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Abstract

Rapid growth in mobile computing and other wireless multimedia services is inspiring many re-

search and development activities on high-speed wireless communication systems. Main challenges

in this area include the development of efficient coding and modulation signal processing tech-

niques to improve the quality and spectral efficiency of wireless systems. The recently emerged

space-time coding and signal processing techniques for wireless communication systems employing

multiple transmit and receive antennas offer a powerful paradigm for meeting these challenges.

This paper provides an overview on the recent development in space-time coding and signal pro-

cessing techniques for multiple-input multiple-output (MIMO) communication systems. We first

review the information theoretic results on the capacities of wireless systems employing multiple

transmit and receive antennas. We then describe two representative categories of space-time sys-

tems, namely, the BLAST systems and the space-time block coding systems. Signal processing

techniques for channel estimation and decoding in space-time systems are also discussed. Fi-

nally, some other coding and signal processing techniques for wireless systems employing multiple

transmit and receive antennas are also briefly touched upon.
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1 Introduction

Multiple-input multiple-output (MIMO) communication technology has received significant re-

cent attention due to the rapid development of high-speed broadband wireless communication

systems employing multiple transmit and receive antennas. Information theoretic results show

that MIMO systems can offer significant capacity gains over traditional single-input single-output

channels [17, 45]. This increase in capacity is enabled by the fact that in rich scattering wireless

environments, the signals from each individual transmitter appear highly uncorrelated at each of

the receive antennas. When conveyed through uncorrelated channels between the transmitter and

the receiver, the signals corresponding to each of the individual transmit antennas have attained

different spatial signatures. The receiver can exploit these differences in spatial signatures to

separate the signals originated from different transmit antennas.

Many MIMO techniques have been proposed targeting at different scenarios in wireless com-

munications. The Bell-Labs Layered Space Time (BLAST) system [16, 47] is a layered space-time

architecture originally proposed by Bell-Labs to achieve high data rate wireless transmissions. In

this scheme, different symbol streams are simultaneously transmitted from all transmit antennas

(i.e., they overlap in frequency and in time). The receive antennas receive the superposition of all

symbol streams and recover them via proper signal processing. On the other hand, in Space-Time

Coding (STC) systems [2, 40, 41, 43], the same information symbol stream is transmitted from

different transmit antennas in appropriate manner to obtain transmit diversity. Hence, in STC

systems the MIMO channel is exploited to provide more reliable communications, whereas in

the BLAST system the MIMO channel is used to provide faster communications. By employing

higher signal constellations the STC systems can achieve high throughput just like the BLAST

system. In this paper, we give a general overview of the capacity results for MIMO systems as

well as the BLAST and STC techniques.

The remainder of this paper is organized as follows. In Section 2 we summarize the capacity

results for MIMO systems and discuss the impact of antenna correlation on capacity. In Section

3, we describe the BLAST system and related decoding and channel estimation techniques. In

Section 4, we discuss space-time coding techniques and in particular the space-time block codes.

Performance comparisons between the BLAST system and the space-time block coding system

are also made. Finally, in Section 5, we briefly touch upon some other space-time coding and

signal processing techniques.

2 Capacity of MIMO Systems

In this section, we summarize the information theoretic results on the capacities of MIMO chan-

nels, developed in the late 1990s [45, 17]. These results show the significant potential gains in
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channel capacity by employing multiple antennas at both the transmitter and receiver ends; and

inspired an enormous surge of world-wide research activities to develop space-time coding and

signal processing techniques that can approach the MIMO channel capacity.

2.1 Capacity Results
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Figure 1: Schematic representation of a MIMO system.

Consider a MIMO system with nT transmit antennas and nR receive antennas signaling

through flat fading channels, as shown in Figure 1. The input-output relationship of this system

is given by

y = Hx+ v, (1)

where x =
[
x1, x2, ..., xnT

]T
is the (nT× 1) transmitted signal vector, y =

[
y1, y2, ..., ynR

]T
is

the (nR× 1) received signal vector, v =
[
v1, v2, ..., vnR

]T
is the received noise vector and

H =








h11 h21 · · · h1,nT

h21 h22 · · · h2,nT

...
. . .

...
hnR,1 hnR,1 · · · hnR,nT








(2)

is the (nR × nT ) MIMO channel matrix with hij representing the complex gain of the channel

between the j th transmit antenna and the ith receive antenna.

It is assumed that the noise sample vi, i = 1, 2, ..., nR, is a circularly symmetric complex

Gaussian random variable with zero mean and variance σ2, denoted as vi ∼ Nc(0, σ
2). That is,

<{vi} ∼ N (0, σ
2

2 ), ={vi} ∼ N (0, σ
2

2 ), and they are independent. It is assumed that the complex

channel gains hij ∼ Nc(0, 1). Note that in general, the channel gains may be correlated.

