address size has been expanded to 128 bits.

! Total: 340.282.366.920.938.463.463.374.607.431.768.211.456
addresses.

Link-LocalSite-LocalGlobal
! Address scope can be: link-local,

site-local or global.

36

IPv6 Types of addresses

! Unicast.
! An identifier for a single interface. A packet sent to a

unicast address is delivered to the interface
identified by that address.

! Anycast.
! An Identifier for a set of interfaces. A packet sent to

an anycast address is delivered to one of the
interfaces identified by that address (the “nearest”).

! Multicast.
! An identifier for a set of interfaces. A packet sent to

a multicast address is delivered to all interfaces
identified by that address.

! There are no broadcast addresses in IPv6.

19

37

IPv6 Unicast

R1

S

R2

R

38

IPv6 Multicast

R1

R2

G

G

G

20

39

IPv6 Anycast

Anycast
Group

R1

R2

40

IPv6 Text Representation of Addresses

! Preferred form: x:x:x:x:x:x:x:x
x: hex. Values of the eight 16 bit pieces of the address.

Ex.: FEDC:ba98:7654:3210:FEDC:ba98:7654:3210
1080:0:0:0:8:800:200c:417a.

! Syntax for compress the zeros:
! “::” Indicate multiple groups of 16 bit zeros.
! The “::” can only appear once in an address.

Ex.:1080:0:0:0:8:800:200C:417A 1080::8:800:200C:417A
FF01:0:0:0:0:0:0:101 FF01::101
0:0:0:0:0:0:0:1 ::1
0:0:0:0:0:0:0:0 ::

21

41

IPv6 Text Representation of Addresses

! Mixed IPv4 and IPv6 form

x:x:x:x:x:x:d.d.d.d
x: hex d: decimal

Ex.:
0:0:0:0:0:0:13.1.68.3 ::13.1.68.3
0:0:0:0:0:FFFF:129.144.52.38 ::FFFF:129.244.52.38

42

IPv6 Text Representation of Address Prefixes

IPv6-address/prefix-length

! Where:
! IPv6-address: an IPv6 address in any notation.
! Prefix-length: specifies how many of the leftmost contiguous bits of

the address comprise the prefix.

! Examples:
! Node address: 12AB:0:0:CD31:123:4567:89AB:CDEF
! Subnet: 12AB:0:0:CD30::/60
! Node + Subnet: 12AB:0:0:CD31:123:4567:89AB:CDEF/60

22

43

IPv6 Address Type Representation

1/8100Unassigned
1/8101Unassigned

1/2561111 1111Multicast Addresses
1/10241111 1110 11Site-Local Unicast Addresses
1/10241111 1110 10Link-Local Unicast Addresses
1/5121111 1110 0Unassigned
1/1281111 110Unassigned
1/641111 10Unassigned
1/321111 0Unassigned
1/161110Unassigned
1/8110Unassigned

1/8011Unassigned
1/8010Unassigned
1/8001Aggregatable Global Unicast Addresses
1/160001Unassigned
1/320000 1Unassigned
1/1280000 011Unassigned
1/1280000 010Reserved for IPX Allocation
1/1280000 001Reserved for NSAP Allocation
1/2560000 0001Unassigned
1/2560000 0000Reserved

Fraction of Address SpacePrefix (binary)Allocation

44

IPv6 Address Type Representation

! Unicast addresses are distinguished from multicast addresses by the
value of the high-order octet of the address: a value of FF identifies a
multicast address.

! Anycast addresses are taken from the unicast address space, and are
not syntactically distinguishable.

23

45

IPv6 Unicast Addresses

! Aggregatable with contiguous bitwise mask (like IPv4 CIDR).

! Forms:

! Global aggregatable unicast address.
! NSAP address.
! IPX address.
! Site-local.
! Link-local.
! IPv4-capable host address.

46

IPv6 Unicast Addresses

! At a minimum, a node may consider that unicast addresses have
not internal structure.

node address

128 bits

! A slightly sophisticated host may additionally be aware of
subnet prefix(es) for the link(s) it is attached to.

128-n bits

Interface IDSubnet prefix

n bits

! Still more sophisticated hosts may be aware of other
hierarchical boundaries in the unicast address.

24

47

IPv6 Interface Identifiers

! Interface identifiers in IPv6 unicast addresses

! Used to identify interfaces on a link.

! Are required to be unique on that link.

! In many cases an interface’s ID will be the same as that interface’s
link layer address.

! The same interface identifier may be used on multiple interfaces on a
single node.

48

IPv6 The Unspecified Address

! The address 0:0:0:0:0:0:0:0 is called the unspecified address.

! It indicates the absence of an address.

! Ex.: In the Source Address field do any IPv6 packets sent by an
initializing host before it has learnt its own address.

! The unspecified address must not be used as the destination address
of IPv6 packets or in IPv6 Routing Headers.

25

49

IPv6 The Loopback Address

! The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It
may be used by a node to send an IPv6 packet to itself.

! It may never be assigned to any physical interface.

! Must not be used as the Source Address in IPv6 packets that are sent
outside of a single node.

! A packet containing this address must never be forwarded by an IPv6
Router.

50

IPv6 IPv4-compatible IPv6 Address

! The IPv6 transition mechanisms include a technique for hosts and
routers to dynamically tunnel IPv6 packets over IPv4 routing
infrastructure. IPv6 nodes that utilize this technique are assigned
special IPv6 unicast addresses that carry an IPv4 address in the
low-order 32-bits.

0000 IPv4 address

16 bits 32 bits

0000……………………………………………..0000

80 bits

! Example: ::170.210.16.2

26

51

IPv6 IPv4-mapped IPv6 address

! This address is used to represent the addresses of IPv4-only nodes
as IPv6 addresses.

! For example, an IPv6 host would use an IPv4-mapped IPv6 address
to communicate with another host that only supports IPv4.

FFFF IPv4 address

16 bits 32 bits

0000……………………………………………..0000

80 bits

! Example: ::FFFF:170.210.16.2

52

IPv6 Link-Local Addresses

! Link-Local addresses are designed to be used for addressing on a
single link for purposes such as auto-address configuration, neighbor
discovery, or when no routers are present.

64 bits54 bits10 bits

0 Interface ID1111111010

! Routers must not forward any packets with link-local source or
destination addresses to other links.

! Example: FE80::1234:5678:9ABC:DEF0

27

53

IPv6 Site-Local Addresses

! Site-Local addresses are designed to be used for addressing inside a
site without the need for a global prefix.

16 bits

Subnet ID

64 bits38 bits10 bits

0 Interface ID1111111011

! Routers must not forward any packets with site-local source or
destination addresses outside of the site.

54

IPv6 Aggregatable Global Unicast Addresses Format

! P1-P4: long-haul providers
! P5-P6: Multiple levels of

providers.
! SA-SF: Subscribers
! X1-X2: Exchanges which

allocate IPv6 Addresses

X1 X2

P3P1

P2 P4

SA SB P5 P6 SC

SESD SF

To other
exchanges

! Designed to support both provider based aggregation and exchanges.
Sites will have the choice to connect to either type of aggregation point.

28

55

IPv6 Aggregatable Global Unicast Addresses Format

! Aggregatable addresses are organized into a three level hierarchy:
! Public Topology
! Site Topology
! Interface Identifier

Interface IdentifierSite
TopologyPublic Topology

Interface IDSLA IDNLA IDRESTLA IDFP

64 bits16248133

!FP: Format Prefix (001) for Aggregatable Global unicast Addresses.
!TLA ID: Top-Level Aggregation Identifier
!RES: Reserved for future use.
!NLA ID: Next-Level Aggregation Identifier.
!SLA ID: Site-Level Aggregation Identifier.
!INTERFACE ID: Interface Identified.

56

IPv6 Aggregatable Global Unicast Addresses Example

2345:00C1:CA11:0001:1234:5678:9ABC:DEF0

! FP: 001 (binary) [2000::/3]

! TLA T ID: 0345 (hex) [2345::/16]

! NLA ID: C1CA11 (hex) [2345:00C1:CA11::/48]

! NLA C: C (hex) [2345:00C0::/28]

! Provider A: 1CA (hex) [2345:00C1:CA00::/40]

! Site X: 11 (hex) [2345:00C1:CA11::/48]

! SLA ID: 0001 (hex) [2345:00C1:CA11:0001::/64]

! Interface ID: 1234:5678:9ABC:DEF0 (hex)

Interface IdentifierSite
TopologyPublic Topology

Interface IDSLA IDNLA IDRESTLA IDFP

64 bits16248133

Site X
2345:00C1:CA11::/48
2345:00D2:DA11::/48
2345:000E:EB22::/48

TLA T
2345::/16

NLA E
2345:000E::/32

NLA D
2345:00D0::/28

NLA C
2345:00C0::/28

Provider A
2345:00C1:CA00::/40
2345:00D2:DA00::/40

Provider B
2345:000E:EB00::/40

2345:00C1:CA11:0001:1234:5678:9ABC:DEF0
2345:00D2:DA11:0001:1234:5678:9ABC:DEF0
2345:000E:EB22:0001:1234:5678:9ABC:DEF0

N

29

57

IPv6 Anycast Addresses

! Are assigned to more than one interface (typically belonging to
different nodes).

! A packet sent to an anycast address is routed to the “nearest”
interface having the address, according to the routing protocols’
measure of distance.

! Are allocated from the unicast address space.

! Are syntactically indistinguishable from unicast addresses.

! Must not be used as a source address.

! May only be assigned to routers, not hosts.

58

IPv6 Required Anycast Address

! The Subnet-Router anycast address is predefined.

! The “subnet prefix” in an anycast address is the prefix which identifies
a specific link.

! Packets sent to the Subnet-Router anycast address will be delivered to
one router on the subnet. All routers are required to support this
addresses for the subnets which they have interfaces.

0000………………0000

128-n bits

subnet prefix

n bits

30

59

IPv6 Multicast Addresses

! An IPv6 multicast address is an identifier for a group of nodes. A node
may belong to any number of multicast groups.

112 bits4 bits4 bits8 bits

scopflgs group ID11111111

! 11111111 at the start of the address identifies the address as being a
multicast address.

! flgs is a set of 4 flags: 000T
! T = 0 indicates a permanently-assigned (“well-known”) multicast address.
! T = 1 indicates a non-permanently-assigned (“transient”) multicast address.

! scop is a 4-bit multicast scope value to limit the scope of the group:
! 1: node-local scope
! 2: link-local scope
! 5: site-local scope
! 8: organization-local scope
! E: global scope

! group ID identifies the multicast group.

60

IPv6 Multicast Addresses

! The “meaning” of a permanently-assigned multicast address is independent
of the scope value. For example, if the “NTP servers group” is assigned a
permanent multicast address with a group ID of 101 (hex), then:

! FF01::101 means all NTP servers on the same node as the sender.

! FF02::101 means all NTP servers on the same link as the sender.

! FF05::101 means all NTP servers at the same site as the sender.

! FF0E::101 means all NTP servers in the internet

! Multicast addresses must not be used as source addresses in IPv6 packets
or appear in any routing header.

31

61

IPv6 Pre-Defined multicast Addresses

! Reserved: FF0x:: (x: hex digit)
! All nodes:

! FF01::1 (node-local)
! FF02::1 (link-local)

! All routers:
! FF01::2 (node-local)
! FF02::2 (link-local)
! FF05::2 (site-local)

! Solicited-node Address: FF02::1:FFxx:xxxx
! This address is formed by taking the low-order 24 bits of the

address (unicast or anycast) and appending those bits to the
prefix FF02::1:FF00:0000/104

! Example: for the IPv6 address 3FFE:3800:FFFB::BD12:3456 the
solicited-node multicast address is: FF02::1:FF12:3456.

62

IPv6 Node Required Addresses (Host)

! Link-local address for each interface.
! Assigned Unicast Addresses.
! Loopback Addresses.
! All-nodes Multicast Addresses.
! Solicited-node Multicast Addresses for each of its assigned unicast

and anycast addresses.
! Multicast Addresses of all other groups to which the host belongs.

! Example:

Loopback::1

All-nodes Multicastff02::1

Solicited-Node Multicastff02::1:ff8a:0

IPv6 link-localfe80::250:56ff:fe8a:0

TypeAddress

32

63

IPv6 Node Required Addresses (Router)

All the host required addresses plus:
! Subnet-router anycast addresses for the interfaces it is configured

to act as a router on.
! All other anycast addresses with which the router has been

configured.
! All-routers multicast addresses.
! Multicast addresses of all other groups to which the router belongs.

! Example:

All-nodes Multicastff02::1

IPv6 link-local / Solicited-Node Multicastfe80::260:8ff:fe14:7861 / ff02::1:ff14:7861

Loopback::1

All-routers Multicastff02::2

IPv6 global / Solicited-Node Multicast3ffe:3800:fffb:2001::1 / ff02::1:ff00:1

TypeAddress

64

IPv6 IPv6 over Ethernet

! IPv6 packets are transmitted in standard Ethernet frames.

! The Ethernet header contains:

! Destination and Source Ethernet addresses.
! Ethernet type code (86DD hexadecimal).

! The data field contains:

! The IPv6 header.
! The payload.
! Padding octets to meet the minimum frame size for the Ethernet

link (if needed).

! The Maximum Transmission Unit (MTU) for Ethernet is 1500 octets.
This size may be reduced by:

! A Router Advertisement.
! Manual configuration of each node.

33

65

IPv6
IPv6 over Ethernet
Frame Format

!Type: Higher Layer protocol Type
!Data: Higher Layer Information
!FCS: Frame Check Sequence (CRC-32)

!Preamble: 1010…1011
!Destination: Destination Node Address
!Source: Source Node Address

6 6 2 46-1500 4

Destination Source Type
86DD Data FCS

IPv6 Header and Payload

64-1518

Octets

66

IPv6
IPv6 over Ethernet
Stateless Autoconfiguration

! The Interface Identifier for an Ethernet interface is based on the EUI-
64 identifier derived from the interface's built-in 48-bit IEEE 802
address.

! The Interface Identifier is then formed from the EUI-64 by
complementing the "Universal/Local" (U/L) bit, which is the next-to-
lowest order bit of the first octet of the EUI-64.

! For example, the Interface Identifier for an Ethernet interface whose
built-in address is, in hexadecimal,

34-56-78-9A-BC-DE
would be

36-56-78-FF-FE-9A-BC-DE

! An IPv6 address prefix used for stateless autoconfiguration of an
Ethernet interface must have a length of 64 bits.

