
ASSIGNMENT 1

Implement the types using classes. Represent the types using sequences of same-type

elements (List<> in C#).

Create a main program with a menu to demonstrate the services (all the methods) a class

provides in arbitrary order (based on the selections of the user). Make the main program

instantiate an object of the class. The methods of the class can be called through the menu

items. Print the state of the object either after the completion of each menu item or through

another menu item for printing. If there are methods or friend functions that need multiple

objects (like adding two matrices, for example), the main program should make it possible to

create and print these objects through the menu.

Implement unit tests which should be run automatically.

1. Implement the chessboard matrix type which contains integers. In these matrices, every
second entry is zero. The entries that can be nonzero are located
like the samecolored squares on a chessboard, with indices (1, 1),
(1, 3), (1, 5), ..., (2, 2), (2, 4), The zero entries are on the indices
(1, 2), (1, 4), ..., (2, 1), (2, 3), ... Store only the entries that can be
nonzero in row-major order in a sequence. Don't store the zero
entries. Implement as methods: getting the entry located at index
(i, j), adding and multiplying two matrices, and printing the matrix
(in a shape of m by n).

2. Implement the X matrix type which contains integers. These are
square matrices that can contain nonzero entries only in their two
diagonals. Don't store the zero entries. Store only the entries that
can be nonzero in a sequence. Implement as methods: getting the
entry located at index (i, j), adding and multiplying two matrices,
and printing the matrix (in a square shape).

3. Implement the N matrix type which contains integers. These are

square matrices that can contain nonzero entries only in their first

and last column, and in their main diagonal. Don't store the zero

entries. Store only the entries that can be nonzero in a sequence.

Implement as methods: getting the entry located at index (i, j),

adding and multiplying two matrices, and printing the matrix (in a

square shape).

4. Implement the block matrix type which contains integers. These are square matrices that

can contain nonzero entries only in two blocks on their main

diagonal. Let the size of the first and second blocks be b1 and b2,

where 1≤b1,b2≤n-1 and b1+b2=n (in the example, b1=2 and

b2=4). Don't store the zero entries. Store only the entries that can

be nonzero in a sequence or two smaller matrices. Implement as

methods: getting the entry located at index (i, j), adding and

multiplying two matrices, and printing the matrix (in a square

shape).

x 0 0 0 x

x x 0 0 x

x 0 x 0 x

x 0 0 x x

x 0 0 0 x

x x 0 0 0 0

x x 0 0 0 0

0 0 x x x x

0 0 x x x x

0 0 x x x x

0 0 x x x x

x 0 0 0 x

0 x 0 x 0

0 0 x 0 x

0 x 0 x 0

x 0 0 0 x

x 0 x 0 x

0 x 0 x 0

x 0 x 0 x

0 x 0 x 0

x 0 x 0 x

teri
Szövegdoboz
0

5. Implement the set type which contains integers. Represent the set as a sequence of its
elements. Implement as methods: inserting an element, removing an element, returning
whether the set is empty, returning whether the set contains an element, returning a
random element without removing it from the set, returning the largest element of the
set (suggestion: store the largest entry and update it when the set changes), printing the
set. A set can store every element only once.

6. Implement the set type which contains integers. Represent the set as a sequence of its
elements. Implement as methods: inserting an element, removing an element, returning
whether the set is empty, returning whether the set contains an element, returning a
random element without removing it from the set, returning the number of even numbers
in the set (suggestion: store the number of even numbers and update it when the set
changes), printing the set. A set can store every element only once.

7. Implement the set type which contains integers. Represent the set as a sequence of its
elements. Implement as methods: inserting an element, removing an element, returning
whether the set is empty, returning whether the set contains an element, returning a
random element without removing it from the set, returning the sum of the numbers in
the set (suggestion: store the sum and update it when the set changes), printing the set.
A set can store every element only once.

8. Implement the bag type which contains integers. Represent the bag as a sequence of
(element, frequency) pairs. Implement as methods: inserting an element, removing an
element, returning the frequency of an element, returning the most frequent element
from the bag (suggestion: store the most frequent element and update it when the bag
changes), printing the bag. Lecture code cannot be submitted.

9. Implement the bag type which contains integers. Represent the bag as a sequence of
(element, frequency) pairs. Implement as methods: inserting an element, removing an
element, returning the frequency of an element, returning the number of elements which
occur only once in the bag (suggestion: store the number of these elements and update
it when the bag changes), printing the bag. Lecture code cannot be submitted.

10. Implement the bag type which contains integers. Represent the bag as a sequence of
(element, frequency) pairs. Implement as methods: inserting an element, removing an
element, returning the frequency of an element, returning the largest element in the bag
(suggestion: store the largest element and update it when the bag changes), printing the
bag. Lecture code cannot be submitted.

