
15-744: Computer Networking

Review

9

Sensor Nets Metric: Communication

• Lifetime from one pair
of AA batteries
• 2-3 days at full power
• 6 months at 2% duty

cycle
• Communication

dominates cost
• < few mS to compute
• 30mS to send

message -0.350

5.238

10.825

16.413

22.000

0.00800000000000000 2.00400000000000154 4.00000000000000307

Time v. Current Draw During Query Processing

C
ur

re
nt

 (m
A

)

Time (s)

Directed Diffusion
• Data centric – nodes are unimportant
• Request driven:

• Sinks place requests as interests
• Sources are eventually found and satisfy interests
• Intermediate nodes route data toward sinks

• Localized repair and reinforcement
• Multi-path delivery for multiple sources, sinks, and

queries

2

Diffusion (High Level)

• Sinks broadcast interest to neighbors
• Interests are cached by neighbors
• Gradients are set up pointing back to where

interests came from at low data rate
• Once a sensor receives an interest, it

routes measurements along gradients

3

4

Illustrating Directed Diffusion

Sink

Source

Setting up gradients

Sink

Source

Sending data

Sink

Source

Recovering
from node failure

Sink

Source

Reinforcing
stable path

TAG Introduction
• Programming sensor nets is hard!
• Declarative queries are easy

• Tiny Aggregation (TAG): In-network
processing via declarative queries

• In-network processing of aggregates
• Common data analysis operation
• Communication reducing

• Operator dependent benefit
• Across nodes during same epoch

• Exploit semantics improve efficiency!

• Example:
• Vehicle tracking application: 2 weeks for 2

students
• Vehicle tracking query: took 2 minutes to

write, worked just as well!

7

SELECT MAX(mag)
FROM sensors
WHERE mag > thresh
EPOCH DURATION 64ms

Basic Aggregation
• In each epoch:

• Each node samples local sensors once
• Generates partial state record (PSR)

• local readings
• readings from children

• Outputs PSR during its comm. slot.

• At end of epoch, PSR for whole
network output at root

• (In paper: pipelining, grouping)

8

1

2 3

4

5

9

Illustration: Aggregation

1 2 3 4 5

1 1

2

3

4

1

1

2 3

4

5
1

Sensor #

Sl
ot

 #

Slot 1
SELECT COUNT(*)
FROM sensors

10

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3

4

1

1

2 3

4

5

2

Sensor #

Sl
ot

 #

Slot 2
SELECT COUNT(*)
FROM sensors

11

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4

1

1

2 3

4

5

31

Sensor #

Sl
ot

 #

Slot 3
SELECT COUNT(*)
FROM sensors

12

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4 5

1

1

2 3

4

5

5

Sensor #

Sl
ot

 #

Slot 4
SELECT COUNT(*)
FROM sensors

13

Illustration: Aggregation

1 2 3 4 5

1 1

2 2

3 1 3

4 5

1 1

1

2 3

4

5
1

Sensor #

Sl
ot

 #

Slot 1
SELECT COUNT(*)
FROM sensors

14

Synopsis Diffusion (SenSys’04)

• Goal: count the live sensors in the network

0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1

idBit vector
0 1 0 0 0 0 Boolean

OR
0 1 0 0 1 0

0 1 1 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0

0 1 1 0 1 0

0 1 0 0 1 0

0 1 0 0 1 1

0 1 1 0 1 1 Count 1 bits
4

Synopsis should be small

Approximate COUNT algorithm: logarithmic size bit vector

Challenge

15

Synopsis Diffusion over Rings

• Each node transmits once =
optimal energy cost (same as
Tree)

Ring 2

• A node is in ring i if it is i
hops away from the base-
station

• Broadcasts by nodes in ring i
are received by neighbors in
ring i-1

16

Evaluation

Approximate COUNT with Synopsis Diffusion

Scheme Energy

Tree 41.8 mJ

Syn. Diff. 42.1 mJ

0.00030

0.25139

0.50249

0.75358

1.00468

0 0.225 0.450 0.675 0.900

R
M

S
Er

ro
r

Loss Rate

Tree Syn. Diff.

