
INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery

Magdalena Balazinska, Hari Balakrishnan, and David Karger
MIT Laboratory for Computer Science

Cambridge, MA 02139
{mbalazin,hari,karger}@lcs.mit.edu

Abstract. The decreasing cost of computing technology is speeding the
deployment of abundant ubiquitous computation and communication.
With increasingly large and dynamic computing environments comes the
challenge of scalable resource discovery, where client applications search
for resources (services, devices, etc.) on the network by describing some
attributes of what they are looking for. This is normally achieved through
directory services (also called resolvers), which store resource informa-
tion and resolve queries. This paper describes the design, implementa-
tion, and evaluation of INS/Twine, an approach to scalable intentional
resource discovery, where resolvers collaborate as peers to distribute re-
source information and to resolve queries. Our system maps resources
to resolvers by transforming descriptions into numeric keys in a man-
ner that preserves their expressiveness, facilitates even data distribution
and enables efficient query resolution. Additionally, INS/Twine handles
resource and resolver dynamism by treating all data as soft-state.

1 Introduction
An important challenge facing pervasive computing systems is the development
of scalable resource discovery techniques that allow client applications to locate
services and devices, in increasingly large-scale environments, using detailed in-
tentional [1] descriptions. Resource discovery systems should achieve three main
goals: (i) handle sophisticated resource descriptions and query patterns; (ii) han-
dle dynamism in the operating environment, including changes in resource state
and network attachment point; and (iii) scale to large numbers of resources
spread throughout a wide network across administrative domains. While some
systems have addressed limited combinations of these properties, we address all
three in this paper.

Resource discovery efforts have been largely geared toward expressive re-
source descriptions and complex query predicates [1–7]. These approaches differ
in the details of how they name resources and how these names resolve to the
appropriate network location. However, they all essentially rely on semistruc-
tured resource descriptions [8], attribute-based naming schemes with orthogonal
attribute-value bindings, in which some attributes are hierarchically dependent
on others.



Many resource discovery schemes have been designed primarily for small net-
works [1–4, 7], or for networks where dynamic updates are relatively uncommon
or infrequent (e.t., DNS [9], LDAP [10]). They do not work well when the number
of resources grows, and updates are common.

Static resource partitioning [11] and hierarchical organization of resolvers [5,
6, 12] solve scalable and dynamic resource discovery. Static partitioning relies
on some application-defined attribute to divide resource information among re-
solvers. However, static partitioning does not guarantee good load distribution
and burdens clients with selecting the relevant partitions.

Hierarchical approaches [5] organize resolvers around increasingly large do-
mains for which they are responsible. These domains are created around par-
ticular attributes of resource descriptions, such as geographical location. Other
hierarchical schemes keep data information in local resolvers and create hier-
archies to filter out irrelevant queries as they travel toward the leaves [6, 12].
However, even if many hierarchies coexist, or if the hierarchies are created dy-
namically, root nodes may become bottlenecks. If queries are not propagated
through root nodes to avoid bottlenecks, results become dependent on the origin
of each query. Also hierarchies may not efficiently resolve queries that involve
multiple orthogonal attributes. For example, imagine a metropolitan resource
discovery system, where resolvers are hierarchically organized by institutions,
neighborhoods, cities, and finally the metropolitan level. A client may be inter-
ested in locating all cameras filming main points of congestion in the metropolis,
independent of location. The hierarchy described would not handle this query
in a scalable manner, since it is based on location.

We describe the architecture, implementation, and evaluation of Twine, an
approach to resource discovery that achieves scalability via hash-based par-
titioning of resource descriptions amongst a set of symmetric peer resolvers.
Twine works with arbitrary attribute sets. It handles queries based on orthogo-
nal and hierarchical attributes, with no content or location constraints. It also
handles partial queries, queries that contain only a subset of the attributes orig-
inally advertised by resources (considering the other attributes as wildcards).
Twine evenly distributes resource information and queries among participating
resolvers. Finally, our system efficiently handles both resource and resolver dy-
namism. Twine is integrated with INS [1], the Intentional Naming System from
MIT and now forms the core of its architecture. Therefore, we refer to INS/Twine
nodes as Intentional Name Resolvers (INRs).

INS/Twine leverages recent work in peer-to-peer document publishing and
distribution ([13–16]). Peer-to-peer systems do not rely on any hierarchical orga-
nization or central authority for distributing content or searching for documents.
However, current peer-to-peer applications lack adequate querying capability for
complex resource queries.