Assuming that the channel matrix H is known at the receiver, but not at the transmitter,

the ergodic (mean) capacity of the MIMO channel with an average total transmit power P (i.e.,

tr
(

E
{
xxH

})

≤ P ) is given by [45, 17]

C = E

{

log det

(

InR
+
1

nT

P

σ2
HHH

)}
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= E

{

log det

(

InT
+
1

nT

P

σ2
HHH

)}

bits/s/Hz, (3)

where the expectation is taken with respect to the distribution of the random channel matrix H.

To gain some insight on the capacity expression in (3), denote ρ = P/σ2. Then the capacity

can be expressed as

C =

p
∑

k=1

E{log(1+ ρ

nT
λk)}, (4)

where p = min{nT , nR} and λ1, ..., λp are the eigenvalues of the matrix HHH or HHH. Note that

the matrices HHH and HHH have the same eigenvalues which are all real and non-negative. If

we compare (4) with the capacity of a single-input single-output (SISO) channel [11], we observe

that the capacity of a MIMO system is equivalent to the sum of p parallel SISO channels, each

one with an equivalent signal-to-noise ratio equal to λi.

Furthermore, it can be shown that when both nT and nR increase, the capacity increases

linearly with respect to min{nT , nR}. On the other hand, if nR is fixed and nT increases, then
the capacity saturates at some fixed value; whereas if nT is fixed and nR increases, the capacity

increases logarithmically with nR. These asymptotic behaviors of the ergodic capacity are shown

in Figure 2.
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Figure 2: Ergodic capacities of uncorrelated MIMO channels. The channel is known at the receiver
but not at the transmitter.

Another notion that is frequently used in practice is the outage capacity. Define the instanta-
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neous capacity as

φ (H, ρ) = log det

(

InR
+

ρ

nT
HHH

)

. (5)

Obviously φ(H, ρ) is a random variable since H is random. Given a certain outage probability

Pout, the corresponding outage capacity Cout is defined through the following equation,

P {φ(H, ρ) ≤ Cout} = Pout. (6)

So far we have assumed that the channel matrix H is known at the receiver but not at the

transmitter. Another scenario is that the channel is known at both the transmitter and receiver.

This is the case, for example, when the system employs time-division duplex (TDD) so that the

uplink and downlink channels are reciprocal to each other. In this case, the instantaneous capacity

is given by the following “water-filling” equation [38]

ψ(H, ρ) =

nT∑

i=1

[log (υλi)]
+ bits/s/Hz, (7)

where λ1, ..., λnT
are the eigenvalues of the matrix HHH, υ is chosen such that ρ =

nT∑

i=1

[

υ − 1
λi

]+

and the operator (·)+ is specified as

(x)+ =

{
x if x > 0,
0 if x ≤ 0. (8)

The ergodic capacity is then given by C = E{ψ(H, ρ)}. Moreover, the outage capacity in this
case is specified by

P {ψ(H, ρ) ≤ Cout} = Pout. (9)

Figure 3 shows the 10% outage capacity of uncorrelated MIMO channels with and without

water-filling. It is seen that by knowing the channel at the transmitter, some capacity gain can

be obtained at low signal-to-noise ratio.

2.2 Effects of Antenna Correlations

It has been observed that antennas placed with large enough separations will receive essentially

uncorrelated signals [30]. However, in handsets or terminals, large separations among the antennas

may not be feasible. On the other hand, when the transmitter or receiver is not surrounded

by scatterers, no local scattering or diversity occurs, and the spatial fading at the antennas is

correlated. Hence, insufficient antenna spacing and lack of scattering cause the individual antennas

to be correlated.
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Figure 3: 10% outage capacities of uncorrelated MIMO channels with and without employing
water-filling.
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Figure 4: Model with local scatterers. Incident wave is approximately plane at the receiving array.
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We next discuss the correlation model and the effect of antenna correlation on capacity. Fol-

lowing [8], assuming correlations at both the transmitter and receiver, the (nR × nT ) channel

response matrix can be modeled as

H = R1/2
r HwR

1/2
t (10)

with Hw being an uncorrelated (nR × nT ) matrix with i.i.d. Nc(0,1) entries and Rt and Rr, of

size (nT ×nT ) and (nR×nR), representing the covariance matrices inducing transmit and receive
correlations respectively. Note that for the case of uncorrelated transmitter (receiver), we have

Rt = I (Rr = I).

