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ABSTRACT

This paper describes MIXIT, a system that improves the throughput
of wireless mesh networks. MIXIT exploits a basic property of mesh
networks: even when no node receives a packet correctly, any given
bit is likely to be received by some node correctly. Instead of insisting
on forwarding only correct packets, MIXIT routers use physical layer
hints to make their best guess about which bits in a corrupted packet
are likely to be correct and forward them to the destination. Even
though this approach inevitably lets erroneous bits through, we find
that it can achieve high throughput without compromising end-to-end
reliability.

The core component of MIXIT is a novel network code that op-
erates on small groups of bits, called symbols. It allows the nodes
to opportunistically route groups of bits to their destination with low
overhead. MIXIT’s network code also incorporates an end-to-end er-
ror correction component that the destination uses to correct any errors
that might seep through. We have implemented MIXIT on a software
radio platform running the Zigbee radio protocol. Our experiments on
a 25-node indoor testbed show that MIXIT has a throughput gain of
2.8× over MORE, a state-of-the-art opportunistic routing scheme, and
about 3.9× over traditional routing using the ETX metric.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-

Communications Networks

General Terms
Algorithms, Design, Performance, Theory

1 Introduction

This paper presents MIXIT a system that significantly improves the
throughput of a wireless mesh network compared to the best current
approaches. In both traditional routing protocols as well as more recent
opportunistic approaches [1, 2], each intermediate node forwards a
packet only if it has no errors. In contrast, MIXIT takes a much looser
approach: a forwarding node does not attempt to recover from any
errors, or even bother to apply an error detection code (like a CRC).

Somewhat surprisingly, relaxing the requirement that a node only
forward correct data improves throughput. The main reason for this
improvement is a unique property of wireless mesh networks: Even
when no node receives a packet correctly, any given bit is likely to be
received correctly by some node.
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In MIXIT, the network and the lower layers collaborate to improve
throughput by taking advantage of this observation. Rather than just
send up a sequence of bits, the PHY annotates each bit with SoftPHY
hints [8] that reflect the PHY’s confidence in its demodulation and
decoding. The MIXIT link layer passes up frames to the network layer
with these annotations, but does not try to recover erroneous frames or
low-confidence bits using link-layer retransmissions. Instead, the net-
work layer uses the SoftPHY hints to filter out the groups of bits with
low confidence in a packet, and then it performs opportunistic routing
on groups of high confidence bits. Hence, insisting on receiving fully
correct packets on each link is unnecessary.

The core component of the MIXIT protocol is a new network code
that allows each link to operate at a considerably high bit-error rate
compared to the status quo without compromising end-to-end reliabil-
ity. Unlike previous work, the network code operates at the granularity
of symbols 1 rather than packets: each router forwards (using radio
broadcast) random linear combinations of the high-confidence sym-
bols belonging to different packets. Thus, a MIXIT router forwards
symbols that are likely to be correct, tries to avoid forwarding symbols
that are likely to be corrupt, but inevitably makes a few incorrect
guesses and forwards corrupt symbols.

MIXIT’s network code addresses two challenges in performing
such symbol-level opportunistic routing over potentially erroneous
data. The first problem is scalable coordination: the effort required
for nodes to determine which symbols were received at each node
to prevent duplicate transmissions of the same symbol is significant.
MIXIT uses the randomness from the network code along with a novel
dynamic programming algorithm to solve this problem and scalably
“funnel” high-confidence symbols to the destination, compared to a
node co-ordination based approach like ExOR [1].

The second problem is error recovery: because erroneous symbols
do seep through, the destination needs to correct them. Rather than
the traditional approach of requesting explicit retransmissions, MIXIT
uses a rateless end-to-end error correcting component that works in
concert with the network code for this task. The routers themselves
only forward random linear combinations of high-confidence symbols,
performing no error handling.

MIXIT incorporates two additional techniques to improve perfor-
mance:

• Increased concurrency: MIXIT takes advantage of the flexibility
that nodes are no longer required to ensure correct packet delivery to
design a channel access protocol that allows many more concurrent
transmissions than CSMA. As long as a transmitted symbol is
correctly received by some node closer to the final destination, the
protocol achieves good throughput.

• Congestion-aware forwarding: MIXIT’s forwarding algorithm
forwards coded symbols via paths that have both high delivery
probabilities and small queues, unlike previous schemes that don’t
consider congestion information.
1A symbol is a small sequence of bits (typically a few bytes) that the code treats as a

single value.



MIXIT synthesizes ideas developed in previous work, in particular
opportunistic routing (ExOR [1] and MORE [2]) and partial packet
recovery [8]. The key to this synthesis is its symbol-level network
code. The result is a scheme that can perform much better than
packet-level opportunistic routing, which cannot benefit from partial
receptions. For example, these schemes often capitalize on sporadic
receptions over long links, but these long links are inherently less
reliable and likely to exhibit symbol errors. By insisting on forwarding
only fully correct packets, current opportunistic protocols miss the
bulk of their opportunities, as we show in our experiments. Similarly,
prior proposals for exploiting partially correct receptions, like PPR [8],
SOFT [29], and H-ARQ [16], limit themselves to a single wireless hop,
trying to make that hop reliable. In contrast, we advocate jettisoning
reliable link-layer error detection and recovery altogether in wireless
mesh networks.

We evaluate MIXIT using our software radio implementation on
a 25-node testbed running the Zigbee (802.15.4) protocol. The main
experimental results are as follows:

• MIXIT achieves a 2.8× gain over MORE, a state-of-the-art packet-
based opportunistic routing protocol under moderate load. The
gain over traditional routing is even higher, 3.9× better aggregate
end-to-end throughput. At lighter loads the corresponding gains are
2.1× and 2.9×.

• MIXIT’s gains stem from two composable capabilities: symbol-
level opportunistic routing, and higher concurrency, which we find
have a multiplicative effect. For example, separately, they improve
throughput by 1.5× and 1.4× over MORE; in concert, they lead to
the 2.1× gain.

• Congestion-aware forwarding accounts for 30% of the throughput
gain at high load.

MIXIT is a layered architecture that demonstrates cross-layer col-
laborations using clean interfaces: the network code can run atop any
radio and PHY that provides SoftPHY hints, the system can run with
any MAC protocol (though ones that aggressively seek concurrency
perform better), and the routers are oblivious to the error-correcting
code. This modular separation of concerns eases implementation.

2 Related Work

The idea of relaying partially correct information has been examined
in information theory [14]. MIXIT builds on the intuition, but with two
important differences that admit a practical design. First, intermediate
nodes use SoftPHY hints to “clean” the symbols before processing
and forwarding them, rather than just receiving, combining, and for-
warding information at the signal level. Second, nodes use intra-flow
symbol-level network coding, which allows them to coordinate and
collaborate without requiring finely synchronized transmissions that
many “distributed antenna” approaches entail.

MIXIT builds on prior work on opportunistic routing [1, 2], coop-
erative spatial diversity [18, 14], and wireless network coding [11].
In particular, it shares the idea of intra-flow network coding with
MORE [2], but with three key differences: first, MORE operates on
packets and cannot deal with packets with errors; second, MIXIT’s
symbol-level network code is an end-to-end rateless error correcting
code while MORE’s network code cannot correct errors; and third,
MIXIT designs a MAC which exploits the looser constraints on packet
delivery to significantly increase concurrent transmissions, MORE
uses carrier sense and requires correct packet delivery which prevents
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Figure 1: Example of opportunistic partial receptions: The source, S,
wants to deliver a packet to the destination, D. The figure shows the recep-
tions after S broadcasts its packet, where dark shades refer to erroneous
symbols. The best path traverses all routers R1, R2 and R3. Traditional
routing makes R1 transmit the packet ignoring any opportunistic recep-
tions. Packet-level opportunistic routing exploits the reception at R2 but
ignores that most of the symbols have made it to R3 and D. MIXIT ex-
ploits correctly received symbols at R3 and D, benefiting from the longest
links.

it from achieving high concurrency. MIXIT’s network code also builds
on recent advances in extending network coding to scenarios with
errors and adversaries [7, 12]. In contrast to all these schemes, MIXIT
only codes over symbols above a certain confidence threshold, while
using coding coefficients that reduce overhead.

