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Abstract past decade. 

This paper presents a novel framework for managing net- 
work congestion from an end-toend perspective. Our work 
is motivated by trends in traffic patterns that threaten the 
long-term stability of the Internet. These trends include the 
use of multiple independent concurrent flows by Web ap- 
plications and the increasing use of transport protocols and 
applications that do not adapt to congestion. We present an 
end-system architecture centered around a Congestion Man- 
ager (CM) that ensures proper congestion behavior and al- 
lows applications to easily adapt to network congestion. Our 
framework integrates congestion management across all ap 
plications and transport protocols. The CM maintains con- 
gestion parameters and exposes an API to enable applica- 
tions to learn about network characteristics, pass informs 
tion to the CM, and schedule data transmissions. Internally, 
it uses a window-based control algorithm, a scheduler to 
regulate transmissions, and a lightweight protocol to elicit 
feedback from receivers. 

We describe how TCP and an adaptive real-time stream- 
ing audio application can be implemented using the CM. 
Our simulation results show that illz ensemble of concur- 
rent TCP connections can effectively share bandwidth and 
obtain consistent performance, without adversely affecting 
other network flows. Our results also show that the CM en- 
ables audio applications to adapt to congestion conditions 
without having to perform congestion control or bandwidth 
probing on their own. We conclude that the CM provides 
a useful and pragmatic framework for building adaptive In- 
ternet applications. 

1 introduction 

The success of the Internet to date has been in large part due 
to the sound principles of additiveincresse/multiplicative- 
decrease (AIMD) congestion control [4] on which its dom- 
inant transport protocol, TCP [15, 301, is based. Because 
most traffic in the Internet has been dominated by long- 
running TCP flows, the network has shown relatively stable 
behavior and has not undergone large-scale collapse in the 
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However, Internet trafllc patterns have been changing 
rapidly and are certain to be very different in the future. 
First, Web workloads stress network congestion control heav- 
ily, and in unforeseen ways. Typical Web transfers are char- 
acterized by multiple concurrent, short TCP connections. 
These short Web transfers do not give TCP enough time or 
information to adapt to the state of the network, and con- 
current connections between the same pair of hosts compete 
rather than cooperate with each other for scarce resources. 
Second, some commercial products “accelerate” Web down- 
loads by turning off or changing TCP’s congestion control 
in unknown and potentially dangerous ways. Third, and 
perhaps most importantly, several increasingly popular real- 
time streaming applications run over UDP using their own 
user-level transport protocols for good application perfor- 
mance, but in most cases today do not adapt or react prop 
erly to network congestion. Furthermore, there are appli- 
cations such as teleconferencing where multiple concurrent 
streams coexist (e.g., audio, video, whiteboards, text), that 
will benefit corn efficient multiplexing and sharing of band- 
width. 

All these trends, coupled with the unknown nature of 
future applications, threaten the long-term stability of the 
Internet. They make it likely that large portions of the net- 
work might suffer congestion-triggered collapse due to unre- 
sponsiveness in the face of congestion or aggressive mech- 
anisms to probe for spare bandwidth. While this might 
sound overly pessimistic, even the optimists amongst us will 
grant that applications should be able to track and adapt to 
congestion, available bandwidth, and varying network con- 
ditions to obtain the best possible performance. Unfortu- 
nately, protocol stacks today do not provide the right sup 
port for this; the desire to be a good network citizen forces 
applications to use a single TCP connection, even if this 
transport model is ill-suited to the application at hand. Or, 
more likely, because a single TCP connection is mismatched 
to the requirements of the application, the result is a prolif- 
eration of flows that are not well-behaved and are deleterious 
to the rest of the network. 

Our work attempts to overcome these problems by devel- 
oping a novel framework for managing network congestion 
from an end-to-end perspective. Unlike most past work on 
bandwidth management that focuses on mechanisms in the 
network to provide QoS to flows or reduce adverse interac- 
tions between competing flows (e.g., [7, 22, 8, 5, 36, 2]), we 
focus on developing an architecture at the end-hosts to: 

l Enable efficient multiplexing of concurrent flOW8, en- 
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Figure 1: New sender protocol stack with the Congestion Manager. 

suring proper and stable congestion behavior using 
AIMD principles. 

l Enable applications and transport protocols to adapt 
to network congestion and varying bandwidth by pro- 
viding an adaptation API. 

The resulting framework is independent of specific appli- 
cations and transport protocols, but provides the ability for 
diierent flows to perform shared state learning. Here, flows 
learn from each other and share information about the state 
of congestion along common network paths. 

Increasingly, the trend on the Internet is for unicast data 
servers to transmit a wide variety of data, ranging from 
best-effort (unreliable) real-time streaming content to reli- 
able Web pages and applets. As a result, many logically dif- 
ferent streams using different transport protocols will share 
the path between server and client. These streams have 
to incorporate control protocols that dynamically probe for 
spare bandwidth and react appropriately to congestion for 
the Internet to be stable. Furthermore, they will often have 
diierent reliability requirements, which implies that a gen- 
eral congestion management architecture should separate 
the functions of loss recovery and congestion control that 
are coupled in protocols like TCP. 

At the core of our architecture is the Congestion Manager 
(CM), which maintains network statistics and orchestrates 
data transmissions governed by robust control principles. 
Rather than have each stream act in isolation and thereby 
adversely interact with the others, the CM coordinates host- 
and domain-specific path information. Path properties are 
shared between dierent streams because applications and 
transport protocols perform transmissions only with the con- 
sent of the CM. 

Internally, the CM ensures stable network behavior by 
the sender because it reacts to congestion, carefully probes 
for spare bandwidth by permitting applications to send at 
a higher rate, implements a robust and lightweight protocol 
to elicit feedback from receivers about losses and status, 
and schedules data transmissions by apportioning available 
capacity between different active flows. The CM’s internal 

algorithms and protocols are described in Section 4, where 
we justify them using ns-based [20] simulations and analysis. 

The CM API is designed to enable easy application adap- 
tation to congestion and variable bandwidth, accommodat- 
ing heterogeneous flows. The API includes functions to 
query path status, schedule data transmissions, notify the 
CM upon data transmission, and update variables upon con- 
gestion or successful transmission. It also includes callbacks 
to applications upon rate change. Motivated by the end- 
toend argument [26] and the principle of Application-Level 
Framing (ALF) [6], the CM API permits the application to 
have the final say in deciding what to transmit, especially 
when available bandwidth is smaller than what the applica 
tion desires. We discuss our design decisions and the details 
of the API in Section 3. In the same section, we also discuss 
how two applications-a Web server and an audio server can 
be implemented using the CM API and adapt efficiently to 
congestion. Section 5 discusses the actual performance re- 
sults for different applications. 

