Algorithmic patterns on enumerators

1. Summation

Problem: Let H be an arbitrary set where an associative operation exists, with a left-hand neutral element denoted by 0 . Let us call the operation addition and suppose that its operator is denoted by the $+\operatorname{sign}$. Given an enumerator t enumerating elements of type E and a function $f: E \rightarrow H$. Let us calculate the sum of the values that f assigns to the elements produced by t.

Specification:

$$
\begin{aligned}
& A=(t: e n o r(E), s: H) \\
& \text { Pre }=\left(t=t^{\prime}\right) \\
& \text { Post }=\left(s=\sum_{e \in t^{\prime}} f(e)\right)
\end{aligned}
$$

Algorithm:

2. Counting

Problem: Given an enumerator t traversing elements from the set E and a logical function cond $: \mathrm{E} \rightarrow \mathbb{L}$. Let us count the elements produced by the enumerator t for which condition cond holds.

Specification:

$$
\begin{gathered}
A=(t: e n o r(E), c: \mathbb{N}) \\
\text { Pre }=\left(t=t^{\prime}\right) \\
\text { Post }=\left(c=\sum_{e \in t^{\prime}} 1\right) \\
\quad \operatorname{cond}(e)
\end{gathered}
$$

Algorithm:

3. Maximum search

Problem: Given a non-empty enumerator t traversing elements from the set E and a function $f: E \rightarrow H$ where H is a totally ordered set. Let us search the maximal value of the function f where the inputs are the elements of type E that t produces. An element of t to which f assigns the maximal output is also sought.

Specification:

$$
\begin{aligned}
& A=(t: e n o r(E), \text { max:H, elem:E }) \\
& \text { Pre }=\left(t=t^{\prime} \wedge|t|>0\right) \\
& \text { Post }=\left((\max , \text { elem })=M A X_{e \in t^{\prime}} f(e)\right)
\end{aligned}
$$

Algorithm:

$t . f i r s t()$	
$\begin{gathered} \text { max, elem }:= \\ f(t . c u r r e n t()), \text { t.current }() \end{gathered}$	
t.next()	
\neg t.end ()	
f(t.current())>max	
$\begin{gathered} \text { max, elem:= } \\ f(t . c u r r e n t()), \text { t.current }() \end{gathered}$	-
t.next()	

4. Selection

Problem: Given an enumerator t traversing elements from the set E. A logical function cond $: \mathrm{E} \rightarrow \mathbb{L}$ is also given. Let us find the first element enumerated by t for which the cond condition holds. We can assume that there is such a kind of element produced by t.

Specification:

$$
\begin{aligned}
& A=(t: e n o r(E), \text { elem: } E) \\
& \text { Pre }=\left(t=t \wedge \wedge \exists i \in[1 . .|t|]: \operatorname{cond}\left(t_{i}\right)\right) \\
& \text { Post }=((\text { elem, } t)= \\
& \left.\left.\quad \operatorname{SELECT} T_{e \in t} \operatorname{cond}(e)\right)\right)
\end{aligned}
$$

Algorithm:

t.first()
\neg cond(t.current())
t.next()
elem:=t.current()

5. Linear search

Problem: Given an enumerator t traversing elements from the set E. A logical function cond $: \mathrm{E} \rightarrow \mathbb{L}$ is also given. Let us find the first element enumerated by t for which the cond condition holds.

Specification:

$$
\begin{aligned}
& A=(t: \operatorname{enor}(E), l: \mathbb{L}, \text { elem:E }) \\
& \text { Pre }=\left(t=t^{\prime}\right) \\
& \text { Post }=((l, \text { elem, } t)= \\
& \quad \text { SEARCH }
\end{aligned}
$$

Algorithm:

$l:=$ false; t.first()
$\neg l \wedge \neg$ t.end ()
elem $:=$ t.current ()
$l:=$ cond(elem)
t.next()

6. Conditional maximum search

Problem: Given an enumerator t traversing elements from the set E, a logical function cond: $[m . . n] \rightarrow \mathbb{L}$ and a function $f: E \rightarrow H$ where H is a totally ordered set. Let us find the maximum value of the function among the outputs where the corresponding element produced by t satisfies the condition cond. An element of t to which f assigns the sought maximal value is also has to be determined.

Specification:

$$
\begin{gathered}
A=(t: e n o r(E), l: \mathbb{L}, \text { max: } H, \text { elem: } E) \\
\text { Pre }=\left(t=t^{\prime}\right) \\
\text { Post }=\left((l, \text { max, elem })=M A X_{e \in t^{\prime}} f(e)\right. \\
\operatorname{cond}(e)
\end{gathered}
$$

Algorithm:

$l:=$ false; t .first()			
\neg t.end()			
\backslash cond(t.current())	$\backslash \operatorname{cond}($ t.current()) \wedge		$\backslash \operatorname{cond}($ (t.current()) $\wedge \neg l$
SKIP	$\backslash f(t . c u r r e n t())>\max$		l, max, elem :=
	$\begin{gathered} \text { max, elem:= } \\ \text { f(t.current()), t.current() } \end{gathered}$	-	true, f(t.current()), t.current()
t.next()			