The form of cross-correlation between the waves impinging on antenna elements (i.e., Rr or

Rt) has been studied and modeled in several references [3, 8, 10, 14, 38]. These models use

similar parameters to characterize the correlation. Specifically, assuming that no line of sight

exists between the transmit and the receive antennas, the signal reaching the receive antennas

can be modeled as arriving from a number of equivalent point sources or scatterers in the vicinity

of the receiver as shown in Figure 4. Assuming that the antennas are omnidirectional (i.e. they

radiate and receive from all directions in space), there are three main parameters that characterize

the correlation between antennas (see Figure 4):

• Distance d between antennas in terms of wavelengths,

• Angular spread of the arrival incident waves δRo ,

• Mean angle of arrival of incident waves φRo .

Large values of the angular spread δRo result in uncorrelated signals at each of the antennas. The

angular spread is a function of the distance of the cluster to the antenna array and radius of the

cluster. For example, in an outdoor environment, a cluster could be a building located far away

from the antenna array deriving in a small angular spread δRo . In an indoor environment, the

cluster of scatterers will be the walls surrounding the array. In this case, there will be signals

impinging the antenna array from all directions resulting in a large angular spread value; therefore,

uncorrelated fading among the antennas can be expected. Figure 5 depicts different scattering

scenarios similar to those defined for COST-259 models [38]. In this representation, the circle

represents a cluster of scatterers. The five different scenarios correspond to:

• Uplink: This scenario corresponds to a base station operating as a receiver from some

high point without any scatterer nearby. The receiver, usually a handset or terminal, will

be surrounded by scatterers. The angular spread corresponding to the receiver (i.e., base

station) is very low resulting in correlation among the receive antennas.
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• Downlink: This scenario is similar to the uplink but with the base station acting as a
transmitter.

• Urban area: Medium size angular spread for both the transmitter and the receiver. Scatterer
clusters represent buildings.

• Rural area: Low angular spread for both the transmitter and the receiver. Scatterer clusters
represent mountains and hills.

• Indoor: Large angular spread for both the transmitter and the receiver. Impinging waves
arrive from all directions in the space.
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Figure 5: MIMO scattering scenarios.

Figure 6 shows the 10% outage capacities for the different scenarios defined in Figure 4 with

nT = nR = 4 and an antenna spacing of d = 0.5λ. We assume that the channel is known at the

8



receiver but not at the transmitter. We have used the correlation model described in [3]. We

also show the SISO capacity for comparison. It is seen that urban and indoor scenarios with rich

scattering offer much higher MIMO capacities than rural environments.
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Figure 6: MIMO outage capacities for different channel scenarios described in Figure 5.

Figure 7 shows the 10% outage capacities of a correlated MIMO channel with and without

water-filling. The correlation scenario corresponds to an urban area depicted in Figure 5 with

an antenna spacing of d = 0.5λ. Comparing with Figure 3, it is seen that significant capacity

gain can be achieved when there are antenna correlations and the channel is known at both the

transmitter and the receiver.

3 The BLAST System

The information theoretical results from the preceding section indicates the enormous capacity

gain by employing multiple antennas at both ends of the communication systems. Realizing such

a potential gain, researchers at Bell-Labs developed the first MIMO architecture for high-speed

wireless communications – the BLAST systems.

BLAST (Bell-Labs Layered Space Time) [16, 47] is a high speed wireless communication

scheme employing multiple antennas at both the transmitter and the receiver. In a BLAST

system, the transmitted data is split equally into nT transmit antennas and then simultaneously

sent to the channel overlapping in time and frequency. The signals are received by nR receive

antennas as shown in Figure 8 and signal processing at the receiver attempts to separate the

received signals and recover the transmitted data. The input-output relationship of a BLAST
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with and without employing water-filling.
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system can be expressed as

y =

√
ρ

nT
Hs+ v (11)

where s =
[
s1, s2, ..., snT

]T
is the (nT × 1) transmit signal vector with si belonging to a finite

constellation A, v =
[
v1, v2, ..., vnR

]T
is the (nR × 1) receive noise vector with vi ∼ Nc(0, 1),

H is defined in (2) and ρ is the total signal-to-noise ratio independent of the number of transmit

antennas. It is assumed unitary power for the transmitted symbols, E
{

|si|2
}

= 1.

3.1 BLAST Detection Algorithms

It is seen from (11) that the receive antennas see the superposition of all the transmitted signals.

The task of a BLAST detector is to recover the transmitted data s from the received signal y.

In what follows, we describe several BLAST detection algorithms [18, 20]. Here we assume the

channel matrix H is known at the receiver. We will discuss channel estimation algorithms in

Section 3.2.