The resulting end-to-end network architecture from the 
viewpoint of a data sender is shown in Figure 1. The CM 
frees transport protocols and applications from having to 
(re-)implement congestion control and management from 
scratch, and it discourages applications from using an inap 
propriate transport protocol (e.g., TCP for high-quality au- 
dio) simply because the transport implements a congestion 
control scheme. Above all, the CM provides the required 
support and a simple API over which adaptive Internet ap 
plications can be developed. 

The following are the main contributions of this paper: 

l CM algorithms and protocol. The design of a 
Congestion Manager to perform integrated congestion 
management across an ensemble of unicast flows in an 
application- and transport-independent manner. To 
ensure stable network behavior and shared state learn- 
ing, the CM incorporates (i) a window-based AIMD 
scheme with traffic shaping, (ii) a loss-resilient proto- 
col to periodically elicit feedback from receivers, (iii) 
an exponential aging mechanism to regulate transmis- 
sions in a stable manner when feedback is infrequent, 
and (iv) a scheduler to apportion bandwidth to flows. 
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Figure 2: Internal organization of the Congestion Manager 
at the sender. 

l CM adaptation API. An API for applications and 
transport protocols to learn about and adapt to net- 
work congestion and varying bandwidth. We also de- 
scribe how TCP and an adaptive layered audio appli- 
cation can be implemented using the API. 

l CM applications and performance. We present 
simulations of application performance that demon- 
strate that the CM ensures stable network behavior. 
It also greatly improves performance predictability and 
consistency of TCP transfers, and enables applications 
such as audio servers to effectively transmit the best 
among several available source encodings. 

2 CM Architecture 

In this section, we give a brief description of the overall CM 
architecture. The CM has two modules, one at the data 
sender and the other at the receiver. The sender orches- 
trates data transmissions, while the receiver maintains loss 
statistics and responds to occasional sender probes. Most of 
the complexity is at the sender. 

Figure 2 shows a schematic description of the compo 
nents of the CM at the sender. The Congestion Controller 
adjusts the aggregate transmission rate between sender and 
receiver based on its estimate of congestion in the network. 
It obtains feedback about its past transmissions from ap- 
plications themselves, as well as from the Prober, which 
sends periodic probes to the receiver CM. The Flow Sched- 
uler apportions available bandwidth amongst the dierent 
flows and notifies applications when they are permitted to 
send data. Applications schedule transmissions by invoking 
scheduler functions. The CM components communicate us- 
ing well-defined interfaces; this allows us to change any one 
of them without affecting the rest of the system. 

To communicate with the receiver CM module, the CM 
uses a protocol that attaches a CM header to outgoing pack- 
ets. This protocol is used to determine if the receiver is CM- 
enabled via a simple two-way handshake, and if so, exchange 
information about losses and other interesting statistics. If 
the receiver is not CM-enabled, the CM sender does not at- 
tach this header. However, it continues to implement its 
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Figure 3: Internal organization of the Congestion Manager 
at the receiver. 

internal algorithms to enable efficient multiplexing, proper 
congestion behavior, and application adaptation. 

Figure 3 depicts the CM components at the receiver. 
Application hints for apportioning bandwidth are communi- 
cated by the API to the Hints Dispatcher, which transmits 
them to the CM sender. The receiver CM module strips the 
CM header and dispatches the packet to the receiver appli- 
cation. The Loss Detector maintains loss statistics based on 
information in the CM header and informs the sender when 
it detects congestion. The Responder maintains statistics of 
the number of bytes received by each flow and participates 
in the probing protocol. 

The ability to function even when the receiver is not 
CM-enabled is ensured by the CM protocol, and the CM al- 
gorithms at the sender often function with application feed- 
back (as opposed to CM protocol feedback from the receiver 
CM module). Thus, while the full benefits of the archi- 
tecture are observed when both senders and receivers are 
modified, there are substantial benefits even when only the 
sender is CM-enabled. This is especially true for those ap- 
plications that have a feedback mechanism (e.g., TCP) and 
use the CM API to inform the sender. 

The rest of this paper describes the CM API, its algo 
rithms and protocol, and simulation results of some CM 
applications. 

3 TheCM API 

Using the CM API, flows can determine their share of the 
available bandwidth, request and schedule their transmis- 
sions, inform the CM about successful transmissions, and 
be informed when the CM’s estimate of path bandwidth 
changes. Thus, the CM frees applications from having to 
maintain information about the state of congestion and avail- 
able bandwidth along any path. 

3.1 Design Rationale 

We motivate our design choices and discuss the API in terms 
of four guiding principles. 
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1. Put the application in control: While the CM decides 
the rate at which each application flow can transmit data, 
it follows the end-toend argument [26] and puts the appli- 
cation in firm control of two critical decisions: (i) deciding 
vhat to transmit at each point in time, and (ii) deciding the 
relative fraction of available bandwidth to allocate to each 
flow. To achieve this, the CM does not buffer any appli- 
cation data; instead, it allows applications the opportunity 
to adapt to unexpected network changes at the last possi- 
ble instant. This design decision to not buffer any data is a 
direct consequence of Application Level Framing (ALF) [6], 
and leads to the following API. 

If the CM were to queue data and eventually transmit 
it at some rate, the sending API would consist simply of a 
cmsendo call, much like the BSD Sockets API [29]. How- 
ever, this would preclude applications from “pulling out” 
and repacketizing data upon learning about any rate change. 
Thus, we decide to design a non-blocking request/callback 
API. Here, an application that wishes to send data invokes 
cmzequestfid). (The id is obtained by the application 
using the cm-openfdst) call, where dst is the destination 
address.) After some time, depending on the past trans- 
missions and allowed rate, the CM triggers an application 
callback using cmapp-sendf), which is a grant for the appli- 
cation to send up to mtu bytes. The application can transmit 
any mtu (or less) bytes soon after this, and it does not mat- 
ter if those bytes are diierent from the ones for which the 
original request was made. The application uses cm_mtu(id) 
to get the path MTU (Maximum Transmission Unit), which 
can either be statically configured or discovered using path 
MTU discovery [19]. 

(In our original design, cm-request0 and cmappsendo 
used the number of requested and permitted bytes as ar- 
guments. This would have potentially given applications 
greater control, at the expense of complicating the sched- 
uler and making traffic shaping harder to accomplish. Ul- 
timately, because we could not see any clear benefits of 
this additional control for application writers, we eliminated 
these arguments. We are grateful to Steve McCanne for con- 
vincing us to pursue this better alternative.) 

Our initial design only allowed for the ALF-oriented API 
based on callbacks described above. However, early experi- 
ence and discussions convinced us that not all applications 
would want to use ALF, and that a conventional buffered 
send mode was worth supporting as well. This is straight- 
forward; such streams, invoke cm-sendfid. data, length) 
and the CM buffers data for eventual transmission. 