34

67

IPv6
IPv6 over Ethernet
Link-local Address

! The IPv6 link-local address for an Ethernet interface is formed by
appending the Interface Identifier, to the prefix FE80::/64.

Bits

1111111010 0 Interface Identifier from Ethernet Address

128 bits

10 bits 54 bits 64 bits

! Example:

! EUI-48 Ethernet Address: 00:50:56:d9:88:3f

! EUI-64 Ethernet Address: 00:50:56:ff:fe:d9:88:3f

! Interface Identifier: 02:50:56:ff:fe:d9:88:3f

! Link-local Address: fe80::250:56ff:fed9:883f

68

IPv6
IPv6 over Ethernet
Unicast address mapping

! The Neigbbor Discovery Source/Target Link-layer Address option has
the following form when the link layer is Ethernet.

Type Lenght Ethernet Address

8 bits 8 bits 48 bits

!Length: 1 (in units of 8 octets)
!Ethernet Address:The 48 bit Ethernet IEEE
802 address, in canonical bit order

!Type:
!1 for Source Link-layer address
!2 for Target Link-layer address

35

69

IPv6
IPv6 over Ethernet
Multicast address mapping

! An IPv6 packet with a multicast destination address DST, consisting of
the sixteen octets DST[1] through DST[16], is transmitted to the
Ethernet multicast address whose first two octets are the value 3333
hexadecimal and whose last four octets are the last four octets of DST.

00110011
(33)
8 bits

00110011
(33)
8 bits

DST[13] DST[14] DST[15] DST[16]

8 bits 8 bits 8 bits 8 bits

! Examples:

! IPv6 Solicited-Node Multicast Address: ff02:1::1:ffd9:883f
Ethernet Link-Layer Multicast Address: 33:33:ff:d9:88:3f

! IPv6 All nodes Multicast Address: ff02:1::1
Ethernet Link-Layer Multicast Address: 33:33:00:00:00:1

70

IPv6 Internet Control Message Protocol (ICMPv6)

! ICMPv6 is used by IPv6 nodes to report errors encountered in
processing packets, and to perform other internet-layer functions such
as diagnostics.

! ICMPv6 is an integral part of IPv6 and must be fully implemented by
every IPv6 node.

! ICMPv6 messages are grouped into two classes: error messages and
informational messages.

! High-order bit of the message Type:
! 0: Error messages (Type: 0 to 127).
! 1: Informational messages (Type: 128 to 255).

36

71

IPv6 Integration of protocols in ICMPv6

ICMPv6
MLD, ND

ICMPv4

ARP IGMP

72

IPv6 ICMPv6 Messages

! ICMPv6 error messages:
! 1 Destination Unreachable.
! 2 Packet Too Big.
! 3 Time Exceeded.
! 4 Parameter Problem.

! ICMPv6 informational messages:
! 128 Echo Request.
! 129 Echo Reply.

37

73

IPv6
ICMPv6
Message General Format

! Every ICMPv6 message is preceded by an IPv6 header and zero or
more IPv6 extension headers. The ICMPv6 header is identified by a
Next Header value of 58 in the immediately preceding header.

ChecksumCodeType

16 bits88

!Type: indicates the type of the message.

!Code: depends on the message type.

!Checksum: is used to detect data corruption in the ICMPv6 message and parts of the IPv6
header.

74

IPv6
ICMPv6
Message Processing Rules

! If an ICMPv6 error message of unknown type is received, it must be
passed to the upper layer.

! If an ICMPv6 informational message of unknown type is received, it
must be silently discarded.

! Every ICMPv6 error message includes as much of the IPv6 offending
packet as will fit without making the error message packet exceed
the minimum IPv6 MTU.

! In those cases where the internet-layer protocol is required to pass
an ICMPv6 message to the upper layer process, the upper-layer
protocol type is extracted from the original packet and used to select
the appropriate upper-layer process to handle the error.

38

75

IPv6
ICMPv6
Message Processing Rules

! An ICMPv6 error message must not be sent as a result of receiving:
! An ICMPv6 error message.
! A packet destined to an IPv6 multicast address*.
! A packet sent as a link-layer multicast*.
! A packet sent as a link-layer broadcast*.
! A packet whose source address does not uniquely identify a single node

(e.g. Unspecified Address, Multicast address, Anycast address).

*Exceptions: the Packet too Big message, Parameter Problem message
reporting an unrecognized option with Option type highest-order two
bits set to 10.

76

IPv6
ICMPv6
Message Processing Rules

! In order to limit the bandwidth and forwarding costs incurred
sending ICMPv6 error messages, an IPv6 node must limit the rate of
ICMPv6 error messages it sends.

There are a variety of ways of implementing this function, e.g.:

! Timer-based (limiting the rate of transmission of error messages to a
given source or to any source to at most once every T milliseconds).

! Bandwidth-based (for example, limiting the rate at which error
messages are sent from a particular interface to some fraction of the
attached link’s bandwidth)

39

77

IPv6
ICMPv6 Error Message:
Destination Unreachable

! A Destination Unreachable message should be generated by a router
or by the IPv6 layer in the originating node, in response to a packet
that cannot be delivered to its destination address for reasons other
than congestion.

Unused

As much of invoking packet as will fit without ICMPv6 packet exceeding the
minimum IPv6 MTU

ChecksumCodeType
16 bits88

!IPv6 Destination Address: Copied from the Source Address field of the invoking packet.
!Type: 1
!Code: 0 – no route to destination 1 – communication with dest. prohibited

3 – address unreachable 4 – port unreachable
!Unused: Must be initialized to zero by the sender and ignored by the receiver.

78

IPv6
ICMPv6 Error Message:
Packet Too Big

! Must be sent by a router in response to a packet that it cannot
forward because the packet is larger than the MTU of the outgoing
link. The information in this message is used as part of the Path MTU
Discovery process.

MTU

As much of invoking packet as will fit without ICMPv6 packet exceeding the
minimum IPv6 MTU

ChecksumCodeType
16 bits88

!IPv6 Destination Address: Copied from the Source Address field of the invoking packet.
!Type: 2
!Code: Set to 0 (zero) by the sender and ignored by the receiver.
!MTU: The Maximum Transmission Unit of the next-hop link.

40

79

IPv6
ICMPv6 Error Message:
Time Exceeded Message

! If a router receives a packet with a Hop Limit of zero, or a router
decrements a packet’s Hop Limit to zero, it must discard the packet
and send an ICMPv6 Time Exceeded message with Code 0 to the
source of the packet. This indicates either a routing loop or too small
an initial Hop Limit Value.

Unused

As much of invoking packet as will fit without ICMPv6 packet exceeding the
minimum IPv6 MTU

ChecksumCodeType
16 bits88

!IPv6 Destination Address: Copied from the Source Address field of the invoking packet.
!Type: 3
!Code: 0 – hop limit exceeded in transit 1 – fragment reassembly time exceeded
!Unused: Must be initialized to zero by the sender and ignored by the receiver.

80

IPv6
ICMPv6 Error Message:
Parameter Problem

! If an IPv6 node finds a problem with a field in the IPv6 header or
extension headers such that it cannot complete processing the
packet, it must discard the packet and should send an ICMPv6
Parameter problem message to the packet’s source, indicating the
type and location of the problem.

Pointer

As much of invoking packet as will fit without ICMPv6 packet exceeding the
minimum IPv6 MTU

ChecksumCodeType
16 bits88

!IPv6 Destination Address: Copied from the Source Address field of the invoking packet.
!Type: 4
!Code: 0 – erroneous header field 1 – unrecognized Next Header type

2 – unrecognized IPv6 option
!Pointer: Identifies the octet offset within the invoking packet where the error was
detected.

41

81

IPv6
ICMPv6 Informational Message:
Echo Request

! Every node must implement an ICMPv6 Echo responder function that
receives Echo Requests and sends corresponding Echo Replies.

ChecksumCodeType

Data…

Sequence NumberIdentifier

16 bits88

!IPv6 Destination Address: Any legal IPv6 address.
!Type: 128
!Code: 0
!Identifier: An identifier to aid in matching Echo Replies to this Echo Request. May be zero.
!Sequence Number: A sequence number to aid in matching Echo Replies to this Echo
Request. May be zero.
!Data: Zero or more octets of arbitrary data.

82

IPv6
ICMPv6 Informational Message:
Echo Reply

! Every node must implement an ICMPv6 Echo responder function that
receives Echo Requests and sends corresponding Echo Replies. The
data received in the ICMPv6 Echo Request message must be returned
entirely and unmodified in the ICMPv6 Echo Reply message.

ChecksumCodeType

Data…

Sequence NumberIdentifier

16 bits88

!IPv6 Destination Address: Copied from the Source Address field of the invoking Echo
Request Packet.
!Type: 129
!Code: 0
!Identifier: The identifier from the invoking Echo Request message.
!Sequence Number:The sequence number from the invoking Echo Request message.
!Data: The data from the invoking Echo Request message.

42

83

IPv6 ICMPv6: Security Considerations

! ICMP protocol packet exchanges can be authenticated using the IP
Authentication Header. A node should include an Authentication
Header when sending ICMP messages if a security association for use
with the IP Authentication header exists for the destination address.

! Received Authentication Headers in ICMP packets must be verified for
correctness and packets with incorrect authentication must be ignored
and discarded.

84

IPv6 Neighbor Discovery

! Nodes use Neighbor Discovery (ND) to determine the link-layer
addresses for neighbors known to reside on attached links and to
quickly purge cached values that become invalid.

! Hosts also use Neighbor Discovery to find neighboring routers that are
willing to forward packets on their behalf.

! Nodes use the protocol to actively keep track of which neighbors are
reachable and which are not, and to detect changed link-layer
addresses.

! When a router or the path to a router fails, a host actively searches for
functioning alternates.

43

85

IPv6 Neighbor Discovery Features

! This protocol solves a set of problems related to the interaction
between nodes attached to the same link:

! Router Discovery: How hosts locate routers that reside on an
attached link.

! Prefix Discovery: How hosts discover the set of address prefixes
that define which destinations are on-link for an attached link.

! Parameter Discovery: How a node learns such link parameters as
the link MTU or such Internet parameters as the hop limit value to
place in outgoing packets.

! Address Autoconfiguration: How nodes automatically configure an
address for an interface.

! Address resolution: How nodes determine the link-layer address of
an on-link destination (e.g., a neighbor) given only the destination's
IP address.

86

IPv6 Neighbor Discovery Features

! Next-hop determination: The algorithm for mapping an IP
destination address into the IP address of the neighbor to which
traffic for the destination should be sent. The next-hop can be a
router or the destination itself.

! Neighbor Unreachability Detection: How nodes determine that a
neighbor is no longer reachable.

! Duplicate Address Detection: How a node determines that an
address it wishes to use is not already in use by another node.

! Redirect: How a router informs a host of a better first-hop node to
reach a particular destination.

44

87

IPv6 Neighbor Discovery Messages

! Neighbor Discovery defines five different ICMP packet types:

! Router Solicitation: When an interface becomes enabled, hosts may
send out Router Solicitations that request routers to generate
Router Advertisements immediately rather than at their next
scheduled time.

! Router Advertisement: Routers advertise their presence together
with various link and Internet parameters either periodically, or in
response to a Router Solicitation message. Router Advertisements
contain prefixes that are used for on-link determination and/or
address configuration, a suggested hop limit value, etc.

88

IPv6 Neighbor Discovery Messages

! Neighbor Solicitation: Sent by a node to determine the link-layer
address of a neighbor, or to verify that a neighbor is still reachable
via a cached link-layer address. Neighbor Solicitations are also used
for Duplicate Address Detection.

! Neighbor Advertisement: A response to a Neighbor Solicitation
message. A node may also send unsolicited Neighbor
Advertisements to announce a link-layer address change.

! Redirect: Used by routers to inform hosts of a better first hop for a
destination.

45

89

IPv6
Neighbor Discovery
(Additional Features)

! Neighbor Discovery also handles the following situations:

! Link-layer address change: A node that knows its link-layer address
has changed can multicast a few (unsolicited) Neighbor
Advertisement packets to all nodes to quickly update cached link-
layer addresses that have become invalid. The Neighbor
Unreachability Detection algorithm ensures that all nodes will
reliably discover the new address, though the delay may be
somewhat longer.

! Inbound load balancing: Nodes with replicated interfaces may want
to load balance the reception of incoming packets across multiple
network interfaces on the same link. Such nodes have multiple
link-layer addresses assigned to the same interface. For example,
a single network driver could represent multiple network interface
cards as a single logical interface having multiple link-layer
addresses.

90

IPv6
Neighbor Discovery
(Additional Features)

! Neighbor Discovery also handles the following situations:

! Anycast addresses: Anycast addresses identify one of a set of
nodes providing an equivalent service, and multiple nodes on the
same link may be configured to recognize the same Anycast
address. Neighbor Discovery handles anycasts by having nodes
expect to receive multiple Neighbor Advertisements for the same
target. All advertisements for anycast addresses are tagged as
being non-Override advertisements. This invokes specific rules to
determine which of potentially multiple advertisements should be
used.

! Proxy advertisements: A router willing to accept packets on behalf
of a target address that is unable to respond to Neighbor
Solicitations can issue non-Override Neighbor Advertisements.

46

91

IPv6 Comparison with IPv4

! The IPv6 Neighbor Discovery protocol corresponds to a combination
of the IPv4 protocols ARP, ICMP Router Discovery, and ICMP
Redirect. In IPv4 there is no generally agreed upon protocol or
mechanism for Neighbor Unreachability Detection.

! Router Discovery is part of the base protocol set.
! Router advertisements and Redirects carry link-layer addresses; no

additional packet exchange is needed to resolve the router's link-layer
address.

! Router advertisements carry prefixes for a link; there is no need to
have a separate mechanism to configure the "netmask".

! Router advertisements enable Address Autoconfiguration.
! Routers can advertise an MTU for hosts to use on the link.
! Address resolution multicasts are "spread" over 4 billion (2^32)

multicast addresses greatly reducing address resolution related
interrupts on nodes other than the target. Moreover, non-IPv6
machines should not be interrupted at all.

92

IPv6 Comparison with IPv4

! Multiple prefixes can be associated with the same link.
! Unlike IPv4, the recipient of an IPv6 redirect assumes that the new

next-hop is on-link.
! Neighbor Unreachability Detection (NUD) is part of the base

significantly improving the robustness of packet delivery in the
presence of failing routers, partially failing or partitioned links and
nodes that change their link-layer addresses.

! Unlike ARP, ND detects half-link failures (using NUD) and avoids
sending traffic to neighbors with which two-way connectivity is absent.