INS/Twine is designed to achieve scalable resource discovery in an envi-
ronment where all resources are equally useful. We could imagine deploying
INS/Twine throughout the Internet and letting everyone announce resources
of global interest to users around the world. Such resources may be file servers,



cameras showing the weather in different cities, Web services [17], and so on.
Similarly we could imagine deploying INS/Twine within a city and letting users
access resources such as air quality sensors, water temperature/quality indica-
tors at public beaches, business information (e.g., number of currently available
cars at a car rental company), and so on. In each deployment scenario differ-
ent resources are advertised, but in both cases, all resources are potentially
equally useful to clients. An important goal in INS/Twine is therefore to make
all resources available to all users independent of location. However, location-
dependent queries are handled well by specifying “location” as an attribute.

In both examples, the number of resources could be considerable. There are
around 105 establishments in a city the size of Los Angeles or New York [18]. Each
establishment could easily offer as many as a few thousand resources. INS/Twine
should therefore scale to O(108) resources and around O(105) resolvers (assuming
each establishment could run at least one resolver). For this, each resolver should
hold only a small subset of all resource information. Most importantly, only a
small subset of resolvers should be contacted to resolve queries or to update
resource information.

To achieve these goals, INS/Twine relies on an efficient distributed hash
table process (such as Chord [15], CAN [14] or Pastry [16]), which it uses as a
building block. Twine transforms each resource description into a set of numeric
keys. It does so in a way that preserves the expressiveness of semistructured
data, facilitates an even data distribution through the network, and enables
efficient query resolution even in the case where queries contain a subset of
attributes originally advertised by any resource. From a resource description,
Twine extracts each unique subsequence of attributes and values. Each such
subsequence is called a strand. Twine then computes a hash value for each strand,
which constitutes the numeric keys.

A peer-to-peer approach to resource discovery creates new challenges for data
freshness and consistency. Indeed, as resolvers fail or new ones join the network,
the mapping from resource descriptions to resolvers changes. To maintain con-
sistency in the face of network changes and resource mobility, resolvers treat all
resource information as soft state. If a resource (or a proxy acting on its behalf)
does not refresh its presence within a certain interval, the corresponding descrip-
tion is removed from the network. To achieve scalability, the refreshing frequency
in the core of an INS/Twine network (i.e., among resolvers) is significantly lower
than the refreshing frequency at the edge (i.e., between client applications and
resolvers).

We evaluated INS/Twine by running 75 instances of the resolver and insert-
ing various types of descriptions into the network. We find that both resource
information and queries are evenly distributed among resolvers. Each resolver
receives only a small subset of resource information and queries. The size of
the set is proportional to the number of strands and resource descriptions but
inversely proportional to the number of resolvers on the network. Resolvers as-
sociated with resource descriptions are located within O(log N) hops through
the network, where N is the total number of resolvers. The query success rate is



<res>camera

<man>ACompany</man>

<model>AModel</model>

</res>

<subject>traffic</subject>
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Fig. 1. Example of a very simple resource description and its corresponding AVTree.
The resource is a camera, manufactured by ACompany and filming traffic

100% when less than k− 1 resolvers (where k is a configurable replication level)
fail or join the network within one refresh interval. Additionally, for a fraction
F of failed resolvers, query failures decrease exponentially with k.

2 INS/Twine System Architecture

In this section, we first describe the details of resource descriptions. We then
present the system architecture of INS/Twine and the algorithms for trans-
forming resource descriptions into numeric keys, distributing information, and
resolving queries.

2.1 Resource Descriptions

Resources in INS/Twine are described with hierarchies of attribute-value pairs
in a convenient language (e.g., XML, INS name-specifiers [1], etc.). Our approach
is to convert any such description into a canonical form: an attribute-value tree
(AVTree). Figure 1 shows an example of a very simple resource description and
its AVTree. All resources that can be annotated with meta-data descriptions,
can be represented with an AVTree.

Each resource description points to a name-record, which contains informa-
tion about the current network location of the advertised resource, including its
IP address, transport/application protocol, and transport port number.

In INS/Twine, a resource matches a query if the AVTree formed by the
query is the same as the AVTree of the original description, with zero or
more truncated attribute-value pairs. For example, the device from Figure 1
would match the query: <res>camera<man>ACompany</man></res> or even the
query: <res>camera</res>. This implies that an important class of queries that
INS/Twine must support is partial queries, in addition to complete queries that
specify the exact advertised resource descriptions.