To learn about per-flow available bandwidth and the 
round-trip time, applications use the CM’s cm-querycid, 
&rate, bsrtt) call, which fills in the desired quantities. 

2. Accommodate tmfic heterogeneity: The CM should 
benefit a variety of traflic types, including TCP bulk trans- 
fers and short transactions, real-time flows that can trans- 
mit at a continuum of rates, and layered streams that can 
transmit only at discrete rate intervals. 

3. Accommodate application heterogeneity: The design of 
the CM API should not force a particular application style; 
rather, the API should be flexible enough to accommodate 
diierent styles. In particular, the API should accommodate 
two common styles of transmitters: the asynchronous style 
and the synchronous style. 

Asynchronous transmitters do not transmit based on a 
periodic clock, but do so triggered by asynchronous events 
like file reads or captured frames. For these transmitters 
that typically have bytes ready to be transmitted, the re- 
quest/callback API described above is appropriate because 

their transmissions are scheduled by the CM. On the other 
hand, synchronous transmitters are timer-driven and would 
use the CM to adapt the frequency of their internal timers 
and the amount of data transmitted at each timer event. 
Such applications can use the cmapp-updatecrate, srtt) 
callback function informing them of changes in rates. Thus, 
there are two callback functions implemented by the CM: 
cmapp-send0 in response to a previous request call, and 
cmappnpdate0 whenever a flow’s share of the available 
rate changes. This second method is provided for both 
types of transmitters, because the knowledge of sustainable 
rate is useful for asynchronous applications as well; e.g., an 
asynchronous Web server disseminating images using TCP 
could use cmapp-send0 to schedule its transmissions and 
cmapp-update 0 to decide whether to send a low-resolution 
or high-resolution image. 

4. Learn from the application: The API includes func- 
tions that applications can use to provide feedback to the 
CM.Theycanusecm-update(id, nsent, nrecd, lossmode, 
rtt) call to inform the CM that nsent bytes were sent of 
which nrecd were received, that the loss event was PERSISTENT 
(e.g., a TCP timeout), TRANSIENT (e.g., TCP duplicate ac- 
knowledgments), or ECN (on Explicit Congestion Notifica 
tion), and that the observed RTT sample was rtt. The 
feedback could be through ACKs as in TCP, through RTCP 
[27] in the case of real-time applications, or through any 
other protocol. The CM uses this information to update its 
congestion window and round-trip time estimates. 

The CM also exposes anotification function, cmnotify0 
that must be invoked by the IP output routine at the sender 
whenever any bytes are sent for a flow. This allows the CM 
to update its estimate of the number of outstanding bytes 
for the flow. 

At the receiver, the CM can learn from application hints 
about the relative proportion of the available bandwidth to 
allocate to different flows. This allows receivers to express 
their preference for certain types of traffic over others, for 
example, images over text. We are currently completing the 
details of this part of the API. 

An application calls cm-close (id) when a flow is termi- 
nated allowing the CM to destroy the internal state associ- 
ated with that flow and repartition available bandwidth. If 
an application forgets to invoke cm-close0, its associated 
flow state is cleaned up by the CM after a timeout. 

The CM API is summarized in Figure 4. 

3.2 Using the API 

In this section, we describe how applications and transport 
protocols use the CM API. We focus on two applications-a 
Web server disseminating objects using TCP and an adap- 
tive audio server that disseminates objects using a user-level 
transport protocol over UDP. 

3.2.1 Web server over TCP 

Using HTTP’, clients request index files and sets of objects 
from the server. The CM enables the sender to decide what 
fraction of the bandwidth to use for what flow, based on 
hints from the receiver. It also helps the sender to choose 
between multiple representations that are available for some 
objects, e.g., low-, medium- and high-resolution images, for 
the best application performance. 

‘It really does not matter what version of HTTP, but as we will 
see in Section 6, the use of persistent connections in P-HTTP has 
some drawbacks. 
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typedef int cmid-t; 

Query 

void cm-query(cmid-t id, double *rate, double *srtt); 

Control 

cmid-t cm-opencaddr dst) ; 
int clpmtu(cmid-t id) ; 
void cm-request (cmid-t id) ; 
void clpaotify(addr dat. int nsent); 
void cm_update(cmid-t id, int nrecd. 

int nlost, int lossmode, 
double rtt) ; 

void clpclose(cmid-t id); 

Buffered transmission 

void cm_send(cmid-t id, char *data, int lea); 

Application callback 

void cmapp,sendo; 
void cmapp,update(double rate, double srtt); 

Figure 4: Data structures and functions for the sender-side 
CM API. 

Using the receiver CM API, the client expresses its rel- 
ative interest in the n objects with a vector of tuples of the 
form [oi : r-l,02 : r2,...,on : T,,], where oi is the ith object 
and r; the relative fraction of the available bandwidth to al- 
locate to that stream. The sender takes this into account to 
apportion bandwidth while transmitting these objects. This 
is similar to the WebTP [34] protocol. 

Multiple representations of different sizes exist for several 
of these objects. The sender uses the cm-query0 call and 
the cmappwpdateo handler to adapt to changing available 
bandwidths (tracked by the CM) and pick the representa 
tion that maximizes receiver quality without incurring high 
latency. We are currently extending the HTTP content ne 
gotiation protocol [14] to incorporate these ideas. 

The Web server uses TCP to disseminate data, which in 
turn uses the CM to perform congestion management; thus, 
TCP/CM’ now only performs loss recovery and connection 
management. We now outline how TCP congestion control 
can be written as a CM application. 

Normally, TCP’s congestion management keeps track of 
a congestion window on a per-connection basis. When ACKs 
arrive, TCP updates the congestion window and transmits 
data if its congestion window allows it, and when it detects 
losses, the window is reduced by at least a factor of two. 
To use the CM, we modify TCP to call cm-open0 when it 
establishes a connection. When data arrives from the appli- 
cation (e.g., Web server), TCP/CM calls cm-request0 to 
schedule their transmission. When an ACK arrives from the 
network acknowledging nrecd bytes of data, TCP/CM calls 
cm-update0 to update the congestion state in the CM. It 
then calls cm-request 0 if the receiver-advertised flow con- 
trol window has opened up and there is more data queued 
for transmission. 

When the CM decides to service TCP/CM’s request, it 
performs a callback using cmapp-send0 to the TCP/CM 
send routine, allowing for up to 1 MTU’s worth of data to 

2”TCP over CM” 

be sent, provided the receiver-advertised window permits 
transmission. When the IP output routine sends this data, 
it calls cm-notify0 to update the CM’s estimate of the 
number of outstanding bytes. nsent could be smaller than 
the amount permitted. 