More robust than Tree
Almost as energy
efficient as Tree

Per node energy

Typical
loss rates

15-744: Computer Networking

L-14 Network Topology

Trends in Topology Modeling
Observation

• Long-range links are expensive

• Real networks are not random,
but have obvious hierarchy

• Internet topologies exhibit
power law degree distributions
(Faloutsos et al., 1999)

• Physical networks have hard
technological (and economic)
constraints.

Modeling Approach
• Random graph (Waxman88)

• Structural models (GT-ITM
Calvert/Zegura, 1996)

• Degree-based models replicate
power-law degree sequences

• Optimization-driven models
topologies consistent with design
tradeoffs of network engineers

18

A few nodes have lots of connections

R
an

k
R(

d)

Degree d

Source: Faloutsos et al. (1999)
Power Laws and Internet Topology

• Router-level graph & Autonomous System (AS) graph
• Led to active research in degree-based network models

Most nodes have few connections

R(
d)

 =
 P

 (D
>

d)
 x

 #
no

de
s

Lmax
l(g) = 1
P(g) = 1.08 x 1010

P(g)
Perfomance (bps)

PA PLRG/GRGHOT Abilene-inspired Sub-optimal

0 0.2 0.4 0.6 0.8 1

1010

1011

1012

l(g) = Relative Likelihood

20

PA PLRG/GRGHOT

Structure Determines Performance

P(g) = 1.19 x 1010 P(g) = 1.64 x 1010 P(g) = 1.13 x 1012

21

18

Routing: Chord

• Associate to each node and item a unique
id in an uni-dimensional space

• Properties
• Routing table size O(log(N)) , where N is the

total number of nodes
• Guarantees that a file is found in O(log(N))

steps

23

Routing: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

24

Routing: Finger table - Faster Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

19

Aside: Hashing
• Advantages

• Let nodes be numbered 1..m
• Client uses a good hash function to map a URL to 1..m
• Say hash (url) = x, so, client fetches content from node

x
• No duplication – not being fault tolerant.
• One hop access
• Any problems?

• What happens if a node goes down?
• What happens if a node comes back up?
• What if different nodes have different views?

21

Consistent Hash

• “view” = subset of all hash buckets that are
visible

• Desired features
• Balanced – in any one view, load is equal

across buckets
• Smoothness – little impact on hash bucket

contents when buckets are added/removed
• Spread – small set of hash buckets that may

hold an object regardless of views
• Load – across all views # of objects assigned to

hash bucket is small

22

Consistent Hash – Example

• Smoothness addition of bucket does not cause much
movement between existing buckets

• Spread & Load small set of buckets that lie near object
• Balance no bucket is responsible for large number of

objects

• Construction
• Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
circle

• Hash of object = closest
clockwise bucket

0

8

412
Bucket

14

41

Geometry’s Impact on Routing
• Routing

• Neighbor selection: how a node picks its routing entries
• Route selection: how a node picks the next hop

• Proposed metric: flexibility
• amount of freedom to choose neighbors and next-hop paths

• FNS: flexibility in neighbor selection
• FRS: flexibility in route selection

• intuition: captures ability to “tune” DHT performance

• single predictor metric dependent only on routing issues

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90
% Failed Nodes

%
 F

ai
le

d
Pa

th
s

Ring

Hybrid

XORTree
Hypercube

48

Does flexibility affect static resilience?

Tree << XOR ≈ Hybrid < Hypercube < Ring
 Flexibility in Route Selection matters for Static Resilience

0

20

40

60

80

100

0 400 800 1200 1600 2000
Latency (msec)

C
D

F

FNS Ring

Plain Ring

FRS Ring

FNS + FRS Ring

49

Which is more effective, FNS or FRS?

Plain << FRS << FNS ≈ FNS+FRS
Neighbor Selection is much better than Route

Selection

0

20

40

60

80

100

0 400 800 1200 1600 2000
Latency (msec)

C
D

F

FNS Ring

FRS RingFNS XOR

FRS Hypercube

0

20

40

60

80

100

0 400 800 1200 1600 2000
Latency (msec)

C
D

F

FNS Ring

FRS RingFNS XOR

FRS Hypercube

50

Does Geometry affect performance of FNS
or FRS?