! Unlike in IPv4 Router Discovery the Router Advertisement messages do
not contain a preference field. The NUD will detect dead routers and
switch to a working one.

! The use of link-local addresses to uniquely identify routers makes it
possible for hosts to maintain the router associations in the event of
the site renumbering to use new global prefixes.

47

93

IPv6 Router Solicitation Message Format

! Hosts send Router Solicitations in order to prompt routers to
generate Router Advertisements quickly.

ChecksumCodeType

Options …

Reserved

16 bits88

IP Fields:
!Source Address: An IP address assigned to the sending interface, or the unspecified address if no
address is assigned to the sending interface.
! Destination Address: Typically the all-routers multicast address.
!Hop Limit: 255
!Authentication Header: If a Security Association for the IP Authentication Header exists between the
sender and the destination address, then the sender SHOULD include this header.
ICMP Fields:
!Type: 133
!Code: 0
!Valid Options:

!Source link-layer address: The link-layer address of the sender, if known.

94

IPv6
Router Advertisement
Message Format

! Routers send out Router Advertisement message periodically, or in
response to a Router Solicitation.

6

O ReservedM Router LifetimeCur Hop Limit

Reachable Time

ChecksumCodeType

Options …

Retrans Timer

16 bits28

IP Fields:
!Source Address: Must be the link-local address assigned to the interface from which this message is
sent.
! Destination Address: Typically the Source Address of an invoking Router Solicitation or the all-nodes
multicast address.
!Hop Limit: 255
!Authentication Header: If a Security Association for the IP Authentication Header exists between the
sender and the destination address, then the sender should include this header.

48

95

IPv6
Router Advertisement
Message Format

ICMP Fields:
! Type: 134
! Code: 0
! Cur Hop Limit: The default value that should be placed in the Hop Count field of the IP header for

outgoing IP packets.
! Managed address configuration flag (M): When set, hosts use the administered (stateful) protocol

for address autoconfiguration in addition to any addresses autoconfigured using stateless address
autoconfiguration.

! Other stateful configuration flag (O): When set, hosts use the administered (stateful) protocol for
autoconfiguration of other (non-address) information.

! Router Lifetime: The lifetime associated with the default router in units of seconds. A Lifetime of
0 indicates that the router is not a default router and should not appear on the default router list.

! Reachable Time: The time, in milliseconds, that a node assumes a neighbor is reachable after
having received a reachability confirmation.

! Retrans Timer: The time, in milliseconds, between retransmitted Neighbor Solicitation messages.
! Valid Options:

! Source link-layer address: The link-layer address of the sender, if known.
! MTU: Should be sent on links that have a variable MTU.
! Prefix Information: These options specify the prefixes that are on-link and/or are used for

address autoconfiguration.

96

IPv6 Neighbor Solicitation Message Format

! Nodes send Neighbor Solicitations to request the link-layer address
of a target node while also providing their own link-layer address to
the target. Neighbor Solicitations are multicast when the node
needs to resolve an address and unicast when the node seeks to
verify the reachability of a neighbor.

IP Fields:
!Source Address: Either an address assigned to the interface from which this message is sent or (if
Duplicate Address Detection is in progress) the unspecified address.
!Destination Address: Either the solicited-node multicast address corresponding to the target address,
or the target address.
!Hop Limit: 255
!Authentication Header: If a Security Association for the IP Authentication Header exists between the
sender and the destination address, then the sender should include this header.

Target Address (128 bits)

Reserved

ChecksumCodeType

Options …

16 bits88

49

97

IPv6 Neighbor Solicitation Message Format

ICMP Fields:
! Type: 135
! Code: 0
! Target Address: The IP address of the target of the solicitation. It must not be a multicast

address.
! Possible Options:

! Source link-layer address: The link-layer address for the sender. Must not be included when
the source IP address is the unspecified address. Otherwise, on link layers that have
addresses this option must be included in multicast solicitations and should be included in
unicast solicitations.

98

IPv6
Neighbor Advertisement
Message Format

! A node sends Neighbor Advertisements in response to Neighbor
Solicitations and sends unsolicited Neighbor Advertisements in order
to (unreliably) propagate new information quickly.

IP Fields:
!Source Address: An address assigned to the interface from which the advertisement is sent.
!Destination Address:

!For solicited advertisements, the Source Address of an invoking Neighbor Solicitation or, if the
solicitation's Source Address is the unspecified address, the all-nodes multicast address.
!For unsolicited advertisements typically the all-nodes multicast address.

!Hop Limit: 255
!Authentication Header: If a Security Association for the IP Authentication Header exists between the
sender and the destination address, then the sender should include this header.

5

S O Reserved

Target Address (128 bits)

R

ChecksumCodeType

Options …

16 bits83

50

99

IPv6
Neighbor Advertisement
Message Format

ICMP Fields:
! Type: 136
! Code: 0
! Router flag (R): When set, indicates that the sender is a router. The R-bit is used by NUD to

detect a router that changes to a host.
! Solicited flag (S): When set, indicates that the advertisement was sent in response to a NS from

the Destination address. The S-bit is used as a reachability confirmation for NUD. It should not be
set in solicited advertisements for anycast addresses and in solicited proxy advertisements. It
should be set in other solicited advertisements and in unsolicited advertisements.

! Override flag (O): When set, indicates that the advertisement should override an existing cache
entry and update the cached link-layer address. When it is not set the advertisement will not
update a cached link-layer address though it will update an existing Neighbor Cache entry for
which no link-layer address is known.

! Target Address: For solicited advertisements, the Target Address field in the NS message that
prompted this advertisement. For an unsolicited advertisement, the address whose link-layer
address has changed. The Target Address must not be a multicast address.

! Possible Options:
! Target link-layer address: The link-layer address for the target, i.e., the sender of the

advertisement. This option must be included on link layers that have addresses when
responding to multicast solicitations. When responding to a unicast Neighbor Solicitation
this option should be included.

100

IPv6 Redirect Message Format

! Routers send Redirect packets to inform a host of a better first-hop
node on the path to a destination. Hosts can be redirected to a
better first-hop router but can also be informed by a redirect that the
destination is in fact a neighbor. The latter is accomplished by
setting the ICMP Target Address equal to the ICMP Destination
Address.

IP Fields:
!Source Address: Must be the link-local address assigned to the interface from which this message is
sent.
!Destination Address: The Source Address of the packet that triggered the redirect.
!Hop Limit: 255
!Authentication Header: If a Security Association for the IP Authentication Header exists between the
sender and the destination address, then the sender should include this header.

Target Address (128 bits)

Destination Address (128 bits)

Reserved

ChecksumCodeType

Options …

16 bits88

51

101

IPv6 Redirect Message Format

ICMP Fields:
! Type: 137
! Code: 0
! Target Address: An IP address that is a better first hop to use for the ICMP Destination Address.

When the target is the actual endpoint of communication, i.e., the destination is a neighbor, the
Target Address field must contain the same value as the ICMP Destination Address field.
Otherwise the target is a better first-hop router and the Target Address must be the router's link-
local address so that hosts can uniquely identify routers.

! Destination Address: The IP address of the destination which is redirected to the target.
! Possible Options:

! Target link-layer address: The link-layer address for the target. It should be included (if
known). Note that on NBMA links, hosts may rely on the presence of the Target Link- Layer
Address option in Redirect messages as the means for determining the link-layer addresses
of neighbors. In such cases, the option must be included in Redirect messages.

! Redirected Header: As much as possible of the IP packet that triggered the sending of the
Redirect without making the redirect packet exceed 1280 octets.

102

IPv6
Conceptual Model of a Host
Data Structures

! Neighbor Cache: A set of entries about individual neighbors to which
traffic has been sent recently.

! Neighbor's on-link unicast IP address (key)
! Link-layer address
! IsRouter flag
! Pointer to any queued packets waiting for address resolution to

complete
! Reachability state (NUD)
! Number of unanswered probes (NUD)
! Time the next NUD event is scheduled to take place

52

103

IPv6
Conceptual Model of a Host
Data Structures

! Destination Cache: A set of entries about destinations to which traffic
has been sent recently. Includes both on-link and off-link destinations.
IT maps a destination IP address to the IP address of the next-hop
neighbor.

! Prefix List: A list of the prefixes that define a set of addresses that are
on-link.
! Entries are created from information received in Router

Advertisements.
! Each entry has an associated invalidation timer value used to

expire prefixes when they become invalid.
! A special "infinity" timer value specifies that a prefix remains valid

forever, unless a new (finite) value is received in a subsequent
advertisement.

104

IPv6
Conceptual Model of a Host
Data Structures

! Default Router List: A list of routers to which packets may be sent.

! Entries point to entries in the Neighbor Cache.
! The algorithm for selecting a default router favors routers known to

be reachable over those whose reachability is suspect.
! Each entry also has an associated invalidation timer.

53

105

IPv6
Conceptual Model of a Host
Data Structures

StateisRouterLink Layer AddressUnicast IP Address

Neighbor Cache

Next HopDest. IP Address

Destination Cache

TimerOn-link Prefix

Prefix List
TimerIP Address

Default Router List

Redirects

Router
Advertisements

106

IPv6
Neighbor Cache
Neighbor’s Reachability State

! A key piece of information in the NC is a neighbor's reachability state, which is
one of five possible values.

! INCOMPLETE: Address resolution is in progress and the link-layer address
of the neighbor has not yet been determined.

! REACHABLE: The neighbor is known to have been reachable recently
(within tens of seconds ago).

! STALE: The neighbor is no longer known to be reachable but until traffic is
sent to the neighbor, no attempt should be made to verify its reachability.

! DELAY: The neighbor is no longer known to be reachable, and traffic has
recently been sent to the neighbor. Rather than probe the neighbor
immediately, however, delay sending probes for a short while in order to
give upper layer protocols a chance to provide reachability confirmation.

! PROBE: The neighbor is no longer known to be reachable, and unicast
Neighbor Solicitation probes are being sent to verify reachability.

54

107

IPv6 Host Variables

! In addition the host maintains a number of variables, e.g.:

! LinkMTU: The MTU of the link.

! CurHopLimit: The default hop limit to be used when sending
unicast IPv6 packets.

! BaseReachableTime: A base value used for computing the random
ReachableTime value.

! ReachableTime: The time a neighbor is considered reachable after
receiving a reachability confirmation.

! RetransTimer: The time between retransmissions of Neighbor
Solicitation messages to a neighbor when resolving the address or
when probing the reachability of a neighbor.

108

IPv6 Conceptual Sending Algorithm

! When sending a packet to a destination, a node uses a combination of
the Destination Cache, the Prefix List, and the Default Router List to
determine the IP address of the appropriate next hop, an operation
known as "next-hop determination".

! Once the IP address of the next hop is known, the Neighbor Cache is
consulted for link-layer information about that neighbor.

55

109

IPv6
Conceptual Sending Algorithm
Next-Hop Determination

! Next-hop determination at the sender for a given unicast destination
operates as follows.

Perform a longest prefix match
against the Prefix List

Is packet's
destination

on-link?

Select a router from the
Default Router List*

Next-hop address is the
same as the packet's
destination address

* If the Default Router List is empty, the sender assumes that the destination is on-link.

YES NO

! For efficiency reasons, next-hop determination is not performed on every packet that is
sent. Instead, the results of next-hop determination computations are saved in the
Destination Cache. When the sending node has a packet to send, it first examines the
Destination Cache. If no entry exists for the destination, next-hop determination is
invoked to create a Destination Cache entry.

110

IPv6 Address Resolution Example

«
4

echo reply
fe80::250:56ff:fed9:883f

fe80::250:56ff:fe8a:0
0:50:56:d9:88:3f
0:50:56:8a:0:0

»
3

echo request
fe80::250:56ff:fe8a:0

fe80::250:56ff:fed9:883f
0:50:56:8a:0:0

0:50:56:d9:88:3f

«
2

neighbor adv:
tgt is fe80::250:56ff:fed9:883f (SO)
(tgt lladdr: 0:50:56:d9:88:3f)

fe80::250:56ff:fed9:883f
fe80::250:56ff:fe8a:0

0:50:56:d9:88:3f
0:50:56:8a:0:0

»
1

neighbor sol:
who has fe80::250:56ff:fed9:883f
(src lladdr: 0:50:56:8a:0:0)

fe80::250:56ff:fe8a:0
ff02::1:ffd9:883f

0:50:56:8a:0:0
33:33:ff:d9:88:3f

DirICMP TYPE
Src IP Addr
Dst IP Addr

Src MAC Addr
Dst MAC Addr

Ethernet

A B

neighbor solicitation (1)

neighbor advertisement (2)

data (3,4)

Eth MAC Addr: 0:50:56:8a:0:0
IPv6 link-l Addr: fe80::250:56ff:fe8a:0
IPv6 Sol-Node MA: ff02::1:ff8a:0

Eth MAC Addr: 0:50:56:d9:88:3f
IPv6 link-l Addr: fe80::250:56ff:fed9:883f
IPv6 Sol-Node MA: ff02::1:ffd9:883f

56

111

IPv6
Conceptual Sending Algorithm
Address Resolution

! Once the IP address of the next-hop node is known, the sender follows
these steps:

Examine the Neighbor Cache
for link-layer information

about that neighbor

Entry exist?

Create one entry, set its state
to INCOMPLETE, initiates

Address Resolution, and then
queue the data packet pending
completion of address resolution

Transmit the packet
YES NO

! For multicast-capable interfaces Address Resolution consists of sending a Neighbor
Solicitation message and waiting for a Neighbor Advertisement.

Address Resolution Completed

Enter link-layer address
in the Neighbor Cache entry

112

IPv6 Conceptual Sending Algorithm

! For multicast packets the next-hop is always the (multicast) destination
address and is considered to be on-link.

! Each time a Neighbor Cache entry is accessed while transmitting a
unicast packet, the sender checks Neighbor Unreachability Detection
related information according to the Neighbor Unreachability Detection
algorithm. This unreachability check might result in the sender
transmitting a unicast Neighbor Solicitation to verify that the neighbor
is still reachable.

57

113

IPv6 Address Resolution

! Address resolution is the process through which a node determines the
link-layer address of a neighbor given only its IP address.

! Address resolution is performed only on addresses that are determined
to be on-link and for which the sender does not know the
corresponding link-layer address.

! Address resolution is never performed on multicast addresses.

! When a multicast-capable interface becomes enabled the node must
join the all-nodes multicast address on that interface, as well as the
solicited-node multicast address corresponding to each of the IP
addresses assigned to the interface.