Notice that we have eliminated the need for tracking and 
reacting to congestion in TCP/CM, because proper conge+ 
tion behavior is ensured by the CM and its callback-based 
transmission API. Notice also that duplicate ACK and time- 
out based loss recovery remain unchanged, as does end-to- 
end flow control based on advertised windows. In our im- 
plementation and experiments, we use the Newreno variant 
of TCP/CM [13] because it performs better than TCP Reno 
under most conditions. The result is that the CM permits 
an ensemble of TCP connections to behave in a manner less 
deleterious to the health of the network than before. 

3.2.2 Audio server for layered audio streams 

Many Internet audio servers support a variety of audio sam- 
pling rates and audio encodings to allow the client to trade- 
off quality for network bandwidth. Typically, the end user 
is forced to manually select the most appropriate encoding 
for the current network conditions. The use of the CM en- 
ables the server to automatically adapt its choice of audio 
encoding to the congestion state of the network. 

When requested to transmit audio to a client, the server 
calls cm-open0 and uses cm-query0 to determine how soon 
it may transmit data. It then begins transmitting audio 
at the highest quality encoding that does not exceed the 
rate returned by cm-query 0. Although some streaming 
servers solicit feedback about network conditions from their 
clients, many do not. For servers that do not, feedback is 
obtained using the CM’s probing protocol (Section 4.2.2). If 
the CM identifies a change in the available bandwidth upon 
the arrival of a probe response, it notifies the audio server of 
this change using the cmapp-update0 callback. The audio 
server’s implementation of cmapp-update 0 then adjusts its 
data encoding using the new rate information. Via these 
simple interactions with the CM, the audio server can au- 
tomatically adjust audio quality to reflect the quality of re- 
ception. Note that the CM does not shape such trafhc by 
forcing transmissions at particular times; instead, it shapes 
all other trafhc around those events. 

4 CM Algorithms and Protocol 

In this section, we present the CM’s internal algorithms and 
protocols. We first present the architecture of the CM at 
the sender. Then, we describe the corresponding organiza- 
tion of the CM at the receiver. We conclude this section 
by discussing issues that arise in non-best-effort networks, 
including ones with service differentiation and reservations. 

4.1 Stable Congestion Control 

One of the key features of the CM is that it ensures proper 
congestion behavior of an ensemble of flows by sharing con- 
gestion information between them. This implies that its 
mechanisms for reacting to network congestion and probing 
for spare capacity must be sound and robust. An attractive 
feature of the CM 6amework is that it provides a good plat- 
form for experimenting with and deploying new congestion 
control algorithms. 

It is hard to characterize our scheme as rate-based or 
window-based; it is best characterized as a window-based 
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Figure 5: Sequence traces for TCP Newreno and TCP/CM, 
showing TCP/CM’s true emulation of TCP Newreno con- 
gestion control. 

scheme that modulates transmissions using a rate-based traf- 
fic shaper to reduce bursts. It is thus a hybrid window-rate 
scheme-while it uses a TCP-like window-based mechanism, 
it also shapes outgoing trafhc using a rate estimate that is 
the ratio of the window size to the smoothed round-trip 
time. Furthermore, it changes to an exponentially decaying 
rate-based scheme when feedback is absent, as explained in 
Section 4.4. 

Our primary consideration in the design of the congestion 
control module is that it be stable and friendly to existing 
TCP traffic in the network. The CM maintains a conges- 
tion window that changes as the CM learns from active flows 
about the state of the network and as it carefully increases 
the rates allocated to them to probe for spare capacity. The 
additive increase component is no more aggressive than a 
comparable TCP flow. This does lead to a bias against long 
round-trip flows in a congested network [12, 35, 91, but we 
felt that an accurate emulation of TCP’s increase algorithm 
is currently the safest deployment alternative. Upon a loss, 
the congestion window is halved, and when persistent con- 
gestion occurs (e.g., a TCP timeout), the rate drops to a 
small value forcing slow start [15] to occur. 

We chose to implement a hybrid scheme instead of a 
pure TCP-like window-based scheme for two main reasons. 
First, this avoids bursts of transmissions that window-based 
schemes (e.g., TCP) are prone to, which makes it likely to 
overwhelm bottleneck router buffers on the path to the re- 
ceiver. Second, several applications, unlike TCP, provide 
relatively scarce and infrequent receiver feedback about re- 
ceived data, and our experiments showed that using rate- 
based aging leads to more consistent performance without 
compromising network stability in these situations. 

We conducted several experiments to validate the sound- 
ness of the CM’s algorithm and tune it to perform well. Re- 
sults from one set of experiments, for two connections-TCP 
Newreno [13] and TCP/CM-running over a network with 
random Web-like background traffic are shown in Figure 5. 
This figure shows sequence traces of the two TCPs over a 
large range of bottleneck capacities. It is clear from these 
results that TCP/CM closely emulates a TCP Newreno. 

We now argue that our experimental data demonstrates 
that TCP/CM competes fairly with TCP Newreno. Figure 5 
shows the sequence number plots for TCP/CM and Newreno 
for a particular transfer and topology (the topology itself is 
shown in Figure 7). We observed similar behavior over a 
wide range of bottleneck bandwidths and topologies. Fig- 
ure 6 shows the throughput (number of successfully received 
packets) as a function of the loss rate (ratio of the number of 
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Figure 7: Topology for simulations. 

dropped to sent packets) for TCP/CM and Newreno trans- 
fers lasting 20 seconds each. Each point on the graph is the 
average of ten runs for each bottleneck bandwidth; there 
were seven diierent bottlenecks: 100 Kbps, 300 Kbps, 500 
Kbps, 1 Mbps, 3 Mbps, 5 Mbps, 10 Mbps; one-way delays 
of 60 ms (35 ms in some experiments), and queue sizes set 
to the bandwidth-delay product. These results show that 
TCP/CM and Newreno have similar throughput-loss rela- 
tionships, which is evidence that the congestion control is 
“TCP-friendly.” 

4.2 Receiver Feedback 

One of the fundamental requirements for stable end-to-end 
congestion control is receiver feedback. Without it, the 
sender would not know if its current transmission rate is 
higher or lower than available capacity. Furthermore, this 
feedback about successfully received data and observed con- 
gestion needs to be communicated to the sender in a timely 
manner. The sender’s CM uses standard congestion indi- 
cators - packet losses and Explicit Congestion Notification 
(ECN) [lo, 231 bits set by routers and echoed by the receiver. 

We now address three issues: feedback frequency, feed- 
back mechanism, and exponential aging to perform well 
when feedback frequency is infrequent. 