Therefore, like resource descriptions, client queries are described using hier-
archies of attribute-values and are converted to AVTrees. INS/Twine provides
a way for queries to reach the resolver nodes best-equipped to handle them,
based on the attributes and values being sought. The ultimate results of query
matching depend on the local query processing engine attached to each resolver.
Examples of this include INS’s subtree-matching algorithm [1], UnQL [8] or the
XSet query engine for XML [19].

Since query routing relies on exact matches of both attributes and
values, it is possible to allow more flexible queries by separating string
values into several attribute-value pairs. For example, <model>AModel
Camcorder 123</model> could be divided into <modelw>AModel</modelw>,
<modelw>Camcorder</modelw> and, <modelw>123</modelw>, allowing queries
of type <modelw>123</modelw>.

2.2 Architecture Overview

INS/Twine uses a set of resolvers that organize themselves into an overlay net-
work to route resource descriptions to each other for storage, and to collabora-
tively resolve client queries. Each resolver knows about a subset of other resolvers
on the network.

Devices and users communicate with resolvers to advertise resources or sub-
mit queries. When a resource periodically advertises itself through a particular
resolver, it is considered directly connected to that resolver. When a client issues
a query to a resolver, it receives the response from that resolver. Communication
between client applications and resolvers happens at the edge of the INS/Twine
network. Communication between resolvers takes place in the network core.

The architecture of INS/Twine has three layers, as shown in Figure 2. The
top-most layer, the Resolver, interfaces with a local AVTree storage and query
engine, which holds resource descriptions and implements query processing, re-
turning sets of name-records corresponding to (partial) queries.

When the Resolver receives an advertisement from its client application, it
stores it locally using that engine. Local storage of information about directly
connected resources serves for state management as described in Section 3. The
resolver then splits the advertised resource description into strands and passes
each one to the StrandMapper layer. The details of strand-splitting are discussed
in Section 2.3. The StrandMapper maps the strand onto one or more numeric
m-bit keys using a hash function. It then passes each key, together with the
complete advertisement (the value corresponding to the key), to the KeyRouter
layer. Finally, given a key, the KeyRouter determines which resolver in the net-
work should receive the corresponding value and forwards the information to the
selected peer. Hence, for data distribution, our approach boils down to inserting
resource descriptions using each prefix-strand as a separate key.

As complete resource descriptions are transmitted during resource advertise-
ment, any resolver specializing in a key computed from a query should be able
to resolve the query without requiring any joins or extra data transfers. Hence,
when a client submits a query, the resolver that first receives it randomly selects
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and a name-record NR. The Resolver stores the description or performs the lookup
locally. It then extracts all strands Si from V , and for each one, the StrandMapper
computes a key Ki. The KeyRouter finally maps each key onto an INR using a dis-
tributed hash table process like Chord. The message is then forwarded to that resolver.
For queries, the resolver sends results back to the originating INR which in turn sends
them to the application

one of the longest strands from the query AVTree. This strand serves to deter-
mine which resolver should solve the query. Query results are later returned to
the originating resolver, which forwards them to the client.

A client application may also specify that it is interested in any resource
matching a description. In that case, a single answer is returned. It is the resource
that matches the given description and that has the lowest application-level
metric. This feature comes from the original INS design [1].

Splitting resource descriptions into strands is critical to INS/Twine’s ability
to scale well. It enables resolvers to specialize in holding information and answer-
ing queries about a subset of resources. The choice of an adequate distributed
hash table process at the KeyRouter layer is critical to achieving high query
success rates while minimizing the number of resolvers contacted on each query.
We discuss our choice in Section 2.5. The following sections describe each layer
and its main algorithms in more detail.

2.3 Resolver Layer

At the core of an INS/Twine resolver is a strand-splitting algorithm that extracts
strands from a description. The goal of the algorithm is to break descriptions into
meaningful pieces so resolvers can specialize around subsets of descriptions. At
the same time, the splitting must preserve the description structure and support
partial queries.
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Fig. 3. Splitting a resource description into strands

A simple strand-splitting method would be to extract each attribute-value
pair from the AVTree, and independently map it onto a key. However, this
scheme would lose the richness of hierarchical descriptions and would not al-
low expressive queries to be performed. For example, format in the attribute
sequence printer-paper-format would become indistinguishable from format in
video-cassette-format.