114

IPv6
Address Resolution
Sending Neighbor Solicitations

! When a node has a unicast packet to send to a neighbor, but does not
know the neighbor's link-layer address, it performs address resolution.

! For multicast-capable interfaces this entails creating a Neighbor Cache
entry in the INCOMPLETE state and transmitting a Neighbor
Solicitation message targeted at the neighbor.

! The solicitation is sent to the solicited-node multicast address
corresponding to the target address.

! If the solicitation is being sent to a solicited-node multicast address,
the sender must include its link-layer address as a Source Link-Layer
Address option.

! Including the source link-layer address in a multicast solicitation is
required to give the target an address to which it can send the
Neighbor Advertisement.

58

115

IPv6
Address Resolution
Sending Neighbor Solicitations

! While waiting for address resolution to complete, the sender must, for
each neighbor, retain a small queue of packets waiting for address
resolution to complete. Once address resolution completes, the node
transmits any queued packets.

! While awaiting a response, the sender should retransmit Neighbor
Solicitation messages approximately every RetransTimer milliseconds,
even in the absence of additional traffic to the neighbor.

! If no Neighbor Advertisement is received after
MAX_MULTICAST_SOLICIT solicitations, address resolution has failed.
The sender MUST return ICMP destination unreachable indications with
code 3 (Address Unreachable) for each packet queued awaiting
address resolution.

116

IPv6
Address Resolution
Receipt of Neighbor Solicitations

! The recipient should create or update the Neighbor Cache entry for the
IP Source Address of the solicitation.

! If an entry does not already exist, the node SHOULD create a new
one and set its reachability state to STALE.

! If an entry already exists, and the cached link-layer address differs
from the one in the received Source Link-Layer option, the cached
address should be replaced by the received address and the entry's
reachability state must be set to STALE.

! After any updates to the Neighbor Cache, the node sends a Neighbor
Advertisement response.

59

117

IPv6
Address Resolution:
Sending Solicited Neighbor Advertisements

! A node sends a Neighbor Advertisement in response to a valid
Neighbor Solicitation targeting one of the node's assigned addresses.

! The Target Address of the advertisement is copied from the Target
Address of the solicitation.

! If the solicitation's IP Destination Address is a multicast address, the
Target Link-Layer option must be included in the advertisement.

! If the node is a router, it MUST set the Router flag to one; otherwise it
must set the flag to zero.

! If the source of the solicitation is the unspecified address, the node
must set the Solicited flag to zero and multicast the advertisement to
the all-nodes address. Otherwise, the node must set the Solicited flag
to one and unicast the advertisement to the Source Address of the
solicitation.

118

IPv6
Address Resolution
Receipt of Neighbor Advertisements

! When a valid Neighbor Advertisement is received, the Neighbor Cache
is searched for the target's entry.

! Once the appropriate Neighbor Cache entry has been located, the
specific actions taken depend on the state of the Neighbor Cache
entry, the flags in the advertisement and the actual link-layer address
supplied:
! State INCOMPLETE:

! Record the link-layer address in the Neighbor Cache entry.
! If the advertisement's Solicited flag is set, the state of the entry is set to

REACHABLE, otherwise it is set to STALE.
! It sets the IsRouter flag in the cache entry based on the Router flag in the

received advertisement.
! It sends any packets queued for the neighbor awaiting address resolution.
! Note that the Override flag is ignored if the entry is in the INCOMPLETE state.

! If the target's Neighbor Cache entry is in any state other than
INCOMPLETE when the advertisement is received, processing becomes
quite a bit more complex.

60

119

IPv6 State Machine for the Reachability State

Incomplete

Reachable

Delay

None

Probe

Retransmit timeout,
retransmissions >= N

Discard entry
Send ICMP error

Packet to send
Create entry

Send multicast NS
Start Retrans Timer

NA, So=1, Ov=any
Record link-l addr.

Send queued packets

Retransmit timeout,
retransmissions < N

Retransmit NS
Start retransmit timer

NA, Sol=1, Ov=0
Different link-l addr.

than cached
NA, Sol=0, Ov=1
Same link-l addr.

as cached
NA, Sol=0, Ov=0

NS, RS, RA, Redirect
Same link-l addr

as cached

Sending packet
Start delay timer

NS, RS, RA, Redirect
Different link-l addr. than cached

Update link-l addr.
NA, Sol=0, Ov=1

Different link-l addr. than cached
Record link-l addr.

Delay timeout
Send unicast NS probe
Start retransmit timer

Retransmit timeout,
retransmissions >= N

Discard entry

Upper-layer
reachability confirmation

NA, Sol=1, Ov=1
Record link-l addr. (if different)

NA, Sol=1, Ov=0
Same link-l addr.as cached

NA, Sol=0, Ov=1
Different link-l addr. than cached

Record link-l addr.

NA, Sol=0, Ov=1
Different link-l

addr. than cached
Record link-l addr.

NS, RS, RA, Redirect
Different link-l addr.

than cached
Update link-l addr.

NA, Sol=0, Ov=1
Different link-l addr. than cached

Record link-l addr.
NS, RS, RA, Redirect

Different link-l addr. than cached
Update link-l addr.

Timeout, more than N seconds
since reachability confirm

NA, Sol=1, Ov=0
Different link-l addr. than cached

Upper-layer reachability confirmation
NA, Sol=1, Ov=1

Record link-l addr. (if different)
NA, Sol=1, Ov=0

Same link-l addr. as cached

NA, Sol=1, Ov=1
Record link-l addr. (if different)

NA, Sol=1, Ov=0
Same link-l addr. as cached

Upper-layer
reachability confirmation

NA, Sol=0, Ov=1
Same link-l addr. as cached

NA, Sol=0, Ov=0
NA, Sol=1, Ov=0

Different link-l addr. than cached
Retransmit timeout,
retransmissions < N

Retransmit NS
NS, RS, RA, Redirect

Same link-l addr as cached

Stale

NS, RS, NA, Redirect
Same link-l addr. as cached

NA, Sol=0, Ov=1
Same link-l addr. as cached

NS, RS, RA, Redirect
Same link-l addr. as cached

NS, RS, RA, Redirect
Create entry

NS, RS, RA, Redirect
Record link-l addr. Send queued packets

NA, Sol=0, Ov=any
Record link-l addr. Send queued packets

NS, RS, RA, Redirect
Same link-l addr as cached

NA, Sol=0, Ov=0
NA, Sol=0, Ov=1

Same link-l addr.as cached

References:
Event
Action

120

IPv6
Address Resolution:
Sending Unsolicited Neighbor Advertisements

! In some cases a node may be able to determine that its link-layer
address has changed (e.g., hot-swap of an interface card) and may
wish to inform its neighbors of the new link-layer address quickly.

! In such cases a node may send unsolicited Neighbor Advertisement
messages to the all-nodes multicast address.

! The Target Address field in the unsolicited advertisement is set to an
IP address of the interface, and the Target Link-Layer Address option
is filled with the new link-layer address. The Solicited flag must be set
to zero.

! Neighboring nodes will immediately change the state of their Neighbor
Cache entries for the Target Address to STALE, prompting them to
verify the path for reachability.

! If the Override flag is set to one, neighboring nodes will install the new
link-layer address in their caches. Otherwise, they will ignore the new
link-layer address, choosing instead to probe the cached address.

61

121

IPv6
Address Resolution:
Sending Unsolicited Neighbor Advertisements

! A node that has multiple IP addresses assigned to an interface may
multicast a separate Neighbor Advertisement for each address.

! A proxy may multicast Neighbor Advertisements when its link-layer
address changes or when it is configured (by system management or
other mechanisms) to proxy for an address.

! A node belonging to an anycast address may multicast unsolicited
Neighbor Advertisements for the anycast address when the node's link-
layer address changes.

! Because unsolicited Neighbor Advertisements do not reliably update
caches in all nodes, they should only be viewed as a performance
optimization to quickly update the caches in most neighbors.

122

IPv6
Address Resolution:
Anycast Neighbor Advertisements

! From the perspective of Neighbor Discovery, anycast addresses are
treated just like unicast addresses in most cases.

! Nodes that have an anycast address assigned to an interface treat
them exactly the same as if they were unicast addresses with two
exceptions.
! Neighbor Advertisements sent in response to a Neighbor

Solicitation SHOULD be delayed by a random time between 0 and
MAX_ANYCAST_DELAY_TIME to reduce the probability of network
congestion.

! Second, the Override flag in Neighbor Advertisements should be set
to 0, so that when multiple advertisements are received, the first
received advertisement is used rather than the most recently
received advertisement.

62

123

IPv6
Address Resolution:
Proxy Neighbor Advertisements

! A router may proxy for one or more other nodes, that is, through
Neighbor Advertisements indicate that it is willing to accept packets
not explicitly addressed to itself. For example, a router might accept
packets on behalf of a mobile node that has moved off-link.

! All solicited proxy Neighbor Advertisement messages must have the
Override flag set to zero. This ensures that if the node itself is present
on the link its Neighbor Advertisement will take precedence of any
advertisement received from a proxy.

! Finally, when sending a proxy advertisement in response to a Neighbor
Solicitation, the sender should delay its response by a random time
between 0 and MAX_ANYCAST_DELAY_TIME seconds.

124

IPv6 Router and Prefix Discovery

! Router Discovery is used to:
! Locate neighboring routers.
! Learn prefixes.
! Learn configuration parameters related to address

autoconfiguration.

! Prefix Discovery is the process through which hosts learn the ranges
of IP addresses that reside on-link and can be reached directly
without going through a router.

! Routers send Router Advertisements that indicate whether the sender
is willing to be a default router.

! Router Advertisements also contain Prefix Information options that list
the set of prefixes that identify on-link IP addresses.

63

125

IPv6 Neighbor Unreachability Detection

! Communication to or through a neighbor may fail for numerous
reasons at any time, including hardware failure, hot-swap of an
interface card, etc.

! Thus, a node actively tracks the reachability "state" for the neighbors
to which it is sending packets.

! NUD is used for all paths between hosts and neighboring nodes,
including host-to-host, host-to-router, and router-to-host.

! When a path to a neighbor appears to be failing, the specific recovery
procedure depends on how the neighbor is being used.

! If the neighbor is the ultimate destination, address resolution should be
performed again.

! If the neighbor is a router, attempting to switch to another router would
be appropriate.

! Neighbor Unreachability Detection signals the need for next-hop
determination by deleting a Neighbor Cache entry.

126

IPv6 Reachability Confirmation

! A neighbor is considered reachable if the node has recently received a
confirmation that packets sent recently to the neighbor were received
by its IP layer.

! Positive confirmation can be gathered in two ways:

! Hints from upper layer protocols that indicate a connection is
making “forward progress”.

! Receipt of a Neighbor Advertisement message that is a response to
a Neighbor Solicitation message.

! In TCP, for example, receipt of a (new) acknowledgement indicates
that previously sent data reached the peer. It is a confirmation that the
next-hop neighbor is reachable.

! For off-link destinations, forward progress implies that the first-hop
router is reachable.

64

127

IPv6 Redirect Function

! Redirect messages are sent by routers to redirect a host to a better
first-hop router for a specific destination or to inform hosts that a
destination is in fact a neighbor (i.e., on-link).

! A router should send a redirect message, subject to rate limiting,
whenever it forwards a packet that is not explicitly addressed to itself
in which:
! The Source Address field of the packet identifies a neighbor, and

! the router determines that a better first-hop node resides on the same
link as the sending node for the Destination Address of the packet being
forwarded, and

! the Destination Address of the packet is not a multicast address.

128

IPv6 Redirect Function

! The transmitted redirect packet:

! In the Target Address field: the address to which subsequent
packets for the destination should be sent.

! In the Destination Address field: the destination address of the
invoking IP packet.

! In the options:

! Target Link-Layer Address option: link-layer address of the target, if
known.

! Redirected Header: as much of the forwarded packet as can fit
without the redirect packet exceeding 1280 octets in size.

! A router must limit the rate at which Redirect messages are sent.

! A router must not update its routing tables upon receipt of a Redirect.

65

129

IPv6
Redirect Function
On-link destination

Redirect Message
IPv6 Src Addr = R1
IPv6 Dst Addr = A

Redir Target Addr = B
Redir Dst Addr = B

Other Networks

1

2

IPv6 Datagram
IPv6 Src Addr = A
IPv6 Dst Addr = B

R1 forwards the datagram to B anyway

IPv6 Datagram
IPv6 Src Addr = A
IPv6 Dst Addr = B

3

A

B

R1

130

IPv6
Redirect Function
Off-link destination

Redirect Message
IPv6 Src Addr = R1
IPv6 Dst Addr = A

Redir Target Addr = R2
Redir Dst Addr = B

Other Networks

1

2 3

IPv6 Datagram
IPv6 Src Addr = A
IPv6 Dst Addr = B

IPv6 Datagram
IPv6 Src Addr = A
IPv6 Dst Addr = B

R1 forwards the datagram anyway

R2 forwards the datagram to B

B

R1

A

R2

66

131

IPv6 Path MTU Discovery

! The Path MTU is the minimum link MTU of all the links in a path
between a source node and a destination node.

! Path MTU Discovery is the process by which a node learns the PMTU
of a path.

! The basic idea is that a source node initially assumes that the PMTU
of a path is the (known) MTU of the first hop in the path.

! If any of the packets sent on that path are too large to be forwarded
by some node along the path, that node will discard them and return
ICMPv6 Packet Too Big messages.

! Upon receipt of such a message, the source node reduces its assumed
PMTU for the path based on the MTU of the constricting hop as
reported in the Packet Too Big message.

! The Path MTU Discovery process ends when the node's estimate of
the PMTU is less than or equal to the actual PMTU.

132

IPv6 Path MTU Discovery

! The PMTU of a path may change over
time, due to changes in the routing
topology.

! Reductions of the PMTU are detected by
Packet Too Big messages

! To detect increases in a path's PMTU, a
node periodically increases its assumed
PMTU.

! In the case of a multicast destination,
the PMTU is the minimum PMTU value
across the set of paths in use.

! The TCP layer must track the PMTU for
the path(s) in use by a connection; it
should not send segments that would
result in packets larger than the PMTU.

ICMPv6
Packet too Big

Message
Received

Source Node
assumes PMTU =
MTU of first hop

(known)

Transmit Packet

Continue
Transmitting,

Periodically increase
PMTU and re-test

Reduce PMTU per
Packet too Big

Message

No

Yes

67

133

IPv6
Stateless Address Autoconfiguration
Overview

! IPv6 defines both a stateful and stateless address autoconfiguration
mechanism.