4.2.1 Feedback frequency 

TCP’s feedback mechanism using ACKs provides the sender 
with feedback several times every round-trip, since the re- 
ceiver generates an ACK for at least every other packet. In 
contrast, several streaming protocols are not reliable, and 
hence do not inform the sender of transmission status as 
frequently. Because the CM must function well across all 
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Sending a probe to the receiver 

message = Cprobe,probeseqnum>; 
sendbassage) ; 
probe(probeseqnum) = {probeseqnum, now, nsent); 
nsent = 0; 
probeseqnum = probeseqnum+l; 

Responding to probe number thisprobe 

message=tresponse,thisprobe,lastprobe,nrecd>; 
send(messags); 
lastprobe = thisprobe; 
nrecd = 0; 

Sender action on receiving a response 
<response,thisprobe,lastprobe,nrecd> 

Ylsent = 0; 
for(i=lastprobe+l; icmthisprobe; i++) do 

nsent += probe(i).nsent; 
end; 
lossprob = nrecd/nsent; 
Delete all entries in probe less than 
thisprobe; 

Figure 8: Sender and receiver side pseudocode for handling 
probes/responses. 

applications, we 8rst need to determine an appropriate feed- 
back frequency. 

Unfortunately, it is not easy to determine the appropriate 
frequency in general. After some simple experiments that 
measured loss rate as a function of feedback frequency, we 
(somewhat arbitrarily) decided on a frequency of every one- 
half RTT. In Section 4.3 we discuss the insertion of a CM 
packet header that will allow the CM receiver to detect losses 
and thereby reduce the sensitivity to probe frequency. 

4.2.2 Feedback mechanism 

The CM uses two forms of feedback to adjust its congestion 
window and react to congestion: application notification and 
explicit feedback. Application notification occurs when the 
receiver application or transport protocol provides feedback 
to the sender application. The sender application can now 
notify the CM about the number of transmitted and received 
bytes, if any losses occurred, and if any ECN information 
was received. For example, TCP over CM uses this method 
and the CM design for such situations does not require any 
changes at the receiver. 

Unfortunately, not all applications are as considerate as 
TCP in providing frequent feedback. This moves us to in- 
corporate an explicit feedback protocol in the CM architec- 
ture, with modifications to the receiver to respond to peri- 
odic probe messages from the CM sender and report loss or 
ECN information to the sender. This protocol should not 
generate too much traflic on its own and also be resilient to 
losses. 

We now describe our lightweight probing protocol. The 
sender CM periodically sends probes to the receiver CM to 
elicit responses. The current frequency of these probes is 
twice every round-trip. Each probe includes an increment- 
ing, unique sequence number. The receiver CM, on receiving 
this probe, responds with the sequence of the last probe it 
received (i.e., the current one), the sequence of the last probe 
it responded to, and the number of packets received for each 

Time 
----)Probe 
- Data 

Sender 

Receiver 

Figure 9: Example of reordering of probe and data packets. 

flow in between these two probes. Upon receipt of the re 
sponse, the sender can estimate per-flow loss rates because it 
keeps track of the number of packets sent per flow, the total 
loss rate in the network, and update its round-trip time es- 
timate. Because the sender maintains information about all 
probes since the last one for which a response was received, 
the protocol is robust to losses of probes or responses. 

Figure 8 shows pseudocode for the probing protocol at 
the sender and receiver. For simplicity of exposition, we 
assume that the sender and receiver maintain information 
aggregated across all flows. The sender maintains an ar- 
ray probe indexed by the probe number. Each entry of 
the array is a structure with two elements: timesent, the 
time at which the probe was sent, and nsent, the number 
of bytes sent since the previous probe. It also has a vari- 
able probeseqnum which is the sequence number of the next 
probe to be sent. 

This pseudocode correctly identifies losses (and infers 
congestion) when the network does not reorder packets. Un- 
fortunately, when the network does reorder data and probe 
packets, the packets received between a pair of probes may 
not be the same as the packets sent between those same 
probes. If the reordering occurs such that the fewer pack- 
ets were received between the probes than were sent, the 
CM will erroneously identify a loss and perform congestion 
avoidance. 

However, unlike TCP which would perform a premature 
retransmission, the ambiguity in this case is not as serious 
since the CM only performs congestion control, not retrans- 
missions. Thus, if reordering is mistaken for a loss and we 
later recognize this mistake, we can undo the changes to the 
congestion state by updating the CM’s congestion window. 
The problem then is determining how to undo a false win- 
dow reduction. This can be done by observing the number 
of received and sent packets, nrecd and nsent, in successive 
probes. In particular, if packet reordering had occurred, 
the sender CM will see probe responses in which nrecd > 
nsent, and can use these ‘Lextra” packets to identify the 
previous false window reduction. The reduction can then be 
reversed by incrementing the congestion window as neces- 
WY. 

As it turns out, doing this correctly is a little more in- 
volved and requires a small amount of additional state. The 
sender CM begins storing the cumulative number of sent and 
received packets after it receives a response in which nsent 
# nrecd. For each subsequent response, it compares the 
cumulative sent and received packets since it started storing 
responses. If the sent and received count are not equal and 
multiplicative decrease has not been performed for at least 
one round trip time, the CM invokes its decrease routine. As 
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soon as the CM receives two successive reports with nsent 
= nrecd, the CM clears its memory of stored responses. At 
this stage, if the cumulative sent and received counts match, 
then we know that the CM performed an unnecessary win- 
dow reduction and this action is reversed. The example 
shown in Figure 9 illustrates how this algorithm identifies 
reordered packets. In the first period, four packets were 
sent and only three received. Since a loss was indicated, 
the CM would perform a multiplicative decrease and store 
the information about the number of packets sent and re- 
ceived. The next probe indicates that an %xtra” packet was 
received. If no further losses had occurred, the CM would 
notice that nsent = nrecd over the entire loss period and 
reverse the previous window reduction. However, the next 
probe indicates that only three out of five packets were re- 
ceived. If this probe was more than one round trip after 
the previous decrease, the CM would perform an additional 
window decrease. Assuming that no further losses occurred, 
the CM would not reverse either of the two decreases it had 
performed. In this scenario, the “extra” packet may have be- 
longed to the first or third loss periods and the CM should 
have only performed a single window reduction. Since the 
CM cannot identify this from the information it has, it takes 
the conservative approach of two window reductions. 

However, this solution is complex and does not work 
well when packet duplication occurs. Duplicate packets may 
cause losses to be hidden from the CM and wrongly reverse a 
correct window reduction. We address these issues by incor- 
porating a CM packet header, which solves these problems 
(Section 4.3). 