No, performance of FNS/FRS is independent of Geometry
 A Geometryʼs support for neighbor selection is crucial

18

Lookup Methods

Recursive query:
• Server goes out and

searches for more info
(recursive)

• Only returns final answer
or “not found”

Iterative query:
• Server responds with as

much as it knows
(iterative)

• “I don’t know this name,
but ask this server”

Workload impact on choice?
• Local server typically does

recursive
• Root/distant server does

iterative
requesting host
surf.eurecom.fr

gaia.cs.umass.edu

root name server

local name server
dns.eurecom.fr

1

2

3
4

5 6authoritative name
server

dns.cs.umass.edu

intermediate name server
dns.umass.edu

7

8

iterated query

20

Typical Resolution

Client Local
DNS server

root & edu
DNS server

ns1.cmu.edu
DNS server

www.cs.cmu.edu

NS ns1.cmu.eduwww.cs.cmu.edu

NS ns1.cs.cmu.edu

A www=IPaddr

ns1.cs.cmu.edu
DNS

server

19

Workload and Caching
• What workload do you expect for different servers/names?

• Why might this be a problem? How can we solve this problem?
• DNS responses are cached

• Quick response for repeated translations
• Other queries may reuse some parts of lookup

• NS records for domains

• DNS negative queries are cached
• Don’t have to repeat past mistakes
• E.g. misspellings, search strings in resolv.conf

• Cached data periodically times out
• Lifetime (TTL) of data controlled by owner of data
• TTL passed with every record

21

Subsequent Lookup Example

Client Local
DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS

server

ftp.cs.cmu.edu

ftp=IPaddr

ftp.cs.cmu.edu

28

DNS Experience
• 23% of lookups with no answer

• Retransmit aggressively most packets in trace for
unanswered lookups!

• Correct answers tend to come back quickly/with few
retries

• 10 - 42% negative answers most = no name
exists
• Inverse lookups and bogus NS records

• Worst 10% lookup latency got much worse
• Median 8597, 90th percentile 4471176

• Increasing share of low TTL records what is
happening to caching?

29

DNS Experience
• Hit rate for DNS = 80% 1-(#DNS/#connections)

• Most Internet traffic is Web
• What does a typical page look like? average of 4-5

imbedded objects needs 4-5 transfers accounts
for 80% hit rate!

• 70% hit rate for NS records i.e. don’t go to root/
gTLD servers
• NS TTLs are much longer than A TTLs
• NS record caching is much more important to scalability

• Name distribution = Zipf-like = 1/xa

• A records TTLs = 10 minutes similar to TTLs =
infinite

• 10 client hit rate = 1000+ client hit rate

40

How Akamai Works
• Root server gives NS record for akamai.net
• Akamai.net name server returns NS record for

g.akamaitech.net
• Name server chosen to be in region of client’s name

server
• TTL is large

• G.akamaitech.net nameserver choses server in
region
• Should try to chose server that has file in cache - How

to choose?
• Uses aXYZ name and consistent hash
• TTL is small

i3: Rendezvous Communication

• Packets addressed to identifiers (“names”)
• Trigger=(Identifier, IP address): inserted by

receiver

7

Sender Receiver (R)

ID R

trigger

send(ID, data)
send(R, data)

Senders decoupled from receivers

Mobility

• The change of the receiver’s address
• from R to R’ is transparent to the sender

11

DOA in a Nutshell

• End-host replies to source by resolving es

• Authenticity, performance: discussed in the
paper

Delegate
IP: j

<eh, j>

End-host
EID: eh
IP: ih

j

DHT

LOOKUP(
eh)

Process
Source
EID: es
IP: is

DOA Packet

IP
is j

transport bodyDOA
es eh

DOA

transportDOA
es eh

32

A Bit More About DOA

• Incrementally deployable. Requires:
• Changes to hosts and middleboxes
• No changes to IP routers (design requirement)
• Global resolution infrastructure for flat IDs

• Recall core properties:
• Topology-independent, globally unique identifiers
• Let end-hosts invoke and revoke middleboxes

• Recall goals: reduce harmful effects, permit
new functions

33

15-744: Computer Networking

L-20 Data-Oriented Networking

Naming Data (DOT)

• Application defined names are not portable
• Use content-naming for globally unique names
• Objects represented by an OID

• Objects are further sub-divided into “chunks”

• Secure and scalable!