! Stateless autoconfiguration requires:

! no manual configuration of hosts

! minimal (if any) configuration of routers

! no additional servers

! The stateless mechanism allows a host to generate its own addresses
using a combination of:

! Locally available information (interface identifier)

! Information advertised by routers (link prefixes)

! In the absence of routers, a host can only generate link-local
addresses. Link-local addresses are sufficient for allowing
communication among nodes attached to the same link.

134

IPv6
Stateless Address Autoconfiguration
Overview

! In the stateful autoconfiguration model hosts obtain from a server:

! Interface addresses

! Configuration information and parameters.

! Both.

! Stateful servers maintain a database that keeps track of which
addresses have been assigned to which hosts.

! Stateless and stateful autoconfiguration complement each other.

! The stateless approach is used when a site is not particularly
concerned with the exact addresses hosts use, so long as they are
unique and properly routable.

! The stateful approach is used when a site requires tighter control over
exact address assignments.

! Both stateful and stateless address autoconfiguration may be used
simultaneously.

68

135

IPv6
Stateless Address Autoconfiguration
Design Goals

! Stateless autoconfiguration is designed with the following goals in
mind:

! Manual configuration of individual machines before connecting
them to the network should not be required.

! Small sites consisting of a set of machines attached to a single link
should not require the presence of a stateful server or router as a
prerequisite for communicating.

! A large site with multiple networks and routers should not require
the presence of a stateful address configuration server.

! Address configuration should facilitate the graceful renumbering of
a site's machines.

! System administrators need the ability to specify whether stateless
autoconfiguration, stateful autoconfiguration, or both should be
used.

136

IPv6
Stateless Address Autoconfiguration
Address Leasing

! IPv6 addresses are leased to an interface for a fixed (possibly infinite)
length of time.

! Each address has an associated lifetime that indicates how long the
address is bound to an interface.

! When a lifetime expires, the address may be reassigned to another
interface elsewhere.

! To handle the expiration of address bindings gracefully, an address
goes through two distinct phases while assigned to an interface:

! Initially, it is “preferred” (its use in arbitrary communication is
unrestricted).

! Later, an address becomes "deprecated" in anticipation that its current
interface binding will become invalid.

! A deprecated address should be used only by applications that have
been using it and would have difficulty switching to another address
without a service disruption.

69

137

IPv6
Stateless Address Autoconfiguration
Address States

! Invalid address: an Address that is not assigned to any interface.

! Tentative address: An address whose uniqueness on a link is being verified, prior to its
assignment to an interface.

! Preferred address: An address assigned to an interface whose use by upper layer
protocols is unrestricted.

! Deprecated address: An address assigned to an interface whose use is discouraged, but
not forbidden. A deprecated address should no longer be used as a source address in
new communications.

! Valid address: A preferred or deprecated address.

Tentative Preferred Deprecated

DAD Successful
(Unique Address) Preferred lifetime expires

DAD Fails
Log error

If link-local address disable interface

Invalid

Interface enabled
Generate link-local address

New unicast address

Valid lifetime expires

Valid address

138

IPv6 Stateless Address Autoconfiguration

Transmit
Neighbor

Solicitation with the
tentative address

as the Target

Generate link-local
address:

[link-local prefix +
interface identifier]

Assume tentative address
is unique and available

Neighbor Advertisement
message is returned. An

existing node is using this
address

No Response

Response

Transmit a Router
Solicitation message

Router
Advertisement

Received

Listen for a Router
Advertisement message

Yes

No

Use a stateful method
(DHCPv6) to complete

the configuration
process

Autoconfigure address, if
prefix available for

Autonomous Address
Configuration (flag A)

If Managed Address
Configuration Flag = 1
Use stateful address

autoconfiguration in addition
to stateless

If Other Stateful
Configuration Flag = 1

Use the stateful protocol for
autoconfiguration of other
(nonaddress) information

Duplicate Address Detection

70

139

IPv6
Stateless Address Autoconfiguration
Site Renumbering

! Address leasing facilitates site renumbering by providing a mechanism
to time-out addresses assigned to interfaces in hosts.

! Dividing valid addresses into preferred and deprecated categories
provides a way of indicating to upper layers that a valid address may
become invalid shortly and that future communication using the
address will fail.

! To avoid this scenario, higher layers should use a preferred address to
increase the likelihood that an address will remain valid for the
duration of the communication.

! The deprecation period should be long enough that most, if not all,
communications are using the new address at the time an address
becomes invalid.

140

IPv6
Duplicate Address Detection
Example: Successful Assignment

A few seconds later:
inet6 fe80::250:56ff:fe8a:0/10 scope link

inet6 3ffe:3800:fffb:8001::1/64 scope global

A’s address state:
inet6 fe80::250:56ff:fe8a:0/10 scope link

inet6 3ffe:3800:fffb:8001::1/64 scope global tentative

»icmp6: neighbor sol: who has
3ffe:3800:fffb:8001::1 (src lladdr:
0:50:56:8a:0:0)

::
ff02::1:ff00:1

0:50:56:8a:0:0
33:33:ff:0:0:1

Add IP address to host A: ip addr add 3ffe:3800:fffb:8001::1/64

DirICMP TYPE
Src IP Addr
Dst IP Addr

Src MAC Addr
Dst MAC Addr

Ethernet

A B

Eth MAC Addr: 0:50:56:8a:0:0
IPv6 link-l Addr: fe80::250:56ff:fe8a:0
IPv6 Sol-Node MA: ff02::1:ff8a:0

Eth MAC Addr: 0:50:56:d9:88:3f
IPv6 link-l Addr: fe80::250:56ff:fed9:883f
IPv6 Sol-Node MA: ff02::1:ffd9:883f

71

141

IPv6
Duplicate Address Detection
Example: Duplicated Assignment

«icmp6: neighbor sol: who has
3ffe:3800:fffb:8001::1

::
ff02::1:ff00:1

0:50:56:d9:88:3f
33:33:ff:0:0:1

B’s address state:
inet6 fe80::250:56ff:fecc:a8ec prefixlen 64 scopeid 0x1
inet6 3ffe:3800:fffb:8001::1 prefixlen 64 duplicated

»
icmp6: neighbor adv:
tgt is 3ffe:3800:fffb:8001::1 (O)
(tgt lladdr: 0:50:5 6:8a:0:0)

3ffe:3800:fffb:8001::1
ff02::1

0:50:56:8a:0:0
33:33:ff:0:0:1

Add IP address to host B: ifconfig lnc0 inet6 3ffe:3800:fffb:8001::1 prefixlen 64

DirICMP TYPE
Src IP Addr
Dst IP Addr

Src MAC Addr
Dst MAC Addr

Ethernet

A B

neighbor solicitation (1)

neighbor advertisement (2)

Eth MAC Addr: 0:50:56:8a:0:0
IPv6 link-l Addr: fe80::250:56ff:fe8a:0
IPv6 global Addr: 3ffe:3800:fffb::1
IPv6 Sol-Node MA: ff02::1:ff8a:0

Eth MAC Addr: 0:50:56:d9:88:3f
IPv6 link-l Addr: fe80::250:56ff:fed9:883f
IPv6 Sol-Node MA: ff02::1:ffd9:883f

142

IPv6
Stateless Address Autoconfiguration
Example

«icmp6: router solicitation (src lladdr:
0:50:56:f9:84:ff)

fe80::250:56ff:fef9:84ff
ff02::2

0:50:56:f9:84:ff
33:33:0:0:0:2

New A Unicast Address: 3ffe:3800:fffb:8001:250:56ff:fef9:84ff

»

icmp6: router
advertisement(chlim=64,
router_ltime=1800,
reachable_time=0,
retrans_time=0)[ndp opt]
Prefix: 3ffe:3800:fffb:8001::/64

fe80::250:56ff:fe8a:0
ff02::1

0:50:56:8a:0:0
33:33:0:0:0:1

DirICMP TYPE
Src IP Addr
Dst IP Addr

Src MAC Addr
Dst MAC Addr

Ethernet

A
router advertisement (2)

souter solicitation (1)

Eth MAC Addr: 0:50:56:8a:0:0
IPv6 link-l Addr: fe80::250:56ff:fe8a:0
IPv6 Sol-Node MA: ff02::1:ff8a:0

Eth MAC Addr: 0:50:56:f9:84:ff
IPv6 link-l Addr: fe80::250:56ff:fef9:84ff
IPv6 Sol-Node MA: ff02::1:fff9:84ff

R1

72

143

IPv6 Multicast Listener Discovery

! Enables each IPv6 router to discover the presence of multicast
listeners on its attached links.

! Discovers specifically which multicast addresses are of interest to
those neighboring nodes.

! This information is then provided to whichever multicast routing
protocol is being used.

! There are three types of MLD Messages:

! Multicast Listener Query (ICMPv6 Type 130)
! General
! Multicast-Address-Specific Query

! Multicast Listener Report (ICMPv6 Type 131)

! Multicast Listener Done (ICMPv6 Type 132)

144

IPv6
Multicast Listener Discovery
Message Format

! MLD is a sub-protocol of ICMPv6, messages have the following
format:

IP Fields:
!Source Address: Must be a link-local address assigned to the interface from which this message is sent.
!Hop Limit: 1
!Router Alert in a Hop-by-Hop Options header.

ICMPv6 Fields:
!Maximum Response Delay: Meaningful only in Query messages. Specifies the maximum allowed delay
before sending a responding Report (milliseconds).
!Multicast Address: Set to a specific IPv6 multicast address in a Multicast-Address-Specific Query,
Report or Done Message.

ChecksumCodeType

Multicast

Address

ReservedMaximum Response Delay

16 bits88

73

145

IPv6 Multicast Listener Discovery

Other Networks

G

Other Networks

L

L

General Query Message

Report / Done Message

Specific Query Message

Querier
Non

Querier

146

IPv6
Multicast Listener Discovery
Node Behavior

! A node may be in one of three possible states with respect to any
single IPv6 multicast address on any single interface:

! Non-Listener: when the node is not listening to the address on the
interface.

! Delaying Listener: when the node is listening to the address on the
interface and has a report delay timer running for that address.

! Idle Listener: when the node is listening to the address on the
interface and does not have a report delay timer running for that
address.

74

147

IPv6
Multicast Listener Discovery
Node Behavior

! There are seven possible actions that may be taken in response to the events:

! Send report: for the address on the interface. The Report message is
sent to the address being reported.

! Send done: for the address on the interface. If the flag saying we were
the last node to report is cleared, this action may be skipped. The Done
message is sent to the link-scope all-routers address (FF02::2).

! Set flag: that we were the last node to send a report for this address.

! Clear flag: since we were not the last node to send a report for this
address.

! Start timer: for the address on the interface, using a delay value chosen
uniformly from the interval [0, Maximum Response Delay], where
Maximum Response Delay is specified in the Query. If this is an
unsolicited Report, the timer is set to a delay value chosen uniformly from
the interval [0, [Unsolicited Report Interval]].

! Reset timer: for the address on the interface to a new value, using a
delay value chosen uniformly from the interval [0, Maximum Response
Delay], as described in "start timer".

! Stop timer: for the address on the interface.

148

IPv6
Multicast Listener Discovery
Node State Transition Diagram

Non-
Listener

Delaying
Listener

Idle
Listener

Start listening
(send report, set flag, start timer)

Stop listening
(stop timer,

send done if flag set)

Stop listening
(send done if flag set)

Query received
(start timer)

Report received
(stop timer, clear flag)

Timer expired
(send report, set flag)

Query received
(reset timer

if Max Resp Delay < current timer)

References:
Event
Action

75

149

IPv6
Multicast Listener Discovery
Router Behavior

! A router may be in one of two possible states with respect to any single
attached link:

! Querier: when this router is designated to transmit MLD Queries on this
link.

! Non-Querier: when there is another router designated to transmit MLD
Queries on this link.

! The following three events can cause the router to change states:

! Query timer expired: occurs when the timer set for query transmission
expires. This event is significant only when in the Querier state.

! Query received from a router with a lower IP address: occurs when a valid
MLD Query is received from a router on the same link with a lower IPv6
Source Address.

! Other querier present timer expired: occurs when the timer set to note
the presence of another querier with a lower IP address on the link
expires. This event is significant only when in the Non-Querier state.

150

IPv6
Multicast Listener Discovery
Router Behavior

! There are three actions that may be taken in response to the events:

! Start general query timer: for the attached link to [Query Interval].

! Start other querier present timer: for the attached link to [Other
Querier Present Interval].

! Send general query: on the attached link. The General Query is
sent to the link-scope all-nodes address (FF02::1), and has a
Maximum Response Delay of [Query Response Interval].

76

151

IPv6
Multicast Listener Discovery
Router State Transition Diagram (Link State)

Initial

Querier Non
Querier

(send gen. query,
start initial gen. query timer)

Other querier present timer expired
(send gen. query, start gen q. timer)

Query received from a router
with a lower IP address

(start other querier present timer)

References:
Event
Action

Gen. query timer expired
(send general query,

start gen. query timer)

Query received from a router
with a lower IP address

(start other querier present timer)

152

IPv6
Multicast Listener Discovery
Router Behavior

! To keep track of which multicast addresses have listeners, a router
may be in one of three possible states with respect to any single IPv6
multicast address on any single attached link:

! No Listeners Present: when there are no nodes on the link that
have sent a Report for this multicast address. This is the initial
state for all multicast addresses on the router.

! Listeners Present: when there is a node on the link that has sent a
Report for this multicast address.

! Checking Listeners: when the router has received a Done message
but has not yet heard a Report for the identified address.

77

153

IPv6
Multicast Listener Discovery
Router Behavior

! There are five significant events that can cause router state
transitions:

! Report received: occurs when the router receives a Report for the
address from the link.

! Done received: occurs when the router receives a Done message
for the address from the link.

! Multicast-address-specific query received: occurs when a router
receives a Multicast-Address-Specific Query for the address from
the link.

! Timer expired: occurs when the timer set for a multicast address
expires.

154

IPv6
Multicast Listener Discovery
Router Behavior

! There are seven possible actions that may be taken in response to the
events:

! Start timer for the address on the link.

! Start timer* for the address on the link - this alternate action sets the
timer to the minimum of its current value and either [Last Listener Query
Interval] * [Last Listener Query Count] if this router is a Querier, or the
Maximum Response Delay in the Query message * [Last Listener Query
Count] if this router is a non-Querier.

! Start retransmit timer for the address on the link.

! Clear retransmit timer for the address on the link.

! Send multicast-address-specific query for the address on the link.

! Notify routing + internally notify the multicast routing protocol that there
are listeners to this address on this link.

! Notify routing - internally notify the multicast routing protocol that there
are no longer any listeners to this address on this link.