MIXIT also builds on prior work on “soft information”, whose
benefits are well known [25, 4, 27]. Soft information refers to the
confidence values computed in some physical layers when it decodes
symbols. Recent work [8] has developed the SoftPHY interface to
expose this information to higher layers in a PHY-independent manner
by annotating bits with additional hints. Thus far, the use of these
hints at higher layers has been limited to improving link reliability
by developing better retransmission schemes [8] or to combine confi-
dence values over a wired network to reconstruct correct packets from
erroneous receptions [29]. In contrast, MIXIT uses SoftPHY hints in
a new way, eschewing link-layer reliability in favor of spatial diversity
to achieve high throughput and reliability.

MIXIT is philosophically similar to analog and physical layer net-
work coding [10, 22], but it operates on symbols (i.e., bits) rather
than signals; this difference is important because making a soft digital
decision at an intermediate node improves efficiency by preventing the
forwarding of grossly inaccurate information. And more importantly,
it is a simpler design that fits in well with a layered architecture, so
one can use the same network layer with a variety of physical layer
schemes and radio technologies. MIXIT uses SoftPHY to propagate
cross-layer information using a clean, PHY-independent interface.

3 Motivating Examples

This section discusses two examples to motivate the need for mecha-
nisms that can operate on symbols that are likely to have been received
correctly (i.e., on partial packets). These examples show two signif-
icant new opportunities to improve throughput: far-reaching links
with high bit-error rates that allow quick jumps towards a destina-
tion even when they might never receive entire packets correctly, and
increased concurrency using a more aggressive MAC protocol that
induces higher bit-error rates than CSMA. The underlying theme in
these examples is that one can improve throughput by allowing, and
coping with, higher link-layer error rates.

First, consider Fig. 1, where a source, S, tries to deliver a packet
to a destination, D, using the chain of routers R1, R2, and R3. It is
possible that when the source broadcasts its packet, R1 and R2 hear the
packet correctly, while R3 and D hear the packet with some bit errors.
Traditional routing ignores the “lucky” reception at R2 and insists on
delivering the packet on the predetermined path, i.e., it makes R1 for-
ward the packet to R2 again. In contrast, recent opportunistic routing
protocols (such as ExOR) capitalize on such lucky receptions (at R2)
to make long jumps towards the destination, saving transmissions.
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Figure 2: Concurrency example: The figure shows the receptions when
the two sources transmit concurrently. Without MIXIT, the two sources
Sa and Sb cannot transmit concurrently. MIXIT tolerates more bit errors
at individual nodes, and hence is more resilient to interference, increasing
the number of useful concurrent transmissions.

By insisting on forwarding fully correct packets, however, current
opportunistic protocols miss a large number of opportunities to save
transmissions and increase throughput; in particular, they don’t take
advantage of all the correct bits that already made it to R3 and even
to the destination, D. Moreover, because of spatial diversity [18, 25],
the corrupted bits at R3 and D are likely in different positions. Thus,
R3 has to transmit only the bits that D did not receive correctly for
the destination to get the complete packet. A scheme that can identify
correct symbols and forward them has the potential to drastically
reduce the number of transmissions required to deliver a packet.

Next, consider an example with potential concurrency as in Fig. 2,
where two senders, Sa and Sb, want to deliver a packet to their respec-
tive destinations, Da and Db. If both senders transmit concurrently, the
BER will be high, and no router will receive either packet correctly.
Because current opportunistic routing protocols insist on correct and
complete packets, the best any MAC can do is to make these senders
transmit one after the other, consuming two time slots.

But interference is not a binary variable. In practice, different
routers will experience different levels of interference; it is likely the
routers close to Sa will receive packet, Pa, with only a few errors,
while those close to Sb will receive packet Pb, with only some errors.
A scheme that can identify which symbols are correct and forward
only those groups of bits can exploit this phenomenon to allow the
two senders to transmit concurrently and increase throughput. It can
then “funnel” the correct symbols from the routers to the destination.

MIXIT aims to realize these potential benefits in practice. It faces
the following challenges:

• How does a router classify which symbols in each received packet
are likely correct and which aren’t?

• Given the overlap in the correct symbols at various routers, how do
we ensure that routers do not forward the same information, wasting
bandwidth?

• How does a router forward traffic among its downstream nodes to
maximize throughput and avoid creating hotspots?

• When is it safe for nodes to transmit concurrently?
• How do we ensure that the destination recovers a correct and com-

plete version of the source’s data?

The rest of this paper presents our solutions to these problems in
the context of the MIXIT architecture, which we describe next.

4 MIXIT Architecture

MIXIT is a layered architecture for bulk transfer over static mesh net-
works. The layers are similar to the traditional PHY, link and network

layers, but the interfaces between them, as well as the functions carried
out by the network layer, are quite different. The physical and link
layers deliver all received data to the network layer, whether or not bits
are corrupted. Each packet has a MIXIT header that must be received
correctly because it contains information about the destination and
other meta-data; MIXIT protects the header with a separate forward
error correction (FEC) code that has negligible overhead.

Rather than describe each layer separately, we describe the functions
carried out at the source, the forwarders, and the destination for any
stream of packets.

4.1 The Source

The transport layer streams data to the network layer, which pre-
processes it using an error-correcting code as described in §9. The
network layer then divides the resulting stream into batches of K pack-
ets and sends these batches to the destination sequentially. Whenever
the MAC permits, the network layer creates a different random linear
combination of the K packets in the current batch and broadcasts it.

MIXIT’s network code operates at the granularity of symbols, which
we define as a group of consecutive bits of a packet. The group could
be the same collection of bits which are transmitted as a single physical
layer symbol (PHY symbol) by the modulation scheme (e.g., groups of
4 bits in a 16-QAM scheme), or it could be larger in extent, covering
a small number of distinct PHY symbols. The jth symbol in a coded
packet, s′j, is a linear combinations of the jth symbols in the K packets,
i.e., s′j = ∑i visji, where sji is the jth symbol in the ith packet in the
batch and vi is a per-packet random multiplier. We call~v = (v1, . . . ,vK)
the code vector of the coded packet. Note that every symbol in the
packet created by the source has the same code vector.

The source adds a MIXIT header to the coded packet, protects it
using FEC, and broadcasts it. The header describes which symbols
were coded together. This description is easy to specify at the source
because all symbols in a coded packet are generated using the packet’s
code vector,~v. The header also contains an ordered list of forward-
ing nodes picked from its neighbors, each of which is closer to the
destination according to the metric described in §7.

4.2 The Forwarders

Each node listens continuously whenever it is not transmitting, at-
tempting to decode whatever it hears. When the PHY is able to decode
bits, it passes them up together with SoftPHY hints that reflect its
confidence in the decoded bits. The network layer gets this infor-
mation and uses it to classify symbols into clean and dirty ones. A
clean symbol is one that is likely to be correct, unlike a dirty one. §5
describes how the MIXIT network layer classifies symbols.

