
1

PL/SQL Block Syntax

and Guidelines

• Statements can continue over several
lines.

• Lexical units can be separated by:

– Spaces

– Delimiters

– Identifiers

– Literals

– Comments

2

PL/SQL Block Syntax

and Guidelines

Identifiers

• Can contain up to 30 characters

• Cannot contain reserved words unless
enclosed in double quotation marks

• Must begin with an alphabetic character

• Should not have the same name as a
database table column name

3

PL/SQL Block Syntax and

Guidelines

Literals

• Character and date literals must be
enclosed in single quotation marks.

• Numbers can be simple values or
scientific notation.

v_ename := 'Henderson';

4

Commenting Code

• Prefix single-line comments with two
dashes (--).

• Place multi-line comments between the
symbols /* and */.

Example

...

v_sal NUMBER (9,2);

BEGIN

/* Compute the annual salary based on the

monthly salary input from the user */

v_sal := &p_monthly_sal * 12;

END; -- This is the end of the transaction

5

SQL Functions in PL/SQL

• Available:

– Single-row number

– Single-row character

– Datatype conversion

– Date

• Not available:

– DECODE

– Group functions

Same as in SQL}

6

PL/SQL Functions

Examples

• Build the mailing list for a company.

• Convert the employee name to lowercase.

v_mailing_address := v_name||CHR(10)||

v_address||CHR(10)||v_state||

CHR(10)||v_zip;

v_ename := LOWER(v_ename);

7

Datatype Conversion

• Convert data to comparable datatypes.

• Mixed datatypes can result in an error
and affect performance.

• Conversion functions:

– TO_CHAR

– TO_DATE

– TO_NUMBER

DECLARE

v_date VARCHAR2(15);

BEGIN

SELECT TO_CHAR(hiredate,

'MON. DD, YYYY')

INTO v_date

FROM emp

WHERE empno = 7839;

END;

8

Datatype Conversion

This statement produces a compilation
error if the variable v_date is declared as
datatype DATE.

v_date := 'January 13, 1998';

v_date := TO_DATE ('January 13, 1998',

'Month DD, YYYY');

To correct the error, use the TO_DATE
conversion function.

9

Nested Blocks

and Variable Scope

• Statements can be nested wherever an
executable statement is allowed.

• A nested block becomes a statement.

• An exception section can contain
nested blocks.

• The scope of an object is the region of
the program that can refer to the object.

10

Nested Blocks

and Variable Scope

An identifier is visible in the regions in
which you can reference the unqualified
identifier:

• A block can look up to the enclosing
block.

• A block cannot look down to enclosed
blocks.

11

Nested Blocks

and Variable Scope

...

x BINARY_INTEGER;

BEGIN

...

DECLARE

y NUMBER;

BEGIN

...

END;

...

END;

Scope of x

Scope of y

Example

12

Operators in PL/SQL

• Logical

• Arithmetic

• Concatenation

• Parentheses to
control order of
operations

• Exponential operator (**)

Same as in

SQL

13

Examples

• Increment the index for a loop.

• Set the value of a Boolean flag.

• Validate an employee number if it
contains a value.

Operators in PL/SQL

v_count := v_count + 1;

v_equal := (v_n1 = v_n2);

v_valid := (v_empno IS NOT NULL);

14

Using Bind Variables

To reference a bind variable in PL/SQL,

you must prefix its name with a colon (:).

Example
VARIABLE g_salary NUMBER

DECLARE

v_sal emp.sal%TYPE;

BEGIN

SELECT sal

INTO v_sal

FROM emp

WHERE empno = 7369;

:g_salary := v_sal;

END;

/

15

Programming Guidelines

Make code maintenance easier by:

• Documenting code with comments

• Developing a case convention for the
code

• Developing naming conventions for
identifiers and other objects

• Enhancing readability by indenting

16

Code Naming Conventions

Avoid ambiguity:

• The names of local variables and formal
parameters take precedence over the
names of database tables.

• The names of columns take precedence
over the names of local variables.

17

Indenting Code

For clarity, indent each level of code.

Example

BEGIN

IF x=0 THEN

y:=1;

END IF;

END;

DECLARE

v_deptno NUMBER(2);

v_location VARCHAR2(13);

BEGIN

SELECT deptno,

loc

INTO v_deptno,

v_location

FROM dept

WHERE dname = 'SALES';

...

END;