The Twine algorithm for strand-splitting preserves the description structure
and supports partial queries. It extracts each unique prefix subsequence of at-
tributes and values from a description (advertisement or query) as illustrated
in Figure 3. Each subsequence is called a strand. Each strand is then used to
produce a separate key. For example:

Input strand: res-camera-man-ACompany

h1 = hash(res-camera)

h2 = hash(res-camera-man)

h3 = hash(res-camera-man-ACompany)

Output keys: h1, h2 and h3

We consider each top-level attribute-value pair as the minimal unit for re-
source descriptions and queries. We therefore omit strands composed of a single
attribute and start strand-splitting after the first value. We believe that single
top-level attributes would be too general to be useful in wide-area applications.

The Twine strand-splitting algorithm effectively extracts one strand for each
attribute and each value in the AVTree, except for root attributes. Therefore,
the number of strands depends on the number of attributes and values in the
AVtree rather than its structure. More precisely, given a resource description
with a attribute-value pairs, t at the root level, the total number of strands is
given by:

s = 2a− t (1)
With this scheme, partial queries are easily handled since each possible sub-

sequence of attributes and values maps to a separate key, which in turn maps to
a single resolver. The expectation of the storage requirement Z at each resolver
is given by:

Z = (RSK)
N

(2)



where R is the number of resources in the system, S is the average number
of strands per resource description, K is a configurable resource information
replication level, and N is the number of resolvers in the network. This relation
holds for SK << N .

Some strands such as <resource>file server</resource> may be ex-
tremely popular in resource descriptions. Advertisements can then overwhelm
the node that is in charge of the popular strand. We tackle this problem by
allowing each node to set a threshold (determined by the node’s capacity) on
the maximum number of resources for each key. When the threshold is exceeded
for some key, no new resource is accepted under that key. The node could also
start randomly replacing some entries with new advertisements. In both cases,
this effectively renders that strand unusable for query purposes.

Since a query containing several strands is solved using one of the longest
strands, the threshold restriction does not affect most queries. During query
resolution, if a resolver returns an incomplete response (due to a threshold), a
new strand is selected, and the process repeats until the response exhaustively
lists all resources matching the description or no more strands are left in the
query. In the latter case, the partial list of all accumulated matches is returned.
It is flagged as being a partial answer, letting the application or user refine the
query if necessary.

Additionally, in the rare case where a query containing only a very short and
popular strand becomes extremely popular itself, edge resolvers may cache a few
results to avoid flooding the node responsible for the strand. Caching is not yet
implemented in INS/Twine.

2.4 StrandMapper Layer

Each strand extracted from the description is independently passed to the
StrandMapper layer, together with the complete resource description or query.
The StrandMapper is responsible for associating numeric keys with each strand.
It does this by concatenating the attributes and values of the strand into a single
string, and computing a 128-bit MD5 hash for the string.

2.5 KeyRouter Layer

The StrandMapper passes the key to the KeyRouter layer which uses it to deter-
mine which other resolvers should store information about the resource, or should
participate in solving the query. The choice of an appropriate scheme for the
KeyRouter is critical as it may easily become the limiting factor of INS/Twine’s
performance.

The KeyRouter may be thought of as a distributed hash table, where each
node on the network keeps key-value bindings within a dynamically determined
key range. Several efficient peer-to-peer algorithms have recently been proposed
for this purpose: CAN [14], Chord [15], or Pastry [16]. Given a key, these systems
find the node on the network that should store the corresponding value. Chord
and Pastry are based on some variant of consistent hashing [20], where a node



is responsible for all keys whose identifier falls between the node identifier and
the closest preceding node identifier currently on the network. Hence only local
disruptions occur when nodes join or leave the system. CAN uses a similar
scheme, although not consistent hashing.

To achieve scalability, these systems require that each node only keeps in its
routing table information about a subset of other nodes. This set is determined
by the node unique identifier. Finding a node for a given key is then achieved
by hopping from node to node in the appropriate direction, until the destination
node is reached. This operation typically requires O(log N) hops, where N is the
size of the overlay network of resolvers.

Our implementation is built on Chord, which efficiently rebuilds its overlay
network in the presence of failures. INS/Twine uses Chord to efficiently identify
which node, or set of k consecutive nodes, should store a given key.