78

155

IPv6
Multicast Listener Discovery
Router State Transition Diagram (Group State)

No
Listeners
Present

Listeners
Present

Checking
Listeners

Report received
(notify routing+,

start timer)

Report Received
(start timer, clear rexmt timer)

Rexmt timer expired
(send m-a-s query, st rxmt tmr)

References:
Event
Action

Report received
(start timer)

Done received from
(start timer*, start rexmt timer,

send m-a-s query)

Timer expired
(notify routing-)

Timer expired
(notify routing-,
clear rexmt tmr)

! The following state diagram apply per group per link in Querier state.

156

IPv6
Multicast Listener Discovery
Router State Transition Diagram (Group State)

! The following state diagram apply per group per link in Non-Querier state.

No
Listeners
Present

Listeners
Present

Checking
Listeners

Report received
(notify routing+,

start timer)

Report Received
(start timer)

References:
Event
Action

Report received
(start timer)

m-a-s query received
(start timer*)

Timer expired
(notify routing-)

Timer expired
(notify routing-,
clear rexmt tmr)

79

157

IPv6
Multicast Listener Discovery
Message Destinations

Link-scope all-routers (FF02::2)Done

The multicast address being reportedReport

The multicast address being queriedMulticast-Address-Specific Query

Link-scope all-nodes (FF02::1)General Query

IPv6 Destination AddressMessage Type

158

IPv6 IPv6 over PPP

! The Point-to-Point Protocol (PPP) has three main components:

! A method for encapsulating datagrams over serial links.

! A Link Control Protocol (LCP) for establishing, configuring, and testing the
data-link connection.

! A family of Network Control Protocols (NCPs) for establishing and
configuring different network-layer protocols.

! The NCP for establishing and configuring the IPv6 over PPP is called
the IPv6 Control Protocol (IPv6CP).

80

159

IPv6 IPv6 over PPP

! Exactly one IPv6 packet is encapsulated in the Information field of PPP Data
Link Layer frames where the Protocol field indicates type hex 0057 (Internet
Protocol Version 6).

!Protocol:
!0057 hex: IPv6
!8057 hex: IPv6 Control Protocol

Octets2 1211 1 n

Flag Address Information
(IPv6 or IPv6CP)

Control Protocol FlagFCS

160

IPv6
IPv6 over PPP
Link-local Address

! The interface identifier may be selected using one of the following
methods:

! If an IEEE global identifier is available anywhere on the node, then that
address should be used.

! If an IEEE global identifier is not available, then a different source of
uniqueness, such as a machine serial number, should be used.

! If a good source of uniqueness cannot be found, a random number should
be generated.

! The resulting link-local address is:

Bits

1111111010 0 Interface Identifier from EUI-64 Address,
Unique Number or Random Number

128 bits

10 bits 54 bits 64 bits

81

161

IPv6
IPv6 over PPP
IPv6CP Configuration Options

! IPV6CP Configuration Options allow negotiation of desirable IPv6
parameters.

! Current values are assigned as follows:

! 1: Interface-Identifier.
This Configuration Option provides a way to negotiate a unique 64-
bit interface identifier to be used for the address autoconfiguration
at the local end of the link.

! 2: IPv6-Compression-Protocol.
This Configuration Option provides a way to negotiate the use of a
specific IPv6 packet compression protocol. The IPv6-Compression-
Protocol Configuration Option is used to indicate the ability to
receive compressed packets. Each end of the link must separately
request this option if bi-directional compression is desired. By
default, compression is not enabled.

162

IPv6 IPv6 DNS Extensions

! To support the storage of IPv6 addresses the following extensions are
defined:

! A new resource record type is defined to map a domain name to an
IPv6 address.

! A new domain is defined to support lookups based on address.

! Existing queries that perform additional section processing to locate
IPv4 addresses are redefined to perform additional section
processing on both IPv4 and IPv6 addresses.

82

163

IPv6
IPv6 DNS Extensions
AAAA Record Type

! The AAAA resource record type is a new record specific to the Internet
class that stores a single IPv6 address.

! A 128 bit IPv6 address is encoded in the data portion of an AAAA
resource record in network byte order (high-order byte first).

! An AAAA query for a specified domain name in the Internet class
returns all associated AAAA resource records in the answer section of a
response.

! A type AAAA query does not perform additional section processing.

! The textual representation of the data portion of the AAAA resource
record used in a master database file is the textual representation of a
IPv6 address.

Deprecated

164

IPv6
IPv6 DNS Extensions
IP6.INT Domain

! A special domain is defined to look up a record given an address.

! The domain is rooted at IP6.INT.

! An IPv6 address is represented as a name in the IP6.INT domain by a
sequence of nibbles separated by dots with the suffix ".IP6.INT". The
sequence of nibbles is encoded in reverse order, i.e. the low-order
nibble is encoded first, followed by the next low-order nibble and so
on. Each nibble is represented by a hexadecimal digit.

! Example:

! The inverse lookup domain name corresponding to the address

4321:0:1:2:3:4:567:89ab

would be

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.IP6.INT.

Deprecated

83

165

IPv6
IPv6 DNS Extensions
A6 Resource Record

! The A6 RR contains two or three fields:
! A prefix length.

! An IPv6 address suffix.

! The name of the prefix.

! The domain name component shall not be present if the prefix length
is zero.

! The address suffix component shall not be present if the prefix length
is 128.

! It is suggested that an A6 record intended for use as a prefix for other
A6 records have all the insignificant trailing bits in its address suffix
field set to zero.

! Example (of textual representation):
$ORIGIN example2.net.
subnet5 A6 48 0:0:0:1:: ipv6net2.example2.net.
ipv6net2 A6 0 6666:5555:4::

166

IPv6
IPv6 DNS Extensions
A6 Record Chains Example

Site X
2345:00C1:CA11::/48
2345:00D2:DA11::/48
2345:000E:EB22::/48

X.EXAMPLE.COM

TLA
2345

ALPHA-TLA.ORG

NLA E
2345:000E::/32

E.NET

NLA D
2345:00D0::/28

D.NET

NLA C
2345:00C0::/28

C.NET

Provider A
2345:00C1:CA00::/40
2345:00D2:DA00::/40

A.NET

Provider B
2345:000E:EB00::/40

B.NET

2345:00C1:CA11:0001:1234:5678:9ABC:DEF0
2345:00D2:DA11:0001:1234:5678:9ABC:DEF0
2345:000E:EB22:0001:1234:5678:9ABC:DEF0

N.X.EXAMPLE.COM

X's DNS:
$ORIGIN X.EXAMPLE.COM.
N A6 64 ::1234:5678:9ABC:DEF0 SUBNET-1.IP6
SUBNET-1.IP6 A6 48 0:0:0:1:: IP6
IP6 A6 48 0::0 SUBSCRIBER-X.IP6.A.NET.
IP6 A6 48 0::0 SUBSCRIBER-X.IP6.B.NET.

Elsewhere:
SUBSCRIBER-X.IP6.A.NET. A6 40 0:0:0011:: A.NET.IP6.C.NET.
SUBSCRIBER-X.IP6.A.NET. A6 40 0:0:0011:: A.NET.IP6.D.NET.

SUBSCRIBER-X.IP6.B.NET. A6 40 0:0:0022:: B-NET.IP6.E.NET.

A.NET.IP6.C.NET. A6 28 0:0001:CA00:: C.NET.ALPHA-TLA.ORG.

A.NET.IP6.D.NET. A6 28 0:0002:DA00:: D.NET.ALPHA-TLA.ORG.

B-NET.IP6.E.NET. A6 32 0:0:EB00:: E.NET.ALPHA-TLA.ORG.

C.NET.ALPHA-TLA.ORG. A6 0 2345:00C0::
D.NET.ALPHA-TLA.ORG. A6 0 2345:00D0::
E.NET.ALPHA-TLA.ORG. A6 0 2345:000E::

N

84

167

IPv6
IPv6 DNS Extensions
Binary Labels

! A “Bit-String Label” may appear within domain names.

! Represents a sequence of “One-Bit Labels”.

! Enables RRs to be stored at any bit-boundary in a binary-named
section of the domain name tree.

! Are intended to efficiently solve the problem of storing data and
delegating authority on arbitrary boundaries (for reverse zones).

! Textual Representation example:
! \[b11010000011101]
! \[o64072/14]
! \[xd074/14]
! \[208.116.0.0/14]
! \[b11101].\[o640]
! \[x1d].\[o64]
! \[o35].\[208.0.0.0/8]

168

IPv6
IPv6 DNS Extensions
Non-Terminal DNS Name Redirection

! A new RR called “DNAME” provides the capability to map an entire
subtree of the DNS name space to another domain.

! It’s a solution to the problem of maintaining address-to-name
mappings in a context of network renumbering.

! Renumbering Example:
$ORIGIN \[x20aa00bbcccc/48].ip6.arpa.
\[xdddd/16] DNAME ipv6-rev.example.com.

$ORIGIN \[x266655550004/48].ip6.arpa.
\[x0001/16] DNAME ipv6-rev.example.com.

$ORIGIN ipv6-rev.example.com.
\[x1234567812125675/64] PTR host.example.com.

85

169

IPv6
IPv6 DNS Extensions
IP6.ARPA Domain

! A new special domain is defined to look up a record given an address.

! The domain is rooted at IP6.ARPA.

! This new scheme for reverse lookups relies on Bynary Labels.

! The inverse lookup domain name corresponding to the address

4321:0:1:2:3:4:567:89ab
would be

\[x432100000001000200030004056789ab].IP6.ARPA.

! DNS address space delegation is implemented not by zone cuts and NS
records, but by the new DNAME resource record.

170

IPv6
IPv6 DNS Extensions
IP6.ARPA Domain Example

Site X
2345:00C1:CA11::/48
2345:00D2:DA11::/48
2345:000E:EB22::/48

X.EXAMPLE.COM

TLA
2345

ALPHA-TLA.ORG

NLA E
2345:000E::/32

E.NET

NLA D
2345:00D0::/28

D.NET

NLA C
2345:00C0::/28

C.NET

Provider A
2345:00C1:CA00::/40
2345:00D2:DA00::/40

A.NET

Provider B
2345:000E:EB00::/40

B.NET

2345:00C1:CA11:0001:1234:5678:9ABC:DEF0
2345:00D2:DA11:0001:1234:5678:9ABC:DEF0
2345:000E:EB22:0001:1234:5678:9ABC:DEF0

N.X.EXAMPLE.COM

N

IP6.ARPA Level:
$ORIGIN IP6.ARPA.
\[x234500/24] DNAME IP6.ALPHA-TLA.ORG.
\[x267800/24] DNAME IP6.BRAVO-TLA.ORG.
\[x29AB00/24] DNAME IP6.CHARLIE-TLA.XY.

TLA Level (ALPHA-TLA):
\[xC/4].IP6.ALPHA-TLA.ORG. DNAME IP6.C.NET.
\[xD/4].IP6.ALPHA-TLA.ORG. DNAME IP6.D.NET.
\[x0E/8].IP6.ALPHA-TLA.ORG. DNAME IP6.E.NET.

ISP Level (A, B, C, D, and E):
\[x1CA/12].IP6.C.NET. DNAME IP6.A.NET.
\[x2DA/12].IP6.D.NET. DNAME IP6.A.NET.
\[xEB/8].IP6.E.NET. DNAME IP6.B.NET.
\[x11/8].IP6.A.NET. DNAME IP6.X.EXAMPLE.COM.
\[x22/8].IP6.B.NET. DNAME IP6.X.EXAMPLE.COM.

The Site Level (X.EXAMPLE.COM):
$ORIGIN IP6.X.EXAMPLE.COM.
\[x0001/16] DNAME SUBNET-1
\[x123456789ABCDEF0].SUBNET-1 PTR N.X.EXAMPLE.COM.

86

171

IPv6
IPv6 DNS Extensions
Modifications to existing Query Types

! All existing query types that perform type A additional section
processing, must be redefined to perform type A, A6 and AAAA
additional section processing, i.e.:

! Name server (NS)

! Mail exchange (MX)

! Mailbox (MB)

! These new definitions mean that a name server must add any relevant
IPv4 addresses and any relevant IPv6 addresses available locally to the
additional section of a response when processing any one of the above
queries.

172

IPv6
Transition Mechanisms
Dual IP Stacks

! Is the simplest mechanism for IPv4 and IPv6 coexistence.

! Node has both IPv4 and IPv6 stacks and addresses.

! DNS Resolver returns IPv6, IPv4 or both to application.

! IPv6 applications can communicate with IPv4 nodes.

Process/Application
Layer

Sockets
TCP/UDPv6TCP/UDPv4

IPv4 IPv6

Network Interface
Layer

IPv6/IPv4 Node

Process/Application
Layer

Sockets
TCP/UDPv4

IPv4

Network Interface
Layer

IPv4-only Node

Process/Application
Layer

Sockets
TCP/UDPv6

IPv6

Network Interface
Layer

IPv6-only Node

87

173

IPv6
Transition Mechanisms
Tunneling IPv6 in IPv4

! IPv6 encapsulated in IPv4

! Four possible configurations:

! Router-to-Router
! Host-to-Router
! Host-to-Host
! Router-to-Host

! The tunnel endpoints takes care of
the encapsulation. This process is
“transparent” to the other nodes.

! The manner in which endpoints
addresses are determined defines:

! Configured tunnels
! Automatic tunnels
! Multicast tunnels

IPv6
Header

TCP/UDP
Header

Process/Application Header(s)
and Data

IPv6 Packet

Encapsulation at the tunnel
entry endpoint

IPv4
Header

IPv6
Header

TCP/UDP
Header

Process/Application Header(s)
and Data

IPv4 Datagram

Decapsulation at the tunnel
exit endpoint

IPv6
Header

TCP/UDP
Header

Process/Application Header(s)
and Data

IPv6 Packet

174

IPv6
Transition Mechanisms
Configured Tunneling

! Tunnel endpoints are fixed (manually configured).

! Tunnel endpoints must be dual-stack nodes.

! The IPv4 address is the endpoint for the tunnel.

! Require reachable IPv4 addresses.

! The tunnels can be either unidirectional or bidirectional.

! Bidirectional configured tunnels behave as virtual point-to-point links.