9

File
Desc3

Foo.tx
t OID

Cryptographic
Hash

Desc1
Desc2

Naming Data (DONA)

• Names organized around principals.
• Names are of the form P : L.

• P is cryptographic hash of principal’s public key,
and

• L is a unique label chosen by the principal.
• Granularity of naming left up to principals.
• Names are “flat”.

12

Self-certifying Names

• A piece of data comes with a public key and
a signature.

• Client can verify the data did come from the
principal by
• Checking the public key hashes into P, and
• Validating that the signature corresponds to the

public key.
• Challenge is to resolve the flat names into a

location.

13

Naming Data (DTN)

• Endpoint IDs are processed as names
• refer to one or more DTN nodes
• expressed as Internet URI, matched as strings

• URIs
• Internet standard naming scheme [RFC3986]
• Format: <scheme> : <SSP>

• SSP can be arbitrary, based on (various)
schemes

• More flexible than DOT/DONA design but
less secure/scalable

34

15-744: Computer Networking

L-20 Multicast

35

R1

Implosion

S

R3 R4

R2

21

R1

S

R3 R4

R2

Packet 1 is lost All 4 receivers request a resend

Resend request

38

Ideal Recovery Model

S

R3 R4

R2

2

1

S

R3 R4

R2

Packet 1 reaches R1 but is lost
before reaching other Receivers

Only one receiver sends NACK to
the nearest S or R with packet

Resend request

1 1
Resent packet

Repair sent
only to
those that
need packet

R1 R1

40

R1

SRM Request Suppression

S

R3

R2

21

R1

S

R3

R2

Packet 1 is lost; R1 requests
resend to Source and Receivers

Packet 1 is resent; R2 and R3 no
longer have to request a resend

1

X

XDelay varies
by distance

X

Resend request Resent packet

41

Deterministic Suppression

d

d

d

d

3d

Time

data

nack repair

d
4d

d

2d

3d

= Sender

= Repairer

= Requestor

Delay = C1×dS,R

42

SRM Star Topology

S

R2

21

R3

Packet 1 is lost; All Receivers
request resends

Packet 1 is resent to all Receivers

X

R4

Delay is same length

S

R2

1

R3 R4

Resend request Resent packet

43

SRM: Stochastic Suppression

datad

d

d

d

Time

NACK

repair

2d

session msg

0

1

2

3

Delay = U[0,D2] ×dS,R

= Sender

= Repairer

= Requestor

44

SRM (Summary)

• NACK/Retransmission suppression
• Delay before sending
• Delay based on RTT estimation
• Deterministic + Stochastic components

• Periodic session messages
• Full reliability
• Estimation of distance matrix among members

20

Routing Techniques
• Flood and prune

• Begin by flooding traffic to entire network
• Prune branches with no receivers
• Examples: DVMRP, PIM-DM
• Unwanted state where there are no receivers

• Link-state multicast protocols
• Routers advertise groups for which they have receivers

to entire network
• Compute trees on demand
• Example: MOSPF
• Unwanted state where there are no senders

15-744: Computer Networking

L-22 Security and DoS

TVA (Capability)

31

C
A

P

CAP

C
A

P
Cap1, Cap2

Cap1, Cap2

Cap1, Cap2

Capability =

timestamp || Hash (N, T, PreCap)

CNN

Alic
e

• N bytes, T seconds
• Stateless receiver

– Does not store N, T

Balancing Authorized Traffic
• It is quite possible for a compromised insider to

allow packet floods from outside

• A fair-queuing policy is implemented and the
bandwidth is decreased as the network becomes
busier

• To limit the number of queues, a bounded policy is
used which only queues those flows that send faster
than N/T

• Other senders are limited by FIFO service

The Need for Traceback

• Internet hosts are vulnerable
• Many attacks consist of very few packets
• Fraggle, Teardrop, ping-of-death, etc.