When a node gets a packet without header errors, it checks whether
it is mentioned in the list of forwarders contained in the header. If
so, the node checks whether the packet contains new information, i.e.,
is “innovative” [13]. A packet is considered innovative if its code
vector~v is linearly independent of the vector of the packets the node
has previously received from this batch. Checking for independence
is straightforward using Gaussian elimination over these short vec-
tors [13]. The node ignores non-innovative packets, and stores the
innovative packets it receives from the current batch, preserving the
“clean” and “dirty” annotations.

When forwarding data, the node creates random linear combinations
of the clean symbols in the packets it has heard from the same batch,
as explained in §6, and broadcasts the resulting coded packet. It also
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Figure 3: Decision boundary for different mistake rates as a function of
SINR. At high SINR (> 12dB), all PHY symbols with Hamming distance
less than 16 (the maximum possible in the Zigbee physical layer), will
satisfy the mistake rate threshold. But at intermediate SINRs (5-12 dB),
the PHY symbols have to be picked carefully depending on the mistake
rate threshold.
decides how much each neighbor should forward to balance load and
maximize throughput, as described in §7.

Any MAC protocol may be used in MIXIT, but the scheme de-
scribed in §8.1 achieves higher concurrency than standard CSMA
because it takes advantage of MIXIT’s ability to cope with much
higher error rates than previous routing protocols.

4.3 The Destination

MIXIT provides a rateless network code. Hence, the destination
simply collects all the packets it can hear until it has enough infor-
mation to decode the original data as described in §9. Furthermore,
MIXIT provides flexible reliability semantics. Depending on applica-
tion requirements, the destination can decide how much information
is enough. For example, if the application requires full reliability the
destination waits until it can decode 100% of the original symbols,
whereas if the application requires 90% reliability, the destination
can be done once it decodes 90% of the original symbols. Once the
destination decodes the required original symbols, it sends a batch-ack
to the source. The ack is sent using reliable single path routing, and
causes the source to move to the next batch. For the rest of the paper,
we will assume that the destination wants 100% reliability.

5 Classifying Received Symbols

MIXIT operates over symbols, which are groups of PHY symbols.
A symbol is classified as clean if none of the constituent PHY sym-
bols are erroneous with a probability higher than γ . It is classified
dirty otherwise. We call the threshold γ , the mistake rate, and it is
a configurable parameter of the system. To satisfy the mistake rate
threshold, MIXIT’s network layer picks a decision boundary on the
soft values [8] of the PHY symbols. If all constituent PHY symbols
in our symbol have soft values below this decision boundary, then the
symbol is classified as clean, else it is dirty. The decision boundary
depends on the mistake rate as well as the channel SINR [29, 25].

Fig. 3 supports this argument. The figure is generated using a GNU
software radio implementation of the Zigbee protocol (see §10). The
figure plots the decision boundary on soft values of PHY symbols for
varying SINR at different mistake rates of 1%, 5%, 10% and 15%.
Clearly the boundary depends both on the mistake rate as well as the
SINR. The SINR measures the channel noise and interference, and
hence reflects how much we should trust the channel to preserve the
correlation between transmitted and received signals [29]. Factoring
in the specified mistake rate, we can use the above map to pick the
right decision boundary to classify symbols.

MIXIT uses the SoftPHY interface proposed in [8], which annotates
the decoded PHY symbols with confidence values and sends them to
higher layers. We also augment the interface to expose the SINR. The
SINR can be estimated using standard methods like that in [10]. The
map in Fig. 3 can be computed offline, since the relationship between
SINR, the confidence estimate, and the decision boundary is usually
static [17]. The MIXIT network layer uses the PHY information
to classify symbols as clean and dirty, and then performs symbol-
level network coding over the clean symbols as described in the next
section.

6 The MIXIT Network Code

When the MAC permits, the node may forward a coded packet. The
symbols in a coded packet are linear combinations of the clean symbols
received in packets from the same batch. To see how the coding works
let us look at an example.

6.1 MIXIT in Action

Consider the scenario in Fig. 4, where the source S wants to deliver
two packets, Pa and Pb, to the destination. Let the bit error rate (BER)
be relatively high such that when the source S broadcasts Pa and
Pb, the nodes in the network receive some symbols in errors. The
network layer at each node classifies the symbols as either clean or
dirty using the SoftPHY hints as described in §5. Fig. 4 illustrates the
dirty symbols using shaded cells.

The objective of our symbol-level codes is to minimize the overhead
required to funnel the clean symbols to their destination. Specifically,
most symbols are received correctly by both R1 and R2. Hence, with-
out additional measures, the routers will transmit the same symbols
to the destination, wasting wireless capacity. To avoid such waste,
MIXIT makes the routers forward random linear combinations of the
clean symbols they received. Assuming ai and bi are the ith symbols
in Pa and Pb respectively, router R picks two random numbers α and
β , and creates a coded packet Pc, where the ith symbol, ci is computed
as follows:

ci =


αai +βbi if ai and bi are clean symbols
αai if ai is clean and bi is dirty
βbi if ai is dirty and bi is clean.

If both ai and bi are dirty, no symbol is sent. Similarly, R2 generates a
coded packet Pd by picking two random values α ′ and β ′ and applying
the same logic in the above equation. Since R1 and R2 use random
coefficients to produce the coded symbols, it is unlikely that they
generate duplicate symbols [5].

When R and R′ broadcast their respective packets, Pc and Pd , the
destination receives corrupted versions where some symbols are in-
correct, as shown in Fig. 4. Thus the destination has four partially
corrupted receptions: Pa and Pb, directly overheard from the source,
contain many erroneous symbols; and Pc and Pd , which contain a few
erroneous symbols. For each symbol position i, the destination needs
to decode two original symbols ai and bi. As long as the destination
receives two uncorrupted independent symbols in location i, it will
be able to properly decode [5]. For example, consider the symbol
position i = 2, the destination has received:

c2 = αa2 +βb2

d2 = α
′a2.

Given that the header of a coded packet contains the multipliers
(e.g., α and β ), the destination has two linear equations with two



Figure 4: Example showing how MIXIT works: The source broadcasts
Pa and Pb. The destination and the routers, R1 and R2, receive corrupted
versions of the packets. A shaded cell represents a dirty symbol. If R1
and R2 forward the clean symbols without coding, they generate redun-
dant data and waste capacity. With symbol-level network coding, the
routers transmit linear combinations of clean symbols, ensuring that they
forward useful information to the destination.

unknowns, a2 and b2, which are easily solvable (the details of the
decoder are explained in §9). Once the destination has decoded all
symbols correctly, it broadcasts an ACK, causing the routers to stop
forwarding packets.

6.2 Efficient Symbol-Level Codes

The difficulty in creating a network code over symbols is not the
coding operation, but in how we express the code efficiently. The
length of a symbol is small, one or a few bytes. The MIXIT header in
the forwarded packet has to specify how each symbol is derived from
the native symbols so that the destination can decode. If all symbols
in a packet are multiplied by the same number, then effectively we
have a packet-level code, which can be easily expressed by putting the
multiplier in the header. However, in MIXIT we want to code clean
symbols and ignore dirty ones; i.e., only clean symbols are multiplied
by a non-zero number.

Consider a simple example where the batch size is K = 2 with the
two packets; Pa and Pb. Say that our forwarder has received two coded
packets Pc = αPa +βPb and Pd = α ′Pa +β ′Pb. Now our forwarder
picks two random numbers v1 and v2 and creates a linear combination
of the two packets it received.