4.3 CM Packet Header 

During our design, a question that repeatedly arose was 
whether the CM should incorporate a packet header of its 
own. There are some trade-offs involved in this decision. 

l Loss/congestion detection. In the absence of a CM 
header with its own sequence number, detecting loss 
and congestion is problematic. It increases the reliance 
on a well-tuned probing scheme, because the CM re- 
ceiver cannot provide feedback to sender aa soon as 
congesion has occurred. To prevent the sender from 
transmitting in open-loop until the next probe and re- 
sponse when congestion has already occurred is unde- 
sirable. Note that this is not a significant issue with 
applications like TCP that incorporate their own se 
quence spaces and congestion detection machinery, us- 
ing cm-update0 to inform the CM about congestion. 

l Reordering issues. A CM header with an increment- 
ing sequence number attached to data packets eases 
the task of distinguishing losses from reordering. 

l Deployment concerns. A CM header is certainly 
cleaner, in the sense that all the information used by 
the sender and receiver CM modules can be encapsu- 
lated in it. However, adding this entails more change, 
especially at the receivers. This is why we hesitated 
including it initially. 

In our initial design, we decided to incorporate the com- 
plicated reordering machinery (Section 4.2.2) and thought 
that we could arrive at a straightforward solution to the 
probing frequency problem. This led us to believe that we 
could get away with the simpler alternative of eliminating a 
CM header. However, subsequent experience and reflection 
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Figure 10: Format of the CM header. Type can be one 
of SYN (l), SYN-ACK (2), RST (3), PROBE (4), or RESPONSE 
(5). Protocol is the transport protocol type that the packet 
should be dispatched to at the receiver. Sequence is an 
incrementing packet sequence number and FlovID uniquely 
identifies the flow. 
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Figure 11: Format of the CM response header. NumFlous is 
the number of flows for which statistics are included in the 
response. ThisProbe is the sequence number of the probe 
triggering the response, and LastProbe is the sequence num- 
ber of the previous probe received. Count is the number of 
bytes received between ThisProbe and LastProbe for the 
flow with identifier FlowID. 

convinced us that the complexity and inefficiency of the re- 
ordering distinguisher was enough to justify the additional 
change required at receivers to process the CM header. Fur- 
thermore, while we still believe that the feedback frequency 
problem is tractable, we do not think it is trivial. 

We convinced ourselves that the addition of a CM header 
is a significant deployment problem because the CM al- 
ready requires receiver changes to respond to periodic sender 
probes and to implement the receiver-side API (both of 
which require changes to the protocol stack). However, we 
would like a CM sender to communicate with a receiver 
that does not have a CM, and work well for applications 
that provide feedback to the sender (which can in turn use 
cm-update0 to inform the CM of the state of the network). 
We achieve this by creating a new CM protocol type identi- 
fier (IPPROTOXM) and negotiating the use of the CM header 
via a tweway handshake between sender and receiver. 

The CM uses the packet header format shown in Figure 
10 for its messages. This is used in the probe and response 
packets, in data packets, and in state setup/reset packets. 

The Protocol field is used by the receiver CM to decide 
which transport protocol to pass the incoming packet on to. 
This is needed because the sender CM rewrites the IP pro- 
tocol field of all outgoing packets to CM-enabled receivers 
using a new IP protocol type IPPROTLCM (this protocol num- 
ber needs to be standardized by the IETF). 



When any data is received, the sequence number field 
increments for every packet that is transmitted to the des- 
tination, independent of FlowID. The receiver CM monitors 
these sequence numbers (and ECN as well) to determine if 
congestion has occurred. It is robust to reordering in the 
same way that TCP is, flagging a congestion event to the 
sender only if a packet at least three packets greater than a 
missing one arrives. 

For type PROBE packets, the sequence number refers to 
the probe sequence number, which is a diierent increment- 
ing stream thorn the data sequence numbers. In response, the 
receiver sends a RESPONSE packet, which has a very diierent 
format from the other types (see Figure 11). The RESPONSE 
packet csrries in it per-flow information of the number of re- 
ceived bytes between two probe sequence epochs-the cur- 
rent sender probe and the previous one received by the re- 
sponder. 

The SYN packet type is used to perform a twoway hand- 
shake between sender and receiver. The CM sender uses 
this to determine if a given receiver is CM-enabled. Ob- 
serve that a three-way handshake is unnecessary because 
the receiver’s RESPONSE messages do not use an independent 
sequence number, they only echo the sender’s query. If a 
pair of hosts are both sending and receiving CM-enabled 
trafhc between each other, there are two “connections” of 
the probe/response protocol in action. 

The RST type is used to reset the sender’s state after 
crash recovery or any other loss of synchronization in the 
sender and receiver states. 

When the sender encounters a new receiver, it sends a 
SYN packet with an initial sequence number using the same 
mechanism that TCP uses. There are two cases to consider: 
a CM-enabled receiver and a non-CM receiver. 

In the first case, the receiver’s IP layer passes the packet 
on to the receiver CM because of the IPPROTOXM protocol 
type. The receiver CM generates a SYN-ACK in a response, 
echoing the sequence number. If the receiver was not CM- 
enabled, the SYN would be dropped and an ICMP “protocol 
not available” message sent to the sender. Upon the receipt 
of this message or on a timeout (since the sender cannot 
rely on the ICMP being generated or received), the sender 
realizes that the receiver is not CM-enabled and proceeds 
without the CM header. 

In the above description, no application data is sent dur- 
ing the round-trip to effect this handshake. This is undesir- 
able, so we permit packets to be sent emulating TCP slow 
start, and assuming that the receiver does not have a CM 
(i.e., these packets do not have a CM header). If the receiver 
is indeed CM-enabled, we discover this when the SYN-ACK 
arrives and start incorporating a CM header on packets. 

The existence of the CM header is transparent to the 
transport protocols and applications at both the sender and 
receiver. Thus, when the receiver-side CM receives a packet 
with data, it adds the payload size (from the IP header) to 
the number of bytes received on the corresponding FlowID, 
strips the CM header and passes the packet to the higher 
layer based on the Protocol field in the CM header. 

Finally, PROBE and RESPONSE types are handled as ex- 
plained in Section 4.2.2. 

4.4 Exponential aging 

The probing protocol described above periodically elicits a 
response from the receiver regarding the number of received 
bytes to infer the state of the network. However, probe mes- 
sages or responses may be lost during times of congestion, 
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Figure 12: Sequence traces showing that exponential aging 
based on mean round-trip time causes substantially more 
losses than the alternative based on minimum round-trip 
time. 

because of which the sender will not have an accurate esti- 
mate of the network state. 

The first possible way to handle this is to clamp sender 
transmissions if more than one round-trip time elapses since 
the receipt of the last response. This is a conservative re- 
sponse and is the least likely to lead to instability. However, 
it comes at significant cost, because all flows stall until we 
hear a response once again, which could take quite a while 
longer because of the low probe frequency. 