3 State Management
The following consistency goals guided the design of the resource information
management mechanisms in INS/Twine:
– When a resource joins a network, or moves or modifies its description, the

update is propagated to the appropriate resolvers immediately. The new
information replaces the old, ensuring that neither the old description nor the
old location are ever returned as result of a query. While resource information
propagates through the network, it is possible that both the old and new
information be returned in response to a query.

– When a resource leaves or fails, its information is deleted at all resolvers.
– Query results are not affected by new resolvers joining the network, or by

resolvers failing (up to a level of fault-tolerance determined by a configurable
parameter k).
There are several ways to achieve consistency as defined above. If we use

hard-state and require resources to always keep their information updated, we
are not resilient to resources failing without prior de-registration.

Resolvers can also treat all resource information as soft state, requiring re-
sources to refresh their information periodically throughout the network. If a
resource does not refresh its presence within a certain interval, the correspond-
ing description is removed from the network. A resource is free to leave the
network at any time; if it does not de-register its description, the soft-state expi-
ration mechanism will cause the resource description to be deleted. However, to
keep information up-to-date, the refresh interval must be small, which imposes
a high bandwidth overhead.

Periodically refreshing resource information also provides some degree of
fault-tolerance by periodically sending each description not to one, but to k > 1
nodes per strand. This scheme relies on the capability of the underlying dis-
tributed hash table process (Chord [15] in our case) to rebuild the overlay net-
work of interconnections as nodes join and leave. It also relies on the fact that



R δ INR

INR

INR
INR

INR R
δ

INR

INR

INR

∆
∆

∆
∆

∆

R

rem
ove

remove

re
m

ov
e
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resource information will remain in the network no longer than ∆

the set k is computed dynamically, so a failed node from the set is automatically
replaced on subsequent resource advertisements.

We adopt a hybrid scheme in INS/Twine that combines the management sim-
plicity of soft-state with the low-bandwidth requirements of hard-state. Figure 4
illustrates the approach. Each resolver at the edge of the network is responsible
for resources that communicate directly with it. It acts as a proxy for these re-
sources, keeping their states updated at the appropriate locations. Edge resolvers
receive updates about the states of their resources at a fine time granularity δ (a
few seconds in our implementation). They propagate any changes to appropri-
ate resolvers. If a resource does not advertise itself within δ time units, an edge
resolver assumes it has left the network and sends explicit remove messages to
appropriate resolvers.

Resolvers in the network core also preserve soft-state, but they use a much
longer period ∆ (on the order of a few hours, for example). At every ∆ time
units, and for each directly connected resource, each edge resolver recomputes
the set of resolvers in charge of that resource. It then transmits advertisements
to every new resolver in a set. It transmits de-registration messages to resolvers
no longer in a set. For resolvers that did not change, a simple ping is transmitted.

With this scheme, if a resource fails, it is de-registered from the network
within δ time units. If a resolver acting on behalf of some directly connected
resources fails, these resources can re-connect to another resolver while remaining
available to clients. Finally, in the rare case where both the resolver and some
directly connected resources fail, the resource information will be deleted from
the network at most within ∆ time units.

For increased fault-tolearance, each strand is mapped onto k replicas. Since
we never transfer data between replicas, it is not guaranteed that each of the



replicas knows about all resources matching any given strand. However, for up
to k−1 failures within a refresh interval ∆, at least one of them does. Therefore
queries are sent to all k nodes responsible for a given key, and the union of all
results is returned to the client application. For larger number of failures within
the interval ∆, the query failure rate becomes dependent on the fraction of failed
resolvers. However, the query failure rate decreases exponentially with k.

Although we handle resolvers joining and leaving the network at any time,
in case of network partitions and healing, information at different resolvers may
become inconsistent. We currently do not handle this case, but we could use
timestamps assigned by resources to their advertisements to determine which
replicas hold the most recent information for each resource.

4 Evaluation
In this section, we first evaluate the strand-splitting algorithm by examining the
distribution of strands from splitting real resource descriptions. We then examine
how data and queries are distributed among resolvers. We finally evaluate the
query success rate in the presence of failures.

4.1 Splitting Descriptions into Strands

In the first experiment, we evaluate the strand-splitting algorithm applied to real
resource descriptions. Our goal is to determine how many strands are produced
by such descriptions and how often the same strands come up. It is very difficult
to obtain a large quantity of real resource descriptions. For our experiment, we
used two sets of data. The first set contained 4318 bibliographical entries taken
from latex bibliography files obtained from our own repositories as well as from
Netlib [21]. The second set contained descriptions extracted from 883 mp3 files
taken from our private collections. In both cases, we extracted word values from
each string to enable hierarchical searches based on keywords in the title, author,
and other fields. Although the data used does not describe devices, we believe
it gives an intuition of the strand distribution that may appear in real data
descriptions.