P = v1Pc + v2Pd = (v1α + v2α
′)Pa +(v1β + v2β

′)Pb

Thus, the newly generated packet has a code vector ~v = (v1α +
v2α ′,v1β + v2β ′). This vector would be sufficient to describe the
whole packet if the forwarder received only clean symbols. Specif-
ically, the clean symbol in the jth position in packet P, called sj, is
coded as follows:

sj = v1cj + v2dj, where ci and dj are clean

= (v1α + v2α
′)aj +(v1β + v2β

′)bj

But because some received symbols are dirty, we need a more detailed
description of how individual symbols in the packet P are derived from
the native symbols. Depending on whether the forwarder has cleanly
received the jth symbols in Pc and Pd , called cj and dj respectively,
the generated symbol sj might take one of four possible values, with
respect to the native symbols.

sj =


(v1α + v2α ′)aj +(v1β + v2β ′)bj cj and dj are clean
v1αaj + v1βbj only cj is clean
v2α ′aj + v2β ′bj only dj is clean
0×aj +0×bj cj and dj are dirty

(1)

Each different value of the symbol is associated with a different code
vector, the header has to specify for each symbol in a transmitted
packet what is the symbol’s code vector.

Naive Coded Packet
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Figure 5: Creating coded packets with longer runs: The forwarder re-
ceived 3 packets with code vectors v1, v2 and v3. All packets contain dirty
symbols represented as shaded areas. Naively coding over all clean re-
ceived symbols results in a coded packet with 7 different runs. However,
by ignoring some of the clean symbols, the node can generate coded pack-
ets with much fewer runs.

We address this issue using the following two mechanisms.

(1) Run-Length Encoding: Because wireless errors are bursty [18,
28], a sequence of consecutive symbols will have the same code
vector. We can therefore use run-length encoding to describe the
encoding of the transmitted symbols in an efficient manner. The
header specifies a sequence of runs, each of which is described as
[(Code Vector of run),(Runstart : Runend)]. For exam-
ple, in Fig. 5, the header of the first outgoing coded packet will specify
two runs, [(γ~v3),(1,1000)] and [(α~v1 +β~v2),(1001,1500)].

(2) Pick codes that give longer runs: We force the overhead to stay
small by intentionally discarding clean symbols that fragment our run-
length-encoding. Said differently, a forwarder can decide to ignore
some clean symbols to ensure the header has longer runs of symbols
with the same code vector, and thus can be encoded efficiently.

Consider the example in Fig. 5, where the forwarder has received 3
packets, each with some dirty symbols. Naively, applying the symbol-
level network code along with the run-length encoding described
above, we get a coded packet that has seven different runs. But,
we can create fewer runs of longer lengths by ignoring some clean
symbols in the coding procedure. For example, in the first five runs
in the naive coded packet, we can ignore clean symbols from the
first and second received packets. As a result, the five runs would
coalesce to a single longer run with the code vector γ~v3, where γ is
a random multiplier and~v3 is the code vector of the third received
packet. Similarly for the last two runs, if we ignore clean symbols
from the third received packet, we are left with a single longer run with
the code vector α~v1 +β~v2, where α and β are random multipliers and
~v1 and~v2 are the code vectors of the first and second received packets.
The resulting coded packet shown in Fig. 5 has only two runs with
two code vectors, and requires less overhead to express.

But, what if the forwarder has to transmit a second coded packet?
One option is to ignore the same set of clean symbols as above, but use
different random multipliers, α ′,β ′,γ ′. We would get a coded packet
with two runs and their code vectors being γ ′~v3 and α ′~v1 +β ′~v2. But
this transmission will be wasteful, since the symbols in the first run are
not innovative w.r.t the first coded packet the node already transmitted
(γ ′~v3 is not linearly independent of γ ′~v3). The solution is to split the
first long run into two smaller runs by including clean symbols from
the first and second packets, which we had previously ignored. The
second coded packet, shown in Fig. 5 has 3 runs with 3 different code
vectors β ′~v2 + γ ′~v3, α ′~v1 + γ ′~v3 and α ′~v1 + β ′~v2 . The new packet
is innovative w.r.t the previously transmitted coded packet, and uses
lower overhead in describing the codes.



6.3 Dynamic programming to minimize overhead

We now present a systematic way to minimize the number of runs in
a coded packet, while ensuring that each packet is innovative with
respect to previously transmitted coded packets. We formalize the
problem using dynamic programming. Let there be n input packets,
from which we create the naive coded packet, as shown in the previous
example. Say the naive packet contains the runs R1R2 . . .RL. The
optimization attempts to combine consecutive runs from the naive
coded packet into a single run, whose symbols all have the same code
vector by ignoring some of the input clean symbols. Let Cij be the
combined run that includes the runs Ri . . .Rj from the naive coded
packet. Note that the combined run Cii is the same as run Ri.

Next, we show that each combined run can be assigned a cost, and
that the optimization problem that minimizes the number of innovative
combined runs exhibits the “optimal substructure” property, i.e., the
cost of a combined run can be derived from the cost of two sub-runs.

The goal is to create an outgoing coded packet out of the smallest
number of combined runs, while ensuring that the information we
send out is innovative. Thus, we can formulate the cost of a combined
run as follows:

Cost(Cij) = min
{

f(Cij), min
i<k<j

{Cost(Cik)+Cost(Ckj)}
}

(2)

where f(Cij) is given by:

f(Cij) =
{

∑
j
i |Ri| if Cij is not innovative

(2logS)/8+K otherwise
(3)

Intuitively, the function f(Cij) says that if the combined run Cij is
not innovative with respect to previous transmissions, the cost is the
number of symbols in that combined run. But if the combined run is
innovative with respect to previous transmissions, its cost is just the
number of bytes required to describe it. This requires describing the
start and end of the combined run, which can be done using (2 logS)/8
bytes, where S is the packet size, and describing the combined run’s
code vector, which can be done using K bytes, where K is the batch
size. The second component in Eq. 2 checks if splitting the combined
run Cij into two smaller runs incurs a smaller cost, and if it does, it
finds the best way to split it.

The forwarder computes the dynamic program top-down using a
table to memoize the costs. Because the algorithm coalesces runs in
the naively coded packet, the table has at most as many entries as there
are combined runs. The worst case complexity of the algorithm is
O(L3), but in practice it runs faster due to the following heuristic. In
Eq. 2, if Cij is innovative, we do not need to check whether splitting it
reduces the cost because f(Cij) will always be lower than the cost of
the two sub runs, whose cost will at least be 2f(Cij). Typically, the DP
takes under a millisecond to run for a packet with L ≈ 15−20.

7 Congestion-Aware Forwarding

In general, because wireless is a broadcast medium several downstream
routers will hear any given symbol without error. For each symbol,
the ideal situation is for the downstream forwarder with the best path
quality to the destination to forward the symbol (after coding it). For
example, in Fig. 6(a), routers R1 and R2 hear all the symbols from S1.
However, R2 should be the one to forward the symbols because it can
deliver them to the destination in fewer transmissions.

Path quality is not the only consideration in making this decision
because one ultimately cares about the time it takes for a symbol to
reach the destination. If a path has high quality (as measured by a low
error rate), but also has long queues at its forwarders, it would not be

S1 D1

R1

R2

Flow 1

S1 D1

R1

R2

Flow 2

Flow 1

(A) (B)

Figure 6: Example of congestion-aware forwarding: If there is a single
flow in the network, S1 should always send all his traffic through R2 since
he has the better link to the destination. But if R2 is involved in a second
flow, then S1 should also send some of his traffic through R1 to avoid
creating a bottleneck at R2.

advisable to use it. Fig. 6(b) shows an example where a second flow
being forwarded through R2 causes R2’s queues to grow, so having
R1 forward some of its traffic would improve performance and avoid
creating a bottleneck at R2.