88

175

IPv6
Transition Mechanisms
Configured Tunneling: Router-to-Router

IPv4
Network

Configured Tunnel

R2
IPv6/IPv4

R1
IPv6/IPv4

H1

Source Host generates IPv6 packets
(IPv6-only or IPv6/v4 host)

H2

Destination Host receives
IPv6 packets

(IPv6-only host)

IPv6
H1 to H2

IPv4
R1 to R2

Exit endpoint router
decapsulates IPv6 packet

IPv6
H1 to H2

IPv4
R1 to R2

Entry router encapsulates
IPv6 packet

176

IPv6
Transition Mechanisms
Configured Tunneling: Host-to-Router

IPv4
Network

Configured Tunnel

R2
IPv6/IPv4

R1
IPv4

H1

H2

Destination Host receives
IPv6 packets

IPv6
H1 to H2

IPv4
H1 to R2

Exit endpoint router
decapsulates IPv6 packet

IPv6
H1 to H2

IPv4
H1 to R2

Source host generates and
encapsulates IPv6 packet

89

177

IPv6
Transition Mechanisms
Automatic Tunneling

! IPv4 tunnel endpoint address is determined from the IPv4-compatible
destination IPv6 address.

! Example: ::170.210.79.4

! Terminates on a host.

! Routing table redirects ::/96 to automatic tunneling interface.

! If two hosts have IPv4-compatible IPv6 addresses, they can
communicate acoss an IPv4 infrastructure using automatic tunneling.

! A dual router, upon receiving an IPv6 packet destined for a host with
an IPv4-compatible address, can automatically tunnel that packet to its
endpoint.

178

IPv6
Transition Mechanisms
Automatic Tunneling: Host-to-Host

IPv4
Network

Automatic Tunnel

R2
IPv4

R1
IPv4

H1

H2

IPv6/v4 Host with
IPv4-compatible

address

IPv6
H1 to H2

IPv4
H1 to H2

Destination Host decapsulates
IPv6 packet

IPv6
H1 to H2

IPv4
H1 to H2

Source host generates and
encapsulates IPv6 packet

IPv6/v4 Host with
IPv4-compatible

address

90

179

IPv6
Transition Mechanisms
Automatic Tunneling: Router-to-Host

IPv4
Network

Automatic Tunnel

R2
IPv4

R1
IPv6/v4

with IPv4-
compatible

address

H1

H2

IPv6/v4 Host with
IPv4-compatible

address
IPv6

H1 to H2
IPv4

R1 to H2

Destination Host decapsulates
IPv6 packet

IPv6
H1 to H2

IPv4
R1 to H2

Entry router encapsulates IPv6
packet in IPv4IPv6 or

IPv6/v4 Host

Source host generates
IPv6 packet

180

IPv6
Transition Mechanisms
Multicast Tunneling: 6over4

! Interconnection of isolated IPv6
domains in an IPv4 world.

! No explicit tunnels.

! The egress router must:

! Have a dual stack

! Have a globally routable IPv4 address

! Have an IPv4 multicast infrastructure

! Implement 6over4 on an external
interface

! Uses IPv4 as a link layer for IPv6,
that’s why IPv4 multicast is needed.

IPv4
(multicast)

IPv4/v6

IPv6/v4 IPv4 IPv4

IPv6/v4 IPv4 IPv4

Other
networks

91

181

IPv6 Transition Routing

! Terms related to transition routing architecture:

! Border router: A router that forwards packets across routing domain
boundaries.

! Routing domain: A collection of routers that coordinate routing knowledge
using a single protocol.

! Routing region: Collection of routers, interconnected by a single Internet
protocol, that coordinate their routing knowledge using routing protocols
from a single IP stack. A routing region may be a superset of a routing
domain.

! Reachability information: Information describing the set of reachable
destinations that can be used for packet forwarding decisions.

! Route leaking: Advertisement of network layer reachability information
across routing boundaries.

182

IPv6
Transition Routing
Routing Example (1)

R3
IPv6/v4

R4
IPv6/v4

R1
IPv6/v4

R6
IPv4

R8
IPv4

R5
IPv4

R9
IPv4

H1

IPv4

H3

IPv6/v4

H4

IPv6/v4
H8

IPv6/v4

H7

IPv6/v4

H2

IPv4

Region B: IPv4-only routersRegion A: IPv6/v4 routers

R2
IPv6/v4

IPv4
H1 to H8

via IPv4 forwarding

92

183

IPv6
Transition Routing
Routing Example (2)

R3
IPv6/v4

R4
IPv6/v4

R1
IPv6/v4

R6
IPv4

R8
IPv4

R5
IPv4

R9
IPv4

H1

IPv4

H3

IPv6/v4

H4

IPv6/v4
H8

IPv6/v4

H7

IPv6/v4

H2

IPv4

Region B: IPv4-only routersRegion A: IPv6/v4 routers

R2
IPv6/v4

IPv4
H8 to H1

via IPv4 forwarding

184

IPv6
Transition Routing
Routing Example (3)

R3
IPv6/v4

R4
IPv6/v4

R1
IPv6/v4

R6
IPv4

R8
IPv4

R5
IPv4

R9
IPv4

H1

IPv4

H3

IPv6/v4

H4

IPv6/v4
H8

IPv6/v4

H7

IPv6/v4

H2

IPv4

Region B: IPv4-only routersRegion A: IPv6/v4 routers

R2
IPv6/v4

via Router-to-Host Tunnel

IPv6
H3 to H8

IPv4
R2 (or R4)

to H8

IPv6
H3 to H8

93

185

IPv6
Transition Routing
Routing Example (4)

R3
IPv6/v4

R4
IPv6/v4

R1
IPv6/v4

R6
IPv4

R8
IPv4

R5
IPv4

R9
IPv4

H1

IPv4

H3

IPv6/v4

H4

IPv6/v4
H8

IPv6/v4

H7

IPv6/v4

H2

IPv4

Region B: IPv4-only routersRegion A: IPv6/v4 routers

R2
IPv6/v4

via Host-to-Host Automatic Tunnel

IPv6
H8 to H3

IPv4
H8 to H3

186

IPv6
Transition Routing
Routing Example (5)

R3
IPv6/v4

R4
IPv6/v4

R1
IPv6/v4

R6
IPv4

R8
IPv4

R5
IPv4

R9
IPv4

H1

IPv4

H3

IPv6/v4

H4

IPv6/v4
H8

IPv6/v4

H7

IPv6/v4

H2

IPv4

Region B: IPv4-only routersRegion A: IPv6/v4 routers

R2
IPv6/v4

via Host-to-Router Configured Tunnel

IPv6
H8 to H3

IPv4
H8 to R2
(or R4)IPv6

H8 to H3

94

187

IPv6 6to4

! Mechanism for IPv6 sites to communicate with each other over the
IPv4 network without explicit tunnel setup.

! Allows communication with native IPv6 domains.

! Assigns an interim unique IPv6 address prefix to any site that
currently has at least one globally unique IPv4 address.

! Not requires:
! IPv4-compatible IPv6 addresses
! configured tunnels

! Uses the prefix 2002::/16 to form 6to4 prefixes derived from the
IPv4 Address.

188

IPv6 6to4 – Terminology

! Requires an IPv4 network communicating both 6to4 routers.

! 6to4 prefix: a prefix derived from an IPv4 address.

Ex.: 170.210.16.2 " 2002:acd2:1002::/48

! 6to4 address: an IPv6 address constructed using a 6to4 prefix.

95

189

IPv6 6to4 – Scenario: All sites work the same

! Requires an IPv4 network communicating both 6to4 routers.
! Each site has an IPv6 prefix in the form 2002:WWXX:YYZZ::/48
! Outgoing packets are encapsulated into IPv4 at the 6to4 router.
! Incoming packets are decapsulated and sent to the internal IPv6

network.
! Any number of 6to4 sites can interoperate with no tunnel

configuration.

190

IPv6
Transition Routing
Summary

6to4Any IPv6 address6to4 address

incompatible address
local v6 router

incompatible address
local v6 router

incompatible address
local v6 router

v4-compatible address
local v6 router

end to end native v6
in both directions

v4-compatible address
local v6 router

v4-compatible address
local v6 router

A->B: host to router tunnel
plus v6 forwarding

B->A: v6 forwarding plus
router to host tunnel

incompatible address
local v6 router

v4-compatible address
no local v6 router

A->B: host to host tunnel
B->A: v6 forwarding

plus router->host tunnel

v4-compatible address
local v6 router

v4-compatible address
no local v6 router

host to host tunneling in both
directions

v4-compatible address
no local v6 router

v4-compatible address
no local v6 router

ResultHost BHost A

96

191

IPv6 SIIT: Stateless IP/ICMP Translation

! Allows IPv6-only hosts to talk to IPv4 hosts.

! Header translator maps corresponding header fields of IPv4#IPv6.

! Requires one temporary IPv4 address per host.

! Problem: if no corresponding fields/infos in both headers => no
translation possible.

! Conclusion: except segmentation no usage of IPv6 extension headers.

! Requires IPv4-mapped IPv6 address ::FFFF:d.d.d.d

IPv6

IPv6
Network

IPv4
Network

IPv4

IPv6/v4
Translator

192

IPv6
NAT-PT: Network Address Translation –
Protocol Translation

! Enables communication between pure IPv6 and IPv4 nodes.

! Combines two techniques: NAT (Network Address Translation) and SIIT
Protocol Translation. Uses Stateful Translation.

! Requires at least one IPv4 address per site.

! Operation:
! IPv6 node sends packet to NAT-PT server with special destination address..

! NAT-PT server manages pool of IPv4 addresses, translates headers: IPv4 # IPv6. Assigns IPv4
address to IPv6 address, forwards packet to IPv4 node.

! IPv4 node: first IPv4 address of IPv6 node has to be received from DNS. DNS server requests
NAT-PT to assign and delivers reserved IPv4 address of IPv6 node.

IPv4 address

32 bits

NAT-PT Prefix

96 bits

97

193

IPv6 Traditional NAT-PT

! Traditional-NAT-PT would allow hosts within a V6 network to access hosts in
the V4 network.

! In a traditional-NAT-PT, sessions are unidirectional, outbound from the V6
network.

! This is in contrast with`Bi-directional-NAT-PT, which permits sessions in both
inbound and outbound directions.

! There are two variations to traditional-NAT-PT
! Basic-NAT-PT: a block of V4 addresses are set aside for translating addresses of V6

hosts as they originate sessions to the V4 hosts in external domain.

! NAPT-PT, which stands for "Network Address Port Translation + Protocol
Translation", would allow V6 nodes to communicate with the V4 nodes transparently
using a single V4 address.

C

IPv4

IPv4
Network

A

IPv6

NAT-PTB

IPv6

FEDC:BA98::7654:3210

FEDC:BA98::7654:3211

132.146.243.30

Pool of IPv4 Addresses:
120.130.26.0/24

194

IPv6 Bi-directional NAT-PT

! Sessions can be initiated from hosts in V4 network as well as the V6 network.

! V6 network addresses are bound to V4 addresses:

! Statically

! Dynamically

! Hosts in V4 realm access V6-realm hosts by using DNS for address resolution.

! A DNS-Application-Level-Gateway must be employed to facilitate name to
address mapping.

C

IPv4

IPv4
Network

A

IPv6

NAT-PTB

IPv6

FEDC:BA98::7654:3210

FEDC:BA98::7654:3211

132.146.243.30

Pool of IPv4 Addresses:
120.130.26.0/24

DNSDNS

98

195

IPv6 Bump in the Stack

! IPv4 applications can transparently communicate via an IPv6 net (if application
uses logical names and DNS service).

! Inserts 3 additional modules into IPv4 protocol stack (Dual Stack Host).
! Operation:

! Translator maps IPv4 packets into IPv6 packets using protocol translation (SIIT).
! Extension name resolver creates DNS requests (A-rec. + AAAA-rec.) upon appl. DNS

request.
! If DNS server replies A-rec., this is guided directly to IPv4 application.
! If DNS server replies only AAAA-record, address mapper reserves IPv4 address.
! Then A-rec. is derived (from reserved IPv4 address and AAAA-rec.) and given to

application.
! Address mapper manages pool of IPv4 addresses and assigned IPv6 addresses.

Network cards

Network card drivers

IPv6

TranslatorAddress
mapper

Extension
name

resolver

IPv4 Applications

TCP/IPv4

196

IPv6 6bone at UTN FRLP

! Prefix: 3ffe:3800:fffb::/48

caspa tutan

3ffe:3800:fffb:2001::/64

3f
fe

:3
80

0:
ff

fb
:1

00
1:

:/
64

linux

301

302

chuky

IPv4
Internet

Configured Tunnel

fibertel
pTLA

Config
ured Tunnel rnp pTLA

amira
IPv6/v4

BG
P4+

BGP4+

99

197

IPv6 IPSec – Network Security

! IPSec is designed to provide interoperable, high quality,
criptographically-based security for IPv4 and IPv6.

! IPSec provides security at the IP layer, transparent to applications.

! IPSec offers services for:
! Authentication: Authenticate the sender.
! Confidentially: Encrypt data before transmission.
! Data Integrity: Detect altered data in packets.
! Anti-Replay: Detect replayed packets.

! Open standard, published by the IETF.

198

IPv6 IPSec – Protocols

! IPSec uses two protocols to provide traffic security.

! Authentication Header (AH)
! Connectionless integrity.
! Data origin authentication.
! Anti-replay service (optional).

! Encapsulating Security Payload (ESP)
! Connectionless integrity.
! Data origin authentication.
! Anti-replay service (optional).
! Confidentiality (encryption).
! Limited traffic flow confidentiality

! Two modes of use: transport or tunnel.

100

199

IPv6 IPSec – Security Associations

! The concept of a “Security Association” is fundamental to IPSec.

! A Security Association (SA) is a simplex “connection” that affords
security services to the traffic carried by it.

! A Security Association is unidirectional.

! A Security Association is identified by a triple consisting of:
! Security Parameter Index (SPI).
! IP Destination Address.
! Security protocol identifier (AH or ESP).

200

IPv6 IPSec – Security Databases

! There are two nominal databases in this model:

! Security Policy Database
! Specifies the policies that determine the disposition of all IP traffic

inbound or outbound from an IPSec implementation.
! An SPD must discriminate among traffic that is afforded IPSec

protection and traffic that is allowed to bypass IPSec.

! Security Association Database
! Contains parameters that are associated with each security association.

! Selector: a set of IP and upper layer protocol field values that is used
by the SPD to map traffic to a policy, i.e., an SA.

101

201

IPv6 IPSec – Basic Overview

Host

TCP

MAC

IPSec

Host

TCP

MAC

IPSec

Internet
S

en
d

How to process ?

