
 OOP Teréz A. Várkonyi: Sample documentation, 2nd assignment 1.

Teréz A. Várkonyi 2nd assignment/0. Task 11th February 2023

NEPTUNCODE

treszka@inf.elte.hu

Group 0

Task

Create a program to model survival competition of creatures.

The creatures may belong to 3 species (greenfinch, dune beetle, squelchy). Every creature has

a name (string) and power (natural number). The creatures (one after the other) pass a

racetrack which consists of fields with different types of ground (sand, grass, marsh). When a

creature passes on a ground, it may change it while its power changes. If the power of the

creature falls to zero or less, it dies. Give the name of the creatures who survive the

competition.

• Greenfinch: its power increases by one on grass, decreases by two on sand and by

one on marsh. It transfmutes marsh to grass.

• Dune beetle: its power decreases by two on grass, by four on marsh, and increases by

three on sand. It transfmutes marsh to grass and grass to sand.

• Squelchy: its power decreases by two on grass, by five on sand, and increases by six

on marsh. It transfmutes grass to marsh.

Every data is stored in a text file. The first line contains the number of creatures. Each of the

following lines contain the data of one creature: one character for the type (G – Greenfinch,

D – Dune beetle, S – Squelchy), name of the creature (one word), and the initial level of

exhilaration.

In the last line, a natural number is given for the length of the racetrack, followed by IDs of

the ground of each part of the track. The IDs: 0 – sand, 1 – grass, 2 – marsh. The file is

assumed to be correct.

Analysis1

Independent objects in the task are the creatures. They can be divided into 3 different groups:

Greenfinches, Dune beetles and Squelchies.

All of them have a name and a power that can be got. It can be examined what happens when

they cross a part of the racetrack. Crossing effects the creature and the ground in the following

way:

Greenfinch:

ground power change ground change

sand -2 -

grass +1 -

marsh -1 grass

1 This part may be skipped. It is enough to show the tables of traverse in the Planning section.

 OOP Teréz A. Várkonyi: Sample documentation, 2nd assignment 2.

Dune beetle:

ground power change ground change

sand +3 -

grass -2 sand

marsh -4 grass

Squelchy:

ground power change ground change

sand -5 -

grass -2 marsh

marsh +6 -

Plan2

To describe the creatures, 4 classes are introduced: base class Creature to describe the general

properties and 3 children for the concrete species: Greenfinch, Dunebeetle, and Squelchy.

Regardless the type of the creatures, they have several common properties, like the name

(_name) and the power (_power), the getter of its name (name()), if it is alive (alive()) and it

can be examined what happens when it crosses a ground. This latter operation (Traverse())

modifies the power of the creature and changes the crossed ground. Operations alive() and

name() may be implemented in the base class already, but Traverse() just on the level of the

concrete classes as its effect depends on the species of the creature. Therefore, the general

class Creature is going to be abstract, as method Traverse() is abstract and we do not wish to

instantiate such class.

General description of the grounds is done the base class Ground from which concrete

grounds are inherited: Sand, Grass, and Marsh. Every concrete ground has three methods that

show how a Greenfinch, a Squelchy, or a Dune beetle changes during crossing it and how the

ground changes, too.

The special creature classes initialize the name and the power through the constructor of the

base class and override the operation Traverse() in a unique way. Initialization and the

override are explained in Section Analysis. According to the tables, in method Traverse(),

conditionals could be used in which the type of the ground would examined. Though, the

conditionals would violate the SOLID principle of object-oriented programming and are not

effective if the program might be extended by new ground types, as all of the methods

Traverse() in all of the concrete creature classes should be modified. To avoid it, the Visitor

design pattern is applied where the ground classes are going to have the role of the visitor.

2 Plain text explanation is not necessary for the student documentations

 OOP Teréz A. Várkonyi: Sample documentation, 2nd assignment 3.

Methods Traverse() of the concrete creatures expect a ground object as an input parameter as

a visitor and call the methods which corresponds to the species of the creature.

All the classes of the grounds are realized based on the Singleton design pattern, as it is

enough to create one object for each class.

 OOP Teréz A. Várkonyi: Sample documentation, 2nd assignment 4.