These requirements suggest the following approach for a node
to decide how its downstream forwarders should forward on its be-
half. First, for each path (via a downstream node), determine the
expected time it would take to successfully send a symbol along
that path. This time, which we call C-ETS (for “congestion-aware
ETS”), incorporates both path quality and node queue lengths (back-
log). C-ETS via a downstream node i to a destination d is computed as
C-ETS(i,d) = PQ(i,d)+ kQ(i). Here, PQ is the path quality from i to
d, which depends on the symbol delivery probabilities and captures the
time taken to deliver a symbol to the destination in the absence of any
queueing. In our implementation, we approximate this term using the
ETS metric (defined as the expected number of transmissions required
to deliver a symbol), instead of using a more exact formula for the
expected number of transmissions using opportunistic routing [2].2

Q(i) is the total number of symbols (backlog) across all flows queued
up at node i yet to be transmitted (k is a constant dimensional scaling
factor that depends on the time it takes to transmit one symbol).

We now discuss how a node decides how many of its queued up
symbols, Q(i, f ) for flow f , each downstream node should forward.
(Because of the random network code, we don’t have to worry about
downstream nodes sending the exact same information.) The high-
level idea is to favor nodes with smaller C-ETS values, but at the same
time apportioning enough responsibility to every downstream node
because no link or path is loss-free in general. Each node assigns
responsibility to its downstream nodes by assigning credits. Credit
determines the probability with which the downstream node should
forward symbols belonging to the flow when they receive transmis-
sions from the node. The downstream node with best the C-ETS has
credit 1; the next-best node has credit (1−p1), where p1 is the symbol
delivery probability to the best downstream node; the best one after
that has credit (1−p1)(1−p2), and so on. What we have done here is
to emulate, in expectation, the best downstream node sending all the
symbols it hears, the next-best one only forwarding a fraction that the
best one may not have heard, and so on, until all the nodes down to
the worst neighbor have some small responsibility.

How many transmissions should the node make? The node should
make enough transmissions to make sure that every queued up symbol
reaches some node with a lower C-ETS metric. If the symbol delivery
probability to downstream neighbor j is pj, then the probability that
some downstream neighbor gets any given symbol is P = 1−∏j(1−
pj). Hence in expectation, the number of coded symbols from a batch
that a node would have to send per queued up symbol is equal to

2Computing the ETS metric is simpler and does not change the paths used by much.



1/(1−P) before some downstream node gets it. Each node achieves
this task by maintaining a decrementing per-flow Transmit Counter,
throttling transmission of the batch when its value reaches 0.

The above intuitions are formalized in Alg. 1.

1 Computing credit assignment at node i

while Q(i, f ) > 0 do
Update C-ETS of downstream nodes from overheard packets
Sort downstream nodes according to their C-ETS
Pleft = 1
for node j in set of downstream nodes sorted according to C-ETS do

credit assgn(j) = Pleft
Pleft = Pleft ∗ (1−p(i, j))

Increment Transmit Counter of flow f by 1/(1−Pleft)
Decrement Q(i, f ) by 1

Distributed Protocol: Each node, i, periodically measures the sym-
bol delivery probabilities p(i, j) for each of its neighbors via probes.
These probabilities are distributed to its neighbors using a link state
protocol. Node i includes the computed credit assgn for each of its
downstream nodes in the header of every packet it transmits. When
downstream nodes receive a packet, they update their Q(i, f ) for that
flow by the amount specified in the header. Further, whenever node i
transmits a packet, it includes its C-ETS to the corresponding desti-
nation in the header. Upstream nodes which overhear this packet, use
the C-ETS value in their credit assignment procedure.

The algorithm above improves on the routing algorithms used in
prior packet based opportunistic routing protocols like MORE [2] in
two ways. First, we use queue backlog information explicitly to avoid
congested spots and balance network-wide load, prior work ignores
congestion. Second, the algorithm works at the symbol-level, which is
the right granularity for performing opportunistic routing on symbols.
The algorithm is similar in spirit to theoretical back-pressure [19]
ideas, but the exact technique is different and simpler. We also present
an actual implementation and evaluation of this algorithm in §11.

8 Increasing Concurrency

Current wireless mesh networks allow a node to transmit only when
they are sure that they can deliver the packet to the intended next hop
with high probability. MIXIT however, has looser constraints:

1. It does not require the delivery of correct packets; it can work with
partially correct packets.

2. Because of its opportunistic nature, MIXIT only needs to ensure
that every symbol reaches some node closer to the destination than
the transmitter; it does not need to ensure that a specific node gets
the correct symbols.

MIXIT exploits the above flexibility to increase concurrency without
affecting end-to-end reliability, improving throughput by enabling a
more pipelined transmission pattern. MIXIT’s concurrency design
has two components: determining when concurrent transmissions are
beneficial and building a distributed protocol to take advantage of
concurrency opportunities. We describe both components below.

8.1 When should two nodes transmit concurrently?

MIXIT, similar to conflict maps [26], determines if two nodes should
transmit concurrently by predicting the throughput under concurrent
transmissions and comparing it to the throughput when the nodes
transmit separately. The nodes independently pick the strategy with

the higher expected throughput. Specifically, let n1 and n2 be two
nodes transmitting packets of two flows l and k. Ne(n1, l) and Ne(n2,k)
are the corresponding sets of downstream nodes for n1 and n2 for the
respective flows. Symbol delivery probabilities on any link will depend
on whether these nodes transmit concurrently or not. Let pc(i, j) be
the symbol delivery probability on link (i, j) when the two nodes
transmit concurrently and p(i, j) when they don’t. The symbol delivery
likelihoods achieved by node n1 for flow l with and without concurrent
transmissions are given by

Dc(n1, l) = 1− (∏j∈Ne(n1,l)(1−pc(n1, j)))
D(n1, l) = 1− (∏j∈Ne(n1,l)(1−p(n1, j))) (4)

The symbol delivery likelihood is the probability that at least one
node in Ne(n1, l) receives the symbol correctly when node n1 transmits.
The symbol delivery likelihood depends on other concurrent traffic,
and could differ if n2’s transmission interferes with n1’s. Similarly, n2
can compute its symbol delivery likelihood under both conditions.

Each node then computes the following concurrency condition:

Dc(n1, l)+Dc(n2,k) > (D(n1, l)+D(n2,k))/2 (5)

The above equation compares overall delivery likelihood under the
two scheduling strategies. If the above condition is true, it implies that
more information gets delivered per time slot when nodes transmit con-
currently than when they transmit separately. Each node independently
evaluates the above condition and decides its strategy.3

8.2 Estimating symbol delivery probabilities

The concurrency condition above depends on the symbol delivery
probabilities. Empirically measuring these probabilities for all pairs
of concurrent transmissions has O(N2) cost, where N is the number
of nodes. Instead, MIXIT uses O(N) empirical signal-to-noise ra-
tio (SNR) measurements to predict these probabilities for any set of
concurrent transmissions. The approach works as follows.

1. The SNR profile of the network is measured when there is little
traffic. Each of the N nodes broadcasts probe packets in turn, while
the rest of the nodes measure the received SNR and the fraction
of correctly received symbols. The measurements are of the form
SNR(i, j) and p(x), where SNR(i, j) is the received SNR at j when i
transmits and p(x) is the fraction of correct symbols received when
the SNR is x.