Maximum Likelihood (ML) Receiver

The ML detector is the optimal receiver in terms of bit error rate. Let A be the symbol con-
stellation set (e.g., QPSK or M-QAM) whose size is M . Then, the ML detection rule is given

by

ŝ = arg min
s∈AnT

∥
∥
∥
∥
y −

√
ρ

nT
Hs

∥
∥
∥
∥

2

. (12)

Note that the minimization problem is performed over all possible transmitted signal vectors s

in the set AnT . The computational complexity of an exhaustive search is then O(MnT ). Hence,

although the ML receiver is optimal, its complexity grows exponentially with the number of trans-

mit antennas. A low complexity local search method called “sphere decoding” whose complexity

is O(M3) is developed in [12, 15].

Zero Forcing and Cancellation Receiver

A simpler receiver is the zero forcing (ZF) receiver. The ZF receiver considers the signal from

each transmit antenna as the desired signal and the remainder as interferers. Nulling is performed

by linearly weighting the received signals to satisfy the ZF criterion, i.e., inverting the channel

response. Furthermore, a superior performance can be obtained by using nonlinear techniques by

means of symbol cancellation. Using symbol cancellation, the already detected and sliced symbol

from each transmit antenna is subtracted out from the received signal vector, similarly to decision

feedback equalization or multiuser detection with successive interference cancellation. Therefore,

the next signal to be decoded will see one interferer less.
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For simplicity, assume n = nT = nR. Denote the QR factorization of H as H = QR where Q

is unitary, i.e., QQH = I and R is upper triangular. The nulling operation of the received vector

y is performed by

z = QHy =

√
ρ

nT
RS+QHv; (13)

that is 






z1
z2
...
zn







=

√
ρ

n








r1,1 r1,2 . . . r1,n
0 r2,2 . . . r2,n
...

. . .
. . .

...
0 . . . 0 rn,n















s1
s2
...
sn







+








w1

w2
...
wn







. (14)

Note that since Q is unitary, there is no noise amplification, i.e., w = QHv is also Nc(0, I). In

(14), the decision statistic zn is just a noisy scaled version of sn which can be directly estimated

and then subtracted from zn−1. Repeating the estimating and subtracting operations until all

transmitted signals are decoded, the algorithm can be summarized as follows

ŝn = Quantize
{

1
rn,n

√
n
ρ zn

}

ŝn−1 = Quantize
{

1
rn−1,n−1

(√
n
ρ zn−1 − rn−1,nŝn

)}

...

ŝi = Quantize
{

1
ri,i

(√
n
ρ zi −

n∑

k=i+1

ri,kŝk

)}

...

ŝ1 = Quantize
{

1
r1,1

(√
n
ρ zn−1 −

n∑

k=2

r1,kŝk

)}

where the quantizer takes values from the constellation A.

Nulling and Cancellation Receivers with Ordering

In the decoding algorithm discussed above, a wrong decision in the detection of a symbol adds

interference to the next symbols to be detected. It is shown in [18, 20] that it is advantageous

to first find and detect the symbol sk with the highest signal to-noise ratio, i.e., with the highest

reliability. The detected symbol is then subtracted from the rest of the received signals. Therefore,

after cancelling sk, we have a system with nT −1 transmit antennas and nR receive antennas, i.e.,
the corresponding channel matrix is obtained by removing column k from H. The same process is

then applied on this (nT −1, nR) system and the algorithm continues until all transmitted symbols
have been decoded. That is, the nulling and cancellation operation is performed from the more

reliable symbols to the less reliable ones.

The nulling operation can be performed by means of ZF or minimum mean-square error

(MMSE). Similarly to the ZF equalization in single antenna systems, the ZF criterion yields

the following two problems: (1) The algorithm can encounter singular matrices that are not
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invertible; and (2) ZF focuses on cancelling the interference (i.e., overlapping signals) completely

at the expense of enhancing the noise, possibly significantly. On the other hand, the MMSE

criterion minimizes the error due to the noise and the interference combined. In the ordering

operation, the MMSE method nulls the component with the smallest MSE. Following [20], the

BLAST decoding algorithm based on the MMSE nulling and cancellation with ordering is as

follows:

G = H
r = y

FOR i = 1 : nT DO
P = ( ρnG

HG+ I)−1

ki = argmin{Pj,j}, j /∈ {k1, k2, ..., ki−1} (ordering: find min MSE)

w = (GP)(:, ki) (nulling vector)

z = wHr
ŝki

= Quantize(z)

r = r−
√

ρ
nH(:, ki)ŝki

(cancellation)

G = G \H(:, ki) (remove column of that transmit antenna)

END

Figure 9 compares the BER performance of the four detection methods discussed above in a

BLAST system with nT = nR = 4 antennas and QPSK modulation. It is seen that the ML decoder

has the best BER performance although for every transmitted code vector, the receiver needs to

evaluate (12) over 44 = 256 possibilities. On the other hand, the MMSE nulling and cancellation

algorithm with ordering exhibits the best performance among the suboptimal algorithms.

