
Algorithmic patterns over intervals

1. Summation

Problem: Let H be an arbitrary set on which an associative operation is defined, with a left-

hand neutral element denoted by 0. Let us call the operation addition and suppose that its

operator is denoted by +. A function f:[m..n]→H is given. Let us calculate the sum of the

values of f over the interval [m..n].

Specification:

A = (m:ℤ, n:ℤ , s:H)
Pre = (m=m’ n=n’)

Post = (Pre s = ∑ 𝑓(𝑖)𝑖=𝑚 ..𝑛)

Algorithm:

s := 0

 i = m .. n i:ℤ

 s := s+f(i)

2. Counting

Problem: Given a logical function cond:[m..n]→𝕃. Let us count the elements in the

interval [m..n] for which cond condition holds.

Specification:

A = (m:ℤ, n:ℤ, c: ℕ)
Pre = (m=m’ n=n’)

Post = (Pre c = ∑ 1 𝑖=𝑚..𝑛)
 cond(i)

Algorithm:

c:= 0

 i = m .. n i:ℤ

 cond(i)

 c:= c+1 –

3. Maximum search

Problem: Given a non-empty interval [m..n] and a function f:[m..n]→H where H is a totally

ordered set. Let us search the maximal value of the function f over [m..n] and an argument

where the function f gives back its maximal value.

Specification:

A = (m:ℤ, n:ℤ, max:H, ind:ℤ)
Pre = (m=m’ n=n’ m≤n)

Post = (Pre

(max,ind) =𝑀𝐴𝑋𝑖=𝑚..𝑛𝑓(𝑖))

Algorithm:

max, ind := f(m), m

 i = m+1 .. n i:ℤ

 f(i)>max

 max, ind:=f(i), i –

4. Conditional maximum search

Problem: Given a logical function cond:[m..n]→𝕃 and an f:[m..n]→H function where H is

a totally ordered set. Let us find the maximum value of the function among the outputs where

a corresponding argument satisfies the condition cond and this argument is in interval [m..n].

The argument also has to be determined.

Specification:

A = (m:ℤ, n:ℤ, l:𝕃, ind:ℤ, max:H)

Pre = (m=m’ n=n’)

Post = (Pre (l,max,ind) = 𝑀𝐴𝑋𝑖=𝑚..𝑛𝑓(𝑖)
 cond(i)

Algorithm:

l := false

i = m .. n i:ℤ

 cond(i) l cond(i) l cond(i)

 SKIP f(i)>max l, max, ind :=

 true, f(i), i max, ind:=f(i), i SKIP

Remark: Hereinafter, the flexibility of the above algorithmic patterns is presented.

1. Index ind can be left out if it is not needed in patterns

• maximum search, linear search (decision)

2. Minimum search

• In case of selection of the minimum value, instead of „>”, relational operator

„<” has to be used. (In the specification: MIN function instead of MAX).

3. Searching for the last element

• In case of maximum search: f(i)≥max instead of f(i)>max

5. Selection

Problem: Given a logical function cond:[m..n]→𝕃 and an integer number m. Let us find the

first integer number that is greater than or equal to m for which condition cond holds. It is

assumed that there is such a kind of number.

Specification:

A = (m:ℤ, i:ℤ)

Pre = (m=m’ km: cond(k))

Post = (Pre i = 𝑆𝐸𝐿𝐸𝐶𝑇𝑖≥𝑚𝑐𝑜𝑛𝑑(𝑖))

Algorithm:

i:= m

cond(i)

 i := i+1

6. Linear (or sequential) search

Problem: Given a logical function cond:[m..n]→𝕃. Let us find the first argument in the

interval [m..n] for which the condition cond holds.

Specification:

A = (m:ℤ, n:ℤ, l:𝕃, ind:ℤ)

Pre = (m=m’ n=n’)

Post = (Pre

(l, ind) =𝑆𝐸𝐴𝑅𝐶𝐻𝑖=𝑚..𝑛𝑐𝑜𝑛𝑑(𝑖))

Algorithm:

l, i:= false, m i:ℤ

l in

 l, ind := cond(i), i

 i := i+1

The same algorithm can be applied in case of solving decision problems. In this case, you

have to leave out variable ind and the related terms from the specification and from the

algorithm, as well.

Typical problem for linear search: Is there any element in the interval for which a given

condition holds?

The optimistic version of linear search examines, whether all elements satisfy the given

condition, and determines the first index for which the condition does not hold.

The simpler version of optimistic linear search is optimistic decision, where variable ind and

the related terms in the specification and in the algorithm are left out.

Specification:

A = (m:ℤ, n:ℤ, l:𝕃)

Pre = (m=m’ n=n’)

Post = (Pre

l = ∀𝑆𝐸𝐴𝑅𝐶𝐻𝑖=𝑚..𝑛𝑐𝑜𝑛𝑑(𝑖))

Algorithm:

l, i:= true, m i:ℤ

l in

 l := cond(i)

 i := i+1

Remark: Instead of searching for the first element satisfying a given condition, we can also

search for the last one, too by replacing i:=i+1with i:=i ‒1 in the algorithm.

7. Binary search

Problem: Given an f:[m..n]→H function monotonically increasing over the interval [m..n].

H is a totally ordered set. Let us decide whether f gives a certain value, and in case it does, an

argument is also required to be given where the output of f equals to the given value.

Specification:

A = (m:ℤ, n:ℤ, h:H, l:𝕃, ind:ℤ)

Pre = (m=m’ n=n’ h=h’ j[m..n-1]: f(j) f(j+1))

Post = (Pre l=(j[m..n]:f(j)=h) l→(ind[m..n] f(ind)=h))

Algorithm:

lb,ub,l :=m,n,false lb, ub:ℤ

l lbub

 ind :=(lb+ub) div 2

f(ind)>h f(ind)<h f(ind)=h

ub := ind-1 lb := ind+1 l := true

lb ~ lower-bound

ub ~ upper-bound

