
CS 590R: Algorithms for Communications Networks February 6th, 2003

Lecture 8
Lecturer: Gopal Pandurangan Scribe: Jayesh Pandey

Packet Routing in Parallel Computer

1 Properties of a Communication Network

1.1 Nodes

The nodes can be considered as switches or processors in the network. If there
are N nodes in the network, each node has an unique identifier between 1 and
N . Also the nodes have a buffer to store packets.

1.2 Edges

The communication links between the nodes form the edges. We assume the
links are unidirectional. In case the links are bidirectional, the same analysis
holds by taking into account a factor of 2.

1.3 Synchronous Operation

In a tightly coupled system like a parallel computer, all communication proceeds
in a synchronous fashion.

1.4 Capacity

Each link can carry 1 packet (in one direction).

1.5 Congestion

In one step a node can send out at most one packet to each of its neighbor.
Thus in case more than 1 packet has to follow a link, then they will be queued
using some associated queuing mechanism.

2 Routing

Given that node i wants to send packet vi to destination d(i) for 1 ≤ i ≤ N .
A routing algorithm routes the packets to their destination. Since at each step
at most one packet can be served by a given edge, every edge has an associated
queue, specified by a queuing disciple.

8-1

2.1 Permutation Routing

In permutation routing each node sends a packet to a different destination. That
is d(i) is a permutation of 1 to N . For example

src 1 2 3 4
des 2 4 1 3

Remark: This can be considered as a good case as every node gets one packet.

2.2 Oblivious Routing

The route taken by a packet vi from i to d(i) depends only on its destination
d(i) and does not depend on the destinations of any other packets nor on the
state of the network at any time step.
Remarks: It is very simple as you don’t need to worry about other packets.
Hence can be implemented in hardware.
The Goal is to minimize time required for routing.

3 Lower Bound for Deterministic Routing

Theorem 1 For any N -node network with maximum degree d, and any deter-
ministic oblivious packet routing algorithm, there is a permutation that requires
Ω(

√
N/d3) steps. [1].

We will do this in the next class.

4 The Hypercube

We do the analysis for a hypercube network.

4.1 Hypercube

The n-cube has N = 2n nodes and dimension n. The nodes are all the bit
vectors of length n i.e. x = (x1, . . . , xn)xi ∈ {0, 1}. Two nodes are connected
iff their binary representation differ in exactly one bit. (So degree of each node
is n). You can create a hypercube in N + 1 dimensions from an N -dimensional
by making an extra copy of the N -dimensional cube, and adding an extra bit
which is zero in one copy and one in the other. Then join corresponding vertices.
E.g. a 4D hypercube can be built from the 3D hypercube this way as shown in
Figure 1.

4.2 Bitwise Routing

The path from i to d(i) is just the path we get by going over the bits of i one by
one from left to right and’fixing’ them whenever needed to be the bits of d(i).
This is an oblivious routing.

8-2

Figure 1: 4D Hypercube

5 Randomized Routing Algorithm

As theorem 1 states, the randomized algorithm performs exponentially better
than any deterministic algorithm. This randomized algorithm is due to Valiant’s
trick [2].

1. For each packet vi independently choose an intermediate destination (i)
uniformly randomly from the set of nodes.

2. Phase 1: Send the packet from i to (i).

3. Phase 2: Send the packet from (i) to d(i).

Remarks: The routing in each of the phases is done using bitwise routing.
The second phase is symmetric to first phase in analysis.
The queuing mechanism can be any greedy method e.g. FIFO.

Theorem 2 The two-phase routing algorithm routes an arbitrary permutation
on the n-cube in O(log N) steps with high probability (w.h.p.).

Proof:
We bound the routing time of a given packet vi.
Let ρi = e1, . . . , ek be the edges traversed by vi in phase 1.
The number of steps taken by vi is equal to the length of ρi, which is at most
n, plus queueing delay in the intermediate nodes.

Lemma 3 If a packet leaves the path of another packet it cannot return to that
path in the same phase.

Proof: That is, a pair of routes can look like the left picture but not the
right in Figure 2.

8-3

Figure 2: Packet Path

To see this, notice that during bitwise routing, an intermediate address always
looks like D1, , Dk, Sk +1, , Sn where Si is a bit of the Source address, and Dj is
a bit of the destination address. If two routes collide at the kth step, that means
their destination addresses agree in their first k bits and the source addresses
agree in their last n−k bits. Let k0 be the first value of k for which the packets
collide. At each time step, we add one more bit of the destination address,
which means we increment k. Eventually, the destination bits must disagree
(because the destinations are different). Let k1 be the value of k at which this
happens. Then the Dk1 destination bit is different for the two packets. At that
point, the two packets separate. They will never collide again, because all the
later intermediate destinations will include the Dk1 bit.

This observation is the crux of the proof of the following Lemma:

Lemma 4 Let S be the set of packets (other than vi) whose routes pass through
at least one of the edges in ρi. Then the delay incurred by vi is at most |S|.

Proof: Its enough to notice that whenever the routes of two packets inter-
sect, one of the packets may be delayed by one time step. Once that packet is
delayed by one time step at the first shared node, it will flow along the shared
route behind the other packet, and will not be delayed any more by that packet.
If the same route intersects other routes, each of them may add a delay of one
time step. This happens either (i) because another packet collides with the
current packet along a shared route, or (ii) because another packet collides with
a packet that is ahead of the current packet along a part of the route which is
shared by all three. In either case, an extra delay of at most one results.
So the worst case delay is at most |S|.

To get the running time of this scheme, we compute the expected value of the
size of the set S above. Define an indicator random variable Hij which is 1
when the routes of packet vi and packet vj share at least one edge, and Hij is
0 otherwise. Then by the above theorem, the expected delay of packet vi is the
expected size of S which is

N∑
j=1

Hij

Its rather difficult to an exact estimate of this quantity because Hij is a compli-
cated condition. Its easier to think about X(e) which is the number of routes
that pass through a given edge e. Now suppose the route of packet vi consists

8-4

of the edges (e1, e2, . . . , ek). Then we have

N∑
j=1

Hij ≤
k∑

l=1

X(el)

This is an upper bound as a packet could be counted multiple times.
For the N − 1 packets other than vi let F j

l = 1 iff packet j traversed edge el,
else F j

l = 0. So,

E[X(el)] =
N−1∑
j=1

Pr(F i
l = 1)

Since traversing el ”fixes” the lth bit, a packet can cross that edge only in its
lth transition. So number of packets traversing an edge is 2l−1 ∗ 2−l = 1

2 .
Hence E[X[el]] ≤ 1

2 .

E[
N∑

j=1

Hij] ≤ E[
k∑

l=1

X(el)] ≤
n

2

Now we can apply Chernoff bounds to the probability of there being a substantial
number of paths intersecting vis path. The Chernoff bound is

Pr(
N∑

j=1

Hij ≥ 3n) ≤ 2−3n = 1/N3

Thus with probability at least 1− 1/N2, every packet finishes phase 1 in 4n or
fewer steps. The 4n comes from the delay time (3n) plus the time for the bit
fixing steps, which is ≤ n. Notice that all of this applies to just one phase of the
algorithm (recall that phase one routes a packet to a random location, and phase
two routes from there to the actual destination). So the full algorithm routes
all packets to their destinations with high probability in 8n or fewer steps.

References

[1] A. Borodin and J. Hopcroft, Routing, Merging and Sorting on Parallel
Models of Computation, JCSS 30, (1985), pp. 130-145.

[2] L. G. Valiant, A Scheme for Fast Parallel Communication, SIAM J. Comp
11 (1982), pp. 350-361.

8-5