3.2 MIMO Channel Estimation Algorithms

So far, we have assumed that the MIMO channel matrix H is known at the receiver. In practice,

the receiver needs to estimate this matrix prior to the start of the decoding process. We next

discuss the channel estimation methods based on a training preamble [34].

Suppose T ≥ nT MIMO training symbols s(1), s(2), ..., s(T ) are used to probe the channel.

The received signals corresponding to these training symbols are

y(i) =

√
ρ

nT
Hs(i) + v(i), i = 1, 2, ..., T. (15)

Denote Y =
[

y(1),y(2), ...,y(T )
]
, S =

[
s(1), s(2), ..., s(T )

]
and V =

[
v(1),v(2), ...,v(T )

]
.

Then (15) can be written as

Y =

√
ρ

nT
HS+V. (16)
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The maximum likelihood estimate of the channel matrix H is given by

ĤML = argmin
H

∥
∥
∥
∥
Y −

√
ρ

nT
HS

∥
∥
∥
∥

2

=

√
nT
ρ

YSH(SSH)−1. (17)

According to [34], the optimal training symbol sequence S that minimizes the channel estimation

error should satisfy

SSH = T · InT
. (18)

One way to generate such optimal training sequences is to use the Hadamard matrices [26] (when

they exist for nT ). As an example, consider a system with nT = 4 and a training sequence length

T = 16 symbol intervals. We first generate a (4× 4) Hadamard matrix as

A =
1 + i√
2







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






. (19)

Then the optimal training sequence can be constructed by concatenating four A matrices as

S =
[

A A A A
]
. (20)

As an alternative to the ML channel estimator, the linear MMSE channel estimator is obtained

as a linear transformation of the received signals Y that minimizes the estimation error and it is
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given by

ĤMMSE =

√
ρ

nT
YSH

( ρ

nT
SSH + I

)−1
. (21)
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We next give a simulation example. Consider a BLAST system with nT = nR = 4 antennas

and QPSK modulation. We assume uncorrelated fading and a signal-to-noise ratio ρ = 10dB.

Figure 10 shows the BER of different channel estimation algorithms for different lengths of the

optimal training sequence. As a decoder we use the MMSE nulling and cancellation with ordering

algorithm. It is seen that the MMSE and ML channel estimators have similar performance. Figure

11 compares the BER performance of the MMSE nulling and cancellation with ordering decoder

using the ML channel estimator with different lengths of the optimal training sequence.

4 Space-Time Coding

In the previous section, we discussed the BLAST system which increases the data rate by simul-

taneously transmitting symbols from multiple transmit antennas. However, the BLAST approach

suffers from two major drawbacks: (1) it requires nR ≥ nT that is not always feasible when the

receiver is a small or battery operated device; and (2) the performance of the suboptimal BLAST

decoding algorithms is limited by error propagation. In this section, we discuss the space-time

coding approach that exploits the concept of diversity.
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Figure 11: BER performance of the ML channel estimator with different lengths of the optimal
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4.1 The Concept of Diversity

With space-time codes (STC) [2, 40, 41, 43], instead of transmitting independent data streams

as in BLAST, the same information is transmitted in appropriate manner simultaneously from

different transmit antennas to obtain transmit diversity. The main idea of transmit diversity

is that if a message is lost in a channel with probability p and we can transmit replicas of the

message over n independent such channels, the loss probability becomes pn. Using diversity, more

reliability is given to the symbols which allows employing higher order constellation resulting in

higher throughput just like the BLAST system. The main difference between BLAST and STC

can be summarized as: (1) BLAST transmits more symbols, i.e., nT symbols/channel use; and

(2) STC transmits only (at most) 1 reliable symbol/channel use by means of diversity.

As an example, consider a systems willing to transmit 4 bit/s/Hz with 2 transmit anten-

nas. BLAST would use QPSK symbols per antenna, i.e., 4 bit/s/Hz. STC can only send 1

symbol/channel use, therefore 16-QAM symbols would need to be employed. In the end, the

same data is transmitted through higher order constellations. There are two main types of STCs,

namely space time trellis codes (STTC) [43] and space time block codes (STBC) [41].

The STTC is an extension of trellis coded modulation [6] to the case of multiple transmit

and receive antennas. It provides both full diversity and coding gain. However, it has the

disadvantage of high decoding complexity which grows exponentially with the number of antennas.