2. Nodes use the SNR profile to predict the signal-to-
interference+noise ratio (SINR) at any node under con-
current transmissions. Specifically, if nodes n1 and n2
transmit concurrently, the SINR at node m is computed
as SINR(n1,n2,m) = SNR(n1,m) − SNR(n2,m) assuming
SNR(n1,m) > SNR(n2,m)≥ c, where c is a threshold SNR below
which no symbol can be decoded. The symbol delivery probability
is then predicted to be p(SINR(n1,n2,m)), i.e., it is the same as if
the signal was received at m with SNR of SINR(n1,n2,m).

Fig. 7 plots the CDF of prediction errors using the above model. The
results are from a 25-node testbed of GNURadio software nodes with
USRP frontends, with two concurrent senders transmitting 802.15.4
packets. The figure demonstrates that the prediction model is quite
accurate, with the inaccurate predictions occuring at low SINR (< 4
dB). But because the symbol delivery probability at low SINR is negli-
gible, inaccuracies in the low SINR region do not affect performance.
Furthermore, unlike prior proposals [24, 20] that try to predict packet

3The above conditions assumes a single radio transmission bit-rate; it can be adapted
easily to handle variable bit-rates.
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Figure 7: Prediction error CDF: The SNR based prediction model accu-
rately predicts the symbol delivery probabilities under concurrent trans-
missions for 72% of the cases. The inaccuracies are primarily in cases
where (SNR(n1,m)− SNR(n2,m) < 4dB, i.e., when concurrent transmis-
sions will result in a signal being received with low SINR at the receivers.
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Figure 8: MIXIT’s error correcting code design: The source prepro-
cesses the original packets with a MRD code in groups of B symbols and
transmits them. The network applies symbol-level network coding on
clean symbols. Erroneous clean symbols may end up corrupting all the
received symbols at the destination, but the destination can use the MRD
code to decode most of the original data symbols.

delivery rates using a SINR model, MIXIT’s model predicts symbol
delivery likelihoods. The latter is simpler since packet delivery is a
complex function of error rates, nature of interference etc. Finally,
the concurrency condition is a binary decision, even if the predicted
probabilities are slightly off, it is unlikely to affect the decision.

8.3 Distributed channel access protocol

A node uses a two-step procedure when it has packets enqueued for
transmission. First, if it has not heard any on-going transmissions,
it simply goes ahead and transmits. But if it has heard an on-going
transmission, then it uses Eq. 5 to determine if it should transmit
concurrently or defer until the on-going transmission has finished.

How does a node know which other nodes are transmitting at that
time instant? Similar to prior work [8, 26], MIXIT encapsulates every
packet with a header and trailer. The header includes the identity of
the transmitting node, and the flow to which the packet belongs. Other
nodes overhearing a packet use the header to identify the beginning of
an active transmission and the trailer to signify the end.

9 Error Correction

Until now we have ignored the difference between clean and correct
symbols and focused on delivering clean symbols to the destination.
But clean symbols can be incorrect. Moreover, an erroneous sym-
bol that was incorrectly classified clean may end up corrupting other
correct clean symbols due to network coding. Thus, the destination,
could get all symbols corrupted due to a single clean but erroneous
symbol. Fortunately, MIXIT comes with error correction capability
that allows the destination to recover the original correct symbols. The
error-correcting code is not affected even if all received symbols are
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BATCH_NO

NUM_RUNS

CODE VECTORENDSTART

NUM_FORWARDERS

FORWARDER ID FRD_CREDIT

MAC HEADER

MIXIT HEADER
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FORWARDER 

BLOCK

CODE VECTOR

BLOCK

MAC TRAILER

MIXIT TRAILER

Figure 9: MIXIT’s packet format.

corrupted; the only thing that matters is how many erroneous sym-
bols were incorrectly classified clean. The code guarantees that if m
erroneous symbols were incorrectly classified clean, then the desti-
nation needs only B+2m symbols to recover the original B symbols.
This guarantee is theoretically optimal [30]. The code is simple, rate-
less and end-to-end; routers inside the network are oblivious to the
existence of the error-correcting code.

MIXIT’s error-correcting code is built on the observation that ran-
dom network coding is vector space preserving [12]. Specifically, if
we model the original data injected by the source as a basis for a vector
space V, then the random network code acts only as a linear transfor-
mation T on the vector space. But vector spaces are preserved under
linear transformations if no errors occur, and if errors do occur, the
received vector space U is very close to the transmitted vector space
V under an appropriately defined distance metric on vector spaces.

Recent work [12, 23, 7] has studied the problem of making network
coding resilient to byzantine adversaries injecting corrupted packets.
It has observed that low complexity Maximum Rank Distance (MRD)
codes [3], with a small modification, can be applied to exploit the
vector space observation and correct adversarial errors. The network
coding in MIXIT is different, but the basic algorithm in MRD can
be adapted to work with MIXIT’s symbol-level network code. Fig. 8
shows the high level architecture of how MRD codes are integrated
within MIXIT. The exact details of decoding MRD codes can be found
in [23, 21, 3], we outline the main differences here:

• Symbol-level network coding along with the end-to-end MRD code
functions as a rateless error-correcting code. The destination at-
tempts to decode the original data vector ~Di as soon as it receives
B < K coded symbols for that position. If no erroneous symbols had
seeped through, then it will be able to recover the original correct
data. If not, it simply waits to receive more coded symbols until
it can decode. The code guarantees that if m erroneous symbols
incorrectly classified as clean seeped through, then the destination
can decode as soon as it receives B+2m coded symbols.

• MIXIT’s rateless code provides flexible reliability semantics. Since
the code works on groups of B symbols, there is no fate sharing
across groups. Its likely that when the destination receives a few
packets, it will be able to decode most of the groups of B symbols,
but not some since they had more errors. Depending on the applica-
tion, the destination could wait to receive more coded symbols until
it can decode, or ignore the undecoded symbols and ask the source
to proceed to the next batch by sending a batch-ack to the source.

10 Implementation

10.1 Packet Format

MIXIT inserts a variable length header in each packet, as shown in
Fig. 9. The header is also repeated as a trailer at the end of the packet



Experiment Section Result
MIXIT in a lightly loaded network 11.2.1 MIXIT improves median throughput by 2.1× over MORE and 2.9× over SPR
Impact of concurrency 11.2.2 MIXIT exploits loose packet delivery constraints to increase concurrency.
Impact of symbol level diversity 11.2.2 MIXIT with plain carrier sense still outperforms MORE by 1.5×.
Impact of mistake rate threshold 11.2.3 MIXIT’s error correcting code allows us to be flexible with the mistake rate. This reduces

the fraction of correct symbols incorrectly labeled dirty and increases throughput.
Impact of batch size 11.2.4 MIXIT is insensitive to batch size, providing large gains for sizes as small as 8.
MIXIT in a congested network 11.3.1 MIXIT improves median throughput by 2.8× over MORE and 3.9× over SPR.
Impact of forwarding algorithm 11.3.2 MIXIT’s congestion-aware forwarding prevents hotspots and keeps network capacity

from dropping during congestion.

Table 1: A summary of the major experimental contributions of this paper.

to improve delivery in the face of collisions [8]. The header contains
the source and destination addresses, the flow identifier, and the the
batch identifier. These fields are followed by a variable length Code
Vector Block, which describes how the symbols in this packet have
been created. It has the format (Code Vector, Run Start, Run End);
the values of these fields are obtained using the algorithm in §6.2.
Following that is the variable length Forwarder Block that lists all
the neighbors of this node ordered according to their C-ETS metrics.
For each neighbor, the header also contains its credit assignment as
described in §7. The Code Vector Block and the Forwarder Block
are computed and updated by the forwarders. The other fields are
initialized by the source and simply copied by each forwarder.