IPSec packet processing:
! Look up in the Security Policy Database (SPD) how to handle the

packet:
! Discard
! Bypass IPSec -> use IP
! Apply IPSec

202

IPv6 IPSec – Basic Overview

IPSec packet processing:
! Lookup in the Security Association List (SA List) if a Security

Association (SA) is available, i.e. if a secure transmission is possible.

! SA stores information about Authentication and / or Encryption algorithm and symmetric,
shared keys.

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e

nd

SPD

Secure transmission possible?

102

203

IPv6
IPSec – Basic Overview
Case 1: SA already available.

IPSec packet processing:
! Look up in the Security Policy Database (SPD) how to handle the

packet:
! Discard
! Bypass IPSec -> use IP
! Apply IPSec

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
n
d

SPD
Authenticiation

Encryption

SA

How to
 process?

204

IPv6
IPSec – Basic Overview
Case 1: SA already available.

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
n
d

SPD
Authenticiation

Encryption

SA

SPD

103

205

IPv6
IPSec – Basic Overview
Case 2: SA not available.

IPSec packet processing:
! Dynamically create a SA using Internet Key Exchange (IKE)

! Exchange shared keys for IP Sec

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
nd

SPD

Secure transmission possible?

206

IPv6
IPSec – Basic Overview
Case 2: SA not available.

IPSec packet processing:
! Internet Key Exchange (IKE)

! Create a IKE SA using public keys
! Exchange shared keys for IP Sec

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
nd

SPD

IKE Secure key echange possible?

104

207

IPv6
IPSec – Basic Overview
Case 2: SA not available.

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
nd

SPD

IKE SA

208

IPv6
IPSec – Basic Overview
Case 2: SA not available.

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
nd

SPD

Negotiate algorithms and keys for IP Sec

IKE SA

105

209

IPv6
IPSec – Basic Overview
Case 2: SA not available.

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
nd

SPD

SA

210

IPv6
IPSec – Basic Overview
Case 2: SA not available.

Host

TCP

MAC

IPSec

Host

Internet

TCP

MAC

IPSec

S
e
n
d

SPD

SA

SPD

106

211

IPv6
IPSec – Supported Combinations
Host to Host

Internet

IP_AH_payload (transport)
IP_ESP_payload (transport)
IP_AH_ESP_payload (transport)
IP (host)_AH_IP_payload (tunnel)
IP (host)_ESP_IP_payload (tunnel)

H2H1

212

IPv6
IPSec – Supported Combinations
Security Gateway to Security Gateway

Internet

IP (SG)_AH_IP_payload (tunnel)
IP (SG)_ESP_IP_payload (tunnel)

H1

SG1

H2

SG2

107

213

IPv6
IPSec – Supported Combinations
Combination of Cases

Internet

Two options (tunnel)

H1

SG1

H2

SG2

Three options (transport)
Two options (tunnel)

214

IPv6
IPSec – Supported Combinations
Remote Access

Internet

Two options (tunnel)

H1 H2

SG2

Three options (transport)
Two options (tunnel)

108

215

IPv6 IPSec – Authentication header

! Authentication of data origin

! Data integrity

! Anti-replay (optional)

Authentication Data (variable)

Sequence Number Field

Security Parameters Index (SPI)

ReservedPayload lengthNext Header

8888

! SPI = 0 is forbidden, 1..255 is reserved

! Seq. Number only increases (no reset to 0) for anti-replay

216

IPv6 IPSec – Encapsulation Security Payload

! Data integrity

! Data encryption

! Authentication (optional)

! Anti-replay (optional)

! SPI = 0 is forbidden, 1..255 is reserved

! Seq. Number only increases (no reset to 0) for anti-replay

Next HeaderPadding length

Authentication Data (variable)

Padding (0..255 bytes)

Payload Data (variable)

Sequence Number Field

Security Parameters Index (SPI)

8888

109

217

IPv6 IPSec – AH Transport Mode

Authenticated except for mutable fields

(*): Hop-by-Hop, Dest. Opt, Routing, Fragment.
(**): Dest. Opt

IP Header Optional
headers

TCP, UDP,
ICMP, etc. Data

Original
IP Header

Optional
headers(*) AH Optional

headers(**)
TCP, UDP,
ICMP, etc. Data

After applying AH

Before applying AH

218

IPv6 IPSec – AH Tunnel Mode

Authenticated except for mutable fields in new IP hdr

New
IP Header

New optional
headers AH

After applying AH

Before applying AH

IP Header Optional
headers

TCP, UDP,
ICMP, etc. Data

Original
IP Header

Optional
headers

TCP, UDP,
ICMP, etc. Data

110

219

IPv6 IPSec – ESP Transport Mode

Encrypted

(*): Hop-by-Hop, Dest. Opt, Routing, Fragment.
(**): Dest. Opt

IP Header Optional
headers

TCP, UDP,
ICMP, etc. Data

Original
IP Header

Optional
headers(*) ESP Optional

headers(**)
TCP, UDP,
ICMP, etc. Data

After applying ESP

Before applying ESP

ESP
Trailer

ESP
Auth

Authenticated

220

IPv6 IPSec – ESP Tunnel Mode

New
IP Header

New optional
headers ESP

After applying ESP

Before applying ESP

IP Header Optional
headers

TCP, UDP,
ICMP, etc. Data

Original
IP Header

Optional
headers

TCP, UDP,
ICMP, etc. Data ESP

Trailer
ESP
Auth

Encrypted

Authenticated

111

221

IPv6 IPSec – AH-ESP Transport Mode

(*): Hop-by-Hop, Dest. Opt, Routing, Fragment.
(**): Dest. Opt

IP Header Optional
headers

TCP, UDP,
ICMP, etc. Data

Original
IP Header

Optional
headers(*)

After applying AH-ESP

Before applying AH-ESP

AH

Encrypted

ESP Optional
headers(**)

TCP, UDP,
ICMP, etc. Data ESP

Trailer
ESP
Auth

Authenticated

Authenticated except for mutable fields

222

IPv6 IPSec – Example

SPD

1 PC_1PC_2 * * * AH Transport Bidirect. Apply

Policy
Src

Addr
Dst

Addr
Layer 4
Protocol

Src
Port

Dst
Port

IP Sec
Protocol

IP Sec
Mode

Direction Action

SA

2 101 PC_2 policy HMAC-MD5 1to2.key Out
1 100

SA
Entry

SPI
Dst

Addr
Layer 4
Protocol

Src
Port

Dst
Port

Auth.
Algorithm

Key(file) Direction

policy

PC_1

Src
Addr

policypolicy

policy HMAC-MD5 2to1.key Inpolicy policypolicy

SPD

1 PC_1PC_2 * * * AH Transport Bidirect. Apply

Policy
Src

Addr
Dst

Addr
Layer 4
Protocol

Src
Port

Dst
Port

IP Sec
Protocol

IP Sec
Mode

Direction Action

SA

2 101 PC_2 policy HMAC-MD5 1to2.key In
1 100

SA
Entry

SPI
Dst

Addr
Layer 4
Protocol

Src
Port

Dst
Port

Auth.
Algorithm

Key(file) Direction

policy

PC_1

Src
Addr

policypolicy

policy HMAC-MD5 2to1.key Outpolicy policypolicy

PC_2

1to2.key
2to1.key

1to2.key
2to1.key

PC_1

112

223

IPv6
Socket Interface Extensions for IPv6
Motivation

! While IPv4 addresses are 32 bits long, IPv6 interfaces are identified by
128-bit addresses.

! The socket interface makes the size of an IP address quite visible to an
application.

! Those parts of the API that expose the addresses must be changed.

! IPv6 also introduces new features which must be made visible to
applications via the API, e.g.:

! Traffic class

! Flow Label

224

IPv6
Socket Interface Extensions for IPv6
Design Considerations

! The API changes should:

! Provide both source and binary compatibility for programs written
to the original API.

! Be as small as possible in order to simplify the task of converting
existing IPv4 applications to IPv6.

! Be able to use this API to interoperate with both IPv6 and IPv4
hosts. Applications should not need to know which type of host
they are communicating with.

113

225

IPv6
Socket Interface Extensions for IPv6
What Needs to be Changed

! Core socket functions
! These functions need not change for IPv6.

! Address data structures
! A new IPv6-specific address data structure is needed.

! Name-to-address translation functions
! New functions are defined to support IPv4 and IPv6.
! The POSIX 1003.g draft specifies a new nodename-to-address translation function

which is protocol independent.

! Address conversion functions
! New functions that convert both IPv4 and IPv6 addresses.

! Miscellaneous features
! New interfaces to support the IPv6 traffic class, flow label, and hop limit header

fields.
! New socket options are needed tocontrol the sending and receiving of IPv6

multicast packets.

226

IPv6
Socket Interface Extensions for IPv6
IPv6 Address Family and Protocol Family

! New address family name: AF_INET6

! Defined in <sys/socket.h>

! New sockaddr_in6 data structure.

! New protocol family name: PF_INET6

! Defined in <sys/socket.h>

! Used in the first argument to the socket() function.

114

227

IPv6
Socket Interface Extensions for IPv6
IPv6 Address Structure

! A new in6_addr structure holds a single IPv6 address:

struct in6_addr {
uint8_t s6_addr[16]; /* IPv6 address */

};

IPv6

struct in_addr {
u_long s_addr;

} ;

IPv4

228

IPv6
Socket Interface Extensions for IPv6
Socket Address Structure

! New sockaddr_in6 structure holds IPv6 addresses (<netinet/in.h>)

struct sockaddr_in6 {
sa_family_t sin6_family; /* AF_INET6 */

in_port_t sin6_port; /* transport layer port # */

uint32_t sin6_flowinfo; /* IPv6 traffic class & flow info */

struct in6_addr sin6_addr; /* IPv6 address */

uint32_t sin6_scope_id; /* set of intf. for a scope */

};

IPv6

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

IPv4

! sin6_flowinfo contains the traffic class and the flow label.
! sin6_scope_id identifies a set of interfaces as appropriate for the scope of the

address carried in the sin6_addr field.
! Link scope: interface index.
! Site scope: site identifier.
! Not completely specified

115

229

IPv6
Socket Interface Extensions for IPv6
The Socket Functions

! Applications call the socket() function to create a socket descriptor that
represents a communication endpoint.

s = socket(PF_INET6, SOCK_STREAM, 0); /* TCP Socket */

s = socket(PF_INET6, SOCK_DGRAM, 0); /* UDP Socket */

IPv6

s = socket(PF_INET, SOCK_STREAM, 0);
s = socket(PF_INET, SOCK_DGRAM, 0);

IPv4

! Once the application has created a PF_INET6 socket, it must use the
sockaddr_in6 address structure when passing addresses in to the
system.
! bind()
! connect()
! sendmsg()
! sendto()

230

IPv6
Socket Interface Extensions for IPv6
The Socket Functions

! The system will use the sockaddr_in6 address structure to return
addresses to applications that are using PF_INET6 sockets.

! The functions that return an address from the system to an application
are:

! accept()

! recvfrom()

! recvmsg()

! getpeername()

! getsockname()

! No changes to the syntax of the socket functions are needed to
support IPv6.

116

231

IPv6
Socket Interface Extensions for IPv6
Compatibility with IPv4 Nodes

! IPv6 applications are able to interoperate with IPv4 applications.
! Uses the IPv4-mapped IPv6 address format.

! IPv4-mapped addresses are written as follows:
::FFFF:<IPv4-address>

! Applications may use PF_INET6 sockets to:
! open TCP connections to IPv4 nodes

! send UDP packets to IPv4 nodes

Encoding the destination's IPv4 address as an IPv4-mapped IPv6
address.

! When applications use PF_INET6 sockets to:
! accept TCP connections from IPv4 nodes

! receive UDP packets from IPv4 nodes

The system returns the peer's address using a sockaddr_in6 structure
encoded this way.

232

IPv6
Socket Interface Extensions for IPv6
IPv6 Wildcard Address

! While the bind() function allows applications to select the source IP
address of UDP packets and TCP connections, applications often want
the system to select the source address for them.

! With IPv4, one specifies the address as the symbolic constant
INADDR_ANY.

! In IPv6 a symbolic constant can be used to initialize an IPv6 address
variable, but cannot be used in an assignment.

! Systems provide the wildcard in two forms:

! extern const struct in6_addr in6addr_any;

! struct in6_addr anyaddr = IN6ADDR_ANY_INIT;
(can be used ONLY at declaration time)

! Applications use in6addr_any similarly to the way they use INADDR_ANY in
IPv4.

117

233

IPv6
Socket Interface Extensions for IPv6
IPv6 Loopback Address

! Applications may need to send UDP packets to, or originate TCP
connections to, services residing on the local node.

! In IPv4, they can do this by using the constant IPv4 address
INADDR_LOOPBACK

! The IPv6 loopback address is provided in two forms:

!extern const struct in6_addr in6addr_loopback;

!struct in6_addr loopbackaddr = IN6ADDR_LOOPBACK_INIT;
(can be used ONLY at declaration time)

234

IPv6
Socket Interface Extensions for IPv6
Unicast Hop Limit

! A new setsockopt() option controls the hop limit used in outgoing
unicast IPv6 packets.

! The name of this option is IPV6_UNICAST_HOPS, and it is used at
the IPPROTO_IPV6 layer.

! Example:

int hoplimit = 10;

if (setsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS,

(char *) &hoplimit, sizeof(hoplimit)) == -1)

perror("setsockopt IPV6_UNICAST_HOPS");

118

235

IPv6
Socket Interface Extensions for IPv6
Sending and Receiving Multicast Packets

! IPv6 applications may send UDP multicast packets by simply specifying
an IPv6 multicast address in the address argument of the sendto()
function.

! Three socket options at the IPPROTO_IPV6 layer control some of
the`parameters for sending multicast packets.

! IPV6_MULTICAST_IF: Set the interface to use for outgoing multicast
packets. The argument is the index of the interface to use.

! IPV6_MULTICAST_HOPS: Set the hop limit to use for outgoing multicast
packets.

! IPV6_MULTICAST_LOOP: If a multicast datagram is sent to a group to
which the sending host itself belongs: 1: loop back a copy, 0: don’t loop
back a copy.

! IPV6_JOIN_GROUP: Join a multicast group on a specified local interface.

! IPV6_LEAVE_GROUP: Leave a multicast group on a specified interface.

236

IPv6 Mobility Terms

! Home address: permanent address of the mobile node.

! Home subnet prefix: prefix corresponding to the home address.

! Foreign subnet prefix: prefix of the foreign link.

! Care-of address: address assigned to the mobile node on the foreign link.

! Binding: the association of the home address of a mobile node with a care-off
address.

119

237

IPv6 Mobility Terms ---

! zzzz