Specific space-time trellis codes designed for two or four antennas perform very well in slow fading
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environments and come within 2-3 dB of the outage capacity. STTC’s are designed to achieve full

diversity and then, among the codes that achieve full diversity, maximize the coding gain. For

further references on STTC refer to [4, 43].

In hope of reducing the exponential decoding complexity of STTC, Alamouti proposed a

simple space-time coding scheme using two transmit antennas [2]. Later, the STBC introduced in

[40], generalized the Alamouti transmission scheme to an arbitrary number of transmit antennas.

STBC achieve full diversity as the STTC although they do not provide any coding gain. This is

not a problem since they can be concatenated with an outer channel code [5]. Besides achieving

full diversity, the main property of STBC is that there is a very simple ML decoding algorithm

based only on linear processing. These codes are based on some specific linear matrices and the

reduced complexity receiver is due to the orthogonal properties of these matrices.

4.2 Space-Time Block Codes

We assume a wireless communication system where the transmitter is equipped with nT and the

receiver with nR antennas. A space time block code matrix is represented as

Cp,nT
=

←space→







c1,1 c1,2 . . . c1,nT

c2,1 c2,2 . . . c2,nT

...
. . .

...
cp,1 cp,2 . . . cp,nT








↑
time

↓
(22)

At each time slot t, signals ct,i, i=1,2,. . . ,nT , are transmitted simultaneously from the nT transmit

antennas as shown in Figure 12. Therefore, at time t, transmitter antenna i will transmit ct,i in

the matrix (1 ≤ t ≤ p and 1 ≤ i ≤ nT , with p being the length of the block code). Next, we

describe the encoding and decoding operations of the STBC for two transmit antennas, namely

the Alamouti code.
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Figure 12: Schematic representation of an STBC system.
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STBC with nT = 2: Alamouti Code

The Alamouti code is an STBC using nT = 2 transmit antennas and any number of receive

antennas. The Alamouti code matrix Oc,2 is defined as [2]

Oc,2 =

[
x1 x2

−x∗2 x∗1

]

. (23)

Consider transmitting symbols of a signal constellation A of size 2b. Every two time slots, 2b bits
arrive at the encoder and select constellation signals s1 and s2. Setting x1 = s1 and x2 = s2 in

Oc,2, we arrive at the following transmission matrix

C2,2 =

[
s1 s2

−s∗2 s∗1

]

. (24)

Then, in the first time slot, antenna 1 transmits s1 and antenna 2 transmits s2. In the next time

slot, antenna 1 transmits −s∗2 and antenna 2 transmits s∗1. Since two time slots are needed to
transmit two symbols (s1, s2), the rate of the code is R = 1 symbol/channel use.

At the receiver, the received signal by antenna i during two consecutive time slots (t=1,2) is

[
y1,i
y2,i

]

=

√
ρ

2
C2,2hi + vi

=

√
ρ

2

[
s1 s2

−s∗2 s∗1

] [
hi,1
hi,2

]

+

[
v1,i
v2,i

]

, i= 1, 2, (25)

which can be rewritten as
[
y1,i
y∗2,i

]

︸ ︷︷ ︸

yi

=

√
ρ

2

[
hi,1 hi,2
h∗i,2 −h∗i,1

]

︸ ︷︷ ︸

Hi

[
s1
s2

]

︸ ︷︷ ︸

s

+

[
v1,i
ṽ2,i

]

︸ ︷︷ ︸

ṽi

, i= 1, 2. (26)

We note that the orthogonality of the code Oc,2 implies the orthogonality of Hi, i.e., H
H
i Hi =

(

|hi,1|2 + |hi,2|2
)

I2. Assuming that the receiver has knowledge of the channel coefficients hi,j , we

form a decision statistic at each receive antenna by left multiplying the received vector in (26) by

HH
i which results in

zi =

[
z1,i
z2,i

]

= HH
i yi =

√
ρ

2
HH

i His+HH
i ṽi. (27)

Hence, using the orthogonality property of Hi it yields

zi =

[
z1,i
z2,i

]

=

√
ρ

2

(

|hi,1|2 + |hi,2|2
)[ s1

s2

]

+

[
w1,i

w2,i

]

. (28)

Adding all the statistics from all nR receive antennas we obtain

z =

[
z1
z2

]

=

nR∑

i=1

[
z1,i
z2,i

]

=

√
ρ

2

nR∑

i=1

(

|hi,1|2 + |hi,2|2
)[ s1

s2

]

+

nR∑

i=1

[
w1,i

w2,i

]

. (29)

18



In (29), in the absence of noise, z1 will be just an scaled version of s1 and z2 will be an scale

version of s2 without any cross dependency. To estimate the symbols that were sent, we just scale

and quantize the decisions statistics in (29) as

ŝ1 = Q(z1),

and ŝ2 = Q(z2). (30)

We recall that the decoupling has been possible because of the orthogonality of the Alamouti code

matrix.
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Figure 13: BER performance comparison between BLAST (BPSK modulation) and Alamouti
(QPSK modulation) with nT = nR = 2 (transmission rate R = 2 bit/s/Hz). Uncorrelated MIMO
channel and perfect channel knowledge at the receiver are assumed.