The second possible way to handle this is exactly the 
opposite: continue to transmit at the same rate until a re- 
sponse arrives, which may indicate that all packets were 
successfully received or that losses happened. The CM can 
now either increase or decrease its rate at this time. How- 
ever, this is overly aggressive behavior because the sender 
transmits data in open-loop fashion for multiple round-trips 
without attention to the true state of the network. We are 
therefore forced to search for a compromise that avoids com- 
plete stalls, but yet transmits at prudent rates while in open- 
loop mode. 

Our solution is a technique we call exponential aging, 
which is triggered when the CM does not receive a response 
to a probe message within a round-trip time. In each subse- 
quent round-trip period starting from this point, the open- 
loop transmission rate is halved to its current value. This 
leads to an exponential fall-off in the rate as a function of 
time while in open-loop mode. It is not hard to see that this 
algorithm is stable because, in the worst case, each subsc+ 
quent round-trip will also be congested. Such rate reduction 
would be the appropriate action if this were to happen, and 
it is easy to verify that the throughput-loss relationship has 
behavior similar to TCP. Thus, exponential aging permits 
flows to continue transmitting data without stalls, albeit at 
lower rates. 

An important parameter in exponential aging is the time 
intervals at which rate reduction is done, or the “half-life” 
of the algorithm. Our first choice was to use the sender’s 
smoothed round-trip estimate for this. However, Figure 12 
shows that this choice of half-life is too aggressive. This is 
because upon the onset of congestion, the sender’s smoothed 
round-trip estimate often increases as a result of larger queue 
ing delays, and rather than decay at an exponent governed 
by the true mean round-trip time, the decay occurs at a 
much slower rate. This leads to unstable behavior and in- 
duces a large number of losses. 

Fortunately, there is an easy solution to this problem 
that significantly improves things by ensuring more con- 
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Figure 13: The CM scheduler apportions bandwidth well 
between simultaneous flows. 

servative behavior. Because the problem is caused by the 
sender transmitting too rapidly and for too long in open-loop 
mode, we decrease the time-constant of exponential decay. 
The CM keeps track of the minimum of all its round-trip 
samples obtained over the duration of activity and decays 
the open-loop rate based on this. The improvements over 
using the mean round-trip estimate are apparent from Fig- 
ure 12 which shows the sequence traces of transfers in each 
mode. Using the smoothed round-trip time, the connection 
experiences a larger number of losses and does not recover 
from it, while with the minimum, it does not burst out as 
many packets. 

4.5 Better-than-best-effort Networks 

Thus far, our design of the CM architecture assumes that 
the underlying network provides a best-effort service model. 
It is likely that the future Internet infrastructure will in- 
corporate mechanisms such as differentiated services, in& 
grated services, priorities based on flow identifiers or port 
numbers, etc., and that a non-trivial &action of Internet 
traflic will use these enhancements. In such situations, the 
previously described approach of aggregating congestion in- 
formation baaed on the peer host address will in general be 
incorrect because different flows might experience diierent 
bandwidths and loss rates, depending on how routers treat 
them. 

This problem may be tractable using flow segregation, 
where the flows are aggregated not by host address but by 
some combination of address, port numbers, and identifiers. 
If an application knows a priori that some of its flows will 
be treated differently from best-effort traflic, it csn inform 
the CM of this. To function well in the absence of such 
explicit information, the CM incorporates a segregation al- 
gorithm to classify flows into aggregates based on loss rates 
and perceived receiver throughputs. Using a combination of 
cm-update0 hints and the probing protocol, the CM obtains 
per-flow loss-rates and bandwidths, to segregate (and there- 
fore also cluster) flows if their properties are very different. 
At this point, we have not implemented or experimented 
with this, but plan to do so soon. 

4.6 Flow Scheduling 

One of the advantages of the modular CM design is that 
one scheduler can be swapped with another without affect- 
ing the rest of the system. We currently use a simple Hier- 
archical Hound Robin (HRR) Scheduler [17]. The sched- 
uler apportions bandwidth among flows in proportion to 
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Figure 14: The top graph shows sequence traces for a Web- 
like workload using 4 concurrent TCP Newreno connections. 
The performance of these transfers is highly variable and 
inconsistent. The bottom graph demonstrates the consis- 
tent and predictable performance of a Web workload using 
TCP/CM-the four connections are indistinguishable!. 

preconfigured weights (and soon based on receiver hints). 
Figure 13 shows flows starting at different times eventually 
achieving the same rate allocation from the HFiR scheduler. 

The scheduler is invoked whenever any application makes 
a call to transmit data. It schedules the request for a time 
in the future based on the CM congestion window and on 
past transmissions, without considering the current request 
size (indeed, there is no explicit request size in the API). 
At this time, it calls cmapp-send0 , causing the application 
to send up to mtu bytes (obtained by the application using 
cmJIltu0. 

The scheduler as currently implemented performs only 
bandwidth allocation, and does not use delay bounds in its 
scheduling. While this is adequate for applications like TCP, 
it does not accomodate delay-sensitive applications. We are 
planning on implementing an H-FSC-like scheduler [31] in 
the CM. 

5 Application Performance 

We have implemented the CM in ns [33]. We have also 
implemented a TCP agent and anaudio server application 
to use the CM, and performed experiments with a variety 
of topologies. We present and discuss the results for the 
topology shown in Figure 7. 

5.1 Web Performance 

This section presents the results of experiments with a sim- 
ple Web-like workload consisting of four concurrent connec- 
tions with significant TCP and constant bit-rate cross-traffic 
in a network with a 1 Mbps bottleneck link and round-trip 
propagation delay of 120ms. Our results show that the CM 
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ensures proper behavior in the face of congestion and im- 
proves the consistency of application performance. 

Figure 14 shows two sets of sequence traces: when TCP 
Newreno was used, and when TCP/CM was used for the 
four connections. Using TCP Newreno, the performance of 
the four connections varies between 99 Kbps and 268 Kbps, 
a factor of 2.7 in transfer time between the fastest and slow- 
est connections! This is because of the lack of shared state 
learning and the competitive, rather than cooperative con- 
gestion control for the ensemble of connections. In contrast, 
the four connections using TCP/CM progress at very sim- 
ilar, consistent rates sharing bandwidth equitably. All four 
connections achieve throughputs of 170 Kbps, without caus- 
ing as many losses along the way. Thus, the CM enables the 
ensemble of connections to effectively share bandwidth and 
learn from each other about the network. 

We calculated the fairness index [16] for several experi- 
ments; for the TCP/CM ensemble, the index was 1.0 while 
for the Newreno ensemble it was 0.952. Note that the ag- 
gregate throughput obtained by the TCP/CM connections 
(rz 680 Kbps) is lower than the aggregate throughput ob 
tamed by independent TCP Newreno connections (W 785 
Kbps). This is not surprising because the CM forces the 
concurrent connections to behave as one from the point of 
congestion control, whereas the effective decrease and in- 
crease coefficients for the independent connections are sig- 
nificantly larger than for a single TCP. The CM does indeed 
ensure that a group of connections between the same hosts 
behaves in a socially proper way. The observed throughput 
degradation, while unfortunate, is a consequence of correct 
congestion control. But TCP applications do directly ben- 
efit in significant ways: they obtain improved performance 
consistency and predictability, which is a definite incentive 
for adoption. 