In the specification, it is necessary to calculate with the n+1 versions of the track as every

creature changes it. The 0th version is the initial track. The crossing of one creature is denoted

by function traverse : Creature × Groundm → Creature × Groundm which gives the changed

creature and ground, too. ith version of the track is denoted by tracki, which the program is not

going to show, it is going to be just a temporal value of variable track.

A = track: Groundm, creatures: Creaturen, alive: String*

Pre = creatures = creatures0  track = track0

Post = track = trackn 

i[1..n]: creatures[i], tracki = race(creatures0[i], tracki-1) 

 alive = ⊕𝑖=1..𝑛< 𝑐𝑟𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑖]. 𝑛𝑎𝑚𝑒 >
creatures[i].alive()

Concatenation of the creatures (after crossing the track) and transmuting the racetrack step by

step are two Summations just as the assortment of the alive creatures. As all of them are based

on the same enumerator, they can be merged into the same loop (i=1 .. n).

Analogy:

enor(E) i = 1 .. n

f(e) race(creatures[i], track)1 first component of the value

of function race()

s creatures

H, +, 0 Creature*, ⊜, creatures[i]

enor(E) i = 1 .. n

f(e) race(creatures[i], track)2 second component of the

value of function race()

s track

H, +, 0 Ground*, ⊜, track a ⊜ b ::= b

enor(E) i = 1 .. n

f(e) <creatures[i]> if creatures[i].alive()

s alive

H, +, 0 Creature*, ⊕, <>

 OOP Teréz A. Várkonyi: Sample documentation, 2nd assignment 5.

By merging the above to the same loop, the solution is got:

Note: instead of a Creature, only its name is kept.

alive := <>

i =1 .. n

 creatures[i], track := race(creatures[i], track)

 creatures[i].alive()

 alive := alive  <creatures[i].name()> SKIP

The ith creature is going to have m+1 states as crosses the track which is, in essence, rebuilt

(from tracki-1 to tracki). 0
th state of creatures[i] is the given creature (creatures0[i]), while the

mth state is the creature after crossing the whole racetrack (creaturesm[i] = creatures[i]). The

ith creature before crossing the jth ground is denoted by creaturej-1[i] from which the jth state is

created by method traverse() (creaturesj[i]) along with the ith state of the track tracki[j].

So, the task to be solved is:

j[1..m]: creaturesj[i], tracki[j] = traverse(creaturesj-1[i], tracki-1[j]) 

creatures[i] = creaturesm[i]

A creature’s crossing means changing the state of the creature step by step, while the

concatenation of the traversed grounds is done, too. Both of them are based on Summation

with the same enumerator (j=1 .. m):

enor(E) j = 1 .. m

f(e) traverse(creatures[i], track[j])1 first component of the value of

function traverse()

s creatures[i]

H, +, 0 Creature*, ⊜, creatures[i] a ⊜ b ::= b

enor(E) j = 1 .. m

f(e) traverse(creatures[i], track[j])2 second component of the value of

function traverse()

s track[j]

H, +, 0 Ground*, ⊕, <>

By merging them into the same loop:

creatures[i], track :=race(creatures[i], track)

j = 1 .. m

 creatures[i], track[j] := traverse(creatures[i], track[j])

 OOP Teréz A. Várkonyi: Sample documentation, 2nd assignment 6.

If it is recognized that neither the creature, nor the grounds change after the death of the

creature, the effectiveness of the above algorithm may be improved:

creatures[i], track :=race(creatures[i], track)

j := 1

creatures[i].alive()  j ≤ m

 creatures[i], track[j] := traverse(creatures[i], track[j])

 j := j+1

Testing

Grey box test cases:

Outer loop (Summation)

1. length-based:

- zero creature

- one creature

- more creatures

2. first and last:

- first creature survives or not the competition

- last creature survives or not the competition

Inner loop (Summation)

1. length-based:

- one creature on a zero-long track

- one creature on a one-long track traverses properly

- one creature on a longer track (survives or dies)

2. first and last:

- first ground of the track traverses properly depending on the species of the

creature

- last ground of the track traverses properly depending on the species of the

creature

Examination of function traverse()

Nine different cases depending on the creature and the ground.