Figure 5(a) shows the strand distribution obtained from each data set. Bib-
liographical entries contain 12.9 strands on average, whereas mp3 tags produce
an average of 8.7 strands. Although different resources will have descriptions of
various complexity, it is interesting to note that splitting these real descriptions
produced a reasonable number of strands. Figure 5(b) shows that, as expected,
some strands are very popular - three strands come-up in over 10% of all re-
source descriptions for mp3 files. One of them is <artist>boys</artist>. Nine
strands appear in over 10% of bibliographical descriptions, and three of them are
in almost 30% of the entries. One example is <type>article</type>. However,
this represents a very small fraction of all strands (less than 0.06%).

We evaluated INS/Twine on these two data sets as well as on workloads con-
sisting of diverse synthetic descriptions. Our scheme mostly depends on the num-
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Fig. 5. (a) When splitting real descriptions into strands, most descriptions tend to
contain a small amount of strands compared to our scalability goals of O(105) resolvers.
80% of the mp3 descriptions produce 12 strands or less. 80% of the bibliographical
entries generate 16 strands or less. The medians are 8 and 13 respectively. (b) Most
descriptions are composed of unique strands. However, a few strands may appear in as
much as one third of all descriptions

ber of strands in resource descriptions and not on the structure of the AVTrees.
We therefore present only the results obtained for the real data sets.

4.2 Distributing Data among Resolvers

In the second experiment, we evaluated the quality of data distribution in
INS/Twine. We ran 75 independent INR instances on 15 machines. We con-
nected 10 client applications to 10 resolvers. Each client application inserted
between 60 and 160 resource descriptions, for a total of 883 resources (from the
mp3 set) and 7,668 strands. For comparison purposes, we also ran experiments
on 800 of the bibliographical entries, inserted by 8 clients (100 resources per
client). The main difference between the data sets is the number of strands in
resource descriptions which is 30% lower on average for mp3 tags. At the Key-
Router layer, each resolver advertised itself as 20 virtual nodes to create a more
uniform distribution of resolvers throughout the whole key space. Since each
experiment is deterministic given a set of resolvers and resources, each curve in
Figure 6(a) presents the results from a single run. Different sets with the same
number of resolvers give almost identical graphs.

INS/Twine dynamically specializes nodes around specific resource descrip-
tions, so each peer stores only a small fraction of the complete directory. Fig-
ure 6(a) shows that over half of resolvers hold information about less than 15%
of resources for both data sets.
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Fig. 6. Cumulative distribution of resource information and queries in a network of
75 resolvers. Resource information is evenly distributed among resolvers. Increasing
the proportion of number of strands to number of resolvers increases the fraction of
resources known by each node. Queries are distributed evenly among all resolvers with
a median of 1.2% queries per resolver, equal to 1

N
where N is the number of resolvers.

No resolver solves an excessive number of queries

The expected value for the fraction of resource information stored at each
resolver is (SRK)

N ∗ 1
R , where S is the average number of strands in resource

descriptions, R is the total number of resource descriptions, K is the configurable
replication level, and N is the number of resolvers in the network. We compare
the value from this theoretical model to the actual values obtained from the
experiments. In the experiment, K = 1 and N = 75. For mp3 files, S = 8.7, so
resolvers should know about 11.6% of all resource descriptions. This is indeed
the average obtained in the experiment. The median is a little lower at 10.4%.
For bibliographical entries S = 12.9 on average, so resolvers should know about
17.2% of all resources. The actual average and median are just slightly lower at
15.2% and 14.0%, respectively. When the number of strands is high compared
to the network size, there is a higher probability that multiple strands from the
same description get assigned to the same resolver. Overall, the experimental
values match the model.

The long tails of the distributions are due to popular strands. To alleviate
their impact, we imposed a node-based fixed threshold value for the number of
resources accepted for any particular strand. We set the threshold at 50 resources
for the mp3 data set and 100 resources for the bibliographical entries, since
the latter contain significantly more strands than the former. In reality, these
thresholds would be determined by the capacity of each node. Figure 6(a) shows
that for both data sets, the overall distribution remains similar, while the tail
gets significantly cut. The maximum amount of information known by any given
node drops under 24% for the mp3 files and under 33% for the bibliographical
entries. No node knows about more resources than twice the average.