5.2 Layered Audio Performance 

This section discusses the results of experiments testing the 
interactions of adaptive audio applications using CM with 
TCP traffic. Our experiment consisted of performing test 
transfers against competing TCP and constant bit rate cross 
traffic across a bottleneck link of 0.5 Mbps and a round-trip 
propagation delay of 120 ms. The test traffic consisted of 
a single audio transfer using CM, a single TCP/CM trans- 
fer (on the same end-host) and a TCP Newreno transfer. 
The expected and desired result is that the combined band- 
width of the TCP/CM and audio transfer would equal the 
bandwidth of the TCP Newreno transfer. In addition, the 
audio transfer should choose an encoding that most closely 
matched it to the bandwidth of the TCP/CM transfer. In 
our experiment, the audio application chose amongst encod- 
ings of 10,20,40,80,160 and 320 Kbps. It always performed 
transmissions of 1 KB packets. 

The results of the experiment, shown in Figure 15, con- 
firm that the CM, TCP/CM and adaptive audio perform 
as desired. The TCP Newreno transfer obtained approxi- 
mately 150 Kbps. The combination of the audio, at about 
65Kbps, and the TCP/CM, at about 85 Kbps, was close to 
the throughput of Newreno. The audio primarily used the 
80 Kbps encoding, occasionally switching to the 40 and 160 
Kbps encodings. These results show that the CM API en- 
ables applications like layered audio to adapt well to network 
conditions, despite only using coarse-grained layers. 
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Figure 15: Performance of a layered adaptive audio appli- 
cation using the CM. 

6 Related Work 

Most Web sessions today use multiple concurrent TCP con- 
nections. Each connection wastefully performs slow start 
irrespective of whether other connections are currently ac- 
tive to the same client. Furthermore, upon experiencing 
congestion along the path to a client, only a subset of the 
connections (the ones that experience losses) reduce their 
window. The resulting multiplicative decrease factor for the 
ensemble of connections is often larger than 0.5 [l], the value 
used by individual TCPs3. This is unfair relative to other 
clients that use fewer connections, and worse, will lead to 
instability in a network where most clients operate in this 
fashion. To solve these problems, researchers have proposed 
two classes of solutions-application-level solutions and in- 
tegrated TCP congestion control. 

6.1 Application-level Solutions 

Application-level solutions multiplex several logically dis- 
tinct streams onto a single transport (TCP) connection to 
overcome the adverse effects of independent competing TCP 
transfers. Examples of this include Persistent-connection 
HTTP (P-HTTP, part of HTTP/1.1), which is application- 
specific, and the Session Control Protocol (SCP) [28] and 
the MUX protocol [ll], which are not tied to HTTP. 

There are several drawbacks with this class of solutions. 

l Architectural problems: These solutions are application- 
specific and attempt to avoid the poor congestion man- 
agement support provided by protocol stacks today. 
However, congestion is a property of the network path 
and the right point in the system to manage it is inside 
the protocol stack, not at the application. If the right 
support is provided by the system, the need for such 
solutions can be eliminated. 

l Application-specificity: These solutions require each 
class of applications (Web, real-time streams, file trans- 
fers, etc.) to reimplement much of the same machinery, 
or else force them to use protocols like TCP that are 
not well-suited to the task at hand. 

l Undesirable coupling: These solutions typically mul- 
tiplex logically distinct streams onto a single byte- 
stream abstraction. If packets belonging to one of the 
streams is lost, another stream could stall even if none 

31f there are n concurrent connections with equal windows and m 
of them experience a loss, the decrease factor is (1 - m/271). 
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of its packets are lost. This is because of the in-order 
delivery provided by TCP, which forces a linear order 
over all the transferred bytes when only a partial or- 
der is desired. This is a violation of the ALF principle 
[6], which states that independent Application Data 
Units (ADUs) should be independently processible by 
receivers independent of the order in which they were 
received. 

6.2 Transport level solutions 

Motivated in part by the drawbacks of the above solutions 
and by the desire to improve Web transfer performance, 
various researchers have proposed modifications to TCP it- 
self [l, 21, 321. In RFC 2140 [32], Touch proposes a scheme 
called “TCP control block interdependence,” where the goal 
is to share part of the TCP control block between connec- 
tions to improve transient TCP performance. In [l, 211, 
the authors present an integrated approach to TCP where 
TCP control block state is shared for better congestion con- 
trol and loss recovery for concurrent connections. Although 
these approaches do solve some of the problems associated 
with the Web scenario, they axe transport-specific and do 
not provide any APIs for application adaptation. 

6.3 Real-time Multimedia 

There has been some recent work in developing congestion 
control protocols for such applications. Much of this work 
has been in the context of multicast video (e.g., IVS [3], 
RLM [18], etc.). There have also been numerous recent con- 
gestion control proposals for various reliable multicast ap- 
plications (for a survey, see [25]). In contrast to these efforts 
which are application-specific, our aim is to develop a sub- 
strate that manages congestion and allows applications to 
implement their own adaptation policies. For example, the 
RAP protocol [24] is a rate-based congestion control scheme 
intended for streaming applications. The CM provides a 
general architecture within which a scheme like RAP could 
be implemented as the congestion controller. Because the 
CM is independent of specific transport protocols and fa- 
cilitates the sharing of information, it integrates congestion 
management across all flows. 

7 Conclusions 

This paper motivated and presented the Congestion Man- 
ager (CM) architecture for managing Internet congestion. 
At the sender, the congestion manager maintains network 
statistics on a per-receiver basis, performs congestion avoid- 
ance and control, schedules transmissions, and exposes an 
API based on ALF principles to enable applications to adapt 
to congestion. At the receiver, the CM maintains loss statis- 
tics, responds to sender probes, and exposes an API for ap 
plications to provide hints on apportioning bandwidth. 

We showed using ns-based simulations that the CM en- 
abled efficient multiplexing of logically d&rent streams, en- 
suring proper congestion behavior for an ensemble of flows. 
Our results showed that the CM enhances the predictability 
of TCP performance and allows a layered audio application 
to adapt well to changing bandwidth. 

In terms of deployment, the full benefits of the CM ar- 
chitecture require changes to both senders and receivers. 
However, substantial benefits can be obtained with sender 
changes alone (e.g., at popular servers), especially for those 

applications such as TCP that already have their own feed- 
back mechanism. This incremental deployment path encour- 
ages us to be optimistic about the CM’s long-term prospects. 
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