10.2 Node State

Each MIXIT node maintains per-flow state, which is initialized when
the first packet from a flow that contains the node ID in the Neighbor
Block arrives . The per-flow state includes:

• The batch buffer, which stores the received clean symbols for each
batch. This buffer is at most K×S, where K is the batch size and S
the packet size.

• The credit counter, which stores the number of credits assigned to
the node by the upstream neighbors for the batch. Upon the arrival
of a packet from a node with a higher C-ETS, the node increments
the credit by the corresponding credit assignment as indicated in
the packet header.

• The transmit counter, which is incremented by the credit assign-
ment algorithm in §7. After a packet transmission, it decrements by
one.

10.3 Control Flow

MIXIT’s control flow responds to packet receptions. On the receiv-
ing side, whenever a packet arrives, the node checks whether it’s
ID is present in the Forwarder Block. If it is, then it updates the
credit counter for the corresponding batch of that flow by the credit
assigned to it in the Forwarder Block. Next, the node picks out clean
symbols from the received packet using the SoftPHY hints and adds
them to the batch buffer. If the credit is greater than one, it runs the
credit assignment algorithm from §7. It then creates transmit counter
coded packets using the technique in §6.2 and enqueues them. The
MAC layer transmits these packets using the rule discussed in §8.1.

When the destination node receives a packet, it checks the symbol
positions for which it has received atleast B coded symbols and de-
codes whichever of them it can. It sends a batch-ack to the source
when it has decoded the required fraction (determined by the applica-
tion’s reliability requirements) of original symbols. The batch-ack is
sent periodically until packets from the next batch start arriving.

11 Evaluation

We compare MIXIT with two routing protocols for wireless mesh
networks: MORE, a state-of-the-art packet-level opportunistic routing
protocol, and SPR, single path routing using the commonly used ETX
metric. Our experimental results are summarized in Table 1.

11.1 Testbed

We use a 25-node indoor testbed deployed in a lab. Each node is a
Zigbee software radio. The hardware portion of the node is a Universal
Software Radio Peripheral [6] with a 2.4 GHz daughterboard, the
remainder of the node’s functions (demodulation, channel decoding,
network coding etc) are implemented in software. The peak data rate
on the link is 250 Kbits/s when there are no other transmissions in
progress. Paths between nodes are between one and five hops long,
and the SNR of the links varies from 5 dB to 30 dB. The average
packet loss rate on links in our network is 23% for 1500 byte packets.

11.2 Single Flow

11.2.1 Throughput Comparison

Method: We run SPR, MORE, and MIXIT in sequence between 120
randomly picked source-destination pairs in our testbed. Each run
transfers a 5 MByte file. The batch size of MIXIT is 12, but the
error-correction preprocessing stage described in §9 converts it into
16 packets. To make a fair comparison, MORE uses a batch of 16
packets. We use the same batch sizes for MIXIT and MORE for all
other experiments unless specifically noted otherwise. The packet size
for all three protocols is 1500B. The mistake rate γ for MIXIT is fixed
at 5% and the symbol size for MIXIT is 6 bytes unless otherwise noted.
Before running an experiment, we collect measurements to compute
pairwise packet delivery probabilities, which are then fed to SPR and
MORE to be used in their route computations. The same measurement
packets are used by MIXIT to compute the network’s SNR profile as
described in §8. We repeat the experiment for each source-destination
pair five times and report the average throughput for each scheme.

Results: Fig. 10 plots the CDF of the throughput taken over 120
source-destination pairs in our testbed. MIXIT provides a median
throughput gain of 2.1× over MORE and 2.9× over SPR.

We note that MIXIT improves performance across the entire
throughput range. Packet-based opportunistic routing protocols, like
MORE, provide large throughput gains for dead spots, i.e., scenar-
ios where all paths between the source and destination are of poor
quality. The gains for high quality paths were relatively minor [1, 2].
Both MORE and ExOR exploit diversity at the packet level to build
better quality links out of many bad links. But for source-destination
pairs that are connected via good links, diversity does not help. Nat-
urally, this makes one wonder whether MIXIT’s gains over packet



based opportunistic routing protocols arise from its ability to exploit
concurrency, a question that we address in the next section.
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Figure 10: Throughput comparison: The figure shows that MIXIT has a
median throughput gain of 2.1× over MORE, the state-of-the-art packet
level opportunistic routing protocol, and 2.9× over SPR, a single path
routing protocol based on the ETX metric.

11.2.2 Where do MIXIT’s throughput gains come from?

MIXIT exploits both wireless diversity and concurrent transmissions.
We would like to measure how much each of these components con-
tributes to MIXIT’s throughput gains.

Method: We first compare MIXIT with a modified version of
MORE that takes advantage of concurrency at the packet level, which
we call MORE-C. Like MORE, MORE-C performs packet based
opportunistic routing. But MORE-C also allows nodes to transmit con-
currently. To check whether two transmissions should be transmitted
concurrently, MORE-C uses the same algorithm used by MIXIT and
described in §8, but after it replaces symbol delivery probabilities with
packet delivery probabilities.
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Figure 11: Impact of concurrency: The figure shows the throughput
of MIXIT, MORE, and a concurrency-enabled version of MORE which
we term MORE-C. Clearly concurrency helps but it is not sufficient to
achieve the same throughput as MIXIT.

Results: Fig. 11 plots the CDF of the throughputs of MIXIT,
MORE, and MORE-C taken over the same source-destination pairs
as before. MIXIT provides a median throughput gain of 1.7× over
MORE-C. The main result is that even when compared against a proto-
col that exploits both diversity and concurrency like MORE-C, MIXIT
still does significantly better. The only extra property that MIXIT
has beyond MORE-C is its ability to work at the symbol level. Is the
median gain of 1.7× over MORE-C due mainly to MIXIT’s ability
to exploit clean symbols, i.e., is symbol-level diversity the dominant
contributor to MIXIT’s overall throughput gain?

Method: To answer the above question, we prevent MIXIT from
aggressively exploiting concurrent transmissions and use plain carrier
sense. The intent is to limit its gains over MORE to be from being

able to perform opportunistic routing over clean symbols. We call the
resulting version MIXIT-CS.
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Figure 12: Throughputs for MIXIT with CS: The figure shows the
throughput of MIXIT, MORE, and MIXIT-CS, a version of MIXIT which
uses plain carrier sense and can only take advantage of symbol-level di-
versity. MIXIT-CS still performs better than MORE due to its ability to
exploit long opportunistic receptions but with a few errors in them.

Results: Fig. 12 plots the CDF of the throughputs of MIXIT,
MIXIT-CS and MORE. MIXIT-CS provides a median throughput gain
of 1.5× over MORE, i.e., significantly less gain than MIXIT. Thus,
symbol-level diversity is not the dominant contributor to MIXIT’s
throughput gains. Indeed, comparing Fig. 12 with Fig. 11 shows that
the overall gain of MIXIT over MORE is roughly Gain of MIXIT-CS
over MORE×Gain of MORE-C over MORE, i.e. 1.5×1.4 = 2.1. The
multiplicative effect is due to the symbiotic interaction between con-
currency and symbol-level opportunistic routing; concurrency tries to
run the medium at high utilization and hence increases symbol error
rate. But when the symbol error rate becomes high, almost every
packet will have some symbols in error causing the whole packet to be
dropped. Consequently, trying to exploit concurrency with a packet
level protocol is limited by nature. Only a protocol that filters out
incorrect symbols can push concurrency to its limits.