Table 1. Query success rates function of replication level. Each resource was requested
using a single randomly chosen strand, but the complete description was used for the
actual lookup. Values shown are averages of three runs

Replication Fraction failed nodes
0 0.013 (1 node) 0.027 (2 nodes) 0.067 (5) 0.13 (10) 0.27 (20)

None(k = 1) 1.0 0.98 0.92 0.88 0.83 0.70
k = 2 1.0 1.0 0.96 0.95 0.95 0.94

Hence data is evenly distributed in INS/Twine with each resolver holding
only a small subset of resource descriptions. Thresholds are also efficient at elim-
inating overly popular strands without changing the overall resource information
distribution. Taking the city example from the introduction, with around 108 re-
sources, and 105 resolvers, considering an average of 13 strands per description,
and an additional replication level of 3, each resolver would need to know about
(SRK)

N = (13∗108∗3)
105 or as few as 40 ∗ 103 resources.

4.3 Resolving Queries

Without failures, Twine finds any resource present in the network with the same
performance as the underlying KeyRouter layer (Chord in our implementation).
For all queries, O(log N) resolvers are contacted at the KeyRouter layer [15] to
find the set of nodes associated with a given key. When replication is used, k
resolvers then resolve the query in parallel.

To evaluate the distribution of queries among resolvers, we used 800 descrip-
tions from each data set as queries. We submitted all queries through one ran-
domly selected resolver. Figure 6(b) shows how queries were distributed among
resolvers. The average fraction of queries solved by each resolver should be 1

N
where N is the number of resolvers. For N = 75, this gives 1.3% of all resources.
The distribution obtained shows that the queries are in fact evenly distributed
with 80% of resolvers receiving less than 2% of the queries. No resolver solves sig-
nificantly more queries than the average, since the maximum number of queries
received by any resolver was just a little over 5%. We also find that the distri-
bution is independent of the number of strands in resource descriptions since we
obtain the same graph for both data sets.

Replicating each key onto k > 1 nodes allows Twine to support up to k − 1
nodes joining or leaving the system within an in-core refresh interval ∆. Ta-
ble 1 shows the query success rate function of the fraction of failed resolvers.
To show the worst case scenario, only one strand was randomly selected from
each resource description to serve as query. The table shows that increasing the
replication level improves success rates, as all replicas for a given key have to
be down for the query to fail. For example, for 20 failed resolvers out of 75, and
for k = 2, the probability to pick a strand whose replicas both map to a failed
resolver is approximately ( 20

75 )2 = 7%.
The latency of query resolution (as well as resource information updates)

is determined by the time taken by peers to exchange information. Therefore,



INS/Twine latency and responsiveness will improve when proximity-based rout-
ing heuristics are used in the underlying key-routing system. For queries, since
each description is replicated at several places in the network (at least one per
prefix), there are many possible nodes that can resolve a query, and Twine may
itself be able to choose a good node if it had information about network path
latencies between nodes.

5 Conclusion

This paper described INS/Twine, a scalable resource discovery system using
intentional naming and a peer-to-peer network of resolvers. The peer-to-peer
architecture of INS/Twine facilitates a dynamic and even distribution of resource
information and queries among resolvers. Central bottlenecks are avoided and
results are independent of the location where queries are issued.

INS/Twine achieves scalability through a hash-based mapping of resource
descriptions to resolvers. It manipulates AVTrees which are canonical resource
descriptions. It does not require any a priori knowledge of attributes AVTrees
may contain. Twine transforms descriptions into numeric keys in a manner that
preserves their expressiveness, facilitates even data distribution and enables ef-
ficient query resolution. Resolver nodes hence dynamically specialize in storing
information about subsets of all the resources in the system. Queries are resolved
by contacting only a small number of nodes.

Additionally, INS/Twine handles resource and resolver dynamism respon-
sively and scalably by using replication, by considering all data as soft-state
and by applying much slower refresh rates in the core of an INS/Twine overlay
network than at the edges.

INS/Twine scales to large numbers of resources and resolvers. Our experi-
mental results show that resource information and query loads get evenly dis-
tributed among resolvers which demonstrates the ability to scale incrementally
by adding more resolvers as needed.
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