We now compare the performance of the Alamouti scheme with that of the BLAST system

discussed in the previous section. For both systems, we consider nT = nR = 2. We assume

that both schemes have a transmission rate R = 2 bit/s/Hz. This rate can be achieved using

BLAST with BPSK or using the Alamouti code with QPSK modulation. For a fair comparison,

we compare the two systems in terms of signal-to-noise ratio per bit, i.e., Eb/No. Assuming perfect

channel estimation at the receiver and no antenna correlations, Figure 13 shows that Alamouti

performs better than BLAST and this improvement is greater at higher signal-to-noise ratio. We

next compare their performance in correlated MIMO channels. We consider a medium level of

correlation typical of urban environments as described in Figure 5. It is seen from Figure 14 that

Alamouti performs much better than BLAST in such a scenario.
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Figure 14: BER Performance comparison between BLAST (BPSK modulation) and Alamouti
(QPSK modulation) with nT = nR = 2 (transmission rate R = 2 bit/s/Hz). Correlated MIMO
channel (urban environment in Figure 5) and perfect channel knowledge at the receiver are as-
sumed.

General STBC Based on Orthogonal Designs (nT ≥ 2)

The Alamouti scheme presented above works only with two transmit antennas. This scheme

was later generalized in [40, 41] to an arbitrary number of transmit antennas. Similarly to the

Alamouti code in (23), the general STBC is defined by a code matrix with orthogonal columns.

Just like in the Alamouti scheme, a simple linear receiver is also obtained due to the orthogonality

of the columns of the code matrix. In general, an STBC is defined by a (p× nT ) matrix G. The

entries of the matrix G are linear (possibly complex) combinations of the variables x1, x2, ..., xk

(representing symbols). The columns of the matrix represent antennas and the rows time slots.

Therefore, p time slots are needed to transmit k symbols, resulting in a code rate R = k/p

symbols/channel use. It is of special interest code matrices achieving the maximum transmission

rate permitted by the STC theory, i.e, R = 1 symbol/channel use. For a fixed nT , among the

code matrices that achieve the maximum rate, we will be interested in those with minimum

values of p or equivalently, minimum number of time slots needed to transmit a block. These

code matrices are referred as delay optimal and they are interesting because they minimize the

memory requirements at the transmitter and at the receiver (i.e., encoding and decoding delay).

We recall that p > nT .

STBC for real constellations
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For real signal constellations such as PAM, the entries of the code matrices are only real linear

combinations of x1, x2, ..., xk. General STBC based on real orthogonal designs achieving full

diversity and full rate, can be found for any number of transmit antennas nT [43]. Using nT = 2,

4 and 8 antennas, STBC code matrices can be found with p = nT (i.e., minimum possible delay

in STBC). As an example, an STBC suitable for real constellations with nT = 4 is

G4 =







x1 x2 x3 x4
−x2 x1 −x4 x3
−x3 x4 x1 −x2
−x4 −x3 x2 x1







(31)

for which it can be verified that GT
4 G4 =

(
4∑

i=1
x2i

)

·I4. The encoding process at the transmitter is

similar to that for the Alamouti code, as follows. Consider a real constellation of size 2b. At time

1, 4b bits arrive at the encoder and select symbols s1, s2, s3, s4. Let xi = si in matrix G4 in (31)

to obtain the code matrix C4. At time t = 1,2,3 and 4, the t-th row of C4 is transmitted from the

four transmit antennas simultaneously. Therefore, with nT = 4 transmit antennas and employing

the code matrix C4, four symbols are transmitted during four symbol intervals achieving R =

1 symbol/channel use, i.e., the maximum rate allowed by the STC theory. At the receiver, the

orthogonality of the matrix C4 simplifies the ML decoder decoupling the detection of each of the

transmitted symbols.