11.2.3 Impact of letting more errors through
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Figure 13: Impact of changing the mistake rate: The figure shows that
many mistake rate thresholds provide significant throughput gains and
hence MIXIT performs reasonably well even if the network is configured
with a suboptimal threshold.

Method: We evaluate how the threshold on classifying clean sym-
bols affects throughput. As explained in §5, MIXIT has the flexibility
to choose the threshold mistake rate γ . We vary this threshold and
compare the average throughput. For the Zigbee protocol, the PHY
symbol is 4 bits long, while the MIXIT symbol size is 6 bytes.

Results: Fig. 13 plots the average throughput across all source-
destination pairs for different mistake rates. The average throughput
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Figure 14: Impact of batch size: The figure shows the CDF of the
throughput achieved by MIXIT for different batch sizes. It shows that
MIXIT is largely insensitive to batch sizes.

surprisingly increases as we let more errors through! It peaks when
the mistake rate is around 5% and drops at higher error rates.

This may sound counter intuitive, but recall that we are talking
about a probability of error; if the router would know for sure which
PHY symbols are incorrect, the best it can do is to drop all incorrect
PHY symbols. But a PHY symbol that has a 5% chance of being in
error has also a 95% chance of being correct. For our topology, at 5%
mistake rate, the cost of correcting the error end-to-end balances the
opportunity of exploiting correct symbols that made it to their next
hops, maximizing the throughput.

The right mistake rate threshold depends on the network. We as-
sume that the administrator calibrates this parameter for her networks.
A large mistake rate like 30% does not make sense for any network.4

The results however show that a wide range of choices provide good
throughput and outperform packet-based opportunistic routing.

11.2.4 Impact of Batch Size

We evaluate whether MIXIT’s throughput is sensitive to batch size.
Fig. 14 plots the throughput for batch sizes of 8,12,16 and 32. The
throughput is largely insensitive to the batch size. The slight drop
off at lower batch sizes is primarily because of higher overhead. A
bigger batch size allows MIXIT to amortize the overhead over a larger
number of packets, increasing throughput. Insensitivity to batch sizes
allows MIXIT to vary the batch size to accommodate different transfer
sizes. For any transfer larger than 8 packets, MIXIT shows significant
advantages. Shorter transfers can be sent using traditional routing.

11.3 Multiple Flows

11.3.1 Throughput Comparison

Method: We run MIXIT, MORE and SPR in sequence, varying the
number of random active flows in the network. The rest of the setup
is similar to the single flow case. We run 50 experiments for each
choice of number of flows, with each experiment repeated 5 times. We
calculate the average throughput for each run.

Results: Fig. 15 plots the average throughput for MIXIT, MORE,
and SPR with increasing number of flows. We see that MIXIT’s
throughput gain generally increases with load, and at its peak reaches
2.8× over MORE and 3.9× over SPR.

The higher gains as load increases are due to MIXIT’s ability to
aggressively exploit concurrency and perform congestion-aware for-
warding. Both MORE and SPR, which rely on carrier sense, become
conservative in accessing the medium as the number of flows increases.

4Even under optimal conditions, it takes at least two symbols to correct each incorrect
symbol [30] and hence a mistake rate higher than 33% would never make sense.
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Figure 15: Average throughput with multiple active flows: The figure
shows that MIXIT’s throughput scales as offered load increases until the
network is saturated. MORE and SPR become similar as load increases
and perform worse than MIXIT because they cannot exploit concurrency
opportunities.

0

20

40

60

80

100

120

1 2 3 4 5

MIXIT

No. of concurrent flows

A
vg

. 
N

e
tw

o
rk

 T
h

ro
u

g
h

p
u

t 
(K

b
it

s/
s)

MIXIT-NCA

No. of concurrent flows

Figure 16: The role of congestion-aware forwarding: The figure shows
that congestion-aware forwarding is particularly important when the
number of active flows is large.

Thus, they cannot fully exploit the spatial diversity in the network.
MIXIT however, can maintain high levels of concurrency because of
its ability to deal with partially correct packets.

The throughput gains drop slightly as the network gets heavily
congested. The primary reason is hidden terminals, whose effect is
exacerbated by the fact that the USRP nodes, which perform all pro-
cessing in user mode on the PC, do not have support for synchronous
acks, and thus cannot quickly detect hidden terminals and backoff.

11.3.2 Impact of Congestion Aware Forwarding

Method: We evaluate the impact of MIXIT’s congestion-aware for-
warding component on performance. Node congestion is built into
MIXIT’s routing algorithm due to its use of the backlog parameter
Q(i), the number of symbols queued up at node i yet to be trans-
mitted. Nodes that are backlogged will not be assigned credits by
their upstream parents and thus traffic will be routed around hotspots.
We compare this scheme with one where this component is disabled.
Specifically, parent nodes assign credits to their downstream nodes
based only on the path quality, i.e. based on the path ETS, and ignore
congestion information. We call this scheme MIXIT-NCA, for MIXIT
with ”No Congestion Aware” forwarding.

Results: Fig. 16 plots the average throughput for MIXIT and
MIXIT-NCA for increasing number of flows. The figure shows that
congestion-aware forwarding accounts for 30% of the throughput gain
at high load. As load increases, the probability of the network experi-
encing local hotspots increases. MIXIT-NCA does not route around
such hotspots, and insists on pushing the same amount of information
through regardless of congestion. MIXIT adaptively routes around
these hotspots and therefore increases throughput.



12 Conclusion

To the best of our knowledge, MIXIT is the first network architecture
that profitably takes advantage of bit-level wireless spatial diversity
to achieve high throughput. With MIXIT, as long as each symbol in
every transmitted packet is correctly received by some neighboring
downstream node, the packet is highly likely to be delivered to the
destination correctly. Designing a network that has this attractive
property is not an easy task because it needs to scalably coordinate
overlapping symbol receptions and cope with erroneous symbol prop-
agation. MIXIT solves these problems using a symbol-level network
code that has an end-to-end rateless error correction component.

Instead of using link-layer error detection and recovery, MIXIT
treats the entire wireless network as a single logical channel whose
component links could run at high error rates. Because MIXIT can
cope with individually high error rates, it encourages an aggressive
MAC protocol that greatly increases concurrency compared to CSMA.

Although MIXIT exploits cross-layer information, its architecture
is modular and layered: it can run atop any radio and PHY that provide
suitable confidence hints, with the routers being oblivious to the end-
to-end error correction mechanism. The gains may vary depending on
the PHY and MAC used, but it can be used in any multi-hop wireless
network with the following properties:

1. Computational capabilities: The coding/decoding algorithms in
MIXIT are more demanding than traditional store and forward
networks. In our proof-of-concept software implementation on
software radios, the algorithms can achieve at most an effective
throughput of 4.7Mb/s. In [9], we describe a hardware implemen-
tation using shift registers, which is similar to traditional Reed-
Solomon (RS) hardware decoders. Because current RS decoders
can achieve speeds of 80 Gigabits per second [15], we believe that
computational considerations will not limit the applicability of our
algorithms at high data rates.

2. Memory: MIXIT’s nodes need to store packets from recent batches.
The default batch size is 16, and typically there are two or three
batches in flight, requiring storage space of roughly 70 KBytes, a
modest amount for modern communication hardware.

The ideas in MIXIT may be applicable in sensor networks to ship
data to sink nodes. Because most traffic in these networks is uni-
directional, data from different sensors can be coded together to im-
prove throughput. In addition, MIXIT could also be used to multicast
data in a mesh network. Because all destinations require the same
data, routers can keep transmitting coded data until all destinations
can decode them.
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