
1

PL/SQL Block Syntax 

and Guidelines

• Statements can continue over several 
lines.

• Lexical units can be separated by: 

– Spaces

– Delimiters

– Identifiers

– Literals

– Comments
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PL/SQL Block Syntax 

and Guidelines

Identifiers

• Can contain up to 30 characters

• Cannot contain reserved words unless 
enclosed in double quotation marks

• Must begin with an alphabetic character

• Should not have the same name as a 
database table column name
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PL/SQL Block Syntax and 

Guidelines

Literals

• Character and date literals must be 
enclosed in single quotation marks.

• Numbers can be simple values or 
scientific notation.

v_ename := 'Henderson';
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Commenting Code

• Prefix single-line comments with two 
dashes (--).

• Place multi-line comments between the 
symbols /* and */.

Example

...

v_sal NUMBER (9,2);

BEGIN

/* Compute the annual salary based on the       

monthly salary input from the user */

v_sal := &p_monthly_sal * 12;

END; -- This is the end of the transaction
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SQL Functions in PL/SQL

• Available:

– Single-row number 

– Single-row character

– Datatype conversion

– Date

• Not available:

– DECODE

– Group functions

Same as in SQL}
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PL/SQL Functions

Examples

• Build the mailing list for a company.

• Convert the employee name to lowercase.

v_mailing_address := v_name||CHR(10)||

v_address||CHR(10)||v_state||

CHR(10)||v_zip;

v_ename := LOWER(v_ename);
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Datatype Conversion

• Convert data to comparable datatypes.

• Mixed datatypes can result in an error 
and affect performance.

• Conversion functions:

– TO_CHAR

– TO_DATE

– TO_NUMBER

DECLARE

v_date VARCHAR2(15);

BEGIN

SELECT TO_CHAR(hiredate,    

'MON. DD, YYYY')

INTO   v_date

FROM   emp

WHERE  empno = 7839;

END;
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Datatype Conversion

This statement produces a compilation 
error if the variable v_date is declared as 
datatype DATE.

v_date := 'January 13, 1998'; 

v_date := TO_DATE ('January 13, 1998', 

'Month DD, YYYY');

To correct the error, use the TO_DATE 
conversion function.
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Nested Blocks 

and Variable Scope

• Statements can be nested wherever an 
executable statement is allowed.

• A nested block becomes a statement.

• An exception section can contain 
nested blocks.

• The scope of an object is the region of 
the program that can refer to the object.
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Nested Blocks 

and Variable Scope

An identifier is visible in the regions in 
which you can reference the unqualified 
identifier:

• A block can look up to the enclosing 
block.

• A block cannot look down to enclosed 
blocks.
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Nested Blocks 

and Variable Scope

...

x  BINARY_INTEGER;

BEGIN

...

DECLARE

y  NUMBER;

BEGIN

...

END;

...

END;

Scope of x

Scope of y

Example
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Operators in PL/SQL

• Logical

• Arithmetic

• Concatenation 

• Parentheses to 
control order of
operations

• Exponential operator (**)

Same as in 

SQL
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Examples

• Increment the index for a loop. 

• Set the value of a Boolean flag. 

• Validate an employee number if it 
contains a value.

Operators in PL/SQL

v_count := v_count + 1;

v_equal := (v_n1 = v_n2);

v_valid := (v_empno IS NOT NULL);
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Using Bind Variables

To reference a bind variable in PL/SQL, 

you must prefix its name with a colon (:).

Example
VARIABLE g_salary NUMBER

DECLARE

v_sal emp.sal%TYPE;

BEGIN

SELECT sal

INTO v_sal

FROM emp

WHERE empno = 7369;

:g_salary   := v_sal;

END;

/
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Programming Guidelines

Make code maintenance easier by:

• Documenting code with comments

• Developing a case convention for the 
code

• Developing naming conventions for 
identifiers and other objects

• Enhancing readability by indenting



16

Code Naming Conventions

Avoid ambiguity:

• The names of local variables and formal 
parameters take precedence over the 
names of database tables.

• The names of columns take precedence 
over the names of local variables.
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Indenting Code

For clarity, indent each level of code.

Example

BEGIN

IF x=0 THEN

y:=1;

END IF;

END;

DECLARE

v_deptno NUMBER(2);

v_location VARCHAR2(13);

BEGIN

SELECT deptno,

loc

INTO v_deptno,

v_location

FROM dept

WHERE dname = 'SALES';   

...

END;