STBC for complex constellations

Complex STBC are analogous to the real ones except that the code matrices contain entries

±x1,±x2, ...,±xk, their conjugates, and multiples of them by
√
−1, making them useful for com-

plex constellations such as M-PSK or M-QAM. As an example, an STBC with nT = 4 for complex

constellations can be constructed using the real orthogonal design in (31) as

Gc,4 =

[
G4

G∗4

]

=















x1 x2 x3 x4
−x2 x1 −x4 x3
−x3 x4 x1 −x2
−x4 −x3 x2 x1
x∗1 x∗2 x∗3 x∗4

−x∗2 x∗1 −x∗4 x∗3
−x∗3 x∗4 x∗1 −x∗2
−x∗4 −x∗3 x∗2 x∗1















. (32)

As before, the code Cc,4 can be obtained substituting xi by the data symbols si in Gc,4. In

this code, transmitting each row at a time, 8 symbols intervals are needed to transmit 4 symbols,

therefore having a rate R = 1/2 symbol/channel use, i.e., half of the maximum rate permitted by

the STC theory. Complex STBC of R = 1/2 achieving full diversity can be built for any number

of transmit antennas nT from real STBC using Gc,nT
=

[
GnT

G∗nT

]

.
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It has been shown that complex STBC with full rate (i.e., R = 1) exists only for nT = 2, i.e.,

the Alamouti code. In this sense, the Alamouti codes is quite unique. Codes that achieve a rate

R = 3/4 with complex constellations have been found with nT = 3 and nT = 4 [40].

5 Further Topics and Conclusions

In this paper, we have discussed the huge increase in capacity that can be obtained in rich

scattering environments by using multiple antennas at the transmitter and the receiver; and we

have given an overview of the main classes of space-time techniques recently developed in the

literature. In conclusion, the area of space-time coding and signal processing is new, active and

full of challenges. The following is a list of some other important topics related to MIMO systems

and space-time coding and signal processing:

• Space-time trellis codes (STTC): An STTC is basically a trellis-coded modulation (TCM)
code, which can be defined in terms of a trellis tree. Rather than transmitting the output

code symbols serially from a single transmitter antenna as in the traditional TCM scheme,

in STTC all the output code symbols at each time are transmitted simultaneously from

multiple transmitter antennas. The first STTC communication system was proposed in

[43]. Some design criteria and performance analysis for STTC in the presence of channel

estimation error are given in [44]. Some improved STTC codes found by exhaustive computer

search are given in [4].

• Differential space-time codes: Previous sections assumed that the receiver had knowledge
of the channel matrix before starting the detection algorithms. In some situations, this is

not possible since no training symbols are available. In some other situations, the channel

changes so rapidly that channel estimation is difficult or requires to send training symbols

very often. That is the reason why it is interesting to consider differential techniques that do

not require estimation of the channel response neither at the receiver nor at the transmitter.

Differential STBC based on orthogonal designs are proposed in [29, 39] and that based on

unitary group codes were proposed in [28]. Similarly to the SISO case, differential decoding

incurs a performance penalty of about 3dB compared with coherent detection.

• Space-time precoding: The space-time coding schemes presented in this paper only require
channel knowledge at the receiver. In some cases, channel status can be fedback to the

transmitter or directly estimated by the transmitter such as in a TDD system. In such

scenarios, the performance can be improved if the transmitter uses this channel information.

Different precoding schemes have been proposed in [36].
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• MIMO antenna selection: Usually, the RF chain (amplifier, digital-to-analog converters,
etc.) in wireless devices is one of the most expensive blocks. A promising approach for

reducing the cost and complexity while retaining a reasonably large fraction of the high

potential data rate of a MIMO system is to employ a reduced number of RF chains at

the receiver (or transmitter) and attempt to optimally allocate each chain to one of a

larger number of receive (transmit) antennas. In this way, only the best set of antennas is

used, while the remaining antennas are not employed, thus reducing the number of required

RF chains. Different approaches to selecting those antennas are recently proposed in the

literature [21, 22, 25].

• MIMO applications in OFDM and CDMA systems: Recently, the use of MIMO systems in
frequency-selective fading channels in combination with orthogonal frequency division mul-

tiplexing (OFDM) and coherent detection has been considered [1, 7]. Code design criteria

for the MIMO OFDM systems are given in [32, 33], and specific code designs are given in [9].

Moreover, MIMO coding and signal processing techniques for code-division multiple-access

(CDMA) systems are developed in [27, 35].

• Turbo processing for MIMO systems: Iterative or turbo demodulation and decoding for
coded BLAST or coded STC systems have been investigated in [13, 23, 31, 33, 37, 46].

• Other space-time coding schemes: Other classes of codes are being developed for MIMO
systems. As an example, linear dispersion (LD) codes [24] can be used with any configuration

of transmit and receive antennas and they are designed to optimize the mutual information

between the transmitted and received signals. The LD codes can be decoded using any

BLAST detection algorithm. Moreover, layered space-time coding schemes are developed

in [19, 42].
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