• Internet Protocol permits anonymity
• Attackers can “spoof” source address
• IP forwarding maintains no audit trails

• Need a separate traceback facility
• For a given packet, find the path to source

38

Approaches to Traceback

• Path data can be noted in several places
• In the packet itself [Savage et al.],
• At the destination [I-Trace], or
• In the network infrastructure

• Logging: a naïve in-network approach
• Record each packet forwarding event
• Can trace a single packet to a source router,

ingress point, or subverted router(s)

39

Solution: Packet Digesting

• Record only invariant packet content
• Mask dynamic fields (TTL, checksum, etc.)
• Store information required to invert packet

transformations at performing router
• Compute packet digests instead

• Use hash function to compute small digest
• Store probabilistically in Bloom filters

• Impossible to retrieve stored packets

45

Bloom Filters

• Fixed structure size
• Uses 2n bit array
• Initialized to zeros

• Insertion is easy
• Use n-bit digest as

indices into bit array
• Mitigate collisions by

using multiple digests
• Variable capacity

• Easy to adjust
• Page when full

47

1
n bits

2n

bits

H(P)H2(P)

Hk(P)

H3(P)

H1(P)

1

1

1

. .
 .

15-744: Computer Networking

L-23 Worms

Threat Model
Traditional

• High-value targets
• Insider threats

Worms & Botnets
• Automated attack of

millions of targets
• Value in aggregate,

not individual systems
• Threats: Software

vulnerabilities; naïve
users

Analysis of Code Red I v2

• Random Constant Spread model
• Constants

• N = total number of vulnerable machines
• K = initial compromise rate, per hour
• T = Time at which incident happens

• Variables
• a = proportion of vulnerable machines

compromised
• t = time in hours

Analysis of Code Red I v2

N = total number of vulnerable machines
K = initial compromise rate, per hour
T = Time at which incident happens

Variables
a = proportion of vulnerable machines
compromised
t = time in hours

“Logistic equation”
Rate of growth of epidemic in finite systems when all entities
have an equal likelihood of infecting any other entity

Code Red I v2 – Plot

• K = 1.8
• T = 11.9

Hourly probe rate data for inbound port 80 at the Chemical
Abstracts Service during the initial outbreak of Code Red I on
July 19th, 2001.

Better Worms: Hit-list Scanning

• Worm takes a long time to “get off the
ground”

• Worm author collects a list of, say, 10,00
vulnerable machines

• Worm initially attempts to infect these hosts

Better Worms: Permutation scanning

• Problem: Many addresses are scanned multiple
times

• Idea: Generate random permutation of all IP
addresses, scan in order
• Hit-list hosts start at their own position in the

permutation
• When an infected host is found, restart at a random

point
• Can be combined with divide-and-conquer approach

H0 H4 H1 H3 H2H1 (Restart)

Signature Inference

• Content prevalence: Autograph, EarlyBird,
etc.
• Assumes some content invariance
• Pretty reasonable for starters.

• Goal: Identify “attack” substrings
• Maximize detection rate
• Minimize false positive rate

Estimating Content Prevalence

• Table[payload]
• 1 GB table filled in 10 seconds

• Table[hash[payload]]
• 1 GB table filled in 4 minutes
• Tracking millions of ants to track a few

elephants
• Collisions...false positives

Comparison

Earlybird Autograph
Infect the system with Network Data (real traces)

Rabin fingerprint
White-list/blacklist

No-prefiltering Flow-reassembly
Single sensor algorithmics +

centralized aggregators
Distributed Deployment +

active cooperation between
multiple sensors

On-line Off-line
Overlapping, fixed-length

chunks
Non-overlapping, variable-

length chunks

