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1 What is a Peer-to-Peer (P2P) Network?

A P2P network is characterized by the following:

1. A P2P network is a distributed network of computers; in contrast to
the server-client model, a node in the P2P network has no distinction
between a server and a client. In fact, each P2P node acts as a server
as well as a client. It is equipped with a software called servent (server-
client) to participate in the P2P protocol.

2. It is a dynamic network: nodes (peers) and edges (currently established
connections) appear and disappear over time. In contrast to a static
network, a P2P network has no fixed infrastructure with respect to
the participating peers, although the underlying network can be static
(e.g., Internet). A P2P network can be considered as an overlay net-

work over an underlying network, where the communication between
adjacent peers in the P2P network may in fact go through one or more
intermediate peers in the underlying network.

3. Peers communicate using only local information, in order to minimize
the traffic injected to the network.

4. An incoming node does not have global knowledge of the current topol-
ogy, or even the identities (e.g., IP addresses) of other peers in the
current network.

One obvious advantages of a P2P network is that decentralized computing
can be achieved – not depending on one particular machine as in the client-
server model. This can be important to applications that share data and
resources. An example is searching, where we can store the indexes in peers
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instead of in one single computer; the peers can share the search query loads,
and the indexes can be kept fresh compared with keeping one single index
in one computer. The trade-off to this approach is the dramatical increase
in network traffic; so, the issue is how a P2P network can be constructed to
maintain minimal traffic.

Real-life examples of P2P network include Gnutella, Freenet and www.kazaa.com.
We examine Gnutella in more detail in the next section.

1.1 Case Study: Gnutella

In Gnutella, a new node can join the P2P network by contacting a (central)
host server to get entry-points to the network. To perform a search query,
a node takes the following steps:

• It sends query to its neighbors.

• They in turn forward it to their neighbors. To prevent too much flood-
ing, the neighbors decrement Time to Live (TTL) for the query. The
query dies when TTL = 0.

• Search results are sent back along requested path to the requesting
node.

Note that in Gnutella, it does not mention which neighbors a servent
joining the network should connect to. Also, there is no standard on what a
node should do when any of its neighbor drops out of the network.

1.2 Building P2P Networks

The two critical properties for a good P2P network are:

• Connectivity: maintaining (even) connectivity under a dynamic setting
is a non-trivial issue.

• Low-diameter: small diameter to reduce the packet transmission time.

In current real-life systems (e.g., Gnutella), the network is generated in
an ad-hoc approach. This can result in partitioning of the network into
disconnected pieces. It may also possess large diameter. Thus, the challenge
is to design distributed protocols which operate with only local knowledge.
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In the next section, we discuss a distributed protocol to build P2P networks
with the following properties:

1. reasonable connectivity;

2. logarithmic diameter;

3. constant degree;

4. low overhead;

5. operates with no global knowledge; and

6. can be easily implemented with local message passing.

2 A P2P Protocol

Let us now study the protocol introduced by Pandurangan et. al [1].

2.1 Protocol Basics

The protocol is composed of a set of rules that are applicable to the following
situations a node may find itself in:

1. How to join the network ?

2. What happens if a neighbor drops out ?

3. How to maintain a bounded number of connections ?

Similar to Gnutella, the protocol assigns a central host server which has
the following properties:

1. It acts as a gateway mechanism to enter the network.

2. It maintains a cache, which is essentially a list of K nodes (i.e., their
IP addresses) at all times. Since K is a constant, implies the cache
does not keep the information of all nodes.

3. It is reachable by all nodes at all times.
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4. It does not need to know the network topology or the identities of all
the nodes in the network.

Some other definitions for the protocol are:

1. When a node is in the cache, we refer to it as a cache node. It accepts
connections from all other nodes.

2. A node is new when it joins the network, otherwise it is old.

3. The protocol ensures that the degree (number of neighbors) of all nodes
will be in the interval [D, C + 1], for two constants D and C.

4. A c-node is a node that was a cache node at some time.

5. A d-node is a node that is not a c-node.

2.2 Protocol for Node v

Here we present the protocol for joining and reconnecting to the network, for
a node v:

1. On joining the network: Connect to D cache nodes, which are
chosen uniformly at random from the current cache. Note that D < K.

2. Reconnect rule: If a neighbor of v leaves the network, and that
connection was not a preferred connection, connect to a random node
in the cache with probability D/d(v), where d(v) is the degree of v
before losing the neighbor.

3. Cache Replacement rule: When a cache node v reaches degree C
while in the cache (or if v drops out of the network), it is replaced in
the cache by a d-node from the network. Let r0(v) = v, and let rk(v)
be the node replaced by rk−1(v) in the cache. The replacement d-node
is found by the following rule:

k = 0;
while (a d-node is not found) do

search neighbors of rk(v) for a d-node;
k = k + 1;

endwhile
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4. Preferred Node rule: When v leaves the cache as a c-node it main-
tains a preferred connection to the d-node that replaced it in the cache.
If v is not already connected to that node this adds another connection
to v. Thus the maximum degree of a node is C +1. Also, a c-node can
follow a chain of preferred connection to reach a cache node.

5. Preferred Reconnect rule: If v is a c-node and its preferred connec-
tion is lost, then v reconnects to a random node in the cache and this
becomes its new preferred connection.

Finally, note that the degree of a d-node is always D. Moreover, every d-
node connects to a c-node. A c-node may lose connections after it leaves the
cache, but its degree is always at least D. A c-node has always one preferred

connection to another c-node.

3 Protocol Analysis

The protocol assumes the following model:

1. The arrival of new nodes is Poisson distributed with rate λ.

2. The duration of time a node stays connected to the network is inde-
pendently and exponentially distributed with parameter µ.

3. Let Gt be the network at time t. We are interested in the evolution in
time of the stochastic process G = (Gt)t≥0.

4. The evolution of the size of G depends only on the ratio λ/µ = N , the
steady state size of the network.

Using the above assumption, the dynamic nature of a P2P network can
be captured by a M/M/∞ model. Also, it is assumed that λ is much larger
than µ. The objective is to prove that by using the proposed protocol, the
network is connected at most of the time i.e., good connectivity. But we first
need to derive some facts for the network size.
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3.1 Network Size

W.l.o.g let λ = 1; thus µ = 1/N . Let Gt = (Vt, Et) be the network at time t.

Theorem 3.1 1. For any t = Ω(N), w.h.p. |Vt| = Θ(N).

2. If t
N

→ ∞ then w.h.p. |Vt| = N ± o(N).

Proof:
Consider a node that arrived at time τ ≤ t. Since its arrival is Poisson,

its probability of still being in the network at time t is e−(t−τ)/N . Let p(t) be
the probability that a random node that arrives any time during the time
interval [0, t] is still in the network at time t. Since in a Poisson process the
arrival time of a random element is uniformly distributed in [0, t], we have

p(t) =
1

t

∫ t

0

e−(t−τ)/Ndτ =
1

t
N(1 − e−t/N ).

For t = Ω(N), according to the M/M/∞ model, the number of nodes in
the graph at time t has a Poisson distribution with expectation tp(t). Thus,
E[|Vt|] = Θ(N). Also, when t/N → ∞, E[|Vt|] = N − o(N).

Using the Chernoff bound, for t = Ω(N),

Pr
(

||Vt| − E[|Vt|]| ≤
√

bN log N
)

≥ 1 − 1/N c

for some constants b and c > 1. Thus w.h.p. E[|Vt|] = Θ(N) for t = Ω(N).
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